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One of the most important properties of monotone sequences is that monotone
increasing sequences that are bounded above must converge and monotone decreas-
ing sequences that are bounded below must converge. Thus, bounded monotone
sequences converge. If a monotone sequence does not converge, then its terms must
continue to grow without bound and approach plus or minus infinity.

So how would you prove that a monotone increasing sequence that is bounded
above converges? When proving a limit of the form lim

n!1 an D L, you can work with

the inequality � > jan�Lj in order to find an appropriate value of N that allows you
to use the definition of limit to complete the proof. But in this case, you do not have
a general expression for the terms an, and you have not been given a value for L.
Somehow you need to use the only known facts about <an>, that is, the fact that the
sequence is both monotone increasing and bounded, to come up with a candidate to
serve as the limit, L, in the proof.

The definition of a sequence being bounded above holds the key. That definition
says that the sequence <an> is bounded above if the set fan j n 2 Ng is bounded
above, so there is a real number M which is greater than or equal to each term of
the sequence. Will this M be the limit of the sequence? Well, not usually. If M is
an upper bound for the sequence, then so are M C 1, M C 100, and M C 20;000.
They are all upper bounds, but they cannot all be limits of the sequence. You should
recognize that the terms of the sequence must get close to the limit, and the only
upper bound of the set fan j n 2 Ng that the terms could get close to is the least
upper bound of the set. Since fan j n 2 Ng is both nonempty and bounded above,
the Completeness Axiom for the real numbers guarantees that such a least upper
bound exists. This gives you a candidate for L.

The proof will require you to show that for all n greater than some N, the terms
of the sequence, <an>, are within � of L. How can this be arranged? Here is where
you can use the fact that the sequence is monotone increasing because once you find
a single term, an, that gets within � of L, all the terms that come after this term in the
sequence will necessarily have to be between an and L, so they also will be within
� of L. How do you find one term, an, within � of L? This follows from the fact that
L is a least upper bound of fan j n 2 Ng. Because L is the least upper bound, L � �

being less than the least upper bound, L, is not an upper bound, so there must be an
element of the set fan j n 2 Ng greater than L� �. This gives all the tools needed for
the proof (Fig. 3.6).
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Fig. 3.6 Proving bounded monotone sequences converge
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So how would you write the proof? Certainly the proof would begin with
selecting a generic sequence and making a statement about the properties the
sequence is assumed to have, that is, its being monotone increasing and bounded
above. Then, the proof would proceed to justify the existence of the least upper
bound for the set of terms of the sequence; that will give you the target value of L.
Then, as with most proofs about limits, it would select a value for � > 0. Unlike
the limit proofs earlier in this chapter, one cannot immediately state a value for N.
The existence of N must be proved as discussed in the previous paragraph. Finally,
the properties of the sequence can be brought together to show jan � Lj < � for all
n > N. Here is one possible proof.

PROOF: A monotone increasing sequence that is bound above converges.

• Let <aj> be a monotone increasing sequence of real numbers that is
bounded above.

• Since the set of terms A D faj j j 2 Ng contains a1, it is nonempty, and since
it is bounded above, the Completeness Axiom guarantees that A has a least
upper bound, L.

• Given � > 0, the number L � � is less than L. Since L is the least upper
bound of A, L� � is not an upper bound of A. Thus, there is an N 2 N such
that the term aN is in A and is larger than L � �.

• Select an n > N.
• Because <aj> is monotone increasing, an � aN . Because L is an upper

bound for A, an � L. Therefore, L � � < aN � an � L, and jan � Lj <

j.L � �/ � Lj D �.
• This proves that the sequence <aj> has limit L and that <aj> converges.

Note that the proof needs to refer to the sequence <an> as well as a particular
element of the sequence an. It could be confusing to the proof reader to use the
variable n in both contexts here, especially since the sequence notation <an> is
used after the choice of a specific value of n is made. That is the reason the proof
changed to using the variable j to refer to a generic term index. Then, it could refer
to a specific term using index n without confusing the two uses.

There is also a theorem stating that a monotone decreasing sequence that is
bounded below converges. The proof of this is left as an exercise.

As an illustration of the usefulness of the above result, consider a sequence
defined recursively by a1 D 2, and for n � 1, anC1 D

p
an C 12. That is,

a1 D 2, a2 D
p

a1 C 12 D p14, a3 D
pp

14C 12, and so forth. One can
prove that this sequence converges by showing that the sequence is both monotone
increasing and bounded above. Indeed, both of these facts can be established by
mathematical induction. The reader is likely already familiar with proofs by
mathematical induction, but this is an appropriate opportunity to review the method
and its merits.
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Suppose the variable n represents any natural number, and there is a statement
S.n/ that includes this variable as part of the statement. For example, the statement
could be lim

x!a
xn D an. Mathematical induction is a proof technique that uses the

following proof template to show that S.n/ is true for all n greater than or equal to
some base value b 2 N.

TEMPLATE for using mathematical induction to prove the statement
S.n/ is true for all natural numbers n � b.

• SET THE CONTEXT: The statement will be proved by mathematical
induction on n for all n � b.

• PROVE S.b/: Prove that the statement is true when the variable n is equal
to the base value, b.

• STATE THE INDUCTION HYPOTHESIS: Assume that S.n/ is true for
some natural number n D k � b.

• PERFORM THE INDUCTION STEP: Using the fact that S.k/ is true, prove
that S.kC 1/ is true.

• STATE THE CONCLUSION: Therefore, by mathematical induction, S.n/

is true for all natural numbers n � b.

It is important to understand that the technique of mathematical induction works.
That is, if the statement S.b/ is true, and if the statement S.k/ ! S.k C 1/ is true,
then, in fact, S.n/ must be true for all natural numbers n � b. Certainly, S.b/ is
true. Because S.b/ is true, and S.k/! S.kC 1/ is true for all k � b, it follows that
S.b/! S.bC1/, so S.bC1/ is true. Then S.bC1/! S.bC2/, S.bC2/! S.bC3/,
and so forth, so the fact that S.n/ is true for all n � b follows.

The strength of mathematical induction is that it is often much easier to provide
a proof for the one step S.k/ ! S.k C 1/ than it is to prove S.n/ in the general
case. The reader has likely seen many statements proved by mathematical induction
while studying Algebra, Calculus, or just about any other branch of mathematics.

Mathematical induction is an excellent tool for proving that the previously
introduced recursive sequence is both monotone increasing and bounded above.
Clearly, a2 D

p
14 >

p
4 D 2 D a1 so a1 < a2. Suppose that for some k � 1 one

has ak < akC1. Then it follows that akC12 < akC1C12 so
p

ak C 12 <
p

akC1 C 12

which shows that akC1 < akC2. Thus, by mathematical induction it follows that
an < anC1 for all n, and the sequence is monotone increasing. Also clear is that
a1 D 2 < 4. Suppose that for some k � 1 that ak < 4. Then akC1 D

p
ak C 12 <p

4C 12 D p16 D 4. Thus, by mathematical induction it follows that an < 4 for
all n, and the sequence is bounded above. The limit of this sequence can be shown
to be 4. In particular, if the limit is L, one can conclude that

p
an C 12 should be

converging to
p

LC 12 which should equal the limit of an which is also L. Thus, one
would expect that L D pLC 12. This equation has only one positive real solution,
L D 4.
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3.5.7 Cauchy Sequences

A Cauchy sequence is a sequence whose terms get close together. As with the
definition of limit, the concept of “close” needs to be made precise. As with the
definition of limit, “close” means that given any tolerance � > 0, one can go out far
enough in the sequence to ensure that all terms of the sequence beyond that point
are within � of each other. Thus, a sequence is Cauchy if for every � > 0 there is an
N such that if natural numbers m and n are both greater than N, then jam � anj < �.

If a sequence of real numbers converges, then the sequence is Cauchy. The proof
of this fact uses a strategy employed repeatedly in Analysis, that is, if two quantities
are very close to the same value, then they must be very close to each other. This
standard technique for proving that two quantities are close to each other involves
the use of the triangle inequality. In particular, if lim

j!1 aj D L, then for every � > 0

there is an N such that if natural number n > N, then jan � Lj < �. Well then,
certainly if m and n are both natural numbers greater than N, then both jam�Lj < �

and jan � Lj < �. Adding these two inequalities together shows that jam � Lj C
jan � Lj < � C �. The triangle inequality states that for any real numbers x and y,
jxj C jyj � jx C yj. Thus, 2� > jam � Lj C jan � Lj D jam � Lj C jL � anj �
j.am � L/ C .L � an/j D jam � anj. Of course, the definition of Cauchy sequence
requires you to show that jam � anj is less than �, not 2�. But you have an enormous
amount of flexibility when working with these types of inequalities, so you could
have asked instead for an N such that for all natural numbers n greater than N,
you have jan � Lj less than �

2
rather than less than �. Thus, the proof could be as

follows.

PROOF: Every convergent sequence is Cauchy.

• Let <aj> be a sequence of real numbers with lim
j!1 aj D L.

• Let � > 0 be given.
• From the definition of limit, there is a number N such that for all natural

numbers j > N, it follows that jaj � Lj < �
2
.

• Then for all natural numbers m and n greater than N, jam � Lj < �
2

and
jan � Lj < �

2
, so � D �

2
C �

2
> jam � Lj C jan � Lj D jam � Lj C jL� anj �

j.am � L/C .L � an/j D jam � anj.
• This shows that the convergent sequence <aj> is Cauchy.

Note that the converse of this theorem also holds. That is, any sequence of
real numbers that is Cauchy is a convergent sequence. This result will be proved
in Sect. 3.7. An important and useful consequence of the above theorem is its
contrapositive: If a sequence is not Cauchy, then it does not converge. Often when
one wants to show that a sequence does not converge, one shows that there is some
� > 0 such that for every N there are natural numbers m and n greater than N for
which jam � anj � �.

Another important property of Cauchy sequences is that all Cauchy sequences are
bounded. If the sequence <an> is Cauchy, then there is a natural number N such
that whenever m; n � N, the difference jam � anj < 1. The set fa1; a2; a3; : : : ; aNg



3.5 Limit of a Sequence 67

is a finite set, so it is bounded by some number, K. That is, janj � K for all n � N.
If m > N, then, since both N and m are greater than or equal to N, it follows that
jam � aN j < 1 from which it follows that jamj < jaN j C 1 � K C 1. Then the
sequence <an> is necessarily bounded above by KC1 and below by �.KC1/, and
the sequence is bounded. A complete proof follows.

PROOF: All Cauchy sequences are bounded.

• Let <an> be a Cauchy sequence.
• Then there is a natural number N such that for all m; n � N, jam � anj < 1.
• The set fa1; a2; a3; : : : ; aNg is a finite set, so there is a K such that the set is

bounded above by K and bounded below by �K.
• Let m be any natural number. If m � N, then jamj � K. If m > N, then
jam � aN j < 1, so jamj D jam � aN C aN j � jam � aN j C jaN j < 1C K.

• It follows that all terms of the sequence lie between �.K C 1/ and K C 1,
and, thus, the sequence is bounded.

One consequence of the last two results is that since all convergent sequences are
Cauchy, all convergent sequences are bounded. The concept of a Cauchy sequence is
not only applied to sequences of numbers but also to much more general sequences
such as sequences of vectors, sequences of functions, and sequences of linear
operators. Of course, one would need a way to discuss distances between the terms
of a sequence in these other contexts, but when that makes sense, the concept of a
Cauchy sequence becomes important.

3.5.8 Exercises

1. Which of the following sequences are monotone? Which of them are bounded
above? Which of them are bounded below? Which of them are bounded?

(a) an D .�1/n

(b) an D n
nC1

(c) an D 5n

(d) an D 5n.�1/n

(e) an D 1C.�1/n

nCn�1

(f) an D 5 � n.�1/n

(g) an D 1 � 1
2
� 1

3
� � � 1

n

2. Write proofs of each of the following limits.

(a) lim
n!1

6n
3nC1
D 2

(b) lim
n!1

4n�1
nC6
D 4

(c) lim
n!1

n2C2nC1
n2�2n�5

D 1
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3. If a1 D 3 and an is defined recursively by anC1 D
p

3an C 10, show that the
sequence <an> converges.

4. If a1 D 7 and an is defined recursively by anC1 D
p

3an C 4, show that the
sequence <an> converges.

5. Prove that a monotone decreasing sequence that is bounded below converges.
6. Let <an> be any sequence. Prove that <an> has a monotone subsequence.
7. Prove that if <an> is a sequence such that L D lim

n!1 a2n D lim
n!1 a2nC1, then the

sequence converges to L.
8. Prove that if <an> is a sequence that converges to L, then the sequence

a1; a1; a2; a2; a3; a3; : : : also converges to L.
9. Prove that if <an> is a sequence that converges to L, then the sequence

a1; a2; a2; a3; a3; a3; a4; a4; a4; a4; : : : also converges to L.

3.6 Proving That a Limit Does Not Exist

3.6.1 Why a Limit Might Not Exist

lim
x!a

f .x/ D L means that if x is required to stay close to a, then f .x/ will stay close

to L. So what does it mean for lim
x!a

f .x/ not to exist? Intuitively, it could mean that

in every neighborhood of a there are values of x for which f .x/ is close to one value
L1 and other values of x for which f .x/ is close to another value L2. That is what

happens with the function f .x/ D
�

4x � 5 if x < 2

10 � 2x if x � 2

�
as x approaches 2. For some

values of x near 2, f .x/ is close to 3, and for some values of x near 2, f .x/ is close
to 6. Thus, the limit does not exist. Another well-known example is f .x/ D sin

�
1
x

�

which oscillates wildly as x approaches zero, and in every neighborhood of 0, the
function takes on all values in the interval Œ�1; 1� infinitely often. Another way for
the limit not to exist is for the values of f .x/ to grow without bound and approach
infinity or negative infinity such as what happens to f .x/ D xC3

.x�5/2 as x approaches 5.
One can write a proof showing that a particular function has no limit at x D a,

but before discussing how to do this, it is worth taking a close look at the definition
of limit.

3.6.2 Quantifiers and Negations

To say that a function f has a limit at x D a is to say that there exists a real number
L such that for all � > 0 there is a ı > 0 such that for every x, 0 < jx � aj < ı

implies jf .x/� Lj < �. This definition is actually a fairly complicated statement. At
the heart of it is the conditional statement “0 < jx � aj < ı implies jf .x/� Lj < �.”
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But this is an open statement, that is, even though the function f and the limit point
a are supposedly known, the statement contains variables x, L, �, and ı, all of which
are unknown. Thus, this open statement does not have any truth value until these
four variables have been stipulated. They are stipulated with four phrases: “there is
a real number L,” “for all � > 0,” “there is a ı > 0,” and “for every x.” These four
phrases are called quantifications of the variables because they indicate for which
values of the variables the following statement must hold. Two of the phrases use
the existential quantifier “there exists.” It indicates that there is at least one value
of the variable that will make the following statement true. The other two phrases
use the universal quantifier “for all.” It indicates that every possible value of that
variable will make the following statement true. So

• The statement “there exists a real number L such that for all � > 0 there is a ı > 0

such that for every x, 0 < jx � aj < ı implies jf .x/ � Lj < �” begins with the
existential quantifier “there exists a real number L,” and the entire statement is
true if, in fact, there is a value of the variable L that makes the following statement
true, that is, “for all � > 0 there is a ı > 0 such that for every x, 0 < jx � aj < ı

implies jf .x/ � Lj < �.”
• The statement “for all � > 0 there is a ı > 0 such that for every x, 0 < jx�aj < ı

implies jf .x/ � Lj < �” begins with the universal quantifier “for all � > 0,” and
the entire statement is true if, in fact, every possible positive value of the variable
� makes the following statement true, that is, “there is a ı > 0 such that for every
x, 0 < jx � aj < ı implies jf .x/ � Lj < �.”

• The statement “there is a ı > 0 such that for every x, 0 < jx � aj < ı implies
jf .x/ � Lj < �” begins with the existential quantifier “there is a ı > 0,” and the
entire statement is true if, in fact, there is a positive value of the variable ı that
makes the following statement true, that is, “for every x, 0 < jx � aj < ı implies
jf .x/ � Lj < �.”

• The statement “for every x, 0 < jx � aj < ı implies jf .x/ � Lj < �” begins with
the universal quantifier “for every x,” and the entire statement is true if, in fact,
every possible value of the variable x makes the following statement true, that is,
“0 < jx � aj < ı implies jf .x/ � Lj < �.”

A proof that no limit exists must prove the negation of the statement that says that
a limit does exist, so it is important that one can generate the negation of a statement
that contains quantifiers such as this one does. The logic of doing this is not hard
to follow. Suppose the P.y/ is a statement that depends on the value of a variable y.
Then the universally quantified statement “for every y, P.y/” says that P.y/ is true
for every possible value of y. The negation of “for every y, P.y/” must be that it
is false that every value of y makes P.y/ true, so there must be at least one y that
makes P.y/ a false statement. This means that the negation of “for every y, P.y/”
is the statement “there is a y such that :P.y/.” To negate a universally quantified
statement, change the universal quantifier to an existential quantifier and negate the
statement that follows.

What if the original statement is an existentially quantified statement such as
“there is a y such that P.y/?” This statement says that some value of y makes
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P.y/ true. The negation of this statement must be that no value of y makes P.y/

true which is to say that every value of y makes P.y/ a false statement. This means
that the negation of “there is a y such that P.y/” is the statement “for all y, :P.y/.”
To negate an existentially quantified statement, change the existential quantifier to a
universal quantifier and negate the statement that follows.

The statement that f has a limit at x D a is a statement that has an existential
quantifier followed by a universal quantifier followed by an existential quantifier
followed by a universal quantifier followed by a conditional statement. To prove
that f does not have a limit at x D a requires a proof of the negation of that
statement. From the previous discussion it is now clear that to get the negation of
the statement that f has a limit at a, you must flip the two existential quantifiers to
universal quantifiers, flip the two universal quantifiers to existential quantifiers, and
end with the negation of the conditional statement. The result is “for all real numbers
L there is an � > 0 such that for all ı > 0 there is an x such that 0 < jx� aj < ı and
jf .x/ � Lj � �.”

3.6.3 Proving No Limit Exists

Getting back to writing a proof that a limit does not exist, the proof would need to
show that for every real number L there is an � > 0 such that for every ı > 0 there
is an x within ı of a such that jf .x/ � Lj � �. This is often done by exhibiting an x1

and an x2 within ı of a such that f .x1/ and f .x2/ are so far apart that they could not
both be within � of any L. That suggests the following template for proving that a
particular limit does not exist.

TEMPLATE for proving lim
x!a

f.x/ does not exist

• SET THE CONTEXT: Make statements about what is known about the
function f and the number a.

• SELECT AN ARBITRARY LIMIT L: Given L 2 R,
• PROPOSE A VALUE FOR �: let � D . Here you would insert a value for

�.
• SELECT AN ARBITRARY ı > 0: Select ı > 0.
• SELECT VALUES FOR x1 AND x2: Let x1 D and x2 D . Note that

0 < jx1�aj < ı, 0 < jx2�aj < ı, and jf .x1/�f .x2/j � 2�. You would have
selected appropriate x1 and x2 in such a way that jf .x1/� f .x2/j exceeds 2�.

• LIST IMPLICATIONS: Assume that jf .x1/ � Lj < � and jf .x2/ � Lj < �.
Then 2� D �C � > jf .x1/� Lj C jf .x2/� Lj D jf .x1/� Lj C jL� f .x2/j �
jf .x1/ � LC L � f .x2/j D jf .x1/ � f .x2/j.

• STATE THE CONTRADICTION: This shows that 2� > jf .x1/ � f .x2/j
which is a contradiction.

• STATE THE CONCLUSION: Thus, it cannot hold that both jf .x1/�Lj < �

and jf .x2/ � Lj < �, and the limit does not exist.
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For example, consider the limit of f .x/ D
�

4x � 5 if x < 2

10 � 2x if x � 2

�
as x approaches

2. Here the limit from the left is 3, and the limit from the right is 6. Thus, no matter
how close x is supposed to be to 2, there will be values x1 and x2 within that required
tolerance where f .x1/ is close to 3 and f .x2/ is close to 6. If f .x1/ and f .x2/ are both
supposed to be within � of some limit L, then it will follow that f .x1/ and f .x2/ will
have to be within 2� of each other. Again, you employ the technique of showing that
two quantities close to the same value must be close to each other. In particular, if x1

is chosen to be less than 2, f .x1/ will be less than 3. If x2 is chosen to be between 2
and 2 1

2
, f .x2/ will be greater than 5. In this case it would be impossible to have f .x1/

and f .x2/ within 2 of each other, and, therefore, it would be impossible to have them
both within � D 1 of some limit L. This suggests that you will get a contradiction if
you set � D 1. Indeed, if a ı > 0 is chosen, you can let x1 D 2� ı

2
(that is, less than 2

but within ı of 2), and let x2 D min
�
2C ı

2
; 2C 1

2

�
(that is, greater than 2 but within

ı of 2 and not so large that f .x/ is less than 5). The point of all of this is that now,
no matter what value is chosen for L, f .x1/ and f .x2/ are more than 2 apart, so how
could they both be within 1 of L? Specifically, if jf .x1/�Lj < 1 and jf .x2/�Lj < 1,
it follows from the triangle inequality that 2 D 1C 1 > jf .x1/� Lj C jf .x2/� Lj D
jf .x1/ � Lj C jL � f .x2/j � jf .x1/ � L C L � f .x2/j D jf .x1/ � f .x2/j showing
2 > jf .x1/ � f .x2/j which cannot hold. Here is the complete proof (Fig. 3.7).

Fig. 3.7 f has no limit at
x D 2 ε

ε
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PROOF: The function
�

4x � 5 if x < 2

10 � 2x if x � 2

�
has no limit as x ! 2.

• Let f .x/ D
�

4x � 5 if x < 2

10 � 2x if x � 2

�
.

• Given any value for L, let � D 1, and let ı > 0 be given.
• Let x1 D 2 � ı

2
and x2 D min

�
2C ı

2
; 2C 1

4

�
.

• Note that 0 < jx1 � 2j < ı and 0 < jx2 � 2j < ı.
• Since x1 < 2, it follows that f .x1/ < 3. Since x2 > 2 and x2 < 2 1

4
, it follows

that f .x2/ > 5. As a consequence jf .x1/�f .x2/j D f .x2/�f .x1/ > 5�3 D 2.
• If jf .x1/ � Lj < � D 1 and jf .x2/ � Lj < � D 1, it would follow that

2 D 1 C 1 > jf .x1/ � Lj C jf .x2/ � Lj D jf .x1/ � Lj C jL � f .x2/j �
jf .x1/� LC L� f .x2/j D jf .x1/� f .x2/j > 2. This shows that 2 > 2 which
is a contradiction.

• Thus, it cannot hold that both jf .x1/ � Lj < � and jf .x2/ � Lj < �, and the
limit does not exist.

It is even easier to show that the function f .x/ D sin 1
x has no limit as x

approaches 0. This is because for every ı > 0 it is easy to find x1 and x2 between
0 and ı such that f .x1/ D 1 and f .x2/ D �1. This makes it impossible to find an
L where jf .x1/ � Lj < 1 and jf .x2/ � Lj < 1. Thus, the proof follows the given
template for proving that a limit does not exist (Fig. 3.8).

Fig. 3.8 Graph of sin 1
x
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PROOF: The function sin 1
x has no limit as x ! 0.

• Let f .x/ D sin 1
x .

• Given any value for L, let � D 1, and let ı > 0 be given.
• Select integer k > 1

2�ı
. Let x1 D 2

.4kC1/�
and x2 D 2

.4kC3/�
.

• Note that both x1 and x2 are positive and less than 2
4k�
D 1

2k�
< ı,

• f .x1/ D sin


.2kC 1

2
/�
� D 1, and f .x2/ D sin



.2kC 3

2
/�
� D �1.

• If jf .x1/ � Lj < � D 1 and jf .x2/ � Lj < � D 1, it would follow that
2 D 1 C 1 > jf .x1/ � Lj C jf .x2/ � Lj D jf .x1/ � Lj C jL � f .x2/j �
jf .x1/� LC L� f .x2/j D jf .x1/� f .x2/j D 2. This shows that 2 > 2 which
is a contradiction.

• Thus, it cannot hold that both jf .x1/ � Lj < � and jf .x2/ � Lj < �, and the
limit does not exist.

If the function f .x/ is unbounded as x approaches a, then there is an even easier
template to use for the proof that f .x/ has no limit. The idea is that since f .x/ is
unbounded, for any proposed limit L one can find an x close to a such that jf .x/j >
jLj C 1. Then the difference jf .x/� Lj will be forced to be greater than 1. Consider,
for example, the function f .x/ D xC3

.x�5/2 as x approaches 5. Given L, you will want

an x with xC3
.x�5/2 > L C 1. But with x within 1 of 5, you could claim that xC3

.x�5/2 >
1

.x�5/2 > 1
jx�5j , so by making jx � 5j < 1

jLjC1
you will have the inequality that you

need. Note that the absolute value function was introduced in jLj C 1 to take care of
the embarrassing circumstance that L is negative, and in particular, when L D �1.
The proof is as follows.

PROOF: The function xC3

.x�5/2 has no limit as x ! 5.

• Let f .x/ D xC3
.x�5/2 .

• Given any value for L, let � D 1, and let ı > 0 be given.

• Select a value of x between 5 and 5Cmin
�
1; ı; 1

jLjC1

	
.

• Note that 0 < jx � 5j < ı

• and f .x/ D xC3
.x�5/2 > 1

.x�5/2 > 1
x�5

> jLj C 1.
• It follows that jf .x/ � Lj > jLj C 1 � L � 1.
• Thus, it cannot hold that jf .x/ � Lj < �, and the limit does not exist.

3.6.4 Exercises

Write the negation of each of the following statements.

1. There exists x such that x2 D A.
2. For all x there is a y such that g.x/ D f .y/.
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3. There is an integer k such that f .x/ � f .k/ for all x between k and kC 1.
4. For all x > 0 and all y > 0 there exists a z < 0 such that f .z/ � xf .y/.

Prove that the following limits do not exist.

5. f .x/ D x
jxj as x! 0

6. f .x/ D x sin
�

1
x�1

�
as x! 1

7. f .x/ D
�

5x if x < 3

4x if x � 3

�
as x! 3

8. f .x/ D 4
x2�4

as x! 2

3.7 Accumulation Points

A set A has an accumulation point p if for every � > 0 there is an x 2 A with x ¤ p
and jx � pj < �. Informally, p is an accumulation point of A if there are points of A
that are arbitrarily close to p. Note that the fact that p is an accumulation point of the
set A has nothing to do with whether p is actually an element of A. For example, the
set A D ˚ 1

n j n 2 N
�

has one accumulation point, 0, because for every � > 0 there is
an n 2 N with 1

n < �. Here the accumulation point 0 is not an element of the set A.
The set B D Œ0; 4� (the closed interval from 0 to 4) has infinitely many accumulation
points. Indeed, every element of the interval B is an accumulation point of B because
for each x 2 Œ0; 4� and each � > 0 there are infinitely many points in B within � of
x. Here all of the accumulation points of B are in B. Each point x 2 Œ0; 4� is also an
accumulation point of the set C D .0; 4/\Q, the set of rational numbers between 0
and 4. Here, some of the accumulation points are in C, and some are not. The set of
natural numbers, N, has no accumulation points. An element a of a set that is not an
accumulation point of that set is called an isolated point of the set. For any isolated
point a, there is an � > 0 such that a is the only element of the set in the interval
.a � �; aC �/ (Fig. 3.9).

A word of warning is needed here. The term accumulation point is not used the
same way by all authors. Many texts, especially those in Topology, will use the terms
limit point or cluster point instead of accumulation point. Even more confusing is
that some texts use the term accumulation point for something different.

b a

Fig. 3.9 Set with accumulation point a and isolated point b
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The first observation to make about accumulation points is that if p is an
accumulation point of set A, then for every � > 0 there is not only one point of
A within � of p but infinitely many points of A within � of p. The definition of
accumulation point guarantees at least one point of A within � of p, but once one
point, x 2 A, is found to be within � of p, the definition also says that there must be
another point y 2 A with 0 < jy � pj < jx � pj. Since for each x 2 A close to p
there must be another point y 2 A even closer to p, it follows that there are infinitely
many points of A within � of p.

Perhaps the most used fact about accumulation points is known as the Bolzano–
Weierstrass Theorem which states that every infinite bounded set of real numbers
has an accumulation point. As pointed out earlier, N has no accumulation points,
and it is an infinite set. But N is not a bounded set. Intuitively, one cannot have a
bounded infinite set without an accumulation point because one runs out of places
to put the infinite number of points. If the points of a set are not allowed to bunch
up anywhere, then one will not be able to find room for infinitely many of the points
within a bounded interval.

There are several good strategies used to prove the Bolzano–Weierstrass Theo-
rem, and two of those strategies are presented here. Of course, one only needs one
good strategy to prove a theorem, but these proofs are instructive and use techniques
commonly employed in Analysis proofs. One begins each proof with a statement
about the set A being an infinite bounded set. Since A is a bounded set, it will have
a lower bound, a, and an upper bound, b showing that A � Œa; b�. The first strategy
is to construct the set S D fx � a j Œa; x� \ A is finiteg, that is, a value x � a is in
the set S if there are finitely many element of A which fall in the interval Œa; x�. First
observe that the set S is an interval. This follows because if y 2 S, then Œa; y� \ A is
finite, so if x is between a and y, then Œa; x�\ A � Œa; y�\ A must also be finite, and
x 2 A. The next observation is that S is not empty because the point a, whether or
not it is in A, is in S since Œa; a� \ A contains at most one point, so it is finite. Since
Œa; b� \ A D A is an infinite set, the set S is bounded above by b. The Completeness
Axiom now shows that S must have a least upper bound, p. It will follow that p is an
accumulation point of A because for all � > 0, the set A will have only finitely many
elements less than p � � but infinitely many elements less than pC � implying that
there are infinitely many elements of A within � of p. Here is the complete proof.
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