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R ^- E is closed. Now suppose R E is closed. Let x belong to E. Then there must be an
open interval that contains x that is contained in E, for otherwise every open interval that
contains x contains points in X - E and therefore x is a point of closure of R - E. Since
R E is closed, x also belongs to R ^- E. This is a contradiction.

Since R - [R - E] = E, it follows from the preceding proposition thata set is closed if
and only if its complement is open. Therefore, by De Morgan's Identities, Proposition 8 may
be reformulated in terms of closed sets as follows.

Proposition 12 The empty-set 0 and R are closed; the union of any finite collection of closed
sets is closed; and the intersection of any collection of closed sets is closed.

A collection of sets {EA}AEA is said to be a cover of a set E provided E C UAEA EA.
By a subcover of a cover of E we mean a subcollection of the cover that itself also is a cover
of E. If each set EA in a cover is open, we call {EA}AEA an open cover of F. If the cover
{EA}AEA contains only a finite number of sets, we call it a finite cover. This terminology is
inconsistent: In "open cover" the adjective "open" refers to the sets in the cover; in "finite
cover" the adjective "finite" refers to the collection and does not imply that the sets in the
collection are finite sets. Thus the term "open cover" is an abuse of language and shouldprop-
erly be "cover by open sets." Unfortunately, the former terminology is well established in
mathematics.

The Heine-Borel Theorem Let F be a closed and bounded set of real numbers. Then every
open cover of F has a finite subcover.

Proof Let us first consider the case that F is the closed, bounded interval [a, b]. Let F
be an open cover of [a, b]. Define E to be the set of numbers x E [a, b] with the property
that the interval [a, x] can be covered by a finite number of the sets of F. Since a E E, E is
nonempty. Since E is bounded above by b, by the completeness of R, E has a supremum;
define c = sup E. Since c belongs to [a, b], there is an 0 E.F that contains c. Since 0 is open
there is an E > 0, such that the interval (c - e, c + e) is contained in O. Now c - E is not an
upper bound for E, and so there must be an x E E with x > c - e. Since X E E, there is a finite
collection ( 0 1 ,..., Ok} of sets in F that covers [a, x]. Consequently, the finite collection
( 0 1 ,---, Ok, 01 covers the interval [a, c + c). Thus c = b, for otherwise c < b and c isnot an
upper bound for E. Thus [a, b] can be covered by a finite number of sets from F, proving
our special case.

Now let F be any closed and bounded set and .F an open cover of F. Since F is
bounded, it is contained in some closed, bounded interval [a, b]. The preceding proposition
tells us that the set 0 = R ^- F is open since F is closed. Let F* be the collection of open
sets obtained by adding 0 to F, that is, F* = F U O. Since .F covers F, F* covers [a, b]. By
the case just considered, there is a finite subcollection of F* that covers [a, b] and hence F.
By removing 0 from this finite subcover of F, if 0 belongs to the finite subcover, we have a
finite collection of sets in .F that covers F.

We say that a countable collection of sets is descending or nested provided
En+1 C E for every natural number n. It is said to be ascending provided E g: E,,+, for
every natural number n.
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The Nested Set Theorem Let {Fn}n° 1 be a descending countable collection of nonempty
closed sets of real numbers for which F1 bounded. Then
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n=1

Proof We argue by contradiction. Suppose the intersection is empty. Then for each real
number x, there is a natural number n for which x 0 Fn, that is, x E O,, = R ^- Fn. Therefore
Un° 1 0, = R. According to Proposition 4, since each F. is closed, each On is open. Therefore
{On}n_i is an open cover of R and hence also of Fl. The Heine-Borel Theorem tells us
that there a natural number N for which F C UN-n= 1

On. Since {Fn}n°1 is descending, the
collection of complements {On }n° is ascending. Therefore UN 1 On = ON = R ^- FN. Hence
F1 C R - FN, which contradicts the assumption that FN is a nonempty subset of F1.

Definition Given a set X, a collection A of subsets of X is called a 0'-algebra (of subsets of X)
provided (i) the empty-set, 0, belongs to A; (ii) the complement in X of a set in A also belongs
to A; (iii) the union of a countable collection of sets in A also belongs to A.

Given a set X, the collection {0, X} is a o--algebra which has two members and is
contained in every o--algebra of subsets of X. At the other extreme is the collection of sets
2x which consists of all subsets of X and contains every o -algebra of subsets of X. For
any u--algebra A, we infer from De Morgan's Identities that A is closed with respect to
the formation of intersections of countable collections of sets that belong to A; moreover,
since the empty-set belongs to A, A is closed with respect to the formation of finite
unions and finite intersections of sets that belong to A. We also observe that a u--algebra
is closed with respect to relative complements since if Al and A2 belong to A, so does
Al - A2 = Al n [X - A2]. The proof of the following proposition follows directly from the
definition of o--algebra.

Proposition 13 Let F be a collection of subsets of a set X. Then the intersection A of all
Q-algebras of subsets of X that contain F is a o--algebra that contains F. Moreover, it is the
smallest u--algebra of subsets of X that contains .F in the sense that any v-algebra that contains
F also contains A.

Let (A,,}1 be a countable collection of sets that belong to a u--algebra A. Since A
is closed with respect to the formation of countable intersections and unions, the following
two sets belong to A :

00 -
limsup{An}n 1= n fU

An]

and liminf{An}n° 1= U n=k
k=1 n=k k=1 JAn

The set lim sup{An }n°1 is the set of points that belong to An for countably infinitely many
indices n while the set lim inf{An}n 1 is the set of points that belong to An except for at most
finitely many indices n.

Although the union of any collection of open sets is open and the intersection of
any finite collection of open sets is open, as we have seen, the intersection of a countable
collection of open sets need not be open. In our development of Lebesgue measure and
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Since U is the union of open sets it is open. It has been constructed so that (9) holds.

The Extreme Value Theorem A continuous real-valued function on a nonempty closed,
bounded set of real numbers takes a minimum and maximum value.

Proof Let f be a continuous real-valued function on the nonempty closed bounded set E of
real numbers. We first show that f is bounded on E, that is, there is a real number M such that

If(x)I <MforallxEE. (10)

Let x belong to E. Let S > 0 respond to the e = 1 challenge regarding the criterion for
continuity of f at x. Define Ix = (x - S, x + S). Therefore if x' belongs to E n Ix, then
I f (x') - f (x) I < 1 and so I f (x') I < I f (x) I + 1. The collection {Ix}x E E is an open cover of
E. The Heine-Borel Theorem tells us that there are a finite number of points {x1, ... , xn}
in E such that {Ixk}k-1 also covers E. Define M = 1 +max{If(xl)1, . If(xn)I}. We claim
that (10) holds for this choice of E. Indeed, let x belong to E. There is an index k such that
x belongs to Ixk and therefore If (x) 1 < 1 + If (xk) I < M. To see that f takes a maximum
value on E, define m = sup f (E). If f failed to take the value m on E, then the function
x H 1/ (f (x) - M), x E E is a continuous function on E which is unbounded. This contradicts
what we have just proved. Therefore f takes a maximum value of E. Since -f is continuous,
- f takes a maximum value, that is, f takes a minimum value on E.

The Intermediate Value Theorem Let f be a continuous real-valued function on the closed,
bounded interval [a, b] for which f (a) < c < f (b). Then there is a point xo in (a, b) at which
f(xo) = c.

Proof We will define by induction a descending countable collection {[an, bn]}' 1 of closed
intervals whose intersection consists of a single point xo E (a, b) at which f(xo) = c. Define
al = a and bl = b. Consider the midpoint ml of [al, bl]. If c < f(ml ), define a2 = al and
b2 = ml. If f(ml) > c, define a2 = m1 and b2 = b1. Therefore f(a2) < c < f(b2) and
b2 - a2 = [b1 - al]/2. We inductively continue this bisection process to obtain a descending
collection {[an, bn]}n

1
of closed intervals such that

f (an) < c < f (bn) and bn - an = [b - a]/2n-1 for all n. (11)

According to the Nested Set Theorem, nn, , [an, bn] is nonempty. Let xo belong to
°O1 [an, bn ]. Observe thatnn=

Ian - x0I bn - an = [b - a]/2n-1 for all n.

Therefore {an } -+ xo. By the continuity of fat xo, (f(an)) -* f (xo ). Since f (an) < c for
all n, and the set (-oo, c] is closed, f(xo) < c. By a similar argument, f(xo) > c. Hence
f(xo)=c.

Definition A real-valued function f defined on a set E of real numbers is said to be uniformly
continuous provided for each e > 0, there is a S > 0 such that for all x, x' in E,

if Ix - x'I < S, then If (x) - f(x')I <e.


