- 6) Funkcije $1 + 3x^2 x^5$, $6 + x + 4x^5$ s oblasti R.
- 7) Funkcije $\cos x$, $\sin x$ definirane u R.

8) Matrice
$$\begin{bmatrix} 3 & -2 & 0.5 \\ 0.4 & 0.23 & 3.4 \\ 7.2 & 5.04 & 2.3 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 3 \\ 1 & 0 & 5 \\ 7.2 & 3.4 & -5.2 \end{bmatrix}.$$

- 9) Nizovi $\cos \omega' x$, $\sin \omega' x$; pri tom ω' prolazi beskonačnim cifarskim intervalom $I\omega' = \{0, 1, 2, \dots\}$; nadalje, $x \in \mathbb{R}$.
- 10) $\int_{0}^{x} \cos^{2} t \, dt, \qquad \int_{0}^{x} \sin^{2} t \, dt.$

4. LINEARNA ZAVISNOST VEKTORA. LINEARNA NEZAVISNOST VEKTORA

4.0. Priprema. Promatramo li na zadanoj pravulji p bilo koji vektor \overrightarrow{e} koji je $\overrightarrow{+0}$, tada se svaki drugi vektor \overrightarrow{v} s pravulje p može izraziti pomoću \overrightarrow{e} u obliku \overrightarrow{ce} , tj. $\overrightarrow{v} = \overrightarrow{ce}$, odnosno $\overrightarrow{v} - \overrightarrow{ce} = \overrightarrow{0}$ gdje je c određen broj.

Specijalno, za $\overrightarrow{v} = \overrightarrow{0}$ imamo c = 0. Ako je $c \neq 0$, tada se i \overrightarrow{e} može izraziti pomoću \overrightarrow{v} . Bilo koja dva vektora na pravulji međusobno su vezana linearno.

Naprotiv, u ravnini imamo i parova nezavisnih vektora: svaki par e_1, e_2 vektorâ koji zatvaraju oštar kut međusobno su nezavisni linearno, tj. jedan se

 $\lambda_1 e_1 + \lambda_2 e_2 = \overrightarrow{0}, \qquad \lambda_2 \in \mathbb{R}$

ne može izraziti linearno pomo-

ću drugoga, odnosno: nula-veza

ima nužno za posljedicu $\lambda_1 = \lambda_2 = 0$. Naprotiv, ako je e_3 bilo koji treći vektor u ravnini, onda se nula-veza

$$\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 = \overrightarrow{0}$$

uz uslov $\lambda_{3'} \in R$ može ostvariti i netrivijalno (tako npr. na slici je

$$e_3 = 2 e_1 + 1.5 e_2$$
 tj. $2 e_1 + 1.5 e_2 - e_3 = \overrightarrow{0}$.

Primjer s jednadžbama i nizovima. Jednadžbe

$$2x_0 + 3x_1 = 4$$
, $4x_0 + 6x_1 = 8$

međusobno su zavisne; "pripadni" nizovi

također; naprotiv, jednadžbe 2x+y=1, 4x+y=5 ne zavise međusobno linearno; isto vrijedi za dva niza 2, 1, 1 i 4, 1, 5.

Imajući na umu ta svakidašnja i elementarna razmatranja i, osim toga, znajući kako je raznovrstan i općenit pojam vektora (isp. § 3), prelazimo na preciziranje linearne zavisnosti (nezavisnosti) vektora i dokazivanje nekih osnovnih stvari o "dimenziji" vektorskih prostora.

Neka slika jednostavnih gornjih primjera služi kao oslonac i vodilja u općim razmatranjima.

Rang matrice kao zajednički maksimalni broj linearno nezavisnih njenih stupaca, odnosno redaka, odnosno kao maksimalni stupanj regularnih submatrica, osnovni je pojam u algebri. Druga je osnovna činjenica istobrojnost svakog para bazâ u svakom vektorskom prostoru (teorem 4.6.1.) i izomorfizam između V_k i V_n za $k=n < \infty$ (teorem 4.6.1).

4.1. Definicija linearne nezavisnosti¹⁾. Zadani konačni niz od s vektora²⁾ $v_{s'}$ je linearno nezavisan ili slobodan ako iz veza

(1)
$$\sum_{s'} \lambda_{s'} x_{s'} = 0, \ \lambda_{s'} \in \mathbb{R}$$

nužno izlazi

(2)
$$\lambda_{s'} = 0 \quad \text{za svako} \quad s' = 1, 2, \cdots, s.$$

Ako su veze (1) moguće i bez uslova (2), kaže se da su vektori $v_{s'}$, tj. vektori v_1, v_2, \dots, v_s , linearno zavisni; pri tom je s prirodan broj.

- 4.1.1. Kaže se da je zadani beskonačni skup M vektorâ linearno nezavisan ako mu je svaki konačni dio linearno nezavisan. Beskonačni skup vektora je linearno zavisan ako mu je bar jedan konačan podskup linearno zavisan.
- 4.2. Primjeri. 4.2.1. Je su li stupci matrice $a = \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$ linearno zavisni ili nezavisni?

Imamo stupce
$$a_{\cdot 1} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$
, $a_{\cdot 2} = \begin{bmatrix} 0 \\ 5 \end{bmatrix}$; treba ispitati veze
$$\lambda_1 a_{\cdot 1} + \lambda_2 a_{\cdot 2} = \overrightarrow{0}, \qquad \lambda_2 \in \mathbb{R}.$$

$$\lambda_1 \begin{bmatrix} 3 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

$$\begin{bmatrix} \lambda_1 \cdot 3 \\ \lambda_1 \cdot 0 \end{bmatrix} + \begin{bmatrix} \lambda_2 \cdot 0 \\ \lambda_2 \cdot 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

$$\begin{bmatrix} 3\lambda_1 + 0 \\ 0 + 5\lambda_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

²⁾ Vektori v_1, \dots, v_8 su izvađeni iz nekog vektorskog prostora V nad tijelom R ili generiraju neki vektorski prostor nad R.

¹⁾ Rus.: зависимость, независимость; franc.: dépendance-indépedance: njem.: Abhängigkeit-Unabhängigkeit.

Odatle izlazi:

$$3 \lambda_1 = 0$$
, $5 \lambda_2 = 0$, tj.
 $\lambda_1 = 0$ i $\lambda_2 = 0$.

 $\lambda_1 = 0 \quad i \quad \lambda_2 = 0.$

Dakle $(3) \Rightarrow (4)$: stupci su linearno nezavisni.

4.2.1.1. Analogno: Stupci (réci) u svakoj dijagonalnoj matrici bez 0 na dijagonali međusobno su linearno nezavisni. Dokaži!

4.2.2. Jesu li nizovi

(1)
$$f_0 = 2,$$
 3, 5, 4
 $f_1 = 3,$ -4, 2, 3
 $f_2 = 5,$ -3, 4, 2

linearno zavisni ili nezavisni?

Treba riješiti jednadžbu

(2)
$$x_0 f_0 + x_1 f_1 + x_2 f_2 = \text{nula-niz} = (0, 0, 0, 0).$$

No, formirajući linearni spoj, imamo po redu:

$$x_0 f_0 + x_1 f_1 + x_2 f_2 = x_0 (2, 3, 5, 4) + x_1 (3, -4, 2, 3) + x_2 (5, -3, 4, 2) =$$

$$= (2 x_0, 3 x_0, 5 x_0, 4 x_0) + (3 x_1, -4 x_1, 2 x_1, 3 x_1) + (5 x_2, -3 x_2, 4 x_2, 2 x_2) =$$

$$= (\text{sumacija nizova!}) =$$

$$= (2 x_0 + 3 x_1 + 5 x_2, 3 x_0 - 4 x_1 - 3 x_2, 5 x_0 + 2 x_1 + 4 x_2, 4 x_0 + 3 x_1 + 2 x_2).$$

Na taj način jednadžba (2) postaje

(3)
$$(2x_0 + 3x_1 + 5x_2, 3x_0 - 4x_1 - 3x_2, 5x_0 + 2x_1 + 4x_2, 4x_0 + 3x_1 + 2x_2) = (0, 0, 0, 0).$$

Odatle, izjednačenjem odgovarajućih članova u nizu $(3)_1$ i u nizu $(3)_2$, izlazi ovaj sistem jednadžbi:

$$2 x_0 + 3 x_1 + 5 x_2 = 0$$

$$3 x_0 - 4 x_1 - 3 x_2 = 0$$

$$5 x_0 + 2 x_1 + 4 x_2 = 0$$

$$4 x_0 + 3 x_1 + 2 x_2 = 0.$$

Lako se uvjerimo da odatle nužno izlazi $x_0 = x_1 = x_2 = 0$. To znači da jednadžba (2) ima trivijalno rješenje kao jedino rješenje. A to po definiciji znači da su nizovi (1) linearno nezavisni.

4.2.2.1. Primjedba. Treba uočiti kako ispitivanje linearne zavisnosti nizova (1) dovodi do razmatranja sistema homogenih jednadžbi (4) i da je matrica toga sistema (4) upravo matrica sačinjena od zadanih nizova (1) kao svojih stupaca, tj. matrica sistema (1) je $[f_0, f_1, f_2]$. Ta je veza bitna.

4.2.3. Primjer. Jesu li jednadžbe

$$2x+3y+5z=4$$

 $3x-4y+2z=3$

$$5x-3y+4z=2$$

linearno zavisne ili nezavisne?

Treba pogledati proširenu matricu tih jednadžbi i usporediti je sa zadatkom 4.2.2. Jednadžbe su nezavisne! Provedite formalan dokaz!

4.2.4. Primjer. Jesu li tri funkcije: $x \rightarrow 1$, $x \rightarrow x$, $x \rightarrow x^2$, koje su definirane u intervalu R[0, 1] realnih brojeva, linearno zavisne ili nezavisne? Da odgovorimo na pitanje, treba promatrati pripadni nula-spoj:

$$\lambda_0 \cdot 1 + \lambda_1 \cdot x + \lambda_2 \cdot x^2 = 0;$$

to znači da treba biti

$$\lambda_0 + \lambda_1 x + \lambda_2 x^2 = 0$$

za svako $0 \le x \le 1$; pri tom su $\lambda_0, \lambda_1, \lambda_2$ fiksni brojevi. No, kako su λ fiksni brojevi, jednadžba (1) je algebarska. Ako je $\lambda_2 \ne 0$, tada on ima samo jedno ili dva rješenja, naime brojeve oblika

$$\frac{-\lambda_1+(\lambda_1^2-4\lambda_0\lambda_2)^{1/2}}{2\lambda_2}.$$

A to znači da su spomenute tri potencija-funkcije 1, x, x^2 s domenom R[0, 1] linearno nezavisne.

- 4.3. Što znači da zadan skup M određuje i razapinje zadani prostor V? Dimenzija.
- 4.3.1. Razapinjanje. Za zadani skup M vektorâ neka L(R, M) označuje skup svih vektora oblika

$$\lambda_1 x_1$$
, $\lambda_1 x_1 + \lambda_2 x_2$, $\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3$, ...

pri čemu su $\lambda_1, \lambda_2, \dots \in R$, $x_1, x_2, \dots \in M$; primijetimo da i u sumi dolazi najviše konačno mnogo brojeva $\lambda_{n'}$ različitih od nule. Kaže se da M, odnosno vektori iz M, razapinju (određuju) prostor L(R, M).

4.3.2. Pojam dimenzije. Minimalni glavni (kardinalni) broj množine M, za koju je L(R, M) = V (zadani prostor V), zove se dimenzija prostora V; označuje se sa dim V. Ili općenitije: za svaki neprazni skup $S \neq \{0\}$ iz vektorskog prostora definiramo dim S kao minimalni kardinalni broj množina M sa svojstvom $L(R, M) \supset S$.

Npr. funkcije u $R: x \to 2$, $x \to x^3$, $x \to x^4$ razapinju prostor $L(R, \{2, x^3, x^4\})$ polinomâ $\lambda_3 \cdot 2 + \lambda_3 \cdot x^3 + \lambda_4 x^4$; kako su te funkcije linearno nezavisne (isp. primjer 4.2.4), dimenzija je prostora = 3.

4.4. Baza zadanog vektorskog prostora V. — 4.4.1. Definicija. Svaki normalno dobro uređeni skup B linearno nezavisnih vektora za koje je L(R, B) = V zove se baza prostora V.

Prema tome, kod baze se traži troje:

- 1) Baza je "normalno dobro uređen" skup tako da se zna njen prvi element B_1 , pa drugi element B_2 (ukoliko ga ima), itd. i k tome da nijedan početni komad niza ne bude istobrojan s čitavim nizom (to je potrebno spomenuti za prostore s beskonačno mnogo dimenzija, da se ne dogodi da bazu zapišemo npr. ovako: $B_1, B_2, \dots, B_n, B_{n+1}, \dots, B_{\omega}$).
- 2) U bazi nema linearno zavisnih vektora (zato nula-vektor nije u B jer je nula-vektor zavisan od svakog vektora).
- 3) Svaki član $v \in V$ može se prikazati pomoću konačno mnogo članova $x_0(v), x_1(v) \cdots$ iz baze B u tom smislu da je $v = v_0 x_0(v) + v_1 x_1(v) + \cdots$; pri tom su $v_0(v), v_1(v), \cdots \in R$.

Ako je baza B konačna i ima n članova, označujemo ih po redu:

$$B_1, B_2, \dots, B_{n-1}, B_n$$
 i pišemo $B = \{B_{n'}\}_{n'}$ ili $\{B_{n'}\}$

znajući da n' prelazi intervalom 1(n).

 \longrightarrow 4.4.2. Jednoznačnost izražavanja vektora pomoću zadane baze. Teorem. Neka je V vektorski prostor nad tijelom R; ako je B baza u V, tada za svaki član $v \in V$, $v \neq 0$, postoji potpuno određeno preslikavanje baze B u R: $x \mapsto v_x(x \in B)$ sa svojstvom da je $v_x \neq 0$ na konačnom dijelu baze B izvan kojeg je $v_x = 0$ i da je

$$v = \sum_{x \in B} v_x x.$$

Specijalno, ako je baza B konačna i $B = \{B_{n'}\}_{n'}$, tada je potpuno određen niz (a ne skup) $v_{n'} \in R$ sa svojstvom

$$v = \sum v_{n'} \boldsymbol{B}_{n'} ;$$

 v_x (odnosno $v_{n'}$) zove se koordinata od v u smjeru $x \in B$ (odnosno u smjeru $B_{n'}$). Specijalno za nula-vektor $\overrightarrow{0}$ iz V imamo

$$\overrightarrow{0} = \sum_{x \in B} 0 \cdot x.$$

Dokaz. Prema definiciji baze B, vrijedi V = L(R, B); to znači da za svako $v \in V$, $v \neq 0$ postoji preslikavanje $x \rightarrow v_x \in R$ od B u R sa svojstvom da vrijedi (1) i da bude $v_x = 0$ svuda osim eventualno na konačnom dijelu od B, gdje je $v_x \neq 0$. Pa pretpostavimo da je također i $x \rightarrow v'_x$ preslikavanje od B u R s analognim svojstvom da je $v_x' \neq 0$ tek na konačnom ili pustom dijelu baze B. Tada je $0 = v - v' = \sum_{x \in B} v_x x - \sum_{x \in B} v'_x x$. No, ako je M množina svih $x \in B$ u kojima bar jedan od članova v_x , v'_x nije = 0, onda je M konačno i očigledno je gornja razlika $= \sum_{m \in M} (v_m - v'_m) m$, odakle je $0 = \sum_{m \in M} (v_m - v'_m) m$. Kako je M konačni dio baze B, M je nezavisno, pa posljednja jednakost ima za posljedicu $0 = v_m - v'_m$ za svako $m \in M$, što zbog $v_x = v'_x = 0$ za $x \in B$ M znači da je zaista $v_x = v'_x$ za svako $x \in B$.

- 4.5. Istobrojnost različitih baza u prostoru. Ravnina je dvodimenzionalna; svaka baza u njoj ima po dva člana; u prostoru R^{I3} svaka baza ima po tri člana, tj. ako su B, B' bilo koje dvije baze u običnom prostoru, onda skupovi B, B' imaju jednak broj članova. Jedna od osnovnih činjenica o vektorskim prostorima koja zadire u algebru, geometriju itd. sastoji se u tom da isti iskaz važi za svaki vektorski prostor nad tijelom realnih ili kompleksnih brojeva.
- $--\rightarrow$ 4.5.1. Teorem. (osnovni teorem o istobrojnosti baza). Neka je V bilo koji prostor (nad tijelom R ili R (i)); ako je dim $V<\infty$, tada su bilo koje dvije baze prostora V istobrojne: one imaju isti broj članova. Svakih $n=\dim V$ linearno nezavisnih članova iz V čine bazu prostora pa se svaki član iz V na jednoznačan način prikazuje kao njihov linearan spoj.

To je zaista fundamentalan teorem!

Dokaz. Čitalac može, pri dokazu, uvijek imati u mislima npr. ravninu umjesto V. Pa neka V ima upravo n dimenzijâ, dakle dim $V = n \in N$. Tada po definiciji broja dim V postoji jedna baza $e = \{e_{n'}\}_{n'}$ upravo od n članova. Neka je $B = \{B_{s'}\}_{s'}$ bilo koja baza istog prostora V; s je broj članova u B; dakle je $s \ge \dim V$, tj. $s \ge n$. Treba dokazati da je s = n. To ćemo dokazati postepenim smjenjivanjem članova iz e članovima iz B.

Promatrajmo niz od n+1 člana:

(1)
$$\underbrace{e_1, e_2, \dots, e_{n'}, \dots, e_n, B_1}_{\text{baza } e}.$$
 prvi član baze B

Uklonimo iz tog niza prvi član x koji zavisi linearno od preostalih članova niza (1); vrijedi $x \in e$, i preostalih n članova opet je jedna baza e' u kojoj je i član B_1 iz baze B. Stvarno, kako je e baza, to za vektor¹⁾ B_1 imamo rastav

(2)
$$B_1 = \sum_{n'} B_{1n'} \cdot e_{n'};$$

kako je B_1 član jedne baze, naime baze B_1 , to je $B_1 \neq 0$; znači da je bar jedna komponenta $B_{1n'} \neq 0$.

Neka je k prvi broj $\le n$ za koji je $B_{1k} \ne 0$; tada iz rastava (2) možemo izraziti vektor e_k pomoću članova iz $e \setminus \{e_k\} \cup \{B_1\}$; dakle

(3)
$$e_{k} = B_{k} - \sum_{r} \frac{B_{1r}}{B_{1k}} e_{r} \qquad (r \leq n, r \neq k).$$

Dakle je e_k izbačeni vektor x. Dokažimo još da preostali članovi u (1) čine bazu, tj. da zamjenom u bazi e vektora e_k s vektorom B_1 dobijemo opet bazu. Stvar izlazi neposredno iz (3). Naime, kako je za proizvoljan vektor v iz V na snazi rastav

(4)
$$v = \sum_{n'} v_{n'} e_{n'},$$

to unošenjem izraza $(3)_2$ za vektor e_k u (4) dobijemo rastav vektora ν po vektoru B_1 i vektorima $e_{n'} \neq e_k$.

¹⁾ U konkretnom slučaju "vektor" B_1 može biti geometrijski vektor, niz, jednadžba, funkcija, matrica, ...

Time smo dokazali da vrijedi ova:

4.5.1.2. Lema. Neka je e bilo koja baza prostora V i $x \in e$; neka je v neki član $+\overrightarrow{0}$ iz V, sa svojstvom da v u smjeru x ima komponentu +0; tada je skup $e \setminus \{x\} \cup \{v\}$ opet baza u prostoru.

Dovršimo gornji dokaz. Izbacivanjem prvog zavisnog člana u (1) dobije se iz (1) određen niz e' od n članova; pripišimo tome nizu naredni član B_2 baze B; u nastalom nizu od n+1 člana provedimo isto razmatranje kao maloprije: izbacimo prvi zavisni član! Preostaje određen niz e'' od n članova sa B_1, B_2 kao dva posljednja člana, itd. Poslije n koračaja doću ćemo istim postupkom do određenog niza $e^{(n)}$ koji je upravo n-člani niz $(B_{n'})_{n'}$; taj niz $e^{(n)} = (B_{n'})_{n'}$ kao i nizovi $e^{(i)}$ kod drugih koračaja čini bazu. To znači da je n = s, jer bi inače bilo n < s pa bi npr. član B_{n+1} baze B zavisio linearno od članova B_1, \dots, B_n jer ovi članovi tvore bazu $e^{(n)}$ prostora V; međutim, svi vektori svake baze linearno su nezavisni; zato B_{n+1} ne postoji pa je zaista n = s.

Istobrojnost baza je dokazana.

Idemo dalje! Pa neka je M bilo koja množina od $n = \dim V$ linearno nezavisnih vektora; tada je M baza u V; u obrnutom slučaju skup $V \setminus L(R, M)$, bio bi pun tj. neprazan; izabirući iz njega neki član i dovodeći ga u M, dobili bismo skup $M' \supseteq M$; i skup M' je nezavisan, a ima već n+1 član; očigledno se proces može nastaviti, pa ako M' još nije baza, možemo M' proširiti i doći najzad do neke baze $S \supset M'$. No, baza S imala bi bar n+1 član, protivno dokazanoj istobrojnosti baza.

Posljednji dio rečenice u teoremu 4.5.1. sadržan je u teoremu 4.4.2.

Time je osnovni teorem 4.5.1. potpuno dokazan.

4.5.1.3. Primjer. U § 1.4. riješili smo niz od 4 linearne homogene jednadžbe sa 7 nepoznanica i dokazali da sva rješenja čine prostor od 5 dimenzija. Pet "vektora", tj. 5 rješenja navedenih tamo pod šifrom (4), obrazovali su bazu. A sada znamo da svakih 5 nezavisnih rješenja čine bazu i da svaka baza ima upravo 5 članova.

To je znatno preciziranje u savladavanju stvarnosti!

- 4.5.2. Teorem o izgradnji baze. Neka je $(1)M = v_1, \dots v_m$ bilo koji niz od m linearno nezavisnih vektora prostora V; ako je $m < \dim V$, tada postoji baza e prostora koja proširuje skup M, a dobije se tako da se nizu (1) priklopi bilo koji niz od n-m članova iz V koji su linearno nezavisni od vektora (1), tj. leže u $V \setminus LM$, a također su linearno nezavisni međusobno.
- Dokaz. Kako je $m < \dim V$, postoji bar jedan vektor $v_{m+1} \in V$ koji je nezavisan od M, tj. $v_{m+1} \in V \setminus LM$; radeći dalje sa $M_1 = v_1, v_2, \dots, v_m, v_{m+1}$ kao što smo upravo radili sa M, pa ako je $m+1 < \dim V$, doći ćemo na sličan način do $v_{m+2} \in V \setminus LM_1$ itd.; nakon n-m koračaju doći ćemo tako do niza $v_1, v_2, \dots, v_m, v_{m+1}, v_{m+2}, \dots, v_n$ od n linearno nezavisnih vektora prostora V od n dimenzija; taj n-člani niz čini bazu prostora V (v. teor. 4.5.1.).
- 4.6. Izomorfizam vektorskih prostora. 4.6.0. Priprava. Bili smo iznenađeni saznanjem na kako se raznovrstan način mogu pojaviti vektorski prostori, a time i vektori (isp. primjere u § 3.3). Sad ćemo, međutim, spoznati

drugu stranu medalje. Kao što se pojedini broj može pojaviti u raznim situacijama (npr. broj 2 kao dva oka, dva oraha, dvije dužine, itd.), tako se i pojedini vektorski prostor može pojaviti u naoko raznim, no sličnim vidovima. Tako ćemo npr. vidjeti da je svaki vektorski prostor dimenzije 2 (nad tijelom R) "sličan" ili "izomorfan" s prostorom R^2 svih dvočlanih nizova u R.

Zaključak je općenit.

 \longrightarrow 4.6.1. Teorem. Neka su V, V' dva vektorska prostora nad tijelom R; ako je dim $V = \dim V' = n < \infty$, tada su prostori V, V' izomorfni, tj, postoji tolikovanje $t^{(1)}$ (bijekcija): $x \to tx$ prostora V na V' s ova dva svojstva:

$$L_1$$
 $t(x+y)=tx+ty$ za svako $x,y\in V$
 L_2 za svako $\lambda\in R$ i $x\in V$.

Specijalno, oba prostora V, V' izomorfna su s prostorom R^n svih n-članih nizova s vrijednostima u R (tj. R^n je skup svih jednoznačnih funkcija od 1(n) ka R, pri čemu je adiranje u R^n i množenje između elemenata iz R i onih iz R^n definirano na svagdašnji način)²⁾.

- 4.6.2. Sam teorem možemo ilustrirati "prostorom" rješenja npr. jednadžbe 2x-3y+5z=0. Prostor rješenja izomorfan je s ravninom (pa ta zadana jednadžba je slika ravnine!).
- 4.6.3. Dokaz teorema 4.6.1. Neka je e baza u V a e' u V'; kako je dim $V = \dim V' = n$, to prema teoremu 4.5.1. baze e, e' imaju svaka po n elemenata; pa neka je $e = \{e_{\nu}\}_{\nu}$, $e' = \{e'_{\nu}\}_{\nu}$; tu $\nu \in I(n)$. Definirajmo sada funkciju t od e na e' zahtjevom $te_{\nu} = e'_{\nu}$. Proširimo t s baze e na čitav prostor V na prirodan način: neka je $\nu \in V$; tada je, prema teoremu o jednoznačnosti 4.4.2 moguće na jedan jedini način pisati

$$v = \sum_{\mathbf{v}} v_{\mathbf{v}} e_{\mathbf{v}}.$$

Definirajmo tv relacijom

$$t\left(\sum_{\nu}v_{\nu}e_{\nu}\right)=\sum_{\nu}v_{\nu}te_{\nu}.$$

Time je t definirano na jednoznačan način u čitavu prostoru V; no t je i jednolisno: ako je $v \neq u$ u V, tada je $tv \neq tu$; stvarno, iz $v \neq u$ izlazi $v_k \neq u_k$ za bar jedno $k \leq n$; dakle je i $v_k e'_k \neq u_k e'_k$ tj. $v_k t e_k \neq u_k t e_k$, dakle i $tv \neq tu$.

Dokažimo da su ispunjeni uslovi L_1 i L_2 .

Pa neka je $x, y \in V$; tada je

$$x = \sum_{\nu} x_{\nu} e_{\nu}, y = \sum_{\nu} y_{\nu} e_{\nu};$$
 odatle $(x+y) = \sum_{\nu} (x_{\nu} + y_{\nu}) e_{\nu};$

po definiciji (1) imamo odatle

$$f(x+y) = t \sum (x_{v} + y_{v})e_{v} = \sum (x_{v} + y_{v}) te_{v} = \sum (x_{v} + y_{v}) e'_{v} = \sum x_{v}e'_{v} + \sum y_{v}e'_{v} =$$

$$= \sum x_{v}te_{v} + \sum y_{v}te_{v} = t \sum x_{v}e_{v} + t \sum y_{v}e_{v} = tx + ty.$$

¹⁾ tj. obostrano jednoznačno preslikavanje.

²⁾ Možemo reći da je R^n , obični euklidski prostor od n dimenzija" nad tijelom R.

²⁹ D. Kurepa: Viša algebra, knjiga prva

Analogno:

$$t(\lambda x) = t(\lambda \sum x_{\nu}e_{\nu}) = t\sum \lambda x_{\nu}e_{\nu} = \sum \lambda x_{\nu}te_{\nu} = \lambda \sum x_{\nu}te_{\nu} = \lambda t\sum x_{\nu}e_{\nu} = \lambda tx, \quad \text{tj.} \quad t(\lambda x) = \lambda tx$$

$$za \text{ svako } \lambda \in R \text{ i svako } x \in V.$$

Time je izomorfizam prostorâ V, V' dokazan.

Još se radi o onom dodatku za prostor R^n ; ovaj prostor ima n dimenzija, jer su redići e_v jedinične matrice 1_n nezavisni članovi u R^n , u jednu ruku; u drugu ruku, za svaki član $x=(x_v)\in R^n$ očigledno je

$$x = x_1 (1, 0, 0, \dots) + x_2 (0, 1, 0, \dots) + \dots =$$

= $\sum x_{\nu} e_{\nu}$, tj. $L(R, \{e_{\nu}\}_{\nu}) = R^n$.

Dakle redovi (odnosno stupci) matrice 1_n obrazuju bazu prostora \mathbb{R}^n . Teorem 4.6.1. je potpuno dokazan.

4.6.4. O homogeno-linearnim preslikavanjima vektorskih prostora.

Linearno preslikavanje t linearnog prostora u linearan prostor je svako preslikavanje t za koje vrijede gornji uslovi L_1 i L_2 .

U toku dokazivanja u 4.6.3. dokazali smo i ovaj rezultat:

Le m a. Linearno preslikavanje vektorskog prostora V potpuno je određeno poznavajući njegove vrijednosti u jednoj bazi prostora.

- 4.6.5. Primjedba o osnovnom teoremu o istobrojnosti baza. Kako je taj teorem "istinit" za euklidske prostore R^n , to iz izomorfije prostora R^n i prostora V, za koji je dimV=n, izlazi da je teorem o istobrojnosti baza istinit i za V.
- 4.7. Osnovni teorem o vektorskom prostoru, bazama, potprostoru i njegovu komplementu. 4.7.0. Ideja vodilja. Neka su p i q dvije pravulje (pravca) koje se sijeku; neka nam njihovo sjecište služi kao nula (0) za računanje; ravnina R^2 što je određuju pravulje p i q izlazi

kao množina svih suma p'+q'; svaka tačka ravnine predočena je na jedan jedini način u tom obliku.

Kaže se da je ravnina R^2 direktna suma pravulja p i q i piše $R^2 = p + q$.

4.7.1. Osnovni teorem o vektorskim prostorima, podbazama i potprostorima. Neka je $V=V_n(K)$ proizvoljan vektorski prostor nad tijelom K, i

Sl. 13.4.7. Članovi baze V i podbaze U markirani su tačkicama

(1)
$$e = (e_1 e_2 \dots e_n)$$

proizvoljna baza toga prostora; svaki podskup e° od e razapinje određen podprostor $U = Le^{\circ}$ prostora V; posebno, ako je e° pravi podskup od e, tada prostor Le°

što ga rađa e° i prostor $U' = LCe^{\circ}$ što ga rađa skup $Ce^{\circ} = e \setminus e^{\circ}$ imaju svojstvo da je svako $v \in V$ predočivo na jedan jedini način u obliku

(2)
$$v = v_u + v_{u'}$$
 pri čemu $v_u \in U$, $v_{u'} \in U'$.

2. Kaže se da je V direktna suma prostorâ U, U' i piše

$$(3) V = U + U';$$

kaže se također da je U' direktni komplement potprostora U u odnosu na prostor V. Vrijedi

(4)
$$U \cap U' = \{\overrightarrow{0}\} \text{ te } (4') \quad \dim V = \dim U + \dim U'.$$

Dokaz. Neposredno se provjerava da je Le° određen vektorski prostor i da je dim $Le^{\circ} = ke^{\circ}$ (= broj članova u e°).

Isto tako

$$\dim LCe^{\circ} = k (e \setminus e^{\circ}) = ke - ke^{\circ} = \dim V - \dim Le^{\circ}$$
.

Za zadanu bazu (1) prostora V, i za svako $v \in V$ imamo posve određen rastav

(5)
$$v = v^1 e_1 + v^2 e_2 + \cdots + v^n e_n,$$

gdje su $v^{\nu} \in K$ članovi tela K; neka e° kao podniz od niza e glasi

$$(6) e^{\circ} = e_{i_1} e_{i_1} \cdots e_{i_m};$$

neka preostatak niza e glasi

$$(7) e_{j_1} \cdot \cdot \cdot e_{j_r};$$

tada, na osnovu zakona obrtanja i združivanja, iz (5) izlazi

(8)
$$v = (v^{i_1}e_{i_1} + v^{i_2}e_{i_2} + \cdots + v^{i_m}e_{i_m}) + (v^{j_1}e_{j_1} + \cdots + v^{j_r}e_{j_r}).$$

Vektor u prvoj zagradi je član u prostoru Le°; vektor u drugoj zagradi je član prostora LCe°; oba ta vektora određena su jednoznačno jer su jednoznačno određeni: rastav (5) i e° kao podniz (6) te Ce° kao podniz (7).

Nula-vektor $\overrightarrow{0}$ je svakako zajednički član od $Le^{\circ}i$ Ce° , međutim, to je i jedini zajednički član tih dvaju prostora. Stvarno, iz $v \in Le^{\circ} \cap LCe^{\circ}$ izlazi zbog $v \in Le^{\circ}$ prikaz

$$v = \sum_{\mu=1}^m x^{\mu} e_{i_{\mu}}$$

u bazi (6), a zbog $v \in LCe^{\circ}$ izlazi prikaz

$$v = \sum_{\rho=1}^{r} y^{\rho} e_{i_{\rho}} \quad \text{u bazi (7)}.$$

Iz jednakosti

$$\sum_{\mu} x^{\mu} e_{i_{\mu}} = \sum_{\rho} y^{\rho} e_{i_{\rho}} \text{ odnosno}$$

$$\sum x^{\mu} e_{i_{\mu}} - \sum y^{\rho} e_{i_{\rho}} = \vec{0}$$
 i činjenice da su $e_{i_{\mu}}, e_{i_{\rho}}$

članovi baze e samog prostora V izlazi (zbog linearne nezavisnosti članova baze) da su koeficijenti = 0, tj.

$$x^{\mu} = 0 = y^{\rho} \text{ pri } \mu \in 1 (m), \rho \in 1 (r).$$

A to upravo znači da je v = 0, što se tvrdi relacijom (4). Na sličan se način dokazuje

4.7.2. Teorem. Neka je vektorski prostor $V = V_n(K)$ dimenzije $n < \infty$; neka je V direktna suma svojih potprostora U_1, U_2 u smislu da je svaki $v \in V$ predočiv na jedincat način kao

$$v = v_{u_1} + v_{u_2} \ pri \ v_{u_i} \in U_i \ (i = 1,2);$$

ako je $e^{(i)}$ vektorska baza u prostoru U_i (i=1,2), tada je $e^{(1)} \cup e^{(2)}$ vektorska baza samog prostora $V = U_1 + U_2$:

$$L(e^{(1)} \cup e^{(2)}) = V$$
; posebno je dim $V = \dim U_1 + \dim U_2$.

(kaže se također da je v_{u_1} projekcija na potprostor U_1 vektora v u smjeru potprostora U_2).

Kao poseban slučaj teorema 4.7.2. imamo

4.7.3. Teorem. Neka je $V = V_n(K)$ proizvoljan prostor konačne dimenzije: neka je e vektorska baza prostora V, a U potprostor od V. Ako baza e ima izvan U najviše dim V -- dim U članova tj. ako je

(1)
$$k((V \setminus U) \cap e) \leq \dim V - \dim U,$$

tada je e $\cap U$ baza potprostora U; posebno je tada

(2)
$$L(e \cap U) = U, \dim U = k(e \cap U)$$

(3)
$$\dim V = k (e \cap U) + k (e \cap (V \setminus U).$$

Naime iz identiteta

(4) $e = (e \cap U) \cup (e \setminus (V \setminus U))$ i mimoilaznosti (disjunktnosti) tih dvaju sastojaka izlazi

$$(V=)$$
 $Le=L(e\cap U)+L(e\cap (V\setminus U))$, a odatle

(5)
$$\dim V = \dim L(e \cap U) + \dim L(e \cap (V \setminus U))$$
 i dalje obrazac (3).

Iz (1), (4) i očigledne relacije dim $L(e \cap U) \leq \dim U$ izlazi tražena jednakost (2).

Primjedba. Bez uslova (1) zaključak (2) ne mora stajati: dovoljno je posmatrati euklidski prostor $V = R^3$, bazu $e = (e_1, e_2, e_3)$ i potprostor-pravulju Ukroz O na kojoj ne leži ni jedan od vektora e_1, e_2, e_3 ; tada je $e \cap U = \emptyset$ pa $e \cap U$ nije baza od U.

- 4.8. Zadaci o vektorskim prostorima. Zadani su ovi "vektori"; jesu li i kako su međusobno linearno zavisni ili uopće nisu međusobno linearno zavisni:
 - 0. brojevi

3, 4?

1. kompleksni brojevi 1+2i, 1-3i?

2. kompleksni brojevi

3-2i, 4+5i, -3-i?