
&CHAPTER 2

Instruction Set Architecture
and Design

In this chapter, we consider the basic principles involved in instruction set architecture

and design. Our discussion starts with a consideration of memory locations and

addresses. We present an abstract model of the main memory in which it is considered

as a sequence of cells each capable of storing n bits. We then address the issue of stor-

ing and retrieving information into and from the memory. The information stored

and/or retrieved from the memory needs to be addressed. A discussion on a

number of different ways to address memory locations (addressing modes) is the

next topic to be discussed in the chapter. A program consists of a number of instruc-

tions that have to be accessed in a certain order. That motivates us to explain the issue

of instruction execution and sequencing in some detail. We then show the application

of the presented addressing modes and instruction characteristics in writing sample

segment codes for performing a number of simple programming tasks.

A unique characteristic of computer memory is that it should be organized in a hier-

archy. In such hierarchy, larger and slower memories are used to supplement smaller

and faster ones. A typical memory hierarchy starts with a small, expensive, and rela-

tively fast module, called the cache. The cache is followed in the hierarchy by a larger,

less expensive, and relatively slow main memory part. Cache and main memory are

built using semiconductor material. They are followed in the hierarchy by larger,

less expensive, and far slower magnetic memories that consist of the (hard) disk

and the tape. The characteristics and factors influencing the success of the memory

hierarchy of a computer are discussed in detail in Chapters 6 and 7. Our concentration

in this chapter is on the (main) memory from the programmer’s point of view. In par-

ticular, we focus on the way information is stored in and retrieved out of the memory.

2.1. MEMORY LOCATIONS AND OPERATIONS

The (main) memory can be modeled as an array of millions of adjacent cells, each

capable of storing a binary digit (bit), having value of 1 or 0. These cells are

15

Fundamentals of Computer Organization and Architecture, by M. Abd-El-Barr and H. El-Rewini
ISBN 0-471-46741-3 Copyright # 2005 John Wiley & Sons, Inc.



organized in the form of groups of fixed number, say n, of cells that can be dealt

with as an atomic entity. An entity consisting of 8 bits is called a byte. In many

systems, the entity consisting of n bits that can be stored and retrieved in and out

of the memory using one basic memory operation is called a word (the smallest

addressable entity). Typical size of a word ranges from 16 to 64 bits. It is, however,

customary to express the size of the memory in terms of bytes. For example,

the size of a typical memory of a personal computer is 256 Mbytes, that is,

256� 220 ¼ 228 bytes.

In order to be able to move a word in and out of the memory, a distinct address

has to be assigned to each word. This address will be used to determine the location

in the memory in which a given word is to be stored. This is called a memory write

operation. Similarly, the address will be used to determine the memory location

from which a word is to be retrieved from the memory. This is called a memory

read operation.

The number of bits, l, needed to distinctly addressM words in a memory is given

by l ¼ log2 M. For example, if the size of the memory is 64 M (read as 64 mega-

words), then the number of bits in the address is log2 (64� 220) ¼ log2 (2
26) ¼

26 bits. Alternatively, if the number of bits in the address is l, then the maximum

memory size (in terms of the number of words that can be addressed using these

l bits) is M ¼ 2l. Figure 2.1 illustrates the concept of memory words and word

address as explained above.

As mentioned above, there are two basic memory operations. These are the

memory write and memory read operations. During a memory write operation a

word is stored into a memory location whose address is specified. During a

memory read operation a word is read from a memory location whose address is

specified. Typically, memory read and memory write operations are performed by

the central processing unit (CPU).

Figure 2.1 Illustration of the main memory addressing

16 INSTRUCTION SET ARCHITECTURE AND DESIGN



Three basic steps are needed in order for the CPU to perform a write operation

into a specified memory location:

1. The word to be stored into the memory location is first loaded by the CPU

into a specified register, called the memory data register (MDR).

2. The address of the location into which the word is to be stored is loaded by

the CPU into a specified register, called the memory address register (MAR).

3. A signal, called write, is issued by the CPU indicating that the word stored in

the MDR is to be stored in the memory location whose address in loaded in

the MAR.

Figure 2.2 illustrates the operation of writing the word given by 7E (in hex) into the

memory location whose address is 2005. Part a of the figure shows the status of the reg-

isters and memory locations involved in the write operation before the execution of the

operation. Part b of the figure shows the status after the execution of the operation.

It is worth mentioning that the MDR and the MAR are registers used exclusively

by the CPU and are not accessible to the programmer.

Similar to the write operation, three basic steps are needed in order to perform a

memory read operation:

1. The address of the location from which the word is to be read is loaded into

the MAR.

2. A signal, called read, is issued by the CPU indicating that the word whose

address is in the MAR is to be read into the MDR.

3. After some time, corresponding to the memory delay in reading the specified

word, the required word will be loaded by the memory into the MDR ready

for use by the CPU.

Before execution After execution

Figure 2.2 Illustration of the memory write operation

2.1. MEMORY LOCATIONS AND OPERATIONS 17



Figure 2.3 illustrates the operation of reading the word stored in the memory

location whose address is 2010. Part a of the figure shows the status of the registers

and memory locations involved in the read operation before the execution of the

operation. Part b of the figure shows the status after the read operation.

2.2. ADDRESSING MODES

Information involved in any operation performed by the CPU needs to be addressed.

In computer terminology, such information is called the operand. Therefore, any

instruction issued by the processor must carry at least two types of information.

These are the operation to be performed, encoded in what is called the op-code

field, and the address information of the operand on which the operation is to be

performed, encoded in what is called the address field.

Instructions can be classified based on the number of operands as: three-address,

two-address, one-and-half-address, one-address, and zero-address. We explain

these classes together with simple examples in the following paragraphs. It should

be noted that in presenting these examples, we would use the convention operation,

source, destination to express any instruction. In that convention, operation rep-

resents the operation to be performed, for example, add, subtract, write, or read.

The source field represents the source operand(s). The source operand can be a con-

stant, a value stored in a register, or a value stored in the memory. The destination

field represents the place where the result of the operation is to be stored, for

example, a register or a memory location.

A three-address instruction takes the form operation add-1, add-2, add-3. In this

form, each of add-1, add-2, and add-3 refers to a register or to a memory location.

Consider, for example, the instruction ADD R1,R2,R3. This instruction indicates that

Figure 2.3 Illustration of the memory read operation

18 INSTRUCTION SET ARCHITECTURE AND DESIGN



the operation to be performed is addition. It also indicates that the values to be added

are those stored in registers R1 and R2 that the results should be stored in register R3.

An example of a three-address instruction that refers to memory locations may take

the form ADD A,B,C. The instruction adds the contents of memory location A to the

contents of memory location B and stores the result in memory location C.

A two-address instruction takes the form operation add-1, add-2. In this form,

each of add-1 and add-2 refers to a register or to a memory location. Consider,

for example, the instruction ADD R1,R2. This instruction adds the contents of regis-

ter R1 to the contents of register R2 and stores the results in register R2. The original

contents of register R2 are lost due to this operation while the original contents of

register R1 remain intact. This instruction is equivalent to a three-address instruction

of the form ADD R1,R2,R2. A similar instruction that uses memory locations instead

of registers can take the form ADD A,B. In this case, the contents of memory location

A are added to the contents of memory location B and the result is used to override

the original contents of memory location B.

The operation performed by the three-address instruction ADD A,B,C can be per-

formed by the two two-address instructions MOVE B,C and ADD A,C. This is

because the first instruction moves the contents of location B into location C and

the second instruction adds the contents of location A to those of location C (the con-

tents of location B) and stores the result in location C.

A one-address instruction takes the form ADD R1. In this case the instruction

implicitly refers to a register, called the Accumulator Racc, such that the contents

of the accumulator is added to the contents of the register R1 and the results are

stored back into the accumulator Racc. If a memory location is used instead of a reg-

ister then an instruction of the form ADD B is used. In this case, the instruction

adds the content of the accumulator Racc to the content of memory location B and

stores the result back into the accumulator Racc. The instruction ADD R1 is equival-

ent to the three-address instruction ADDR1,Racc,Racc or to the two-address instruc-

tion ADDR1,Racc.

Between the two- and the one-address instruction, there can be a one-and-half

address instruction. Consider, for example, the instruction ADD B,R1. In this case,

the instruction adds the contents of register R1 to the contents of memory location

B and stores the result in register R1. Owing to the fact that the instruction uses

two types of addressing, that is, a register and a memory location, it is called a

one-and-half-address instruction. This is because register addressing needs a smaller

number of bits than those needed by memory addressing.

It is interesting to indicate that there exist zero-address instructions. These are the

instructions that use stack operation. A stack is a data organization mechanism in

which the last data item stored is the first data item retrieved. Two specific oper-

ations can be performed on a stack. These are the push and the pop operations.

Figure 2.4 illustrates these two operations.

As can be seen, a specific register, called the stack pointer (SP), is used to indicate

the stack location that can be addressed. In the stack push operation, the SP value is

used to indicate the location (called the top of the stack) in which the value (5A) is to

be stored (in this case it is location 1023). After storing (pushing) this value the SP is

2.2. ADDRESSING MODES 19



incremented to indicate to location 1024. In the stack pop operation, the SP is first

decremented to become 1021. The value stored at this location (DD in this case) is

retrieved (popped out) and stored in the shown register.

Different operations can be performed using the stack structure. Consider, for

example, an instruction such as ADD (SP)þ, (SP). The instruction adds the contents
of the stack location pointed to by the SP to those pointed to by the SPþ 1 and stores

the result on the stack in the location pointed to by the current value of the SP.

Figure 2.5 illustrates such an addition operation. Table 2.1 summarizes the instruc-

tion classification discussed above.

The different ways in which operands can be addressed are called the addressing

modes. Addressing modes differ in the way the address information of operands is

specified. The simplest addressing mode is to include the operand itself in the

instruction, that is, no address information is needed. This is called immediate

addressing. A more involved addressing mode is to compute the address of the

operand by adding a constant value to the content of a register. This is called indexed

addressing. Between these two addressing modes there exist a number of other

addressing modes including absolute addressing, direct addressing, and indirect

addressing. A number of different addressing modes are explained below.

Figure 2.4 The stack push and pop operations

- 52

39
1050

- 13

39
1050

SP 1000

1001
1002

1000

1001
1002

SP

Figure 2.5 Addition using the stack

20 INSTRUCTION SET ARCHITECTURE AND DESIGN



2.2.1. Immediate Mode

According to this addressing mode, the value of the operand is (immediately) avail-

able in the instruction itself. Consider, for example, the case of loading the decimal

value 1000 into a register Ri. This operation can be performed using an instruction

such as the following: LOAD #1000, Ri. In this instruction, the operation to be per-

formed is to load a value into a register. The source operand is (immediately) given

as 1000, and the destination is the register Ri. It should be noted that in order to indi-

cate that the value 1000 mentioned in the instruction is the operand itself and not

its address (immediate mode), it is customary to prefix the operand by the special

character (#). As can be seen the use of the immediate addressing mode is simple.

The use of immediate addressing leads to poor programming practice. This is

because a change in the value of an operand requires a change in every instruction

that uses the immediate value of such an operand. A more flexible addressing mode

is explained below.

2.2.2. Direct (Absolute) Mode

According to this addressing mode, the address of the memory location that holds

the operand is included in the instruction. Consider, for example, the case of loading

the value of the operand stored in memory location 1000 into register Ri. This oper-

ation can be performed using an instruction such as LOAD 1000, Ri. In this instruc-

tion, the source operand is the value stored in the memory location whose address is

1000, and the destination is the register Ri. Note that the value 1000 is not prefixed

with any special characters, indicating that it is the (direct or absolute) address of the

source operand. Figure 2.6 shows an illustration of the direct addressing mode. For

TABLE 2.1 Instruction Classification

Instruction class Example

Three-address ADD R1,R2,R3

ADD A,B,C

Two-address ADD R1,R2

ADD A,B

One-and-half-address ADD B,R1

One-address ADD R1

Zero-address ADD (SP)þ, (SP)

Memory

Operand

Operation Address

Figure 2.6 Illustration of the direct addressing mode

2.2. ADDRESSING MODES 21



example, if the content of the memory location whose address is 1000 was (2345) at

the time when the instruction LOAD 1000, Ri is executed, then the result of execut-

ing such instruction is to load the value (2345) into register Ri.

Direct (absolute) addressing mode provides more flexibility compared to the

immediate mode. However, it requires the explicit inclusion of the operand address

in the instruction. A more flexible addressing mechanism is provided through the use

of the indirect addressing mode. This is explained below.

2.2.3. Indirect Mode

In the indirect mode, what is included in the instruction is not the address of the

operand, but rather a name of a register or a memory location that holds the (effec-

tive) address of the operand. In order to indicate the use of indirection in the instruc-

tion, it is customary to include the name of the register or the memory location in

parentheses. Consider, for example, the instruction LOAD (1000), Ri. This instruc-

tion has the memory location 1000 enclosed in parentheses, thus indicating indirec-

tion. The meaning of this instruction is to load register Ri with the contents of the

memory location whose address is stored at memory address 1000. Because indirec-

tion can be made through either a register or a memory location, therefore, we can

identify two types of indirect addressing. These are register indirect addressing, if a

register is used to hold the address of the operand, and memory indirect addressing,

if a memory location is used to hold the address of the operand. The two types are

illustrated in Figure 2.7.

Figure 2.7 Illustration of the indirect addressing mode

22 INSTRUCTION SET ARCHITECTURE AND DESIGN


	2. Instruction Set Architecture and Design
	2.1. Memory Locations and Operations
	2.2. Addressing Modes


