Solve the system $\begin{cases} y=0 \\ x+(\pi/2)z=0 \\ -y+\pi z=0 \end{cases}$ to obtain only the zero solution: x=0, y=0, z=0. Hence f, g, g, g and f are independent.

Method 2. Take the first, second, and third derivatives of $x \sin t + y \cos t + zt = 0$ with respect to t to get

$$x \cos t - y \sin t + z = 0$$

$$-x \sin t - y \cos t = 0$$
(1)
(2)

$$-x\cos t + y\sin t = 0 \tag{3}$$

Add (1) and (3) to obtain z = 0. Multiply (2) by $\sin t$ and (3) by $\cos t$, and then add:

$$sin t \times (2): \quad -x sin^2 t - y sin t cos t = 0$$

$$cos t \times (3): \quad -x cos^2 t + y sin t cos t = 0$$

$$-x (sin^2 t + cos^2 t) = 0 \quad or \quad x = 0$$

Last, multiply (2) by -cos t and (3) by sin t; and then add to obtain

$$y(\cos^2 t + \sin^2 t) = 0 \quad \text{or} \quad y = 0$$

Since

$$x \sin t + y \cos t + zt = 0$$
 implies $x = 0, y = 0, z = 0$

f, g, and h are independent.

8.27 Show that the vectors v = (1 + i, 2i) and w = (1, 1 + i) in C^2 are linearly dependent over the complex field C but are linearly independent over the real field R.

Recall that two vectors are dependent iff one is a multiple of the other. Since the first coordinate of w is 1, v can be a multiple of w iff v = (1+i)w. But $1+i \not\in \mathbb{R}$; hence v and w are independent over \mathbb{R} . Since (1+i)w = (1+i)(1,1+i) = (1+i,2i) = v and $1+i \in \mathbb{C}$, they are dependent over \mathbb{C} .

8.28 Let u, v, and w be independent vectors. Show that u + v, u - v, and u - 2v + w are also independent.

If Suppose .x(u+v) + y(u-v) + z(u-2v+w) = 0 where x, y, and z are scalars. Then xu + xv + yu - yv + zu - 2zv + zw = 0 or (x+y+z)u + (x-y-2z)v + zw = 0. But u, v, and w are linearly independent; hence the coefficients in the above relation are each 0:

$$x+y+z=0$$

$$x-y-2z=0$$

$$z=0$$

The only solution to the above system is x = 0, y = 0, z = 0. Hence u + v, u - v, and u - 2v + w are independent.

8.3 THEOREMS ON BASES AND DIMENSION

8.29 Define a basis of a vector space V.

A sequence of vectors $\{u_1, u_2, \dots, u_n\}$ is a basis of V if $\{1\}$ $\{u_1, u_2, \dots, u_n\}$ are linearly independent and $\{2\}$ $\{u_1, u_2, \dots, u_n\}$ span V.

8.30 Define the dimension of a vector space V.

A vector space V is said to be of finite dimension n or to be n-dimensional, written $\dim V = n$, if V contains a basis with n elements. [This definition of dimension is well-defined by Theorem 8.4 which states that any two bases have the same number of elements.]

The vector space $\{0\}$ is defined to have dimension 0. [In a certain sense this agrees with the above definition since, by definition, \emptyset is independent and generates $\{0\}$.] When a vector space is not of finite dimension, it is said to be of *infinite dimension*.

Lemma 8.1: The nonzero vectors v_1, \ldots, v_m are linearly dependent if and only if one of them, say v_i , is a linear combination of the preceding vectors:

$$v_i = a_1 v_1 + \cdots + a_{i-1} v_{i-1}$$

8.31 Prove Lemma 8.1.

If Suppose $v_i = a_1 v_1 + \cdots + a_{i-1} v_{i-1}$. Then $a_i v_1 + \cdots + a_{i-1} v_{i-1} - v_i + 0 v_{i+1} + \cdots + 0 v_m = 0$ and the coefficient of v_i is not 0. Hence the v_i are linearly dependent.

Conversely, suppose the v_i are linearly dependent: Then there exist scalars a_1, \ldots, a_m , not all 0, such that $a_1v_2+\cdots+a_mv_m=0$. Let k be the largest integer such that $a_k\neq 0$. Then

$$a_1v_1 + \cdots + a_kv_k + 0v_{k+1} + \cdots + 0v_m = 0$$
 or $a_1v_1 + \cdots + a_kv_k = 0$

Suppose k=1; then $a_1v_1=0$, $a_1\neq 0$, and so $v_1=0$. But the v_i are nonzero vectors; hence k>1 and $v_k=-a_k^{-1}a_1v_1-\cdots-a_k^{-1}a_{k-1}v_{k-1}$. That is, v_k is a linear combination of the preceding vectors.

Theorem 8.2: The nonzero rows R_1, \ldots, R_n of a matrix in echelon form are linearly independent.

8.32 Prove Theorem 8.2.

Suppose $\{R_n, R_{n-1}, \ldots, R_1\}$ is dependent. Then one of the rows, say R_m , is a linear combination of the preceding rows:

$$R_m = a_{m+1}R_{m+1} + a_{m+2}R_{m+2} + \dots + a_nR_n$$
 (1)

Now suppose the kth component of R_m is its first nonzero entry. Then, since the matrix is in echelon form, the kth components of R_{m+1}, \ldots, R_n are all 0, and so the kth component of (1) is $a_{m+1} \cdot 0 + a_{m+2} \cdot 0 + \cdots + a_n \cdot 0 = 0$. But this contradicts the assumption that the kth component of R_m is not 0. Thus R_1, \ldots, R_n are independent.

8.33 Suppose $\{v_1, \ldots, v_m\}$ spans a vector space V and suppose $w \in V$. Show that $\{w, v_1, \ldots, v_m\}$ is linearly dependent and spans V.

If the vector w is a linear combination of the v_i since $\{v_i\}$ spans V. Accordingly, $\{w_1, v_1, \ldots, v_m\}$ is linearly dependent. Clearly, w with the v_i span V since the v_i by themselves span V. That is, $\{w_1, \dots, v_m\}$ spans V.

Suppose $\{v_1, \ldots, v_m\}$ spans a vector space V and suppose v_i is a linear combination of the preceding vectors. Show that $\{v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_m\}$ spans V.

If Suppose $v_i = k_1 v_1 + \cdots + k_{i-1} v_{i-1}$. Let $u \in V$. Since $\{v_i\}$ spans V, u is a linear combination of the v_i , say, $u = a_1 v_1 + \cdots + a_m v_m$. Substituting for v_i , we obtain

$$u = a_1 v_1 + \dots + a_{i-1} v_{i-1} + a_i (k_1 v_1 + \dots + k_{i-1} v_{i-1}) + a_{i+1} v_{i+1} + \dots + a_m v_m$$

= $(a_1 + a_i k_1) v_1 + \dots + (a_{i-1} + a_i k_{i-1}) v_{i-1} + a_{i+1} v_{i+1} + \dots + a_m v_m$

Thus $\{v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_m\}$ spans V. In other words, we can delete v_i from the spanning set and still retain a spanning set.

Lemma 8.3 ("Replacement" Lemma): Suppose $\{v_1, \ldots, v_n\}$ spans a vector space V and $\{w_1, \ldots, w_m\}$ is linearly independent. Then $m \le n$ and V is spanned by a set of the form $\{w_1, \ldots, w_m, v_{i_1}, \ldots, v_{i_{n-m}}\}$. Thus, in particular, any n+1 or more vectors in V are linearly dependent.

It suffices to prove the theorem in the case that the v_i are all not 0. (Prove!) Since the $\{v_i\}$ generates V, we have, by Problem 8.33, that

$$\{w_1, v_1, \dots, v_n\} \tag{1}$$

is linearly dependent and also generates V. By Lemma 8.1, one of the vectors in (1) is a linear combination of the preceding vectors. This vector cannot be w_1 , so it must be one of the v's, say v_j . Thus by the preceding problem we can delete v_j from the generating set (1) and obtain the generating set

$$\{w_1, v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_n\}$$
 (2)

Now we repeat the argument with the vector w_2 . That is, since (2) generates V, the set

$$\{w_1, w_2, v_1, \dots, v_{j-1}, v_{j+1}, \dots, v_n\}$$
 (3)

is linearly dependent and also generates V. Again by Lemma 8.1, one of the vectors in (3) is a linear combination of the preceding vectors. We emphasize that this vector cannot be w_1 or w_2 since $\{w_1, \ldots, w_m\}$ is independent; hence it must be one of the v's, say v_k . Thus by the preceding problem we can delete v_k from the generating set (3) and obtain the generating set $\{w_1, w_2, v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{k-1}, v_{k+1}, \ldots, v_n\}$.

We repeat the argument with w_3 and so forth. At each step we are able to add one of the w's and delete one of the v's in the generating set. If $m \le n$, then we finally obtain a generating set of the required form:

$$\{w_1,\ldots,w_m,v_{i_1},\ldots,v_{i_{n-m}}\}$$

Last, we show that m > n is not possible. Otherwise, after n of the above steps, we obtain the generating set $\{w_1, \ldots, w_n\}$. This implies that w_{n+1} is a linear combination of w_1, \ldots, w_n which contradicts the hypothesis that $\{w_i\}$ is linearly independent.

Theorem 8.4: Let V be a finite-dimensional vector space. Then every basis of V has the same number of vectors.

- 8.36 Prove Theorem 8.4 (a basic result of linear algebra).
 - If Suppose $\{e_1, e_2, \ldots, e_n\}$ is a basis of V and $\{f_1, f_2, \ldots\}$ is another basis of V. Since $\{e_i\}$ generates V, the basis $\{f_1, f_2, \ldots\}$ must contain n or less vectors, or else it is dependent by the preceding problem. On the other hand, if the basis $\{f_1, f_2, \ldots\}$ contains less than n vectors, then $\{e_1, \ldots, e_n\}$ is dependent by the preceding problem. Thus the basis $\{f_1, f_2, \ldots\}$ contains exactly n vectors, and so the theorem is true.
- 8.37 Define a maximal independent subset of a set S of vectors in V.
 - I A subset $\{v_1, \ldots, v_m\}$ of S is a maximal independent subset of S if it is independent and if, for any $w \in S$, the set $\{v_1, \ldots, v_m, w\}$ is dependent.
 - Theorem 8.5: Suppose $\{v_1, \ldots, v_m\}$ is a maximal independent subset of a set S where S spans a vector space V. Then $\{v_1, \ldots, v_m\}$ is a basis of V.
- 8.38 Prove Theorem 8.5.

(

◐

()

€

- If Suppose $w \in S$. Then, since $\{v_i\}$ is a maximal independent subset of S, $\{v_1, \ldots, v_m, w\}$ is dependent. Thus w is a linear combination of the v_i , that is, $w \in \text{span}(v_i)$. Hence $S \subseteq \text{span}(v_i)$. This leads to $V = \text{span}(S) \subseteq \text{span}(v_i) \subseteq V$. Thus $\{v_i\}$ spans V and, since it is independent, it is a basis of V.
- 8.39 Suppose V is generated by a finite set S. Show that V is of finite dimension and, in particular, a subset of S is a basis of V.
 - **Method 1.** Of all the independent subsets of S, and there is a finite number of them since S is finite, one of them is maximal. By the preceding problem this subset of S is a basis of V.

Method 2. If S is independent, it is a basis of V. If S is dependent, one of the vectors is a linear combination of the preceding vectors. We may delete this vector and still retain a generating set. We continue this process until we obtain a subset which is independent and generates V, i.e., is a basis of V.

Consider a finite sequence of vectors $S = \{v_1, v_2, \dots, v_n\}$. Let T be the sequence of vectors obtained from S by one of the following "elementary operations": (i) interchange two vectors, (ii) multiply a vector by a nonzero scalar, (iii) add a multiple of one vector to another. Show that S and T generate the same space W. Also show that T is independent if and only if S is independent.

1 Observe that, for each operation, the vectors in T are linear combinations of vectors in S. On the other hand, each operation has an inverse of the same type (Prove!); hence the vectors in S are linear combinations of vectors in T. Thus S and T generate the same space W. Also, T is independent if and only if dim W = n, and this is true iff S is also independent.

8.41 Let $A = (a_{ij})$ and $B = (b_{ij})$ be row equivalent $m \times n$ matrices over a field K, and let v_1, \ldots, v_n be any vectors in a vector space V over K. Let

$$u_{1} = a_{11}v_{1} + a_{12}v_{2} + \dots + a_{(n)}v_{n}$$

$$u_{2} = a_{21}v_{1} + a_{22}v_{2} + \dots + a_{2n}v_{n}$$

$$w_{1} = b_{11}v_{1} + b_{12}v_{2} + \dots + b_{1n}v_{n}$$

$$w_{2} = b_{21}v_{1} + b_{22}v_{2} + \dots + b_{2n}v_{n}$$

$$w_{m} = b_{m1}v_{1} + b_{m2}v_{2} + \dots + b_{mn}v_{m}$$

Show that $\{u_i\}$ and $\{w_i\}$ generate the same space.

Applying an "elementary operation" of the preceding problem to $\{u_i\}$ is equivalent to applying an elementary row operation to the matrix A. Since A and B are row equivalent, B can be obtained from A by a sequence of elementary row operations; hence $\{w_i\}$ can be obtained from $\{u_i\}$ by the corresponding sequence of operations. Accordingly, $\{u_i\}$ and $\{w_i\}$ generate the same space.

Theorem 8.6: Let v_1, \ldots, v_n belong to a vector space V over a field K. Let

$$w_1 = a_{11}v_1 + a_{12}v_2 + \dots + a_{1n}v_n$$

$$w_2 = a_{21}v_1 + a_{22}v_2 + \dots + a_{2n}v_n$$

$$w_n = a_{n1}v_1 + a_{n2}v_2 + \dots + a_{nn}v_n$$

where $a_{ii} \in K$. Let P be the n-square matrix of coefficients, i.e., let $P = (a_{ii})$.

- (i) Suppose P is invertible. Then $\{w_i\}$ and $\{v_i\}$ span the same space; hence $\{w_i\}$ is independent if and only if $\{v_i\}$ is independent.
- (ii) Suppose P is not invertible. Then $\{w_i\}$ is dependent:
- (iii) Suppose $\{w_i\}$ is independent. Then P is invertible.

8.42 Prove (i) of Theorem 8.6: Suppose P is invertible. Then $span(w_i) = span(v_i)$; hence $\{w_i\}$ is independent if and only if $\{v_i\}$ is independent.

Since P is invertible, it is row equivalent to the identity matrix I. Hence by the preceding problem $\{w_i\}$ and $\{v_i\}$ generate the same space. Thus one is independent if and only if the other is.

8.43 Prove (ii) of Theorem 8.6: Suppose P is not invertible. Then $\{w_i\}$ is dependent.

If Since P is not invertible, it is row equivalent to a matrix with a zero row. This means that $\{w_i\}$ generates a space which has a generating set of less than n elements. Thus $\{w_i\}$ is dependent.

8.44 Prove (iii) of Theorem 8.6: Suppose $\{w_i\}$ is independent. Then P is invertible.

I This is the contrapositive of the statement of (ii) and so it follows from (ii).

8.45 Let K be a subfield of a field L and L a subfield of a field E: that is, $K \subset L \subset E$. [Hence K is a subfield of E.] Suppose that E is of dimension n over L and L is of dimension m over K. Show that E is of dimension mn over K.

()

Suppose $\{v_1, \ldots, v_n\}$ is a basis of E over L and $\{a_1, \ldots, a_m\}$ is a basis of L over K. We claim that $\{a_iv_j\colon i=1,\ldots,m,\ j=1,\ldots,n\}$ is a basis of E over K. Note that $\{a_iv_j\}$ contains mn elements. Let w be any arbitrary element in E. Since $\{v_1,\ldots,v_n\}$ generates E over L, w is a linear combination of the v_i with coefficients in L:

$$w = b_1 v_1 + b_2 v_2 + \dots + b_n v_n \qquad b_i \in L$$
 (1)

Since $\{a_1, \ldots, a_m\}$ generates L over K, each $b_i \in L$ is a linear combination of the a_j with coefficients in K:

$$b_{1} = k_{11}a_{1} + k_{12}a_{2} + \dots + k_{1m}a_{m}$$

$$b_{2} = k_{21}a_{1} + k_{22}a_{2} + \dots + k_{2m}a_{m}$$

$$\vdots$$

$$b_{n} = k_{n1}a_{1} + k_{n2}a_{2} + \dots + k_{nm}a_{m}$$

where $k_{ij} \in K$. Substituting in (1), we obtain

$$w = (k_{11}a_1 + \dots + k_{1m}a_m)v_1 + (k_{21}a_1 + \dots + k_{2m}a_m)v_2 + \dots + (k_{n1}a_1 + \dots + k_{nm}a_m)v_n$$

$$= k_{11}a_1v_1 + \dots + k_{1m}a_mv_1 + k_{21}a_1v_2 + \dots + k_{2m}a_mv_2 + \dots + k_{n1}a_1v_n + \dots + k_{nm}a_mv_n$$

$$= \sum_{i,j} k_{ji}(a_iv_j)$$

where $k_{ii} \in K$. Thus w is a linear combination of the $a_i v_i$ with coefficients in K; hence $\{a_i v_i\}$ generates E over K.

The proof is complete if we show that $\{a_iv_j\}$ is linearly independent over K. Suppose, for scalars $x_{ji} \in K$, $\sum x_{ji}(a_iv_j) = 0$; that is,

$$(x_{11}a_1v_1 + x_{12}a_2v_1 + \dots + x_{1m}a_mv_1) + \dots + (x_{n1}a_1v_n + x_{n2}a_2v_n + \dots + x_{nm}a_mv_n) = 0$$

$$(x_{11}a_1 + x_{12}a_2 + \dots + x_{1m}a_m)v_1 + \dots + (x_{n1}a_1 + x_{n2}a_2 + \dots + x_{nm}a_m)v_n = 0$$

Since $\{v_1, \ldots, v_n\}$ is linearly independent over L and since the above coefficients of the v_i belong to L, each coefficient must be 0:

$$x_{11}a_1 + x_{12}a_2 + \cdots + x_{1m}a_m = 0, \ldots, x_{n1}a_1 + x_{n2}a_2 + \cdots + x_{nm}a_n = 0$$

But $\{a_1, \ldots, a_m\}$ is linearly independent over K, hence since the $x_i \in K$,

$$x_{11} = 0$$
, $x_{12} = 0$, ..., $x_{1m} = 0$, ..., $x_{n1} = 0$, $x_{n2} = 0$, ..., $x_{nm} = 0$

Accordingly, $\{a_iv_i\}$ is linearly independent over K and the theorem is proved.

8,4 BASES AND DIMENSION

or

9

9

8.46 What is meant by the usual basis of the vector space R"?

I Consider the following n vectors in R":

$$e_1 = (1, 0, 0, \dots, 0, 0), \quad e_2 = (0, 1, 0, \dots, 0, 0), \quad \dots, \quad e_n = (0, 0, \dots, 0, 1)$$

These vectors are linearly independent and span R". [See Problem 8.49.] Thus the vectors form a basis of R" called the usual basis of R".

8.47 Show that $\dim \mathbb{R}^n = n$.

If The above usual basis of \mathbb{R}^n has n vectors; hence $\dim \mathbb{R}^n = n$.

8.48 Let U be the vector space of all 2×3 matrices over a field K. Show that dim U = 6.

I The following six matrices,

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

are linearly independent and span U, and hence form a basis of U. [See Problem 8.49.] Thus dim U = 6.

8.49 Let V be the vector space of $m \times n$ matrices over a field K. Let $E_{ij} \in V$ be the matrix with 1 as the ij-entry and 0 elsewhere. Show that $\{E_{ij}\}$ is a basis of V. Thus dim V = mn. [This basis is called the usual basis of V.]

We need to show that $\{E_{ij}\}$ spans V and is independent. Let $A = \{a_{ij}\}$ be any matrix in V. Then $A = \sum a_{ij}E_{ij}$. Hence $\{E_{ij}\}$ spans V.

Now suppose that $\sum_{i,j} x_{ij} E_{ij} = 0$ where the x_{ij} are scalars. The ij-entry of $\sum_{i,j} x_{ij} E_{ij}$ is x_{ij} , and the ij-entry of 0 is 0. Thus $x_{ij} = 0$, $i = 1, \ldots, m$, $j = 1, \ldots, n$. Accordingly the matrices E_{ij} are independent. Thus $\{E_{ij}\}$ is a basis of V.

Remark: Viewing a vector in K^n as a $1 \times n$ matrix, we have shown by the above result that the usual basis of R^n defined in Problem 8.46 is a basis of R^n .

Theorem 8.7: Suppose dim V = n; say $\{e_1, \ldots, e_n\}$ is a basis of V. Then

- (i) Any set of n+1 or more vectors is linearly dependent.
- (ii) Any linearly independent set is part of a basis.
- (iii) A linearly independent set with n elements is a basis.
- 8.50 Prove (i) of Theorem 8.7: Any set of n+1 or more vectors is linearly dependent.

I Since $\{e_1, \ldots, e_n\}$ generates V, any n+1 or more vectors is dependent by Lemma 8.3.

8.51 Prove (ii) of Theorem 8.7: Any linearly independent set is part of a basis.

Suppose $\{v_1, \ldots, v_r\}$ is independent. By Lemma 8.3, V is generated by a set of the form $S = \{v_1, \ldots, v_r, e_{i_1}, \ldots, e_{i_{n-1}}\}$. By the preceding problem, a subset of S is a basis. But S contains n elements and every basis of V contains n elements. Thus S is a basis of V and contains $\{v_1, \ldots, v_r\}$ as a subset.

8.52 Prove (iii) of Theorem 8.7: A linearly independent set with n elements is a basis.

I By (ii), an independent set T with n elements is part of a basis. But every basis of V contains n elements. Thus, T is a basis.

8.53 Show that the following four vectors form a basis of \mathbb{R}^4 : (1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1).

I The vectors form a matrix in echelon form, and so the vectors are linearly independent. Furthermore, since $\dim R^4 = 4$, they form a basis of R^4 .

8.54 Determine whether or not each of the following form a basis of \mathbb{R}^3 : (a) (1, 1, 1) and (1, -1, 5); (b) (1, 2, 3), (1, 0, -1), (3, -1, 0), and (2, 1, -2).

A basis of R^3 must contain exactly three elements, since dim $R^3 = 3$. Therefore, neither the vectors in (a) nor the vectors in (b) form a basis of R^3 .

8.55 Determine whether the vectors (1, 1, 1), (1, 2, 3), (2, -1, 1) form a basis of \mathbb{R}^3 .

I The three vectors form a basis if and only if they are independent. Thus form the matrix whose rows are the given vectors and row reduce to echelon form:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & -1 & 1 \end{pmatrix} \quad \text{to} \quad \begin{pmatrix} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 0 & -3 & -1 \end{pmatrix} \quad \text{to} \quad \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 5 \end{pmatrix}$$

0

The echelon matrix has no zero rows; hence the three vectors are independent and so form a basis for R³.

8.56 Determine whether (1, 1, 2), (1, 2, 5), (5, 3, 4) form a basis of R³.

I Form the matrix whose rows are the given vectors and row reduce to echelon form:

$$\begin{pmatrix}
1 & 1 & 2 \\
1 & 2 & 5 \\
5 & 3 & 4
\end{pmatrix}$$
to
$$\begin{pmatrix}
1 & 1 & 2 \\
0 & 1 & 3 \\
0 & -2 & -6
\end{pmatrix}$$
to
$$\begin{pmatrix}
1 & 1 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{pmatrix}$$

The echelon matrix has a zero row, i.e., only two nonzero rows; hence the three vectors are dependent and so do not form a basis for R³.

Problems 8.57-8.59 refer to the vector space V of polynomials in t of degree $\leq n$.

Show that $\{1, t, t^2, \dots, t^n\}$ is a basis of V; hence dim V = n + 1.

Clearly each polynomial in V is a linear combination of $1, t, \ldots, t^{n-1}$ and t^n . Furthermore, $1, t, \ldots, t^{n-1}$ and t^n are independent since none is a linear combination of the preceding polynomials. Thus $\{1, t, \ldots, t^n\}$ is a basis of V.

Show that $\{1, t-1, (t-1)^2, \dots, (t-1)^n\}$ is a basis of V.

[Since dim V = n + 1, any n + 1 independent polynomials form a basis of V.] Now each polynomial in the sequence $1, 1 - t, \ldots, (1 - t)^n$ is of degree higher than the preceding ones and so is not a linear combination of the preceding ones. Thus the n + 1 polynomials $1, 1 - t, \ldots, (1 - t)^n$ are independent and so form a basis of V.

8.59 Determine whether or not $\{1+t, t+t^2, t^2+t^3, \dots, t^{n-1}+t^n\}$ is a basis of V.

If the polynomials are linearly independent since each one is of degree higher than the preceding ones. However, the set contains only n elements and $\dim V = n + 1$; hence it is not a basis of V.

8.60 Let V be the vector space of 2×2 symmetric matrices over K. Show that dim V = 3. [Recall that $A = (a_{ij})$ is symmetric iff $A = A^T$ or, equivalently, $a_{ij} = a_{ji}$.]

An arbitrary 2×2 symmetric matrix is of the form $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ where $a, b, c \in K$. [Note that there are three "variables."] Setting (i) a = 1, b = 0, c = 0; (ii) a = 0, b = 1, c = 0; and (iii) a = 0, b = 0, c = 1, we obtain the respective matrices

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad E_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad E_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

We show that $\{E_1, E_2, E_3\}$ is a basis of V, i.e., that it (1) generates V and (2) is independent.

(1) For the above arbitrary matrix A in V, we have

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = aE_1 + bE_2 + cE_3$$

Thus $\{E_1, E_2, E_3\}$ generates V.

(2) Suppose $xE_1 + yE_2 + zE_3 = 0$, where x, y, z are unknown scalars. That is, suppose

$$z\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + y\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + z\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad \text{or} \qquad \begin{pmatrix} x & y \\ y & z \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Setting corresponding entries equal to each other, we obtain x = 0, y = 0, z = 0. In other words, $xE_1 + yE_2 + zE_3 = 0$ implies x = 0, y = 0, z = 0. Accordingly, $\{E_1, E_2, E_3\}$ is independent. Thus $\{E_1, E_2, E_3\}$ is a basis of V and so the dimension of V is 3.

8.61 Let W be the vector space of 3×3 symmetric matrices over K. Show that dim W = 6 by exhibiting a basis of W. [Recall that $A = (a_{ij})$ is symmetric iff $a_{ij} = a_{ji}$.]

I The following six matrices form a basis of W:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

8.62 What is the dimension of the vector space U of $n \times n$ symmetric matrices over a field K?

As indicated by Problem 8.61, each-element on or above the diagonal corresponds to a basis element; hence $\dim U = n + (n-1) + \cdots + 2 + 1 = \frac{1}{2}n(n+1)$.

Let W be the vector space of 3×3 antisymmetric matrices over K. Show that dim W = 3 by exhibiting a basis of W. [Recall that $A = (a_{ij})$ is antisymmetric iff $a_{ij} = -a_{ij}$.]

I The following three matrices form a basis of W:

$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

8.64 What is the dimension of the vector space U of $n \times n$ antisymmetric matrices over a field K?

As indicated by Problem 8.63, each element above the diagonal corresponds to a basis element; hence $\dim U = (n-1) + (n-2) + \cdots + 2 + 1 = \frac{1}{2}n(n-1)$.

8.65 Show that the complex field C is a vector space of dimension 2 over the real field R.

If We claim that $\{1, i\}$ is a basis of C over R. For if $v \in C$, then $v = a + bi = a \cdot 1 + b \cdot i$ where $a, b \in R$; i.e., $\{1, i\}$ generates C over R. Furthermore, if $x \cdot 1 + y \cdot i = 0$ or x + yi = 0, where $x, y \in R$, then x = 0 and y = 0; i.e., $\{1, i\}$ is linearly independent over R. Thus $\{1, i\}$ is a basis of C over R, and so C is of dimension 2 over R.

8.66 Show that the real field R is a vector space of infinite dimension over the rational field Q.

We claim that, for any n, $\{1, \pi, \pi^2, \dots, \pi^n\}$ is linearly independent over Q. For suppose $a_0 1 + a_1\pi + a_2\pi^2 + \dots + a_n\pi^n = 0$, where the $a_i \in Q$, and not all the a_i are θ . Then π is a root of the following nonzero polynomial over Q: $a_0 + a_1x + a_2x^2 + \dots + a_nx^n$. But it can be shown that π is a transcendental number, i.e., that π is not a root of any nonzero polynomial over Q. Accordingly, the n+1 real numbers $1, \pi, \pi^2, \dots, \pi^2$ are linearly independent over Q. Thus for any finite n, R cannot be of dimension n over Q, i.e., R is of infinite dimension over Q.

8.67 Let V be the vector space of ordered pairs of complex numbers over the real field R. Show that V is of dimension 4.

We claim that the following is a basis of V: $B = \{(1,0), (i,0), (0,1), (0,i)\}$. Suppose $v \in V$. Then v = (z, w) where z, w are complex numbers, and so v = (a + bi, c + di) where a, b, c, d are real numbers. Then v = a(1,0) + b(i,0) + c(0,1) + d(0,i). Thus B generates V.

The proof is complete if we show that B is independent. Suppose $x_1(1,0) + x_2(i,0) + x_3(0,1) + x_4(0,i) = 0$ where $x_1, x_2, x_3, x_4 \in R$. Then

$$(x_1 + x_2i, x_3 + x_4i) = (0, 0)$$
 and so
$$\begin{cases} x_1 + x_2i = 0 \\ x_3 + x_4i = 0 \end{cases}$$

Accordingly $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$ and so B is independent.

8.68 Suppose dim V = n. Show that a generating set with n elements is a basis.

I Suppose u_1, u_2, \ldots, u_n span V and the vectors are linearly dependent. Then one of them is a linear combination of the others and so may be deleted from the spanning set. Hence V is spanned by n-1 vectors. This is impossible since $\dim V = n$. Thus the u_i are linearly independent and hence form a basis of V.

8.5 DIMENSION AND SUBSPACES

Vol. Contraction of the Contract

Theorem 8.8: Let W be a subspace of an n-dimensional vector space V. Then $\dim W \le n$. In particular, if $\dim W = n$, then W = V.

8.69 Prove Theorem 8.8 which gives the basic relationship between the dimension of a vector space V and the dimension of a subspace W of V.

Since V is of dimension n, any n+1 or more vectors are linearly dependent. Furthermore, since a basis of W consists of linearly independent vectors, it cannot contain more than n elements. Accordingly, dim $W \le n$.