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Introduction

Since the appearance of Napster in early 1999, peer-to-peer (P2P) networks
have experienced tremendous growth. In 2003, P2P became the most popular
Web application, and, at the end of 2004, P2P protocols represented over
60% of the total Internet traffic, dwarfing Web browsing, the second most
popular application [I]. This rapid success was fueled by file transfer networks
which allow users to swap media files, despite the large latency often necessary
to complete a download. It is expected to continue at a fast pace, as new
compelling P2P applications are developed. One of these applications, P2P
multicast, is explored in this book.

In P2P multicast, a media stream is sent to a large audience by taking
advantage of the uplink capability of the viewers to forward data. Similar
to file transfer networks, data propagation is accomplished, via a distributed
protocol, which lets peers self-organize into distribution trees or meshes. The
striking difference is that this should happen in real-time, to provide all con-
nected users with a T'V-like viewing experience. Compared to content delivery
networks, this approach is appealing as it does not require any dedicated in-
frastructure and is self-scaling as the resources of the network increase with
the number of users.

To become widely adopted, P2P streaming systems should achieve high
and constant video quality, as well as low startup latency. Three factors make
this a difficult task. First, the access bandwidth of the peers is often insuf-
ficient to support high quality video. Second, the peers may choose to dis-
connect at any time breaking data distribution paths. This creates a highly
unreliable and dynamic network fabric. Third, unlike in client-server systems,
packets often need to be relayed along long multi-hop paths, each hop in-
troducing additional delay, especially when links are congested. This unique
set of challenges explain why early implementations, although they consti-
tute remarkable progress and demonstrate the feasibility of large scale P2P
streaming, fall short of the goals.

In our own research, which is presented in this book, we have investigated
video streaming systems in order to enhance the perceived image quality,
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increase their robustness to errors, and reduce latency. As the techniques that
we are considering have merit for both client-server and P2P networks, our
approach is to analyze the performance of unicast systems first, before ex-
tending and adapting the algorithms to P2P multicast. We investigate, in
particular, throughput-limited environments where video streams may cause
self-congestion when their rate is too high or when their transmission is in-
adequately controlled. In this context, we show the importance of adaptive
packet scheduling which may help extend the range of sustainable rates, re-
duce startup latency, and maintain high error resilience.

The rest of this book is organized as follows. In the next chapter, we des-
cribe recent advances in the field of video compression, video streaming, mul-
ticast architectures and P2P systems, related to our work. In Chapter [B] we
consider client-server systems. We focus on the impact of self-inflicted conges-
tion on low-latency video streaming. We present an end-to-end rate-distortion
model which captures the impact of both compression and late loss due to self-
inflicted congestion. The model is helpful for deriving an encoding rate which
maximizes video quality. In the second part of the chapter, we introduce the
concept of congestion-distortion optimized (CoDiO) packet scheduling. Dif-
ferent from rate-distortion optimization, this type of algorithm determines
which packets to send, and when, to maximize decoded video quality while
limiting network congestion. We describe the operations of this scheduler, and
of a low-complexity scheduler derived from it, and analyze their performance
over a simulated network. The experimental results presented in this chapter
are the first in-depth comparison of congestion and rate-distortion optimized
schedulers.

In Chapter Ml and in Chapter Bl we consider the scenario of live P2P mul-
ticast where the video stream is sent to a large population of peers. Before
showing how adaptive streaming algorithms can be adapted to this context,
we describe a distributed control protocol, designed for fast startup, which is
run by the peers to construct and maintain multiple multicast trees rooted
at the video source. This allows to transmit a video stream synchronously to
a set of peers by relying on their forwarding capacity. The operations of this
protocol are described in detail and an analysis of its performance over differ-
ent networks is presented. In Chapter Bl we explain how to extend congestion-
distortion optimized packet scheduling to P2P live streaming to further reduce
startup latency and to support higher rates. Similar to the CoDiO scheduler,
the adaptive scheduler we present transmits in priority packets which con-
tribute most to the decoded video quality. In addition, it favors peers which
serve, subsequently, larger populations since they have the largest impact on
the overall video quality. This one-to-many packet scheduler is combined with
a retransmission scheduler which operates at the receivers to request, in pri-
ority, missing packets which will lead to the largest distortion reduction. We
investigate the performance of this streaming technique over simulated net-
works of hundreds of peers. Conclusions and future research directions are
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presented in Chapter [6l The appendix contains additional technical details
about the different video streaming experiments reported previously in the
book.
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Background

The purpose of the work presented in this book is to analyze and improve the
performance of video streaming systems operating in bandwidth-constrained
networks. In particular, we consider low-latency applications where a source is
serving a single receiver or where video is multicast to a population of peers.
Our work builds upon recent advances which have focused on providing better
compression efficiency, on increasing the robustness of video streaming sys-
tems, and on building efficient multicast architectures or peer-to-peer systems.
In the following, we present an overview of the state-of-the-art in these areas.

2.1 Video Compression

2.1.1 H.264 Video Coding

The results we present in the following chapters were obtained for video se-
quences compressed using the latest video coding standard H.264, also called
MPEG-4 Advanced Video Coding or H.264/AVC, which was finalized in
March 2003 [2]. Like its predecessors, H.261, MPEG-1, H.262 (MPEG-2),
H.263 and MPEG-4 [3| 4 [5] [6] [7], H.264 is a hybrid codec which combines
blockwise transform coding and motion-compensated predictive coding to re-
duce the redundancy of a video signal. Overviews of modern video coding and
in particular of H.264 can be found in [8, [9, [I0 [II]. Two technically similar
video coding standards, Microsoft’s SMPTE VC-1 and the Chinese Advanced
Video coding Standard AVS, are presented in [12],[13] and in [14]. Compared to
H.263, H.264 achieves bit rate reductions of up to 50% at a comparable qual-
ity. This gain is the result of a combination of new features introduced in the
standard: these include better motion-compensated prediction with multiple
reference frames and varying block sizes down to 4x4 pixels [I5], spatial pre-
diction of intra-coded blocks, and improved entropy coding [16]. A reference
software implementation of H.264 has been made freely available [I7].
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The standard specifies three major profiles: the Baseline profile which is
mindful of the computational complexity, the Main profile, designed to take
full advantage of the coding efficiency of H.264, and the Eztended profile,
which includes a number of enhancements for streaming applications [I§].
Recent additions to the standard include an extension for higher fidelity (e.g.,
10 bits/sample) video signals called FRExt (Fidelity Range Extension) [19]
and an extension for Scalable Video Coding (SVC) [20, 21].

The basic components of a hybrid video encoder are shown in Fig. 211
The input video signal is predicted from previously transmitted information
available both at the encoder and the decoder, and the prediction error is
compressed, typically with a transform coder operating on a block-by-block
basis. The prediction can be based on information in other frames (“motion-
compensated predictor”) or in the same frame (“intra predictor”). As in still
picture coding, intra-prediction exploits correlation among adjacent pixels in
the image. More specific to video is motion-compensated prediction that uses
one or several previously encoded frames as references to predict the cur-
rent frame. Depending on the type of prediction allowed, we distinguish three
types of coded frames: Intra (I) frames do not use temporal prediction but
only intra-prediction; Predicted (P) frames use only one previously encoded
frame as a reference; Bi-directionally predicted (B) frames combine prediction
from two reference framedy. In general, I frames produce a much larger bit rate
than P frames. The best coding efficiency can be achieved by using B frames.
The residual signal after prediction is transformed in the frequency domain
and quantized. Finally, entropy coding techniques, like context-based variable
length coding or arithmetic coding, are applied to compress the syntax el-
ements representing the video signal, which include motion vectors, coding
modes, and quantized transform coefficients.

Higher compression efficiency makes the signal more susceptible to trans-
mission errors. Even the corruption of a single bit in the compressed stream
may preclude the decoding of a video syntax element and, since context-based
entropy coding is used, such an error will affect all the following syntax el-
ements until a re-synchronization marker is encountered. In addition, error
propagation may occur within a frame, when a corrupted pixel value is used
for prediction of adjacent pixels. Finally, regions of an image that cannot be
correctly decoded create artifacts that are propagated over several consecu-
tive frames, due to temporal prediction. Error propagation will continue until
the next I frame is successfully decoded, since this type of picture does not
depend on previously encoded pictures.

! Please note that these restrictions are required in MPEG-1 and MPEG-2. The
most recent H.264/AVC standard is much more general and allows but does not
mandate I, P, and B frames as described here.
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Fig. 2.1. Diagram of a motion-compensated hybrid video coder according to H.261,
MPEG-1, MPEG-2, H.263, MPEG-4, or H.264/AVC standards. The intra-inter
switch controls whether spatial or temporal prediction is used for compression. De-
pendency between frames is introduced via the motion-compensated inter-frame
prediction when P frames and B frames are encoded.

2.1.2 Distortion Models
Performance of Motion-Compensated Video Coding

To study the performance of hybrid video coding, a theoretical framework
is developed in [22]. An analysis of the rate-distortion efficiency of motion-
compensated coding is presented in this paper, where a closed-form expression
is obtained by assuming the different image signals and motion-compensated
predictors are stationary and jointly Gaussian zero-mean signals. Hence, the
resulting rate-distortion function can be thought of as an upper bound to
the rate-distortion function for a non-Gaussian image signal with the same
power spectral density. Although this is a simplification, the model has been
widely used in the literature to evaluate the performance of several image
or video encoders. The performance of I frames and P frames is derived for
integer-pixel and fractional-pixel motion accuracy in [22] and studied further
in [23]. The rate-distortion efficiency of B frames can be obtained from the
model extension to multi-hypothesis predictive coding proposed in [24]. Other
extensions are presented in [25] 26] 27] where the effect of the size of the set of
predictors and of the correlation between the different predictors is analyzed.
In [28] and [29], the authors show that the model can also be helpful to
quantify the performance of scalable video codecs.

Empirical Distortion Models

The model described in [22] is general and well-suited to gain insight on the
influence of different elements composing a video coding system. However
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