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2.3. Bounded sequences

A sequence a1? a2 ,... is called bounded if the set of

its terms is bounded, i. e. if there exists a number M
such that the inequality \an \

< M holds for all values

of n. In other words, the inequality M<an < M is

satisfied for all terms of the sequence.

The geometrical interpretation of this condition is that

the whole sequence (treated as a set on the plane) is

contained between two straight lines y = M and y = M.
We say also that a sequence is bounded above if a num-

ber M exists such that an < M for all n, i.e. that the

sequence lies below the straight line y = M . The notion

of a sequence bounded below can be defined analogously.

Clearly, a sequence which is bounded above and below

is simply a bounded sequence.

EXAMPLES. The sequence 0,1,0,1,... is bounded.

The sequence of positive integers is unbounded, though
it is bounded below. The sequence 1, 1, 2, 2, 3, 3, ...

is neither bounded above nor bounded below.

THEOREM. Every convergent sequence is bounded.

Indeed, let us assume that the equation (2) holds and

let us substitute the value 1 for e. Hence a number fc

exists such that we have \an #| < 1 for n>Jc. Since

\an\-\g\ <\On-9\ (cf. 1 (13)), we have \an\<\g\+l.
Let us denote by -M" a number greater than any among
the following fc+1 numbers: |ax |, |a2 |, ..., |a&|, |ffj+l- Since

the last one is greater than |a*+i|, \ak+ 2
\ to., we get

M > \an \

for each n. Thus, the sequence is bounded.

2.4. Operations on sequences

THEOREM. Assuming the sequences %, a2 ,
... and 61? 62 ?

to be convergent, the following four formulae hold(
l
):

(6) lim (an+ 6) = lim an+ lim bn ,

(7) lim(an-6n )
= liman -limfen ,

(
x
) To simplify the symbolism we shall often omit the equality

oo under the sign of lim.
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(8) lim (an
- bn )

= lim an - lim bn ,

(9) lim^ = (when }imbn ^ 0).
on Jim on

This means that under our assumptions the limit of

the sum exists and is equal to the sum of limits, the limit

of the difference exists and is equal to the difference of

limits etc.

Proof. Let us write liman = g and lim bn = h. A num-
ber s > let be given. Hence a number Jc exists such

that the inequalities \an g\ < e/2 and \bn h\ < e/2 hold

for n > fc. We add both these inequalities under the

sign of absolute value. We obtain

This means that the sequence with general term cn an + bn

is convergent to the limit g + h. Thus, we have proved
the formula (6).

In particular, if bn takes a constant value: bn = c,

formulae (6) and (3) imply:

(10) lim(an + c)
== c-fliman .

Now, we shall prove the formula (8). We have to

"estimate" the difference \an bn gh\. To be able to apply
the convergence of the sequences %, aa ,

... and 6n &2 ,
...

we transform this difference as follows:

Unbn gh = an bn an h + an h gh - an(bn h) + h(an g) .

Since the sequence a19 a2 ,
... ig convergent, it is bounded

and so a number M exists such that \an \

< M. Applying
to the last equation the formulae for the absolute value

of a sum and of a product we get:

Now, let us take a number
r\ > independently of e.

Hence a number & exists such that we have \0n g\ < n
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and \bn h\ < r\
for n > k. Thus,

\an bn-gh\ < Jfi? + |% = (M + \h\)f, .

Till now we have not assumed anything about the

positive number 77.
Let us now assume that r\

= el(M + \h\).

So we conclude that the inequality \an bn gh\<e holds

for n>~k. Thus, we have proved the formula (8).

In particular, if we write bn = c we get

(11) lim(c- an )
= oliman ,

(12) lim( an )
= liman ,

where the formula (12) follows from (11) by the sub-

stitution c = 1.

Formulae (6) and (12) imply the formula (7), for

= lim an + lim (
bn )

= lim an lim bn .

Before proceeding to the proof of the formula (9),

we shall prove the following special case of this formula:

(13) lim* _!-.
bn \imbn

(when limbn ^ 0) .

First, we note that for sufficiently large n the in-

equality bn T holds. We shall prove an even stronger
statement: we have

\bn \

> \\h\ for sufficiently large n.

Indeed, since |&| > 0, a number fc exists such that

\bn h\<$\h\ for n>Jc. Hence,

l*|-|frn|<|*-ftnl<t|*| and thus \bn\>$\h\.

To prove the formula (13), the difference

h-bn
\h-bn \

has to be estimated.

But for sufficiently large n we have |A bn
\
< 77 and

:2/|A|. Thus,

JL_ 1 2r?

bn ' h h2
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Writing 77
= JeA

2
,
we get

1 1

h
<

whence the formula (13) follows.

The formula (9) follows from (8) and (13):

an v 1 ,. T 1 liman
^- = liman =- = kman lim^ =
bn bn bn

Remarks. (a) We have assumed that the sequences

{an } and {bn} are convergent. This assumption is essential,

for it may happen that the sequence {an + bn } is conver-

gent, although both the sequences {an } and {bn } are di-

vergent; then the formula (6) cannot be applied. As an

example one can take: an = n, bn = n.

However, if the sequence {an + bn } and one of the

two sequences, e. g. the sequence {an} are convergent, then

the second one is also convergent. For bn = (an + bn )
an ,

and so the sequence {bn } is convergent as a difference

of two convergent sequences.

Analogous remarks may be applied to the formulae

(7)-(9).

(P) In the definition of a sequence we have assumed

that the enumeration of the elements begins with 1.

It is convenient to generalize this definition assuming that

the enumeration begins with an arbitrary positive integer

(and even with an arbitrary integer), e.g. with 2, 3 or

another positive integer. So is e.g. in the proof of the

formula (13). We have proved that bn ^ beginning with

a certain fc. Thus, the sequence T- is defined just beginning
on

with this Jc (for if bn = 0, then T- does not mean any
un

number).
This remark is connected with the following property

of sequences, easy to prove: the change of a finite number

of terms of a sequence has influence neither on the con-
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vergence of the sequence nor on its limit. The same can be

said of the addition or omission of a finite number of

terms in a sequence.

EXAMPLES. Find lim ---
. In this case we cannot

n-oo iW &

apply the formula (9) directly, since neither the numerator

nor the denominator are convergent, as n tends to oo.

However, we can transform the general term of the

. , ,. , , ,

sequence an = =-5 to become a quotient of two ex-
in o

pressions each of which has a limit. For this purpose
it is sufficient to divide the numerator and the deno-

minator by n. Then we obtain an = and we may

apply the formula (9). Since

lim (e + ~\ = 6 and lim (V- -} = 7
,

n-oo\ n) n oo\ n)

we have

Similarly,

lim an = -=.

n=oo

.. n+l ..hm = hm

for

lim - = = lim .

2.5. Further properties of the limit

Suppose that a sequence {an } is convergent. Then the

sequence (lan |}
is convergent, too, and

(14) lim|on|
=

|

lim On
|

.

Let liman = g. Then we have \an g\ < e for sufficiently

large n. Thus,

0I<-0<fi and - <f-*<e
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whence (cf. 1 (17)): ||aj-lflf|
< Thus, the formula (14)

is proved.

Assuming the sequences {an } and {bn } to be con-

vergent, the following relation holds:

(15) the inequality an ^bn implies Iiman <lim6n .

In particular, if the sequence {cn} is convergent, then

(16) the condition cn ^Q implies limen >0.

We shall prove first the last formula. Let limcn = fe,

and let us further assume that h < 0, i.e. that h > 0.

Then we have \cn h\ < h for sufficiently large n, and
hence cn -h< ft, whence cn < 0, which contradicts our

assumption.

Applying the formula (16) we shall prove now the

formula (15).

We put bn an = cn . Since an < bn ,
we have cn ^

and thus, in the limit, limon > 0. Moreover, (7) implies:

limtfn = lim&n liman ,

hence

limfe^ Hman > ,
i.e. limaw <lim6n

Eemark. In the formulation of the relation (16), the

inequality > cannot be replaced by > (similarly, in (15)

one cannot replace < by <). For example the sequence
cn = l/n satisfies the inequality cn > 0, but limc?n = 0.

Thus we see that the relations < and > "remain
true in the limit", but the relations < and > do not

possess this property.
We next prove the formula of the double inequality:

(17) If an < cn < bn and if liman = limfen,
then the se-

quence {cn} is convergent and limcw = liman = Iim6n .

Suppose that liman = g = Iim6 and let s> 0. Then
we have \an g\ < e and \bn g\<e for sufficiently large n.

According to the assumption,

an-g<cn-g <&n-0,
and e < an gr

and bn g < s
;
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hence e < cn g < e, i. e. \cn g\ < e, whence limcn = g.

(18) If lim|an |

=
0, then the sequence {an} is convergent

and liman = 0.

For, we have then \an \
< an < \an \

and

( |on|)
= = li

2.6. Subsequences

Let a sequence alj a2 , ..., an ,
... and an increasing

sequence of positive integers w1? m2 , ..., mn ,
... be given.

The sequence

0j
= ami , 2

= dm* ? i On Q*inn j

is called a subsequence of the sequence a1? &2 , ..., an ,
...

For example the sequence a2 ,
a4 , ..., a2n ,

ig a sub-

sequence of the sequence %, a2 ,
... Yet, the sequence %, %,

a2 ,a2 ,... is not a subsequence of this sequence, since in

this case the indices do not form an increasing sequence.

We have the general formula

(19) mn > n .

This is obvious for n = 1, i.e. we have m^ ^ 1 (since ml

is a positive integer). Applying the principle of induction,

let us assume that the formula (19) holds for a given n.

Then we have mn+1 > mn > H, whence mn+l > n+1. So we
have obtained the formula (19) for w+1. Thus, the for-

mula (19) is true for each n.

According to our definition, every sequence is its own

subsequence. We can say in general that every sub-

sequence is obtained from the sequence by omitting
a number of elements in this sequence (this number may
be finite, infinite or zero). Hence it follows also that

a subsequence {amjc } of a subsequence {amn } is a sub-

sequence of the sequence {an}.

THEOREM 1. A subsequence of a convergent sequence is

convergent to the same limit. In other words,

(20) if lim an = g and if ml <m^< ..., then lim a^ = g .

n oo n oo


