
Chapter 5
Derivatives and Differentiation

Big fleas have little fleas upon their backs to bite ’em, And little
fleas have lesser fleas, and so, ad infinitum.

Augustus de Morgan

There’s a problemwith continuity. Suppose that f is continuous at a point x0. Suppose
we want to compute f (x0) with an error less than ε, for example ε = 10−5, but we
do not know x0 exactly. We know that there exists δ, such that if |x − x0| < δ then
| f (x) − f (x0)| < 10−5. We do not therefore have to know x0 exactly; a certain
number of decimal places will suffice.

But what if δ needed to be uncomfortably small compared to ε in order to achieve
the desired accuracy? What, for example, if δ was 10−10, or 10−100 or even less....?
The function may be continuous but continuity does not seem so useful here.

The problem is that f could be increasing or decreasing very rapidly at the
point x0. But what does that mean—the rate of increase or decrease of a function at
a point?

The concept of the rate of growth of a function at a point is the key to the calculus
ofNewton andLeibniz and iswhatwe call the derivative. As soon as it was introduced
it became possible to solve important problems in geometry and physics with the
new calculus, in spite of the fact that an acceptable definition of derivative was not
given for some 200 years.

5.1 The Definition of Derivative

The average rate of growth of a function f between distinct points x0 and x is the
quotient

f (x) − f (x0)

x − x0
.
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The rate of growth at the point x0 is defined as the limit.

Definition Let f : ]a, b[ → R and a < x0 < b. If the limit

lim
x→x0

f (x) − f (x0)

x − x0
= A

exists and is a finite number we say that f is differentiable at x0 and call A, the
derivative of f at x0.

We emphasise that A is a finite number; if the limit is∞ or−∞wemay sometimes
say that the derivative is ∞ or −∞ respectively, but we will never say that f is
differentiable at x0.

Another version of the definition of derivative, that arises by replacing x − x0 by
h, is

lim
h→0

f (x0 + h) − f (x0)

h
,

provided that the limit exists and is a finite number. The quotient appearing here is
called a difference quotient. It is defined for both positive and negative values of h,
though not for h = 0, but |h| should not be so big that x0 + h falls outside the domain
of f .

If f is differentiable at x0 we denote its derivative at x0 by f ′(x0). We say that the
function f is differentiable in the interval ]a, b[ if f is differentiable at every point
of the interval.

The definition of derivative follows a pattern that we have set in defining limit
and the sum of an infinite series, and will continue in defining integral. The quantity
in question that we wish to define does not necessarily exist. The definition of the
quantity states when it exists, and given that it exists defines its value. Just as it
is illogical to write limx→a f (x) without first ascertaining whether the limit exists
(thoughweoften do this),we should notwrite f ′(c)without first ascertainingwhether
f is differentiable at c.
If f is differentiable in the interval ]a, b[ we get a new function

f ′ : ]a, b[ → R, f ′(x) = derivative of f at x .

The operation of creating f ′ from f is called differentiation of the function f .

5.1.1 Differentiability and Continuity

Proposition 5.1 Let the function f be differentiable at the point x0. Then f is
continuous at x0.

Proof We have, for x �= x0,
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f (x) − f (x0) =
(

f (x) − f (x0)

x − x0

)
. (x − x0)

so that, by the rule for the limit of a product,

lim
x→x0

( f (x) − f (x0)) = lim
x→x0

(
f (x) − f (x0)

x − x0

)
. lim
x→x0

(x − x0) = f ′(x0) . 0 = 0.

In other words
lim
x→x0

f (x) = f (x0)

which says that f is continuous at x0. �

Continuity is therefore necessary for differentiability, but it is far from being suffi-
cient.

5.1.2 Derivatives of Some Basic Functions

Nowwe can begin to differentiate functions from first principles, that is, by applying
the definition of derivative as the limit of the difference quotient.

(a) Let f be the constant function, f (x) = C for all real numbers x . Then

f (x + h) − f (x)

h
= C − C

h
= 0

and so f ′(x) = 0.
(b) Next let f be the so-called identity function, defined by f (x) = x for all real

numbers x . Then
f (x + h) − f (x)

h
= x + h − x

h
= 1

and so f ′(x) = 1.
(c) Next let f be the function f (x) = x2. Then

f (x + h) − f (x)

h
= (x + h)2 − x2

h
= 2hx + h2

h
= 2x + h

and so, by the rule for the limit of a sum,

f ′(x) = lim
h→0

(2x + h) = 2x .

We could go on, but it is far better to use the differentiation rules, as set out in
the next paragraphs. These allow one to differentiate without considering difference
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quotients and limits. They make differentiation an almost mechanical procedure, and
are of immense practical and historical importance. Without them there would be no
calculus justifying the name.

5.1.3 Exercises

1. Differentiate from first principles, that is, using the definition of derivative as limit
of the difference quotient:

(a) ax + b, where a and b are constants.
(b) x3

(c) xn (n a natural number)
(d)

√
x

(e) 3
√
x .

Hint. Use algebraic properties of these functions. The only analytic input
needed is their continuity.

2. Differentiate the circular functions sin x and cos x from first principles (that is,
by calculating the limit of the difference quotient). You will need algebraic input
in the form of the addition formulas

sin(u + v) = sin u cos v + cos u sin v,

cos(u + v) = cos u cos v − sin u sin v,

and two facts of analysis to be proved later: the continuity of both functions, and
the limit

lim
x→0

sin x

x
= 1.

Note. The circular functions will be defined analytically in a later chapter. The reader has

doubtlessly been introduced to them through school mathematics, in which it is usual to obtain

the addition formulas by geometry and the limit of sin x/x by geometric intuition.

3. Differentiate the exponential function ex from first principles. You will need the
algebraic input that ex satisfies the first law of exponents:

ex+y = ex . ey,

and the analytic input that

lim
x→0

ex − 1

x
= 1,

equivalent to giving the derivative of ex at x = 0; this essentially pins down the
special base e.
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Note. Just like the circular functions the exponential function and its inverse the natural logarithm

will be defined analytically in a later chapter. We do not have to take for granted the existence

of a function with these properties.

4. An exponential function ax can be defined for any positive base a. It satisfies the
law of exponents ax+y = axay . For the sake of this exercise we shall adopt the
notation Ea(x) = ax . Assuming that Ea is differentiable derive the formula

E ′
a(x) = ka Ea(x)

where ka = E ′
a(0).

Note. The special base e could be defined as the number that satisfies ke = 1, though there

would be difficulties involved—for example, why does such a number exist and why is it

unique? Compare the previous exercise.

5. The natural logarithm ln x is the inverse function to the exponential function
(Exercise 3) and from it ln x inherits the law of logarithms: ln(xy) = ln x + ln y.
Differentiate ln x from first principles.
Hint. You may need to figure out first why limh→0 ln(1 + h)/h = 1.

6. Let f (x) = |x |. Show that f is differentiable at all points except x = 0. Show
that f ′(x) = x/|x | if x �= 0.

7. Let a1, a2,..., an be a strictly increasing sequence of real numbers. Let f (x) =∑n
j=1 |x − a j | for each real x .

(a) Show that f is continuous at every point x , whereas it is differentiable
everywhere except at the points a j , ( j = 1, ..., n).

(b) Show that the derivative is constant in each of the open intervals ]ak, ak+1[,
as well as in ]−∞, a1[ and in ]an,∞[, and find a formula for it.

(c) Sketch the graphs in the cases

y = |x + 1| + |x | + |x − 1|

and
y = |x + 2| + |x + 1| + |x − 1| + |x − 2|.

8. Let f be the function with domain R defined by letting f (x) = x if x is rational
and f (x) = 0 if x is irrational.

(a) Are there any points at which f is differentiable?
(b) Are there any points at which the function g(x) := x f (x) is differentiable?

9. Let f : ]0, 1[→ R be the function defined in Sect. 4.2, Exercise 18. Recall that
f (x) = 0 if x is irrational and f (x) = 1/b if x is the fraction a/b expressed in
lowest terms. Show that f is nowhere differentiable.
Hint. Show that if x is irrational then there exist arbitrarily small h such that∣∣( f (x + h) − f (x)

)
/h

∣∣ > 1.



134 5 Derivatives and Differentiation

5.2 Differentiation Rules

The elementary differentiation rules put the calculus into analysis. There are two
groups of rules. The first deals with functions constructed by algebraic operations,
addition, multiplication and division, from other functions. The second comprises
the rule for differentiating composite functions (the chain rule) and the rule for
differentiating inverse functions.

Let f : ]a, b[ → R, g : ]a, b[ → R. Sum, product and quotient of functions are
defined pointwise:

( f + g)(x) = f (x) + g(x), ( f g)(x) = f (x)g(x),

(
f

g

)
(x) = f (x)

g(x)
.

Take care not to confuse product f g and composition f ◦ g.
We state thefirst groupof differentiation rules in the following lengthyproposition.

In the proofs we rely entirely on the limit rules of Sect. 4.2; we never have to say
“Let ε > 0”.

Proposition 5.2 Let f : ]a, b[ → R, g : ]a, b[ → R. Let c be in the interval ]a, b[
and assume that both f and g are differentiable at the point c. Let α be a numerical
constant. Then α f , f + g and f g are differentiable at c and we have

(1) (α f )′(c) = α f ′(c) (Multiplication by a constant)
(2) ( f + g)′(c) = f ′(c) + g′(c) (Sum of functions)
(3) ( f g)′(c) = f ′(c)g(c) + f (c)g′(c) (Product of functions; Leibniz’s rule).

If moreover g(c) �= 0, then 1/g and f/g are differentiable at c, and we have the
further rules:

(4)

(
f

g

)′
(c) = g(c) f ′(c) − g′(c) f (c)

(g(c))2
(Quotient rule)

(5)

(
1

g

)′
(c) = − g′(c)

(g(c))2
(Reciprocal rule).

Proof The rule for the derivative of α f is a special case of the rule for f g and that
for 1/g a special case of that for f/g (left to the reader to see why).

Now for the proofs of rules 2, 3 and 4. Firstly the sum. We examine the difference
quotient:

( f + g)(c + h) − ( f + g)(c)

h
= f (c + h) − f (c) + g(c + h) − g(c)

h

= f (c + h) − f (c)

h
+ g(c + h) − g(c)

h

and taking the limit we obtain the rule ( f + g)′(c) = f ′(c) + g′(c).
Secondly the product. We transform the difference quotient:
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( f g)(c + h) − ( f g)(c)

h
= f (c + h)g(c + h) − f (c)g(c)

h

= f (c + h)g(c + h) − f (c)g(c + h) + f (c)g(c + h) − f (c)g(c)

h

= f (c + h) − f (c)

h
g(c + h) + f (c)

g(c + h) − g(c)

h
.

We take the limit as h → 0, using the rules for the limits of sums and products, and
remembering that limh→0 g(c + h) = g(c) since g, being differentiable, is continu-
ous at c. Thus we obtain the rule for the product, ( f g)′(c) = f ′(c)g(c) + f (c)g′(c).

Next the quotient. Again we transform the difference quotient by algebra:

(
f

g

)
(c + h) −

(
f

g

)
(c)

h
= 1

h

(
f (c + h)

g(c + h)
− f (c)

g(c)

)

= 1

h

(
f (c + h)g(c) − f (c)g(c + h)

g(c + h)g(c)

)

=

(
f (c + h) − f (c)

h

)
g(c) − f (c)

(
g(c + h) − g(c)

h

)

g(c + h)g(c)
.

We let h → 0, use the rules for limits of sums, products and quotients, remember
that limh→0 g(c + h) = g(c) and obtain the limit

g(c) f ′(c) − g′(c) f (c)
(g(c))2

.

�

5.2.1 Differentiation of the Power Function

If n is a positive integer and f is the function xn then we have

f ′(x) = nxn−1.

This is now easy to prove without considering the limit of a difference quotient. We
use induction. The rule is known for n = 1. Let us assume it holds for a particular
integer n and write xn+1 = x · xn . Using the rule for differentiating a product we
obtain for the derivative of xn+1 the formula

1 · xn + x · nxn−1 = (n + 1)xn .
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This proves the rule generally for positive integers n.
Next we consider f (x) = x−n = 1/xn . The rule for the derivative of a quotient

gives the formula

f ′(x) = −nxn−1

x2n
= −nx−n−1.

So we have now shown that the derivative of xa is axa−1 in all cases when a is an
integer (positive or negative).

What about the power x1/n , which denotes the nth root n
√
x , or the fractional power

xm/n = n
√
xm? For these we need the rule for differentiating inverse functions, and

the celebrated chain rule, often referred to somewhat misleadingly as the rule for
functions of a function. The latter rule, which we take first, is used to differentiate
composite functions and is perhaps the most remarkable of the differentiation rules.

5.2.2 The Chain Rule

Proposition 5.3 Let f : A → R, g : B → R, where A and B are open intervals
and f (A) ⊂ B. Form the composition g ◦ f : A → R,

(g ◦ f )(x) = g( f (x)), (x ∈ A).

Let x0 ∈ A, assume that f is differentiable at x0 and g is differentiable at f (x0).
Then g ◦ f is differentiable at x0 and

(g ◦ f )′(x0) = g′(( f (x0)) f ′(x0).

The chain rule is illustrated in Fig. 5.1

Fig. 5.1 A view of the chain rule
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Proof of the Chain Rule Let y0 = f (x0). As for the previous rules we start by
applying some algebra to the difference quotient:

(g ◦ f )(x0 + h) − (g ◦ f )(x0)

h

= g
(
f (x0 + h)

) − g
(
f (x0)

)
f (x0 + h) − f (x0)

· f (x0 + h) − f (x0)

h
.

(5.1)

The second factor on the right-hand side has the limit f ′(x0). As for the first factor
it looks as if it should have the correct limit g′(y0). For we can think of f (x0 + h)

as y0 + k (effectively defining the new quantity k) and then the first factor is the
quotient

g(y0 + k) − y0
k

.

As h → 0 we have k → 0 also and we seem to have a proof.
But there is a problem here. Although h is not 0 (as befits a correctly formed

difference quotient) the denominator k, defined to be the difference f (x0 + h) −
f (x0), can be 0, and the first factor is then not defined for such values of h. There
could even exist such values of h that are arbitrarily small which are then impossible
to escape.

To save the proof we shall define a function R, the domain of which is a suitably
small interval ]−α, α[, in such a way that formula (5.1) for the difference quotient
is correct if R

(
f (x0 + h) − f (x0)

)
replaces the first factor.

For α > 0 and suitably small (the reader should try to figure out what “suitably
small” means in this context and why we have to say it) we set

R(t) =
{ g(y0 + t) − g(y0)

t
if 0 < |t | < α

g′(y0) if t = 0.

Note that R is continuous at the point t = 0 because

lim
t→0

g(y0 + t) − g(y0)

t
= g′(y0).

Moreover
g(y0 + t) − g(y0) = R(t)t

both when t �= 0 and when t = 0. In this equation we replace t by the difference
f (x0 + h) − f (x0). This is allowed if |h| is sufficiently small and then we have

g
(
f (x0 + h)

) − g
(
f (x0)

) = R
(
f (x0 + h) − f (x0)

)(
f (x0 + h) − f (x0)

)
.

Division by h when the latter is not 0, but still sufficiently small, gives
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g
(
f (x0 + h)

) − g
(
f (x0)

)
h

= R
(
f (x0 + h) − f (x0)

) (
f (x0 + h) − f (x0)

h

)
.

Now we may let h tend to 0 and by the limit rules the right-hand side has the limit

(
lim
h→0

R
(
f (x0 + h) − f (x0)

))
f ′(x0) = R(0) f ′(x0) = g′( f (x0)) f ′(x0).

In slightly more detail (we seriously want this proof to be correct) we can intro-
duce the function φ(h) := f (x0 + h) − f (x0). Then φ is continuous at h = 0, and
φ(0) = 0. Moreover the function R is continuous at 0 as we saw. Hence the com-
position R ◦ φ is continuous at 0 and so limh→0 R(φ(h)) = R(φ(0)) = R(0), as we
wrote above. �

5.2.3 Differentiation of Inverse Functions

This is the last of the elementary differentiation rules. The lengthy preamble repeats
the conditions (see Proposition 4.12) under which the inverse function exists and
should not distract the reader from the extraordinary simplicity of the formula that
is the conclusion.

Proposition 5.4

Preamble. Let f : ]a, b[ → R be continuous and strictly increasing (the point a may
be −∞ and b may be ∞). Let c = limx→a+ f (x) and d = limx→b− f (x) (the limits
exist if we allow c = −∞ and d = ∞). The inverse function g : ]c, d[ → R therefore
exists, is continuous, and maps the interval ]c, d[ on to the interval ]a, b[.
Conclusion. Let a < x0 < b and assume that f is differentiable at x0, and that
f ′(x0) �= 0. Then g is differentiable at f (x0) and

g′( f (x0)) = 1

f ′(x0)
.

A similar conclusion holds if f is strictly decreasing; the only difference is that d < c
and g has the domain ]d, c[.
Proof Let y0 = f (x0). We have to show that g′(y0) = f ′(x0)−1. Connect the vari-
ables h and k by the equation

y0 + k = f (x0 + h), equivalently h = g(y0 + k) − g(y0)

(recall that g(y0) = x0). The second equation here shows h as a function of k; it is
a continuous, injective function of k, defined when k is sufficiently small. Moreover
h = 0 when k = 0.

We also have
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g(y0 + k) − g(y0)

k
= h

k
= h

f (x0 + h) − f (x0)
.

Let k → 0 and think of h as a function of k, as defined above. Then h tends to 0, but
is not 0 as long as k �= 0. By the rule for the limit of a reciprocal, the right-hand side
has the limit f (x0)−1. �

Assuming that f ′(x) �= 0 for all x in the interval ]a, b[, we have the conclusion that

( f −1)′(y) = 1

f ′( f −1(y))
(5.2)

for all y in the interval ]c, d[ (or in ]d, c[ if f is decreasing).
We shall see later (Sect. 5.6) that if f ′(x) > 0 for all x in the open interval A, then

f is strictly increasing in A, so that Proposition 5.4 is immediately applicable.

5.2.4 Differentiation of Fractional Powers

Let f (x) = x1/n , where n is a positive natural number. We have here the inverse
function of the function g(x) = xn . The domain is the interval ]0,∞[. By the rule
for differentiating an inverse function (that is, we apply (5.2) to the function g with
x instead of y) we have

f ′(x) = (g−1)′(x) = 1

g′(g−1(x))
= 1

n(x
1
n )n−1

= n−1x
1−n
n = 1

n
x

1
n −1.

Next we consider the function f (x) = xm/n , where m is an integer, positive or
negative. This is the composition (xm)1/n . By the chain rule we have

f ′(x) = 1

n
(xm)

1
n −1mxm−1 = m

n
x

m
n −1.

The conclusion is striking. The derivative of the power function xa is axa−1 for every
rational power a.

It is a further task to define the power function xa for irrational powers and prove
that the same differentiation formula continues to be valid.

5.2.5 Exercises

1. Differentiate the following functions. You may assume that the domain of each
function is the set of all x for which the formula makes sense.

(a)
1

x2 + 2
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(b)
x2 − x + 1

x2 + x − 1

(c)

√
x2 − x + 1

x2 + x − 1

(d) 4

√
x2 − x + 1

x2 + x − 1

(e)
√
1 + √

x

(f)

√
1 +

√
1 + √

x

(g)

√
1 +

√
1 +

√
1 + √

x .

2. Define the function f on the whole real line by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

x, (x ≤ 0)
1 − 2

√
1 − x, (0 < x < 1)

x, (1 ≤ x ≤ 2)√
x2 + 5 − 1, (2 < x).

Determine where f is differentiable, and where it is, find its derivative.
Hint. In this, and in similar examples where a function is defined by cases, the
differentiation rules are only useful in the open intervals between the partition
points. At the partition points something else is required, such as arguing by
examination of the difference quotient.

3. For this exercise we assume some knowledge of the circular functions sin x and
cos x , including their derivatives (see Sect. 5.1, Exercise 2). Determine where the
following functions are differentiable and calculate the derivative when it exists:

(a) f (x) =
{
sin 1

x , (x > 0)
0, (x ≤ 0).

(b) f (x) =
{
x sin 1

x , (x > 0)
0, (x ≤ 0).

(c) f (x) =
{
x2 sin 1

x , (x > 0)
0, (x ≤ 0).

4. Show that the function f (x) = x5 + x is strictly increasing on the whole real line
and calculate ( f −1)′(2).

5. Let fk , (k = 1, 2, ..., n) be differentiable functions. Let g be their product,
f1 f2... fn . Show that

g′(x)
g(x)

=
n∑

k=1

f ′
k(x)

fk(x)

at every point x at which none of the denominators is 0.
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5.3 Leibniz’s Notation

There are several notational systems in use for derivatives. They reflect the differing
views of Newton and of Leibniz. Newton used dots to signify the derivative, as in
ẋ and ẏ. One might say that the various dashes, as in f ′ and f ′′, popularised by
Lagrange, reflect Newton’s notation. Leibniz introduced the expressions dx and dy,
signifying in his view infinitesimal changes in the variables x and y (“d” for Latin
“differentia”), and leading to the differential quotient dy/dx . He also introduced
the integral sign “

∫
”, an elongated “S” (for Latin “Summa”). Each notation has its

advantages and it is best to learn how to use both.

5.3.1 Tangent Lines

We often think of a function f as a curve in the (x, y)-plane. The curve in question
is the set of all points (x, y) that satisfy y = f (x), in other words the graph of f .
Leibniz’s notation reflects the geometric intuition behind the idea of a tangent line
to a curve.

A line is a curve of the form y = mx + c with constants m (the slope) and c (the
intercept). The curve x = a is also a line but it is not a graph of a function in the
above sense. It is though a graph if we think of x as a function of y (in this case a
constant function).

We could ask whether every curve in the plane can be described (perhaps locally;
in small sections at a time) as a graph, in which y is a function of x , or x is a function
of y. The question arises even for familiar everyday curves like the circle and shows
the limitation of thinking of a curve simply as a graph. This gets us into the area of
differential geometry. We would have to give a general definition of curve, a task
that is not so straightforward.

The ancient Greek geometers tried to define a tangent line to a curve as a line that
meets the curve in only one point. This works for circles (and more generally conic
sections) but not for more complicated curves. Differential calculus allows us to give
a correct definition of tangent line to a curve when that curve is a graph y = f (x),
and its extension to differential geometry does the job for more general curves. For
this reason it is said that differentiation solved the problem of tangents.

Consider a differentiable function f . The tangent line to the curve y = f (x), at a
point (x0, y0) on the graph (that this point lies on the graph means that y0 = f (x0)),
is the line through the point (x0, y0) that has the slope f ′(x0). In other words it is the
line

y − y0 = f ′(x0)(x − x0)
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Fig. 5.2 Leibniz’s
differential quotient

or equivalently
y = f ′(x0)x + (y0 − f ′(x0)x0).

The intuitive thinking behind this is that the tangent line at (x0, y0) is the limit of
a secant line through the two points, (x0, y0) and (x0 + �x, y0 + �y), both on the
graph y = f (x), the limit being taken as �x → 0. The slope of the secant line is
�y/�x and we want to make �x , and as a result �y, tend to 0.

In the view of seventeenth century mathematicians, who did not possess a defi-
nition of limit, the quantity �x was actually supposed to become infinitely small,
the tangent being thought to intersect the curve at two distinct points infinitely close
together. For the slope of the tangent we obtain a quotient of infinitely small quan-
tities, or infinitesimals. This intuition lies behind Leibniz’s notation for derivatives
(Fig. 5.2).

5.3.2 Differential Quotients

Leibniz proposed setting an infinitesimal dx in place of �x , as the notion of limit
was not available to him. He would have said that y underwent a corresponding
change, which was also an infinitesimal dy, and the derivative was the quotient
dy/dx . Although dx and dy are infinitesimals (whatever that means) the quotient
is an ordinary real number. He called the infinitesimals dx and dy differentials. The
derivative was then the differential quotient.

According to the prevailing modern view the derivative is not a quotient; it is
though the limit of a quotient, namely the limit of the difference quotient. In spite of
this it is possible to define differentials, expressed in the classical notation dx and
dy, without resorting to the mysterious infinitesimals. This is very useful for calculus
in several variables and differential geometry of surfaces and their generalisations,
manifolds. It means, for example, that classical formulas, such as dy = f ′(x) dx ,
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remain valid with an appropriate interpretation of their symbols. However, that is a
whole new topic.1

Here are some examples of statements written using Leibniz’s notation. It will
be seen that they have certain advantages, notably brevity and flexibility, over their
equivalents using function symbols:

(a) If y = x3 then
dy

dx
= 3x2.

That is, if f is the function f (x) = x3 then f ′(x) = 3x2.

(b)
d

dx
x3 = 3x2.

Same meaning as the previous item. We again avoid using a symbol for the function,
as well as mentioning the variable y.

(c)
d

dx
x3

∣∣∣
x=1

= 3.

In other words if f is the function f (x) = x3 then f ′(1) = 3. The vertical stroke
with the subscript “x = 1” means evaluate the preceding expression at x = 1.

5.3.3 The Chain Rule and Inverse Functions in Leibniz’s
Notation

Many calculations using the chain rule or the inverse-function rule are easier to carry
out using Leibniz’s notation. This makes it particularly useful for effecting a change
of variables in a differential equation, a subject not covered in the present text.

Functions f and g are given and we wish to differentiate the composed function
g ◦ f . We consider that the function f sets up a relation between variables x and
y, namely y = f (x), whilst g sets up a relation between variables y and z, namely
z = g(y). Then the composition g ◦ f sets up the relation z = (g ◦ f )(x).

We can differentiate the composition g ◦ f using the chain rule. In Leibniz’s
notation we are finding the differential quotient dz/dx and this is given by the
striking formula

dz

dx
= dz

dy

dy

dx
.

This is of course just the formula

(g ◦ f )′(x) = g′( f (x)) f ′(x).

1This has nothing to do with what is known as non-standard analysis. In the latter the real number
system is extended by including infinitely small quantities and infinitely large quantities.
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