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Fig. 4.1 Continuity of a function

only requiring the inequality to hold for those x values satisfying 0 < jx � aj < ı

which excludes x D a. This restriction is not necessary in the definition of continuity
of a function at a point.
Suppose that the point a is in the domain of the function f. Then f is continuous at a
means that for every � > 0 there exists a ı > 0 such that for every x in the domain
of f satisfying jx � aj < ı, it follows that jf .x/ � f .a/j < �.

Notice that the requirement that the point a be an accumulation point of the
domain of f has been dropped. As a result, if the function f is defined at an isolated
point a, then f is continuous at that point. A function that is not continuous at the
point a is discontinuous at the point a.

A function f is continuous on a set A if it is continuous at each point a 2 A. The
function whose graph appears in Fig. 4.1 is discontinuous at x D b because its limit
at x D b does not exist. Similarly, it is discontinuous at x D c. It is discontinuous
at x D d because it is not defined at that point even though the function has a limit
there. The function is continuous on the intervals Œa; b/, .b; c/, and .c; d/, and at
the points x D e and x D f . The function is not continuous on the intervals Œa; b�

or Œc; d�.
It is a direct consequence of the definition of continuity that if f is continuous

at a point a, and if a is an accumulation point of the domain of f , then the limit of
f .x/ at a exists and is, in fact, f .a/. To prove this you would just need to show that
if f satisfies the definition of continuity at a, then f also satisfies the definition of
lim
x!a

f .x/ D f .a/. Writing down the definition of continuity gives you that for every

� > 0 there is a ı > 0 such that jx � aj < ı implies jf .x/ � f .a/j < �. But if this is
true, then certainly 0 < jx � aj < ı implies jf .x/ � f .a/j < �, so the definition of
limit is satisfied.
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PROOF: If the function f is continuous at a, and a is an accumulation
point of the domain of f , then lim

x!a
f.x/ D f.a/.

• Let f be a function continuous at a where a is an accumulation point of the
domain of f .

• Given � > 0,
• the definition of continuity says that there is a ı > 0 such that if x is in the

domain of f with jx � aj < ı, then jf .x/ � f .a/j < �.
• But then if 0 < jx � aj < ı, it follows that jf .x/ � f .a/j < � satisfying the

definition of lim
x!a

f .x/ D f .a/.

• Therefore, lim
x!a

f .x/ D f .a/.

Similarly, if f is defined at a and lim
x!a

f .x/ D f .a/, then f is continuous at a.

Again, the proof of this follows directly from the definitions.

PROOF: If the function f is defined at a and lim
x!a

f.x/ D f.a/, then f is

continuous at a.

• Let f be a function defined at a where lim
x!a

f .x/ D f .a/.

• Given � > 0,
• the definition of limit says that there is a ı > 0 such that if x is in the domain

of f with 0 < jx � aj < ı, then jf .x/ � f .a/j < �.
• Certainly, if x D a, then jf .x/ � f .a/j D jf .a/ � f .a/j D 0 < �.
• Thus, it follows that jx � aj < ı implies jf .x/ � f .a/j < � satisfying the

definition of f being continuous at a.
• Therefore, f is continuous at a.

4.2 Proving the Continuity of a Function

The template for proofs of lim
x!a

f .x/ D L followed directly from the definition of

limit. Similarly, a template for proofs of the continuity of a function f at a point
a will follow directly from the definition of continuity. Indeed, the definition of
continuity requires that for every � > 0 there exist a ı > 0 which satisfies
a particular condition. This suggests that a proof of continuity should select an
arbitrary � > 0 and proceed to display a value of ı > 0 that causes the needed
condition to be satisfied. This is similar to the procedure taken for a limit proof
except that the needed condition is slightly different. Thus, here is a template for
proofs about the continuity of a function at a point.
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TEMPLATE for proving the function f is continuous at the point a

• SET THE CONTEXT: Make statements about what is known about the
function f and the numbers a and f .a/.

• SELECT AN ARBITRARY �: Given � > 0,
• PROPOSE A VALUE FOR ı: let ı D . Here you would insert an

appropriate value for ı.
• SELECT AN ARBITRARY x: Select x in the domain of f such that
jx � aj < ı.

• LIST IMPLICATIONS: Derive the result jf .x/ � f .a/j < �.
• STATE THE CONCLUSION: Therefore, f is continuous at the point a.

As a start, consider how to prove that the function defined for all real numbers x as
f .x/ D 5x�3 is continuous at x D 4. The proof would begin with “Let f .x/ D 5x�3.
Given � > 0; : : : .” The task is then to find a ı > 0 so that jf .x/� f .4/j < � for every
x satisfying jx � 4j < ı. Working backwards, to get jf .x/ � f .4/j < � one needs
� > j.5x � 3/ � .5 � 4 � 3/j D 5jx � 4j. Therefore, it seems clear that jx � 4j
needs to be less than �

5
, so letting ı D �

5
will work. Note that because � > 0, ı is

also greater than 0 as required by the definition of continuity. Putting this into the
template results in the following proof.

PROOF: The function f.x/ D 5x � 3 is continuous at x D 4.

• Let f .x/ D 5x � 3.
• Given � > 0,
• let ı D �

5
which is greater than 0 since � > 0.

• Select x such that jx � 4j < ı D �
5
.

• Then ı > jx�4j implies jf .x/� f .4/j D j.5x�3/�.5 �4�3/j D j5x�20j D
5jx � 4j < 5ı D �.

• Therefore, the function f is continuous at 4.

For a more challenging example, consider proving that the function f .x/ D
2x3 � 4x C 1 is continuous for all real numbers. This proof not only tackles a
more complicated function than the one in the previous example, it is supposed to
demonstrate the continuity of the function at the general real number a rather than
at a specific value such as a D 4. This requires the proof to select an arbitrary a and
prove the continuity of f at the point a. By showing that the function is continuous
at any arbitrarily chosen a, it shows that the function is continuous at every point a.
Again, the proof will select an arbitrary � > 0 and needs to produce a ı > 0 such
that jf .x/ � f .a/j < � for all x satisfying jx � aj < ı. The proof needs to select an
arbitrary a and an arbitrary � > 0. Does it matter which it does first? In this case
where the choice of a does not depend on which � is chosen, and the choice of �

does not depend on which a is chosen, the order is not critical. It makes sense to
select the a first because you are then challenged to prove that f is continuous at
a for which you should choose an � > 0. But since both quantifiers are universal
quantifiers (for all a 2 R and for all � > 0), the order does not matter. If it had been
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a universal quantifier and an existential quantifier such as “for all � > 0 there exists
a ı > 0,” then the order would matter a great deal.

Working backwards from � > jf .x/� f .a/j you can see that you need � > j.2x3�
4xC1/�.2a3�4aC1/j D j2.x3�a3/�4.x�a/j D j2.x�a/.x2CxaCa2/�4.x�a/j D
jx�aj�j2.x2CxaCa2/�4j. You should not be surprised and, in fact, be quite pleased
to see that this last expression contains a factor of jx� aj because this will facilitate
making the expression small when jx� aj is made small. One only needs to control
the size of the other factor j2.x2CxaCa2/�4j. Of course, if x is allowed to wonder
too far from a, this other factor could get arbitrarily large, so care must be taken to
restrict how far x gets from a. This can be done by requiring that ı not be larger than
some conveniently selected value such as 1. That means that jx� aj < ı � 1 would
imply, for example, that jxj < jaj C 1. Given this, there are many ways to find an
upper bound for the quantity j2.x2C xaC a2/� 4j where the upper bound does not
depend on x. For example, j2.x2 C xa C a2/ � 4j � 2x2 C 2jxjjaj C 2a2 C 4 �
2.jaj C 1/2 C 2.jaj C 1/jaj C 2a2 C 4. One can afford to be sloppy here and get a
simpler looking upper bound by saying 2.jaj C 1/2 C 2.jaj C 1/jaj C 2a2 C 4 �
2.jajC1/2C2.jajC1/.jajC1/C2.jajC1/2C4.jajC1/2 D 10.jajC1/2. All you
need is an upper bound that depends only on a. This leads to the following proof.

PROOF: The function f.x/ D 2x3 � 4x C 1 is continuous on the real
numbers.

• Let f .x/ D 2x3 � 4xC 1, and let a 2 R.
• Given � > 0,

• let ı D min
�
1; �

10.jajC1/2

	
which is greater than 0 since 1, �, and 10.jajC1/2

are all positive.
• Select x such that jx � aj < ı. Then ı � 1 implies jxj < jaj C 1.
• Also, ı � �

10.jajC1/2 implies that

jf .x/�f .a/jDj.2x3 � 4xC 1/ � .2a3 � 4aC 1/j D j2.x3 � a3/ � 4.x � a/jD
j2.x � a/.x2 C xaC a2/ � 4.x � a/j D jx � aj � j2.x2 C xaC a2/ � 4j �
jx � aj � Œ2.jaj C 1/2 C 2.jaj C 1/jaj C 2a2 C 4� �
jx � aj � 2.jaj C 1/2 C 2.jaj C 1/.jaj C 1/C 2.jaj C 1/2 C 4.jaj C 1/2 D
jx � aj � 10.jaj C 1/2 < �

10.jajC1/2 � 10.jaj C 1/2 D �.
• Therefore, the function f is continuous at every real number a.

Not all functions can be expressed with nice formulas. Take, for example, the

function f .x/ D
�

2x if x is rational
xC 1 if x is irrational

�
which behaves differently on the rational

numbers than it does on the irrational numbers. Such functions that are defined
one way on the rational numbers and another way on the irrational numbers make
interesting examples because both the rational and the irrational numbers are dense
in the real numbers; that is, in every nonempty open interval .a; b/, you can find
both rational and irrational numbers. For the given function, in every nonempty
open interval .a; b/ there are values of x where f .x/ D 2x and other values of x
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Fig. 4.2 A function equal to
2x for rational x (blue) and
x C 1 for irrational x (red)
The blue and red lines are not
solid

(1,2)

where f .x/ D xC 1. Indeed, for most real numbers a, lim
x!a

f .x/ does not exist. Only

at x D 1, where 2x and xC1 coincide, does this limit exist, and, in fact, at that point
f .x/ is continuous (Fig. 4.2).

A proof that f is continuous at x D 1 would be similar to the two preceding
proofs, but you need to be careful to handle f .x/ differently depending on whether
x is rational or irrational. As in other continuity proofs, given an � > 0 you are
faced with producing a value for ı > 0 which will ensure that jf .x/ � f .1/j < �

whenever jx � aj < ı. If the function in the proof were equal to x C 1 for every
value of x, then the value ı D � would work because jx � 1j < � shows that
jf .x/ � f .1/j D j.x C 1/ � .1 C 1/j D jx � 1j < �. If the function in the proof
were equal to 2x for every value of x, then the value ı D �

2
would work because

jx� 1j < �
2

shows that jf .x/� f .1/j D j.2x/� .2 � 1/j D 2jx� 1j < �. In this proof,
then, you can choose ı D min.�; �

2
/ D �

2
. After selecting an x with jx � 1j < ı,

you merely consider two separate cases, one where x is rational, and one where x is
irrational. These ideas allow you to produce the following proof.

PROOF: The function f.x/ D
�

2x if x is rational
x C 1 if x is irrational

�
is continuous at

x D 1.

• Let f .x/ D
�

2x if x is rational
xC 1 if x is irrational

�
.

• Given � > 0,
• let ı D �

2
which is greater than 0 since � > 0.

• Select x such that jx � 1j < ı D �
2
.

• If x is a rational number, then jf .x/� f .1/j D j2x� 2j D 2jx� 1j < 2ı D �.
• If x is an irrational number, then jf .x/ � f .1/j D j.xC 1/ � 2j D jx � 1j <

ı < �.
• In either case, jf .x/ � f .1/j < �.
• Therefore, the function f is continuous at 1.
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4.2.1 Exercises

Write proofs of each of the following statements.

1. f .x/ D 4xC 7 is continuous at x D �2.
2. f .x/ D 5x2 C 3x � 2 is continuous at x D 8.
3. f .x/ D 10x3 C 25 is continuous for all real numbers x.
4. f .x/ D jxj is continuous at x D 0.
5. f .x/ D jx2 � 9j is continuous for all real numbers x.
6. f .x/ D px is continuous for all x � 0.
7. f .x/ Dpjx2 � 4j is continuous for all real numbers x.

4.3 Uniform Continuity

Continuity of a function is a local property, that is, whether or not a function f is
continuous at a point x D a depends only on how f behaves close to a. In fact, f
can be continuous at a and yet have very erratic behavior at points just 1

10
unit from

a or 1
100

or even 1
1;000;000

from a. The last example in the previous section shows a
function continuous at x D 1 which is continuous for no other value of x. Even if
f is continuous at all points of a set A, it could be that proofs of the continuity of f
at two points x D a and x D b might need to be quite different. Certainly, there is
no reason to believe that, given an � > 0, a value of ı > 0 that works in a proof of
the continuity of f at the point a would also work in a proof of the continuity of f at
point b.

Consider, for example, the function f .x/ D 1
x which is continuous for all x ¤ 0.

To prove that f is continuous at x D 2, given � > 0 one can use ı D min.1; �/ or
even be as generous as to let ı D min.1; 2�/. But to prove that f is continuous at
x D 1

2
where the function f changes much more rapidly, for the same � > 0, one

might need to use ı D min. 1
4
; �

8
/. You can easily see from the graph of f .x/ D 1

x
that as a gets closer to 0, the ı > 0 chosen for a particular � > 0 will need to get
smaller (Fig. 4.3).

Suppose that you wanted to prove that a particular function f was continuous
at every a in the domain of f . Such a proof was discussed in the previous section
using f .x/ D 2x3 � 4x C 1. In that proof, the formula for the ı > 0 chosen for a
given � > 0 depended on the point a where f was being shown to be continuous.
Clearly, this would have to be the case because f is a cubic function of x which
grows increasingly more rapidly as x gets large. But it is not true that every function
behaves this way. Some functions change at a constant rate like f .x/ D 6x � 13 or
change at a rate that does not continue to grow such as f .x/ D 1

x2C1
. When writing

a proof of the continuity of such functions, it is possible to pick a single value for
ı > 0 that depends on � > 0 (as it certainly would have to unless f were constant
on each interval in its domain), but where the choice of ı > 0 does not depend on
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Fig. 4.3 f .x/ D 1
x is not

uniformly continuous

the point a where the continuity needs to be shown. These functions are special and
satisfy the following definition. A function f is uniformly continuous on the set
A if for every � > 0 there is a ı > 0 such that jf .x/ � f .y/j < � for every x and y
in A satisfying jx � yj < ı. You should compare this definition to the definition of
continuity at a point. The difference centers on when the value of ı > 0 needs to
be determined. For continuity at a single point, given � > 0, one must specify the
value of ı > 0 after being given the value of a but before being given a value for x.
Thus, the value of ı > 0 can depend on the value of a even though it cannot depend
on the value of x. On the other hand, for uniform continuity, given � > 0, one must
specify the value of ı > 0 before learning the values of either x or y, and, therefore,
its value cannot depend on either x or y.

The definition of uniform continuity suggests a template for how to prove that a
given function f is uniformly continuous on a set A. As in the proof for continuity
at a point, you would say that a value for � > 0 has been given. Then you would
present a value for ı > 0. Once these two values have been specified, you would
need to show that any x and y in A that satisfy jx�yj < ı also satisfy jf .x/�f .y/j < �.
This suggests the following.

TEMPLATE for proving the function f is uniformly continuous on the
set A

• SET THE CONTEXT: Make statements about what is known about the
function f .

• SELECT AN ARBITRARY �: Given � > 0,
• PROPOSE A VALUE FOR ı: let ı D . Here you would insert an

appropriate value for ı.
• SELECT ARBITRARY x and y in A with jx � yj < ı: Let x and y be in A

such that jx � yj < ı.

(continued)
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• LIST IMPLICATIONS: Derive the result jf .x/ � f .y/j < �.
• STATE THE CONCLUSION: Therefore, f is uniformly continuous on the

set A.

Proving the function f .x/ D 6x � 13 is uniformly continuous on the entire real
line is straightforward since the function f changes at a constant rate. This allows
you to select a value for ı > 0 based on that rate of change, 6.

PROOF: The function f.x/ D 6x � 13 is uniformly continuous on the real
numbers.

• Let f .x/ D 6x � 13.
• Given � > 0,
• let ı D �

6
which is greater than 0 since � > 0.

• Let x and y be real numbers such that jx � yj < ı D �
6
.

• Then jf .x/ � f .y/j D j.6x � 13/ � .6y � 13/j D 6jx � yj < 6ı D �.
• Therefore, the function f is uniformly continuous on the real numbers.

Less clear is how to choose a value for ı > 0 when proving f .x/ D 1
x2C1

is uniformly continuous on the real numbers. To do this, you need to find a
way to show jf .x/ � f .y/j < �. You would try to find an upper bound for

jf .x/�f .y/j D
ˇ̌
ˇ 1

x2C1
� 1

y2C1

ˇ̌
ˇ D j.y2C1/�.x2C1/j

.x2C1/.y2C1/
D jxCyj

.x2C1/.y2C1/
jx�yj. This expression

is complicated, so it is convenient to find ways to simplify it. The nice thing about
working with inequalities rather than equalities is that you are not prevented from
making changes that increase the value of your expression. That is, if you can
simplify an expression by substituting an expression that is a little larger, that might
not be a problem. The numerator in the previous expression is jx C yj which does
not simplify algebraically, but it does suggest a possible application of the triangle
inequality, jx C yj � jxj C jyj. Changing jx C yj to jxj C jyj allows the fraction to
be broken into two simpler fractions. It allows you to continue with jf .x/ � f .y/j D

jxCyj
.x2C1/.y2C1/

jx � yj �
� jxj

.x2C1/.y2C1/
C jyj

.x2C1/.y2C1/

	
jx � yj �

� jxj
x2C1
C jyj

y2C1

	
jx � yj.

When jxj < 1, you can conclude that jxj < 1 � x2 C 1. When jxj � 1, you can
conclude that jxj � x2 < x2 C 1. In either case jxj

.x2C1/
� x2C1

x2C1
D 1. This lets you

state that jf .x/� f .y/j D jxCyj
.x2C1/.y2C1/

jx�yj �
� jxj

.x2C1/.y2C1/
C jyj

.x2C1/.y2C1/

	
jx�yj �

2jx � yj. This suggests that ı D �
2

will work in the proof.
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PROOF: The function f.x/ D 1

x2C1
is uniformly continuous on the real

numbers.

• Let f .x/ D 1
x2C1

.
• Given � > 0,
• let ı D �

2
which is greater than 0 since � > 0.

• Let x and y be real numbers such that jx � yj < ı D �
2
.

• Then jf .x/ � f .y/j D
ˇ̌
ˇ 1

x2C1
� 1

y2C1

ˇ̌
ˇ D j.y2C1/�.x2C1/j

.x2C1/.y2C1/
D

jxCyj
.x2C1/.y2C1/

jx � yj �
� jxj

.x2C1/.y2C1/
C jyj

.x2C1/.y2C1/

	
jx � yj �

� jxj
x2C1
C jyj

y2C1

	
jx � yj

• Note that if jxj < 1, then jxj < x2C1, and if jxj � 1, then jxj � x2 < x2C1.
• In either case, jxj < x2 C 1, so jxj

x2C1
< 1, and similarly, jyj

y2C1
< 1.

• It follows that jf .x/ � f .y/j �
� jxj

x2C1
C jyj

y2C1

	
jx � yj < 2jx � yj < 2ı D �.

• Therefore, the function f is uniformly continuous on the real numbers.

One of the most memorable theorems from Calculus is the Mean Value
Theorem which states that if the function f is continuous on the interval Œa; b�

and differentiable on the interval .a; b/, then there is a c 2 .a; b/ such that
f 0.c/ D f .b/�f .a/

b�a . If the function f has a bounded derivative on the interval
Œa; b�, that is, if there is a positive real number M such that jf 0.x/j � M for all
values of x 2 Œa; b�, then one can easily see that f is uniformly continuous on that
interval. Indeed, if x and y are in Œa; b�, then there is a c between x and y such that
jf .x/� f .y/j D jf 0.c/j � jx� yj � M � jx� yj. This implies that given � > 0, the value
ı D �

M > 0 can be used in a proof that f is uniformly continuous on Œa; b� for then
jx � yj < ı implies jf .x/ � f .y/j D jf 0.c/j � jx � yj < M � jx � yj < Mı D �. This
is summarized by saying that a function with a bounded derivative on an interval is
uniformly continuous there.

Whenever you learn of the truth of a conditional statement such as the one at the
end of the previous paragraph (bounded derivative implies uniform continuity), it is
natural to ask whether the converse of the statement is also true (uniform continuity
implies bounded derivative). The answer to this particular question is “no, not all
functions uniformly continuous on an interval have bounded derivatives there.” In
particular, the function f .x/ D jxj is an example of a function uniformly continuous
on the entire real line, yet it fails to be differentiable at x D 0. The function f .x/ Dp

x is uniformly continuous for x � 0, but its derivative is unbounded near x D 0.
A more complex example is the function defined by f .x/ D x2 sin

�
1
x2

�
when x ¤

0 and f .0/ D 0. This function is uniformly continuous on the interval Œ�10; 10�

even though its derivative, which exists on the entire real line, is not bounded as x
approaches 0.

Because the function f .x/ D px has an increasingly large rate of change as x
approaches 0, proving that the function is uniformly continuous for x � 0 provides
an interesting challenge. The proof will need to conclude that � > jf .x/ � f .y/j D
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jpx�pyj D jpx�p
yj�.pxCp

y/p
xCp

y
D jx�yjp

xCp
y
. As expected, there is a factor of jx� yj in

this expression, so that you can try to make the expression small by restricting the
size of jx � yj. This is easy if the denominator of the expression,

p
x C py, does

not get too small. The problem is if x and y get close to 0, the denominator of the
expression will also get close to 0. At first this seems like a significant roadblock.
But this roadblock presents its own resolution for if

p
xCpy is very small, it must

certainly be that jpx �pyj is even smaller which is the conclusion that you want.
In other words, there are two cases: either

p
xCpy is small which would imply that

jf .x/ � f .y/j is small, or
p

xCpy is large which would imply that jf .x/ � f .y/j D
jx�yjp
xCp

y
is small. You only need to decide what to use as the dividing line between

“large” and “small.” A natural choice would be � itself because
p

x C py < �

implies jpx � pyj < �. If
p

x C py � �, then jf .x/ � f .y/j D jx�yjp
xCp

y
� jx�yj

�

which suggests letting ı D �2 so that jx � yj < ı gives jf .x/ � f .y/j < �2

�
D �. The

complete proof follows.

PROOF: The function f.x/ D p
x is uniformly continuous on the interval

x � 0.

• Let f .x/ D px.
• Given � > 0,
• let ı D �2 which is greater than 0 since � ¤ 0.
• Let x and y be nonnegative real numbers such that jx � yj < ı.
• In the case that

p
xCpy < �, it follows that jf .x/� f .y/j D jpx�pyj �p

xCpy < �.
• In the case that

p
xCpy � �, it follows that jf .x/� f .y/j D jpx�pyj D

jpx�p
yj�.pxCp

y/p
xCp

y
D jx�yjp

xCp
y
� jx�yj

�
< ı

�
D �2

�
D �.

• In either case, jx� yj < ı implies that jf .x/� f .y/j < �, so the function f is
uniformly continuous on the interval x � 0.

There is an important lesson to be learned from this example. When planning how
to write a proof, you can pursue one line of thinking which may solve the problem
in most but not all cases. Sometimes the special cases where the argument does not
work are enough to cause you to abandon your original line of reasoning altogether.
But often you can just break your argument into two or more cases and find other
techniques to handle the special cases where the original argument does not work.

4.3.1 Exercises

Write proofs of each of the following statements.

1. f .x/ D 3xC 11 is uniformly continuous on the set of real numbers.
2. f .x/ D �14xC 5 is uniformly continuous on the set of real numbers.
3. f .x/ D jxj is uniformly continuous on the set of real numbers.
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4. f .x/ D 8x2 is uniformly continuous on the interval Œ�6; 6�.
5. f .x/ D 4

5xC1
is uniformly continuous for x � 0.

6. f .x/ D 3
p

x is uniformly continuous on the set of real numbers.
7. f .x/ D x2 is not uniformly continuous on the set of real numbers.
8. f .x/ D 1

x2 is not uniformly continuous on the set .0; 1/.

4.4 Compactness and the Heine–Borel Theorem

4.4.1 Open Covers and Subcovers

Let a and b be real numbers with a < b. It turns out that if a function f is continuous
on the closed interval Œa; b�, then f is uniformly continuous on that interval. How
might you prove this result? As a first try, you might say that for each � > 0 and
for each y 2 Œa; b� there is a ı > 0 such that if x 2 Œa; b� with jx � yj < ı, then
jf .x/� f .y/j < �. Then, having produced a value for ı for each y 2 Œa; b�, you might
want to pick the smallest of all of those ı’s and hope that this minimum ı would be
sufficiently small to work for every y 2 Œa; b�. Unfortunately, you started out with
an infinite collection of ı’s, each greater than 0. Such an infinite set might not have
a minimum value. The set of such ı’s is certainly nonempty and bounded below, so
the collection does have a greatest lower bound, but that greatest lower bound could
be 0, too small to use for the ı in the proof. A finite set of positive numbers always
has a minimum value that is positive, but an infinite set of positive numbers might
have a greatest lower bound of 0.

Suppose that T is a collection of open intervals, and A � R. If the set A is
contained in the union of the open intervals in T , that is, if A � [

.s;t/2T
.s; t/, then

T is called an open cover of A. A subset T 0 � T which is also an open cover of
A is called a subcover of A. In the above suggested proof that the continuity of f
on Œa; b� implies the uniform continuity of f on Œa; b�, the definition of continuity
at each point of y 2 Œa; b� produced a collection of open intervals which form an
open cover T of Œa; b�. If that open cover had a finite subcover T 0, then you would be
dealing with only a finite number of ı > 0 values, and you could expect to produce
a smallest such ı > 0. Whether such a finite subcover exists has nothing to do with
the continuous function f that motivated this discussion. A closed bounded interval
Œa; b� in the real numbers is compact which means that every open open cover of
Œa; b� contains a finite subcover. The fact that every closed bounded interval in the
real numbers is compact is known as the Heine–Borel Theorem, and it is central
to proving the above result about continuous functions on closed bounded intervals
being uniformly continuous there. In fact, the Heine–Borel Theorem is an important
tool for proving many results in analysis.

Suppose that for every rational number in Œ0; 1� you represent the rational
number in lowest terms as p

q . Then for each of these rational numbers you
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associate the open interval . 4p�1

4q ; 4pC1

4q /. For example, the number 2
7

would be

associated with the open interval . 7
28

; 9
28

/. Since the set of rational numbers in
Œ0; 1� is infinite, this collection of open intervals is also infinite. The collection
forms an open cover of Œ0; 1�. One possible finite subcover is the collection of
intervals associated with rational numbers 0

1
; 1

4
; 1

3
; 1

2
; 2

3
; 3

4
; and 1

1
giving the intervals

.� 1
4
; 1

4
/; . 3

16
; 5

16
/; . 3

12
; 5

12
/; . 3

8
; 5

8
/; . 7

12
; 9

12
/. 11

16
; 13

16
/; and . 3

4
; 5

4
/. You should verify that

these intervals are in the original open cover and do produce the claimed finite
subcover. On the other hand, if you associate with each natural number n > 1

the open interval . 1
n ; 1/, you get an open cover of the set .0; 1/, yet no finite subset

of this collection of intervals can cover the entire interval .0; 1/. Indeed, any finite
collection will only cover the interval . 1

m ; 1/ for some natural number m > 1. Since
these intervals form an open cover of .0; 1/ which does not have a finite subcover,
the set .0; 1/ is not a compact set.

4.4.2 Proofs of the Heine–Borel Theorem

Presented next are two quite different proofs of the Heine–Borel Theorem. The
techniques used in both proofs are instructive, and it is interesting to see how a
single result can be proved using two completely different strategies. Given in each
case are real numbers a < b and a set of open intervals T that forms an open cover
of the closed bounded interval Œa; b�. Both proofs seek to show that there must be
a finite subset of T that covers Œa; b�. The strategy in the first proof suggests that,
whether or not you can cover Œa; b� with a finite number of open intervals, you can
certainly cover some of the interval starting at a and working at least part of the way
toward b. The proof proposes looking at the set

S D fx 2 Œa; b� j T has a finite subcover that covers the interval Œa; x�g:

The proof first shows that S is not empty because it contains the point a. The set S
is bounded above by b, so S has a least upper bound, r. This is not to say that r 2 S,
but if r is not in S, there must be values in S that are arbitrarily close to r. Certainly
r is in Œa; b�, so there is an open interval from T that covers r. Since there are values
of S arbitrarily close to r, there are some inside this open interval containing r. This
open interval then extends the finite subcover to values greater than r. One can only
conclude that r must be b, and, in fact, b 2 S. Thus, Œa; b� has a finite subcover, and
the proof is complete (Fig. 4.4).
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PROOF (Heine–Borel Theorem): Let a < b be two real numbers, and let
T be an open cover of Œa; b�. Then T contains a finite subcover of Œa; b�.

• Let a < b be two real numbers, and let T be an open cover of Œa; b�.
• Define set S D fx 2 Œa; b� j T has a finite subcover that covers the interval

Œa; x�g.
• The set T is an open cover of Œa; b�, and a 2 Œa; b�, so T must contain at

least one open interval, .p; q/ which contains the point a, that is, p < a < q.
Since the interval Œa; a� is covered by .p; q/ 2 T , the point a 2 S, and S is
not an empty set.

• The set S is bounded above by b.
• Since S is nonempty and bounded above, it has a least upper bound r.
• Since r must be at least a and cannot be greater than b, r 2 Œa; b�, so there

is an interval .p; q/ in T which contains the point r, that is, p < r < q.
• Since p < r and r is the least upper bound of S, p is not an upper bound of

S. Thus, there is a point y 2 S with p < y. This means that there is a finite
set of intervals in T that covers Œa; y�.

• Let z D min. rCq
2

; b/. Since z � r and z 2 .p; q/, adding the interval .p; q/

to the finite set of intervals of T that covers Œa; y� produces a finite set of
intervals in T that covers Œa; z�, and z 2 S.

• But r is the least upper bound for S, implying that z � r. Because z D
min. rCq

2
; b/ and rCq

2
> r, it must be that z D b.

• Because z 2 S, it follows that b 2 S which completes the proof of the
theorem.

The second proof of the Heine–Borel Theorem is a proof by contradiction. It
begins as the first proof by assuming that a < b are real numbers, and that the
interval Œa; b� has an open cover T . Then it makes the additional assumption that no
finite collection of intervals in T can cover Œa; b�. This will lead to a contradiction.
This proof is not one that the beginning student is likely to invent on their own
unless they have seen the technique before.

First, the proof sets a0 D a and b0 D b so that the interval Œa0; b0� D Œa; b�. Let
m0 D a0Cb0

2
be the midpoint of Œa0; b0�. It must be the case that at least one of the

intervals Œa0; m0� or Œm0; b0� cannot be covered by a finite number of intervals in T
because, if both can be covered by a finite number of intervals, putting those two
collections together would give a finite collection of intervals that covered the entire
interval Œa0; b0� D Œa; b� contradicting the assumption that this could not be done.

[
a

]
b

q

)
p

(
y r z

Fig. 4.4 Heine–Borel Theorem first proof
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So, if it is the case that Œa0; m0� cannot be covered by a finite number of intervals
in T , let a1 D a0 and b1 D m0. Otherwise, if Œm0; b0� cannot be covered by a finite
number of intervals in T , let a1 D m0 and b1 D b0. In either case, the new interval
Œa1; b1� � Œa; b� cannot be covered by a finite collection of intervals in T .

Now the proof continues iteratively. If for some j > 0, there is an interval Œaj; bj�

contained in Œa; b� which cannot be covered by any finite collection of intervals in
T , let mj D ajCbj

2
be the midpoint of the interval. Either Œaj; mj� or Œmj; bj� cannot be

covered by a finite collection of intervals from T , so if Œaj; mj� cannot be covered by a
finite collection of intervals, let ajC1 D aj and bjC1 D mj. Otherwise, let ajC1 D mj

and bjC1 D bj. In either case ŒajC1; bjC1� cannot be covered by a finite collection
of intervals from T . Notice that this process constructs a sequence of intervals
Œa0; b0�; Œa1; b1�; Œa2; b2�; : : : contained in Œa; b�, none of which can be covered by
a finite collection of intervals in T . Also note that a D a0 � a1 � a2 � : : :

while b D b0 � b1 � b2 � : : :, and for each j, the length of the jth interval
is bj � aj D b�a

2j . Since each aj term is less than all of the bk terms, both of the
monotone sequences are bounded and, therefore, converge. Moreover, since for each
k, lim

j!1 bj � lim
j!1 aj � bk � ak D b�a

2k , it follows that lim
j!1 aj D lim

j!1 bj D r 2 Œa; b�.

Note that since the sequence of aj’s increases to r, and the sequence of bj’s decrease
to r, the limit r 2 Œaj; bj� for each j. Because the limit, r, is in Œa; b�, there is an open
interval .p; q/ 2 T such that r 2 .p; q/. The distance the limit r is from the boundary
of the interval .p; q/ is � D min.r � p; q � r/ > 0. Since lim

j!1
b�a
2j D 0, you can

select a j so that b�a
2j < �. Then it follows that p � r� � < aj � r � bj � rC � < q,

and, so, Œaj; bj� � .p; q/. But this shows that Œaj; bj� is covered by the single open
interval .p; q/ 2 T contradicting the fact that Œaj; bj� could not be covered by a finite
collection of intervals in T . Thus, you must conclude that the assumption that Œa; b�

cannot be covered by a finite number of intervals is false. A formal proof follows
(Fig. 4.5).

r

Fig. 4.5 Heine–Borel Theorem second proof
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PROOF (Heine–Borel Theorem): Let a < b be two real numbers, and let
T be an open cover of Œa; b�. Then T contains a finite subcover of Œa; b�.

• Let a < b be two real numbers, and let T be an open cover of Œa; b�.
• Assume that T contains no finite subcover of Œa; b�.
• Let a0 D a and b0 D b so that the interval Œa0; b0� D Œa; b�, and note that no

finite collection of intervals in T will cover Œa0; b0�.
• Define sequences <aj> and <bj> inductively. For j � 0, let Œaj; bj� � Œa; b�

be an interval which cannot be covered by a finite collection of open
intervals in T , and where bj � aj D b�a

2j .

• Let mj D ajCbj

2
be the midpoint of Œaj; bj�.

• It must be the case that at least one of the intervals Œaj; mj� or Œmj; bj�

cannot be covered by a finite number of intervals in T because, if both can
be covered by a finite number of intervals, putting those two collections
together would give a finite collection of intervals that covered the entire
interval Œaj; bj�.

• If Œaj; mj� cannot be covered by a finite collection of intervals, let ajC1 D aj

and bjC1 D mj. Otherwise, let ajC1 D mj and bjC1 D bj. In either case
ŒajC1; bjC1� cannot be covered by a finite collection of intervals from T , and

bjC1 � ajC1 D
b�a
2j

2
D b�a

2jC1 .
• Thus, there are monotone sequences a D a0 � a1 � a2 � : : : and b D

b0 � b1 � b2 � : : :, and for each j, the length of the Œaj; bj� interval is
bj � aj D b�a

2j .
• Since each aj term is less than all of the bk terms, both of the monotone

sequences are bounded and, therefore, converge. The fact that lim
j!1 aj �

lim
j!1 bj � lim

j!1.aj C b�a
2j /, shows that lim

j!1 aj D lim
j!1 bj D r 2 Œa; b�.

• Because the limit, r, is in Œa; b�, there is an open interval .p; q/ 2 T such
that r 2 .p; q/.

• The distance the limit r is from the boundary of the interval .p; q/ is � D
min.r � p; q � r/ > 0. Since lim

j!1
b�a
2j D 0, there is a j such that b�a

2j < �.

• It follows that p � r�� � aj � r � bj � rC� < q, and, so, Œaj; bj� � .p; q/.
• But then Œaj; bj� is covered by the single open interval .p; q/ 2 T contra-

dicting the fact that Œaj; bj� could not be covered by a finite collection of
intervals in T .

• Thus, the assumption that Œa; b� cannot be covered by a finite number of
intervals is false, and the theorem is proved.

The fact that the interval Œa; b� in the Heine–Borel Theorem is both closed and
bounded is crucial. The interval Œ1;1/ is covered by the collection of open intervals
.j; j C 2/ for j D 0; 1; 2; 3; : : :, but no finite collection of these open intervals
can cover Œ1;1/. The interval .0; 5/ is covered by the collection . 1

j ; 5/ for j D
1; 2; 3; 4; : : :, but, again, no finite collection of these open intervals can cover .0; 5/.
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