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9. Show that

1 d w \/{O(axz—}-c)}:l_ 1
JCOUc—aly} dw | % A \cda®+ 0 |~ a2+ 0) Jaz®+c)’
10. Each of the functions

1 acosz+b 2 a—-b L,
m arc cos atboosz) JE—B arc tan aTb tan s ¢,
has the derivative 1/(c+b cos ).

11. If X=a+bcosz+csinz, and

aX — a2+ b2+ c?
XS+

Y= \—/(32—_—1—52—:?2—) arc cos
then dy/dz=1]X.

12. Find the equations of the tangent and normal at the point (xy, 7o)
of the circle £24y2=q2

[Here y=\/(a?— a?), dy|dz= — z[\/(a? = %?), and the tangent is

Y= Yo=(# — @) { — o/ (@®— ")},

which may be put in the form xzy+yyo=0e? The normal is xy,—yxo=0,
which of course passes through the origin.]

13. Find the equations of the tahgent and normal at any point of the
ellipse (z/a)?+(y/b)2=1 and the hyperbola (z/a)? - (y/b)2=1.

14. The equations of the tangent and normal to the curve x=d¢(¢),
y=vy(¢), at the point (¢), are

o D s @) O+ -y O=0.
15. Prove that the derivative of [ f{¢p (2)}] is F'[ f{p (x)}]f {d (#)} ¢’ (=),

and extend the result to still more complicated cases.

16. If % and » are functions of #, then
D arctan (ufv)=(vD,u — uD,v)[(u?+2?).
17. If ¢ (#)=4%sin (1/x) when 240 and ¢ (0)=0, then
¢’ (#)=2x sin (1/z) —cos (1/z)
when %0, and ¢'(0)=0. And ¢'(z) is discontinuous for =0 (cf. Ex.
XLVIIL 44).

110. The Mean Value Theorem furnishes us with a proof of
a result which is of essential importance for what follows:—if
¢ (2)=0, throughout a certain wnterval of values of x=, ¢(x) s
constant throughout that interval.

For if @ and b are any two values of  in the interval,
60— d(@)=(b-a) & {a+0(b—a)} =0.
An immediate corollary is that of ¢'(x) =+'(x), throughout «

certain interval, the functions ¢ (x) and () differ, throughout that
wnterval, by a constant.
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111. Integration. We have in this chapter seen how we can
differentiate a given function ¢(z)—i.e. find its derivative—in a
variety of cases, including all those of the commonest occurrence.
It is natural to consider the converse question, that of determining
a function whose dertvative is a giwen function.

Suppose that {r(z) is the given function. Then we wish to-.
determine a function such that ¢ (2) =+ (z). A little reflection
shows us that this question may really be analysed into three
parts.

(1) In the first place we want to know whether such a
function as ¢ (x) actually ewists. This is a purely theoretical
question, and must be carefully distinguished from the practical
question as to whether (supposing that there is such a function)
we can find any simple formula to express it.

(2) We want to know whether it is possible that more than
one such function should exist: i.e. we want to know whether our
problem is one which admits of a unique solution or not; and if
not, we want to know whether there is any simple relation
between the different solutions which will enable us to express all
of them in terms of any particular one.

(3) If there is a solution, we want to know how to find an
actual expression for .

It will throw light on the nature of these three distinct ques-
tions if we compare them with the three corresponding questions
which arise with regard to the differentiation of functious.

(1) A function ¢ () may have a derivative for all values of
(like 2™, where m is a positive integer, or sinz). It may generally,
but not always have one (like 4/ or tana or secz). Or again
it may never have one: for example the function considered in
Ex. xvir 11, which is nowhere continuous, has obviously no deriva-
tive for any value of 2. Of course, during this chapter, we have
confined ourselves to functions which are continuous except for
some special values of . The example of the function {/z, how-
ever, shows that a continuous function may not have a derivative
for some special value of # (in this case £=0). Whether there
are continuous functions which never have derivatives, or con-
tinuous curves which never have tangents, is a further question
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which is at present beyond us. Common-sense says No: but, as
we have already stated (§ 92 (2)), this is one of the cages in which
higher mathematics has proved common-sense to be mistaken.

But at any rate it is clear enough that the theoretical question
—has ¢ (2) a derivative ¢’ (x) ?—is one which has to be answered
differently in different circumstances. And we may expect that
the converse question—is there a function ¢ (2) of which r(z)
is the derivative 2—will have different answers too. We have
already seen that there are cases in which the answer is No: thus
if 4 (2) is the function which is equal to a, b, or ¢ according as
x is less than, equal to, or greater than 0, the answer is No
(Exs. XLviIL 45, XLIX. 3), unless a=b=c.

This is a case in which the given function is discontinuous.
In what follows, however, we shall always suppose {(x) continuous.
And then the answer is, Yes: tof \r () vs contenuous there vs always
a function ¢ (x) such that ¢’ (z) =+ (x). To prove this would take
us beyond our limits, however: in Ch. VIL we shall give a proof,
not perfectly general, but general enough to deal with the simplest
and most interesting cases that arise.

(2) The second question presents no difficulties. In the case
of differentiation we have a direct definition of the derivative
which makes it clear from the beginning that there cannot
possibly be more than one. In the case of the converse problem
the answer is almost equally simple. It is that if ¢(«) is one
solution of the problem ¢ (x)+ C is another, for any value of the
constant C': and that all possible solutions are comprised in the
form ¢(x)+ 0. This follows at once from §110.

(3) The practical problem of actually finding ¢’'(z) is as a
rule a fairly simple one. We have already shown how it can be
done in a number of cases, and the theorem of §108, in conjunction
with the rules of § 94, make the problem easy enough in the case
of any function defined by some finite combination of the ordinary
functional symbols. The converse problem is much more difficult.
The nature of the difficulties will appear more clearly later on.

DEFINITIONS.  If () is the dertvative of ¢ (), we call ¢ ()
the integral or integral function of r(2). The operation of
Jorming yr(x) from ¢ (x) we call integration.
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We shall use the notation
b@ =¥ @) da

It is hardly necessary to point out that f ..dz like d/dx
must, at present at any rate, be regarded purely as a symbol of
operation : the f and the dz no more mean anything when taken

by themselves than do the d and dz of the other operative symbol
d/dz. The reason for this notation will be explained in Ch. VIL

112, The practical problem of integration. The results
of the earlier part of this chapter enable us to write down at once
the integrals of some of the commonest functions. Thus

Vil . .
fmmdx = , fcos zdz = sin z, fsm xde=—cosz ...(1).
m+1

These formulae must be understood as meaning that the
function on the right-hand side 1s one integral of that under
the sign of integration. The most general integral is of course
obtained by adding to the former a constant O, known as the
arbitrary constant of integration.

There is however one case of exception to the first formula,
that in which m=—1. 1In this case the formula becomes nuga-
tory, as is only to be expected, since we have already (Ex. XLIV. 5)
seen that 1/¢ cannot be the derivative of any polynomial or
rational fraction. And in fact it can be proved (though the
proof is too detailed and tedious to be inserted here) that it is
impossible to form, by means of a finite combination of the
functional signs which correspond to any of the classes of func-
tions which we have so far considered—signs such as +, %, +, 4/,
sin, arc sin,—a function of x whose derivative is 1/z. Some
further discussion of this point will be found in Ch. IX. For the
present we shall be content to assume that, if there is such a
function, it 1s an essentially mew function.

That there really is a function F(x) such that D, F (z)=1/x
will be proved in the next chapter; and the properties of this
function will be investigated in Ch. IX. For the present we
shall simply assume the existence of such a function, and we
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shall call it the logarithmic function and denote it by log z;
so that

The four formulae (1) and (2) are the four most fundamental
standard forms of the Integral Calculus. To them should
perhaps be added two more, viz.

dx dxz

o= e tan , m= tarcsinz*® ...(3).
113. Polynomials. All the general theorems of § 94 may of
course be also stated as theorems in integration. Thus we have,
to begin with, the formulae

ﬁf@»+F@WM=[f@ym+fF@mm ......... ),
f/cf(w) da:=/cff(x) Az oiiiiiiiiiian, (2).

Here it is assumed, of course, that the arbitrary constants are
adjusted properly. Thus the formula (1) asserts that the sum of
any integral of f(«) and any integral of F(x) is an integral of

These theorems enable us to write down at once the integral
of any function of the form = 4, f, (#), the sum of a finite number
of constant multiples of functions whose integrals are known. In
particular we can write down the integral of any polynomial: in

fact

aown"‘}‘l + alxn + + o
e cos &.
n+1 n "

f(aox" + a4t ay)de=

114. Rational Functions. After integrating polynomials
it is natural to turn our attention next to rational functions.
Let us suppose R (x) to be any rational function expressed in the
standard form of § 98, viz. as the sum of a polynomial Il (z) and
a number of terms of the form A /(x — a)®.

We can at once write down the integrals of the polynomial
and of all the other terms except those for which p =1, since

A A 1
f@~@ﬂm=‘p—1w—@r”
whether a be real or complex (§ 98).

* See §100 for the rule for determining the ambiguous sign.
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The terms for which p=1 present rather more difficulty.
And it is convenient at this stage to introduce another general
theorem 1n integration.

It follows immediately from Theorem (8) of § 94 that if
f Y (z)de = ¢(x), and o and b are real, then
f ¥ (az + ) do = (1/a) & (@ +b) wrvrer... ®).
Thus, for example,

[ 2 =Qa)log (@ +b)

and, in particular, if « is real,
_dz = log (# — a).

@ — o
We can therefore write down the integrals of all the terms in

R () for which p=1 and a is real. There remain the terms for
which p=1 and a is complex.

In order to deal with these we shall introduce a restrictive
hypothesis, viz. that R(z) is a real function—i.e. that all its
coefficients are real. Then if a =y +10 1s a root of Q(x)=0,
m times repeated, so is a'=vy—16. Moreover, if the partial
fractions corresponding to the factor (x—a)™ are 2 A4,/(x —a)?,
those corresponding to the factor (v —a')y™ are 3 4, /(x—a’)?, where
A4, is conjugate (Ch. III, §80) to 4,. This follows from the
nature of the algebraical processes by means of which the partial
fractions can be found, and which are explained at length in
treatises on Algebra*.

Thus if a term (N + ¢u)/(z —y—18) occurs in the standard
form of R (2), so will a term (A —4u)/(z—+16); and the sum of
these two terms is

2@ =)= pd}/{(z— )" + &}
This fraction is in reality the most general fraction of the form
(Az+ B)[(ax? + 2bz + ¢),

where 0*<ac. The reader will easily verify the equivalence of

* See, for example, Chrystal’s Algebra, vol. 1, pp. 151-9.
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the two forms, the formulae which express A, y, v, 6 in terms of
A4, B, a, b, ¢ being
A=A/2a0, p=—D[2ayd), y=~bla, &§=+A/a,
where A =ac — 8% and D=aB — bA.
We shall now introduce another general theorem in integra-
tion, which follows at once from the theorem of §108: viz.

f F'{f(@) ' @) de=F {f@)} remeernn. ()

If in particular we suppose F{ f(@)} to be log f(x), so that
F’'{ f(z)} =1] f(z), we obtain
’ (x
[Z:8 =108 )3
and if we further suppose that f ()= (2 —\)?+ u? we obtain
" 2(zx—2) B o1 s
_’(w_)\l)2+#2dx_ 10g {(w—)\) +f"}'
Again, in virtue of the equations (38) of § 112 and (8) above
— 28u &r—N\
__—(x—k)2+p2dw=— 28 arc tan ( ,u, )

These two formulae enable us to integrate the sum of the two
terms which we have been considering in the expression of R (x);
and we are thus enabled to write down the integral of any rational
function, if all the factors of its denominator can be determined.
The integral of any such function is composed of the sum of a
polynomial, a number of rational fractions of the type

—A[{(p - D@ —a)r7},
a number of logarithmac functions, and a number of vnverse tangents.
It only remains to add that if a is complex such a fraction as
—A/{(p— (& — )7
always occurs 1 conjunction with another in which 4 and a are
replaced by the complex numbers conjugate to them, and that the
sum of the two fractions is a real rational fraction.

Examples LI. 1. The integral of the function (4x+B)/(ax?+2bx+c)
may be expressed in the form

A D
Q—CzlogX+2—(z—~/~(_—A)[log{ax+b—,J( - A)} —log{az+b+4/(—-8)}]
(where X=a4?24-2bx +¢) if A<O, and in the form

A D ax+b
o log X +cwa Ja arc tan <—~/A )

if A>0.
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2. In the particular case in which ac=202 the integral is
— Df{a(azx+b)} + (A /x) log {4 (b/a)}.
3. Show that if the roots of € (#)=0 are all real and distinct, and P(z)
is of lower degree than @ (z), then

fR(x)dx: S,g%)}log (x—a)

the summation applying to all the roots a of @(x)=0.

[That the fraction corresponding to a is g((a)) 1 follows from the fact

that @ (z)/(z —a)—> ¢ (a) and so (x —a) R(x)~ P(a)/¢ (a), as x—>a.|

4. 1If all the roots of §(«) are real and one (a) is a double root, the rest
being simple roots, and P(x) is of lower degree than ¢ (), then the integral
is 4/(z~a)+A'log(x— a)+3, Blog(x—B), where
A=-2P(a)/Q" (a), A'=3{3P"(0)Q"(a)—P(a) Q" (a)}{@" (a)}*, B=P(B)/€(B),
and the summation applies to all roots 8 of @(x)=0 other than a.

5. Find

dx
| e
[The expression in partial fractions is
1 1 ; 2—7 i 241
I@=1F 2(@=1) 8(@—12 8- 8w+ | 8w+i)’
and the integral is
1 1
T4(z-1) 4(22+1)
6. Integrate
of{o-a)@-1)(o—0), al{(w-aP(@=b)), wfi@—af,
S +?) (P + 1, @+ ) (@B, (@) (@),
(2 e (2= 1)}, (@+D)fw(@=1% (o+1)fa@-1)F,
“DP @), (@ -DfeE@ 1, (- 1)o@+ L,
7. Prove the formulae:

dx 2 9 \/2
Tra— 472 {log(1+%~/2+x) log(1— x~/2+.ﬂ)+23,1cta,n< 2)},

22z 9 N 9 AND
fl—}-x“* 4~/2{10g(1 — 22+ %) — log (]+xJ2+x)+2arctan< x‘)}’

—3log(z—1)+}log(#2+ 1)+ farctana®.]

fl +;Z2x+w4 =1J3 {J3[log(1 +x+47) —log (1 — & +22)]4-2arc tan ( "/5 )} .

* In this case the application of the general method of § 114 is fairly simple,
In more complicated cases the labour involved is sometimes prohibitive, and other
devices have to be used. We have, moreover, assumed that all the factors of the
denominator can be determined. If this is not the case the method of partial
fractions fails, and recourse must be had to other methods. For further inform-
ation concerning the integration of rational functions the reader may be referred
to Goursat’s Cours d’Analyse, t. 1, pp. 234 et seq., and to the author’s tract The
integration of functions of a single variable, pp. 10 et seq.

H. A. 15



226 DERIVATIVES AND INTEGRALS [vi

115. Algebraical Functions. We naturally pass on next to
the question of the integration of algebraical functions. We shall
confine our attention to ewplicit algebraical functions (Ch. II, § 16).

We have to consider the problem of integrating 7, where
y is an explicit algebraical function of x. It is however con-
venlent to consider an apparently more general integral, viz.

f R (2, y) da,

where E(wx, y) is any rational function of # and 4. The greater
generality of this form is only apparent, since (Ex. Xv. 6) the
function R (z, y) is itself an algebraical function of . The choice
of this form is in fact dictated simply by motives of convenience:
such a function as
{@+ y/(aa? + 2bz + c)} [ {z — v/ (aa? + 2bz + )}

is far more conveniently regarded as a rational function of # and
the simple algebraical function /(aa?+ 20z + ¢), than directly as
itself an algebraical function of .

116. Integration by substitution and rationalisation.

Tt follows from equation (4) of § 114 that if f ¥ (@) dw=b(2), then

f b (FO) F @) di= b {FD oo, (1).

This equation supplies us with a method for determining the
integral of Y- (z) in a large number of cases in which the form of
the integral is not directly obvious. It may be stated as a rule as
follows: put z=f(t), where f(t) is any function of a new variable
t which it may be convenient to choose; multiply by f'(t) and
determine (if possible) the integral of Y {f(8)} f'(t); ewpress the
result in terms of x. It will often be found that the function of ¢
to which we are led by the application of this rule is one whose
integral can easily be calculated. This is always so, for example,
if it is a rational function, and it is very often possible to choose
the relation between « and ¢ so that this shall be the case. Thus
the integral of R (4/z), where R denotes a rational function, is
reduced by the substitution z=¢* to the integral of 2¢R (t?),
i.e. to the integral of a rational function of ¢. This method of
integration is called integration by rationalisation, and is of
extremely wide application.
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Tts application to the problem immediately under considera-
tion is obvious. If we can find a variable t such that x and y are
both rational functions of t, say x= R,(t), y = R,(t), then

f R (a0, y)da = f R{R.(t), Ru(t)} B/ (5)dt,

and the latter integral, being that of a rational function of t, can be
calculated by the methods of § 114.

It would carry us beyond our present range to enter upon any
general discussion as to when it is and when it is not possible to
find an auxiliary variable ¢ connected with # and ¥ in the manner
indicated above. We shall only consider a few simple and
interesting special cases.

117. Integrals connected with conics. Let us suppose
that # and y are connected by an equation of the form
ax® + 2hay + by + 292 + 2fy + ¢ =0

in other words that the graph of 7, considered as a function of =,
is a conic. Suppose that (£, %) i1s any point on the conic, and
let #— =X, y—n=1Y. If the relation between z and v is

expressed in terms of X and ¥ it assumes the form
aX?+2hXY +0Y2+ 2GX + 2FY =0,

where F=hE+bn+f, G=af+hy+g. In this equation put
Y=tX. It will then be found that X and Y can both be
expressed as rational functions of ¢, and therefore z and % can
be so expressed, the actual formulae being

w—E=—2(G+FO)/(a+2ht+bt2), y—n=—2t(G+Ft)/(a+2ht+bt).

Hence the process of rationalisation described in the last section
can be carried out.

The reader should verify that
ha + by + f=—L(a + 2ht + bt?) g—;c,
dw dt
so that fﬁx+by+f="2fﬂzht+bt‘2’

a formula which will be useful later on.
15—2
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118. The integral f R {x, //(ax® + 2bz + ¢)} do. The most

important case is that in which the relation between « and y is
y2=ax? + 2bz + c.

Let & +/(a& + 2b€ + ¢) be the coordinates of any point on the
conic. The relation between X and Y is
aX?—Y?+2(aE+b) X —29Y =0,
and the formulae expressing # and y in terms of ¢ are
2(ak+b—tn) 2t (aE+b—
Tame YT s

M) .

x—E=—

Consider, for example, the integral f i—fj—c If A=ac— b2 there are three

cases to consider, viz. those in which
(i) a>0, A>O0; (if) a>0, A<O0; (ili) <0, A<O.

If a<0 and A>0, ax?+2bz+c is always negative, so that this case is not of
any interest.

If >0, A>0, the conic is a hyperbola with one branch entirely above
the axis of x, which is described once as ¢ varies from —A\/a to +Afa. If
(&, n) lies on this branch, >0 and -./e<t<s/a. Since now k=f=0,
b=—1, the last formula of § 117 gives

fcfjx=2 ;;0%5 =~/—1a {log (Ja+t)—log (Ja —t)}.

But it follows from the equations (1) that
(#=E)Wat(y—n)=—2(af+b—tn)/(JaF?)

dr_ 1 40 (Ja+t> 1 og {(w~§)~/a+(y—n)}2
v va B\Va=t) 2Ja 8 =) Ja=(y=n)

the logarithm being written in this form in order to avoid any possible
difficulty as to the sign of the function inside the large bracket. This
equation is true for all pairs of values of & and 75 related as above. A
particularly simple form of the integral may be found as follows. Since we
may add any constant to the right-hand side, we have

da 1 1 n—E&Na 2

7 = 2ga s o= OV g o g g
Now suppose that £=—-c. Then it is easy to see that 5=+,
Ex/a+n—=—b/Ja, and that the contents of the last large bracket tend to

and so*

* In the succeeding discussion we anticipate the fundamental properties of the
logarithm, which will be proved later on, viz. that logu is continuous for all
positive values of u, log 1=0, log (1/u)= ~logu, loguv=1logu-+logw.
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unity. We thus obtain the formula

dx 1 b \?
f?/—=mlog (x“/a+y+,\/*a> ..................... (3).
If in particular a=1, =0, c=a? we obtain
a 21 2
jm&2) —].Og {x‘}‘r\/(ﬁf +a )} ..................... (4).

The truth of this equation may be at once verified by differentiation of the
right-hand side. If we transform the integral by the substitution 224 a?=wu2
u=x/(#2— a?) we obtain, on writing # again for «,

dzx

Tt =) "IN =} e (5).

This integral may also be calculated directly by an argument similar to that
used for the integral (4). Tt is the simplest example of case (ii) above. The
reader should associate with these two formulae the third formula

/:/—Gg{%; = arcSin (2/a) ceveveveneerneneieneennnns (6).

This integral corresponds to the case (iii) above. The formula appears very
different from (4) and (5): the reader will hardly be in a position to
appreciate the connection between them until he has read Chs. IX and X.
In the last formula it is supposed that a is positive: if a is negative the

integral function is arcsin (#/|a|)= —arc sin (x/a) (cf. § 100).
119. The integral / el da. This integral can
V(az? + 2bx + ¢)

be integrated in all cases by means of the results of the preceding
sections. It is most convenient to proceed as follows. Since

Az + = (Ma)(aw + b) + u— (\ba),

axr +b \
s 3y =+ 2.,

we have
Az +up)dz dz
v (aa? + 2bz + c¢) = (Ma) V(aa* +2ba + c) +ry[\/(aw2 + 2bz +¢)’

where v = u — (Ab/a). In the last integral ¢ may be positive or
negative. If it is positive we put #+/a + (b/s/a)=t, when we obtain
1 dt
val V@& + )
where «=(ac—0?)/a. If a is negative we write 4 for —a and
put z4/A — (b/s/4)=1t, when we obtain

1 dt
mf«?(_—_xf?)'
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It thus appears that in any case the calculation of the integral
may be made to depend on that considered in § 118, viz. one or
other of the three integralq

x/(t2+a2) [x/(ﬁ f\/(a2— )’

120. The integral f Az +p)/(az?42bz+c)de. In exactly the same

way we find
f()\x +p)/ (ax? +2bx+¢)dz = (N [3a) (ax?+ be+c)3/2+yf~/((m2+2()x+c) dx;

and the last integral may be reduced to one or other of the three forms

f (2 +a?)dt, f (2 =a?) i, j (@ — ).

In order to obtain these integrals it is convenient to introduce at this point
another general theorem in integration.

121. Integration by parts. The theorem of wntegration by
parts is merely another way of stating the rule for the differentia-
tion of a product (§ 94). It follows at once from Theorem (3) of
§ 94 that

[F@F@)ie=f@) @)~ [ 1@ F @) d.

It may happen that the function which we wish to integrate is
expressible in the form f'(z) F(x), and that f(«) F' (x) can be
integrated. Thus suppose that ¢ (2) =z (z), where yr () 1s the
second derivative of a known function y(«). Then

f(j)(a;)dw:fxx’j(x)dw =z (2)— jx’(w)olw =z (2) — x (©).

We can illustrate the working of this method of integration by applying
it to the integrals of the last section. Taking

f@)=avtb, F(@)=(as+2bo+c)=,

we obtain
2 .
afydx:(ax—{-b)y—f(_ax_yib)_ dx=(“$+b),’l/—a]3/dx+(ac—bZ)J(i?x,
—p2
S0 that /@/dx—— 4% b[dx

and we have already seen (§ 118) how to determine the last integral.
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Examples LII. 1. Prove that, if a>0,

fN/(x2+a2) do=3%x /(2?4 d?) +3%a? log {z +A/(2%+ a?)},
[t =y do=yan et —at) -yt og o+ a2 a2,

fJ(aZ — 2?)dz=%x/(a® — 22)+ % a® arcsin (#/a).

2. Calculate the integrals j «/(i@dz) , f N (2= 2?) dz by means of the
a” —u

substitution £=asiné, and verify that the results agree with those obtained
in § 118 and Ex. 1.

3. Calculate f z (x+a)™dgx, m being any rational number, in three ways,
(1) by integration by parts, (ii) by the substitution (z+a)m=t¢, (iii) by
writing (#+4a)—a for #; and verify that the results agree.

4. Prove, by means of the substitutions ax+b=1/¢ and £=1/u, that (in
the notation of § 118)
dz ax+b xdx  brtc
f?ﬁz ay f_y"r_— Ay

5.  Integrate
UL +a)Wa), Nal(l+a), Ufed(1+a)), af(l+a), Lie(l+al),
Yo (=1}, Uie(l-a)), NAL+a)(1-a)), wy(at+ba), a¥y(a+ba)
UaJ(@+a?)), et —ad), (a2}, o) -a?).

6. Integrate 1/i/{(x—a)(b—x)} in three ways, (i) by the methods of the
preceding sections, (ii) by the substitution (b—x)/(x—a)=¢, (iii) by the
substitution #=acos?0+bsin?§; and verify that the results agree.

7. Integrate J{(x—a)(b— )} and J{(b—2)/(z— a)}.

8. Show, by means of the substitution 2z4-a+b=%(a—05b){2+(1/2)},
or by multiplying numerator and denominator by A/(z+a)— A/(z+b), that, if
a>b,

f N/(,,0Jra)cia_i/({,; oy =2V @— D) (130}

9. Find a substitution which will reduce

da
_[(x+a)3/2+(x—a)3/2 to the

integral of a rational function. (Math. Trép. 1899.)

10. Show that f Riz, ¥Y(ar+b)dzx is reduced, by the substitution

ax+b=y", to the integral of a rational function.
11. Prove that

ff”(x)F(x)dx=f'(x)F(x) —f(#) F’(x)+/f($) 7" (@) da,

and generally

f SN @) F (@) do=f0=1(a) F(2)~ f (@) F' (@) +... + (= 1) | f2) F0) () da.
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12. Hence integrate z*¢p**1(z), i.e. 2%y (x), where {-(#) is a function
which can be integrated #+1 times. In particular integrate *(az+b)?, n
being a positive integer, and p any rational number other than — 1.

13. The integral f (1+42)P29dz, where p and ¢ are rational, can be found
in three cases, viz. (i) if p is an integer, (ii) if ¢ is an integer, (iii) if p+q is
an integer.

[In case (i) put z=w%, where s is the denominator of ¢: in case (ii) put
142 =13, where s is the denominator of p: in case (iii) put 1+z=wa¢, where
s 18 the denominator of p.]

14. The integral f a™(ax®+b)ldx can be reduced to the preceding
integral by the substitution az”=bt.

[In practice it is often most convenient to calculate a particular integral
of this kind by a formula of reduction (v. Misc. Ex. 40).]

15. The integral f R{z, N/(az+b), N(cx+d)}dz can be reduced to that of

a rational function by the substitution
dz= —(bja){t+(1/0)}*— (d[e) {t — (1 [E)}
dz
p)(ax?+2bz+c)

16. Show how to calculate the integral / = by means

of the substitution # -p=1/t.
17. Show by means of the substitution y=x/(az?+2bz +c)/(z— p) that
dx _ dy
(#~-p)V(aa? +2bz+c) VNP2 —p}’
where A=ap?+2bp+c¢, p=ac—0b?; and hence evaluate the integral.
18. Calculate the integrals of
U=+, 1{e+1)J(1+22- a9}

by means of each of the preceding methods, and verify the agreement of the
results*,

19. Reduce f R(z, y)dz, where y2(z—y)=4? to the integral of a rational
function. [Putting y=¢x we obtain 2=1/{#(1 —¢)}, y=1/{t(1-)}.]

20. Reduce the integral in the same way when (a) v (v —y)?=uz,
@) (@ +y?2=0a?(a?2~-9%. [In case (a) put # —y=¢: in case (b) put
@+ y2=1t(x - y), when we obtain x = a?¢ (2 + a?)/(t* + a%), y = a? (2 — a?)[(t* +a*) ]

dz
21. Ify(x-y)?== then /x~3y=z‘—log{(m—y>2—1}-

2 dz 1 22+ 92
22, If (224-42)2=202 (22 — 92 == .
(22 +72)2=2¢2 (22 — »2) then /y(x2+?/2+02) Z log < o=y ) .

* Bee also Mise. Exs. 33 et seq.
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122. Transcendental Functions. Owing to the immense
variety of the different classes of transcendental functions, the
theory of their integration is a good deal less systematic than
that of the integration of rational or algebraical functions. We
shall consider in order a few classes of transcendental functions
whose integrals can always be found.

123. Polynomials in cosines and sines of multiples of z.
We can always integrate any function which is the sum of a
finite number of terms such as

A (cos az)™(sin az)™ (cos bx)™(sin br)™ ...
where m, m’, n, w/, ... are positive integers and a, b, ... any real
numbers whatever. For such a term can be expressed as the
sum of a finite number of terms of the types
acos{(pa+qgb+...)z}, Bsin{(p'a+qb+...)x}
and the integrals of these terms may be at once written down.

Examples LIII. 1. Integrate sindzcos?2x. In this case we use the

formulae
sindr=2%(3sinx —sin3x), cos? 2x=4(1+cosdx).

Multiplying these two expressions and replacing sin« cos 4z, for example,

by 1 (sin bz —sin 3x), we obtain
T%[('Y sin# —5s8in 3w +4-3sin b — sin 7x) dz
= — 75 CO8 x + 508 3w — g c08 b + 715 cos .
The integral may of course be obtained in a different form by different
methods. For example
fsin3 z cos? 2xdx =f(4 costa — 4 cos? o+ 1) (1 —cos? x) sin zdz,
which reduces, on making the substitution cos x=¢, to
f(éltﬁ — 8¢t 4542~ 1) dt =% cos” & — § cos® x4+ § cos® z—cos .

I't may of course be verified that this expression and the integral already

obtained differ only by a constant.

2. Integrate by any method cos axcos bz, sinaxsinbz, cosaxsin bz,
cos? z, sind#, costx, cosxzcos 22 cos 3z, cos L cos 22, cos® 2 sin? 3z, cosbasin’ 4.
[In cases of this kind it is also sometimes convenient to use a formula of
reduction (Misc. Ex. 40).]

124. The integrals f a™ cos zdzx, f 2" sin zd«x and associated

integrals. The method of integration by parts enables us to
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generalise the preceding results. For

f zhcos zdx= a"sinx—n f 2" 1sin zde,

fx” sin zdx = — a™ cos & + 'nfm”"l cos zdz,

and clearly the integrals can be calculated completely by a.
repetition of this process. It follows that we can always calculate

f a™ cos ax de, f o sin azde ; and so by a process similar to that of
the preceding paragraph, we can calculate
f P (z, cos ax, sin az, cos bz, sin bz, ...) dz,

where P is any. polynomial.

Examples LIV. 1. Integrate 2 sin 2, #%cosx, («cos 2)? (v sin  sin 2z)%,
zsin?z costa, (xsinix)d.

2. Find polynomials P and ¢ such that
f[(&m— 1) cos 4 (1 — 22) sin ] dx =P cos x+ ¢ sin 2.

3. Prove that f " cos & dr= P, cos £+ ¢, sin x, where
Po=nxrl—nn—-1)n-2)a"3+..., @=a"—nmn-1)a"2+....

125. Rational Functions of cosz and sinz. The integral
of any rational function of cosz and sinz may be calculated by
the substitution tan iw=¢. For
11— . 2t dx 2
T+ "7 15e @& 1+
so that the substitution reduces the integral to that of a rational
function of .

Examples LV. 1. Prove that

COS X =

f sec & dz=1log (sec x +tan x), f cosec zdxz=1og tan {z.

[Another form of the first integral is logtan (}= +3#); a third form is
1log {(1+sin)/(1 - sin x)}.]

2. ftan xdx= —log cos &, fcotx dx=log sin z, /secZ z dz=tan x,
f cosec? x dx= — cot @, f tan & sec x dz=sec &, f cot x cosec & dax = — cosec -

[These integrals are included in the general form, but there is no need to
use a substitution, as the results follow at once from §100.]
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3. Show that the integral of 1/(¢+bcosx), where a+b is positive, may
be expressed in one or other of the forms

2 a—b 1 Jb+a)+iJ(b-a)
g /(@) e (e o—a)
where ¢=tan 1z, according as a?Z 0% If a?=0% the integral reduces to a
constant multiple of that of sec®lx or cosec?ls, and its value may at once

be written down. Deduce the forms of the integral when « b is negative.

4. Show that if y is defined in terms of 2 by means of the equation
(a+bcosx)(a—bcosy)=a?—b?

where a? > b% then as x varies from O to = one value of y varies from 0O to =.
Show also that

. N(a@?—b?)siny sinz dz sin y
S o= a—bcosy a+bcosa;@=a—-bcosy;
and deduce that, if 0 <2 < 7,
dz 1 a cos z+b
atboosw  NJ(ad—bF) e <§+—bgows.vm) '

Show that this result agrees with that of Ex. 3.
5. Show how to integrate 1/(¢+bcos& +e¢sin z). [Express bcosz+esinz
in the form /(6?4 ¢?) cos (x —a).]
6. Integrate (a+- b cosz+csin &)/(a+8 cos z+y sin x).
[Determine A, p, v so that
a+bcosz+csine=N+p(atBcosz+ysinz)+v (—Bsinz+ycos z).
Then the integral is

px+vlog(a+Bcos.r+ysinx)+7\f dz

a+pBcosz+tysine d

7. Integrate 1/(5+3cosx), 1/(3—5cosx), 1/(2—sing), 1/(1 —cosz+2sinz),
(5+3 cos & —7sin 2)/(11 — cos z +sin ).

8. Integrate 1/(acos?x+2bcos zsinr+esin?z). [The subject of inte-
gration may be expressed in the form 1/(4+ B cos2x+ Csin2x), where
A=1(a+c), B=%(a—c), C=b: but the integral may be calculated more
simply by putting tan #=¢, when we obtain

sec? x dx _ dit ]
at+2btan x+ctan?x” | a+2bt o2’
126. Integrals involving arcsin z, arc tan #, and log . The

integrals of the inverse sine and tangent and of the logarithm can
easily be calculated by integration by parts. Thus

. . xdaw .
‘ —_— —_ —_— 2
f&rc sin #dx = x arc sin V(i xg)—-xarcs1nx+/\/(1 %),

xdx
14 a2

flogxdx=a;logw—fdw:x(loga:—1).

=« arc tan « — $1og (1 + 2?),

farc tan xdw = x arc tanx-—f
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It is easy to see that if we can find the integral of y = f(z) we
can always find that of 2= ¢(y), ¢ being the function inverse to f.
For on making the substitution y = f () we obtain

f ¢ () dy = |af’ (2)do = af (z) — f f(z)da.

The reader should evaluate the integrals of arcsiny and
arc tan y in this way.

Any integrals of the form
f P (z, arcsin z)dz, f P (z, log z)de,

where P is a polynomial, can be found. Take the first form, for
example. We have to calculate a number of integrals of the type

jwm(arc sinz)"dx. Making the substitution #=siny we obtain

f y®sin™y cos ydy, which can be found by the methods of §124.

In the case of the second forin we have to calculate a number

of integrals of the form f a™ (log z)*dz. Integrating by parts we

obtain
m \n _ gm (log .%‘)" n f m e
fx (log 2)*dz = w1l “msil© (log zy*dz,
and it is evident that by repeating this process often enough we
shall always arrive finally at the complete value of the integral*,

127. Areas of plane curves. One of the most important
applications of the processes of integration which have been
explained in the preceding sections is to the calculation of areas
of plane curves. Suppose that P, PP’ (Fig. 53) is the graph of
a continuous curve y = ¢(x), P being the point (z, y) and P’ the
point (z+h, y+k) and h being either positive or negative (positive
in the figure).

The reader is of course familiar with the idea of an ‘area,’ and
in particular with that of an area such as ONPP,. This idea we

* A more general account of the problem of integration (§§ 111-126) will be
found in Goursat’s Cours d’Analyse or the author’s tract quoted on p. 225. The
reader may also be referred to the text-books of Profs. Lamb and Gibson, to
Prof. Greenhill’s 4 Chapter in the Integral Calculus, and a paper by Mr Bromwich
in vol. xxxv of the Messenger of Mathematics.



