
Kolokvijum iz Linearne algebre, tokovi 1o3 i 1o4 25. maj 2023.
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u zavisnosti od parametara x1, x2, . . . , xn ∈ R.

2. Neka je L : R3[X]→ R3[X] linearni operator definisan sa

L(g(X)) = g(0)(−1− 2X + 4X2) + g′(1)(−1 + 2X2) + g′′(0)(−X +
1

2
X2).

a) Na�i matricu operatora L u odnosu na kanonsku bazu prostora e = [1, X,X2] vektorskog
prostora R3[X], kao i karakteristiqni i minimalni polinom operatora L;

b) Odrediti sopstvene vrednosti i sopstvene vektore operatora L. Na�i bar jednu bazu f pros-

tora R3[X] u kojoj L ima dijagonalnu matricu i odrediti [L]f .

3. Dato je preslikava�e · : R3 × R3 → R na slede�i naqin:

(x1, x2, x3) · (y1, y2, y3) = x1y1 + x2y2 + 2x3y3 − x1y3 − x3y1.

a) Dokazati da je · skalarni proizvod na vektorskom prostoru R3.

b) Odrediti bar jednu ortonormiranu bazu potprostora U = L((1, 0,−1), (2, 3, 1)) u odnosu na

ovaj skalarni proizvod.

v) Odrediti ortogonalnu projekciju vektora v = (4, 2, 4) na potprostor U , a zatim i rastoja�e

tog vektora od potprostora U .


