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1.7. Bounded sets. The upper bound and the lower bound
of a set

We say that a set of real numbers Z is bounded, if
two numbers m and M exist such that every number x

belonging to the set Z satisfies the double inequality
m < o < M. Assuming only that there exists a number M
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satisfying the inequality M > x for every z belonging to
the set Z, we call the set Z bounded above. Similarly,
a set Z is called bounded below if a number m exists
satisfying the above condition: m < «.

The geometrical meaning of these ideas is the following.
If a set is bounded it means that it is contained in a cer-
tain segment on the numerical line. A set is bounded
above or below, when it is contained in an infinite radius
directed to the left or to the right, respectively.

Applying the continuity principle we shall prove the
following theorem:

If a non-empty set Z is bounded above, then among the
numbers M, satisfying the inequality M = x for any
belonging to Z, there exists a least one. This number will
be called the upper bound of the set Z.

Similarly, if a set Z is bounded below, then among the
numbers m, satisfying the inequality m < x for any «
belonging to Z, there ewists a greatestone, which is called
the lower bound of the set Z.

Proof. Let the set Z be bounded above. Let us divide
the set of all real numbers in two classes as follows.
To the second class there will belong all numbers M
satisfying the inequality M > « for any « belonging to Z.
To the first class there will belong all other real numbers;
that means that a number a belongs to the first class
when in the set Z there exists a number greater than a.
Such a division of the set of real numbers in two classes
is called a cut, i.e. any number belonging to the first
class is less than any number belonging to the second one.
Indeed, supposing a number M of the second class to be
less than a number a of the first class and knowing that
a number x exists in the set Z such that a < x we should
have M < z; but this contradicts the definition of the
second class.

Moreover, let us note that both classes are non-empty.
Indeed, if a number z belongs to the set Z (and such



a number exists, the set Z being non-empty by assumption),
then the number z—1 belongs to the first class. The
second class is also non-empty, since the set Z is bounded
above.

According to the continuity principle there exists
either a greatest number in the first class or a least
number in the second class. However, the first eventuality
is not possible. Namely, if a belongs to the first class
and a < x (where « belongs to Z), then denoting by a’
any number between a and z, e.g. a' = a—_gff , we have
also a’ < @, but this means that a’ belongs to the first
class, too. Thus, to any number a of the first class we
may find a number a’ greater than a in this class. This
means that in the first class a greatest number does not
exist. Hence, there exists in the second class a least
number, i.e. the least number among the numbers M
satisfying the inequality M > x for every « belonging to
the set Z. Hence the theorem is proved.

The proof of existence of a lower bound is completely
analogous. .

Let us note that the upper bound and the lower bound
of a set Z do not necessarily belong to this set. E. g. the
bounds of the open interval (}) & < x < b are the numbers
a and b which do not belong to this interval.

1.8*. The axiomatic treatment of real numbers

The notion of a real number which we have assumed
to be known from the middle-school course may be in-
troduced in an axiomatic way as follows.

We assume that in the set of real numbers two
operations can be performed: addition x+y and multi-
plication xy. These operations satisfy the laws of com-

(!) By an open interval we understand the set of numbers x



mutativity and associativily:

x+y=y+x, xy=yx,
(x+y)+z=24+(y+2), (2y)z=2(yz).

Moreover, the multiplication is distributive with respect
to the addition:
w(y+2) =oy+az.
Two (different) numbers 0 and 1 are the moduli of
addition and multiplication respectively, i.e.

z+0=2x, zl=ux.

Further, we assume that in the set of real numbers
subtraction and division are always possible, except
division by 0. In other words, we assume that to any
pair of numbers z and ¥ a number 2z (called the difference
xz—7y) exists such that

¢ =y+z

and, in the case where ¥ s 0, a number w (called the
quotient x :y) exists such that

x = yw.

Besides the above axioms concerning the operations,
we take following axioms concerning the order relation
x < y. We assume that any two distinet real numbers
a and y are in this relation in one or another direction, i.e.
either x <y or y < x. This relation is transitive, i.e.

the conditions x <y and y <z imply r < 2
and asymmetric, 1.e.

if @ <y, then the relation y < x does not hold.

The order relation is connected with the basic opera-
tions by the following axiom:

if y<z, then x+y <x+2 and if, moreover, 0 < x,
then xy < xz,
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numbers which are sums of two numbers, the first of
which belongs to R and the second one belongs to R'.
It is easily seen that the set K+ R’ satisfies the conditions
(i)-(iii). Moreover, the axioms concerning the addition
(commutativity, associativity ete.) are satisfied. The real
number 0 is defined as the set of all negative rational
numbers. Similarly, the real number 1 is the set of all
rational numbers less than the rational-one. In general,
if » is a rational number, then we understand by ‘the
real number 7’ the set of all rational numbers less than
the rational number 7 (in practice, we identify the rational
number r and the real number r). —R means the set of
all rational numbers of the form —a, where x takes all
values which do not belong to R; however, if the set of
numbers not belonging to R contains a least number 7,
then we do not include the number —# in the set —R
(that is the case, when R is ‘“the real number 7”’). One
may prove that R4 (—R) = 0.

The multiplication of real numbers will be defined in
the following way: if R >0 and R’ > 0, then RR’ is the
set containing all negative rational numbers and numbers
of the form »r’, where r is a non-negative number belong-
ing to R and, similarly, »' is a non-negative number belong-
ing to R'. Moreover, we assume

(—R)(—R') = RR’, (—R)R’'=—(RR’)=ER(—FR').

It may easily be proved that all the axioms con-
cerning the multiplication are then satisfied.

Finally, the continuity axiom is satisfied. Indeed,
let A, B denote a cut in the domain of real numbers.
We denote by R the set of rational numbers with the
property that r belongs to R if and only if it belongs
to one of the real numbers belonging to the class A.

It is proved that the above defined set R satisfies
the conditions (i)-(iii), so that it is a real number. Then
we prove that R ‘lies on the cut 4, B”, i.e. that it is
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Finally, the last axiom in the theory of real numbers
which we are accepting is the Dedekind continuity principle
formulated in § 1.5.

All arithmetic and algebraic theorems known from
courses in the middle-school may be deduced from the
above axioms,

1.9*. Real numbers as sets of rational numbers (*)

The notion of a real number may be defined on the
basis of the theory of rational numbers as follows.

Real numbers may be considered to be identical with
sets of rational numbers R, satisfying the following
conditions:

(i) the set R does not contain a greatest number,
i.e. for any number belonging to the set R there exists
a greater number in R;

(ii) if & number 2 belongs to R, then any rational
number less than z belongs to R,

(iii) the set R is non-empty and is not equal to the
set of all rational numbeys.

For real numbers defined in this way we define first
of all the relation of order. Namely, we write R < R/,
when the set R is a part of the set R’ (different from R');
or, when the set I’ contains numbers which do not belong
to R (it is easily seen that for any two sets satisfying
the conditions (i)-(iii) always one is contained in the
other). Both these definitions are equivalent.

We easily find that the order relation defined in this
way satisfies the axioms given in § 1.8, i.e. it is a transitive,
asymmetric relation which holds for any pair of different
sets KB and R’ in one or other direction.

Now we define the addition of real numbers, i.e. the
addition of sets R and R’ (satisfying the conditions

(*) We give here an outline of the so-called Dedekind theory
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2.4. Operations on sequences
THEOREM. Assuming the sequences a,, a,, ... and by, b,, ...

to be convergent, the following four formulae hold (*):

(6) lim(a,+b,)=lima,+limbd,,

(7) lim(a,—b,) =lima,—limb,,
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(8) lim(a,-b,) =lima,-limb,,

. ay lima,

0 Iz = s,

This means that under our assumptions the limit of

the sum exists and is equal to the sum of limits, the limit

of the difference exists and is equal to the difference of
limits ete.

Proof. Let us write lima, = ¢ and lim b, = h. A num-
ber ¢ > 0 let be given. Hence a number % exists such
that the inequalities |a,—g| < ¢/2 and |bo—h| < ¢/2 hold
for n > k. We add both these inequalities under the
sign of absolute value. We obtain

[(@n+bn)—(g+h)| <ce.

This means that the sequence with general term ¢, = a, + b,
is convergent to the limit ¢+ h. Thus, we have proved
the formula (6).

In particular, if b, takes a constant value: b, =c¢,
formulae (6) and (3) imply:

(when limb, # 0).

(10) lim(a, +¢) = ¢-+lima, .

Now, we shall prove the formula (8). We have to
“estimate’ the difference |anbn—gh|. To be able to apply
the convergence of the sequences a,, ay, ... and by, b,, ...
we transform this difference as follows:

nb,— gh = anby,— aph+ayh—gh = a,(b,—h)+ h(a,—g).

Since the sequence a,, a,, ... is convergent, it is bounded
and so a number M exists such that |a,| << M. Applying
to the last equation the formulae for the absolute value
of a sum and of a product we get:

|anbn— gh| < |an(bn— h)| +|h(an—g)|
< M- |bn—h|+ |- [an—g].

Now, let us take a number 7 > 0 independently of e.
Hence a number k exists such that we have |a,—¢g| <7



2. INFINITE SEQUENCES 3b
Writing n = }¢h?, we get
1 1

bn R

whence the formula (13) follows.
The formula (9) follows from (8) and (13):

<é&,

1 lima,
b, limbd,

Remarks. («) We have assumed that the sequences
{a,} and {b,} are convergent. This assumption is essential,
for it may happen that the sequence {a,+b,} is conver-
gent, although both the sequences {a,} and {b,} are di-
vergent; then the formula (6) cannot be applied. As an
example one can take: a, = n, b, = —n. -

However, if the sequence {a,-+b,} and one of the
two sequences, e. g. the sequence {a,} are convergent, then
the second one is also convergent. For b, = (a,+b,)—ay,,
and so the sequence {b,} is convergent as a difference
of two convergent sequences.

Analogous remarks may be applied to the formulae
(7)—(9). |

(B) In the definition of a sequence we have assumed
that the enumeration of the elements begins with 1.
It is convenient to generalize this definition assuming that
the enumeration begins with an arbitrary positive integer
(and even with an arbitrary integer), e.g. with 2, 3 or
another positive integer. So is e.g. in the proof of the
formula (13). We have proved that b, #* 0 beginning with

limgﬁ = liman-—l— = lima,+lim
by by

a certain k. Thus, the sequence 51— is defined just beginning
n

with this % (for if b, = 0, then bl does not mean any
n
number).
This remark is connected with the following property
of sequences, easy to prove: the change of a finite number
of terms of a sequence has influence neither on the con-



and |b,—h| < n for n > k. Thus,
|@nbn— gh| < Mn+|hin = (M +[h])7n.

Till now we have not assumed anything about the
positive number 7. Let us now assume that » = ¢/(M +|h|).
So we conclude that the inequality |a,b,— gh| < ¢ holds
for » > k. Thus, we have proved the formula (8).

In particular, if we write b, = ¢ we get

(11) lim(¢- a,) = ¢lima,, ,
(12) lim(—a,) = —lima, ,
where the formula (12) follows from (11) by the sub-
stitution ¢ = —1.
Formulae (6) and (12) imply the formula (7), for
lim (@, — b,) = lim[a, + (—b,)]
= lima, +1lim(—b,) = lima, —limb, .

Before proceeding to the proof of the formula (9),
we shall prove the following special case of this formula:

.1 1 .
(13) Ilma = fmb, (when limb, # 0).

First, we note that for sufficiently large n the in-
equality b, # 0 holds. We shall prove an even stronger
statement: we have |b,| > %|h| for sufficiently large n.
Indeed, since %}|h|> 0, a number %k exists such that

|bn—h| < }|h] for n > k. Hence,
|h|—[ba] <|h—b,| < %] and thus |b.]|> %|Rl.
To prove the formula (13), the difference
1_-11 _ lh—-bn _|h—by]
bn k| |k by | |h||bn
has to be estimated.

But for sufficiently large n we have |h—b,| < n and
ba| > 3R], i. e. 1/|ba] < 2/|h|. Thus,

Loy
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