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behave as x tends to +0? [If a=%B the behaviour of

f(x)=2—B (log z)*—8" (log log x)="~B"
is dominated by that of za—8. If a=p the power of x disappears and the
behaviour of f(x) is dominated by that of (log#)*—8’, unless o«'=g’, when
it is dominated by that of (loglogx)a"-8". Thus f(x)> 4+« if a>p, or
a=f, d>p,or a=B, a'=8, '>p" and f(#)>0if a<B, or a=p, a' <F, or
a=B, d =8, "<B"]

5. Arrange the functions z/a/(log x), z J/(log z)/loglog z, zloglog z//(log =),
(wloglogloga)/a/(loglog z) according to the rapidity with which they tend to
4+ with 2.

6. Arrange

loglog #/(wlog ), (loga)fw, wloglogaly/(s?+1), {y(w+1)}He(log)
according to the rapidity with which they tend to zero as # tends to +o.

7. Arrange
zloglog (1)), A[z/{log(1/z)}?], A{zsinzlog(1/z)}, (1—-cosz)log(1l/z)

according to the rapidity with which they tend to zero as #—=+0.

8. Show that

D loglogz=1/(xlogx), D,logloglogx=1/(xlogxloglogx),

and so on.

9. Show that

D, (logz)e=af{z (logz)'~2}, D,(loglogz)*=a/{rlogx (loglogz)!=*},

and so on.

185. The number ¢. We shall now introduce a number,
usually denoted by e, which is of immense importance in higher
mathematics. It 1s, like 7r, one of the fundamental constants
which perpetually occur in analysis.

We define ¢ as the number whose logarithm s 1. In other
words e 1s defined by the equation

¢ dt
1= ["%
1 ¢

Since log # continually increases with z, it can only pass once
through the value 1. Hence our definition does in fact define
one definite number.

Example. Prove that 2<e<3. [In the first place it is evident that

2dit
— <1,
1 ¢
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and so 2<e. Also

3 5/4 32 (o 2 3 N\ dt
e o L],

1 ¢ 1 5/4 sz J s wa/ t

>3+ e+e ittt >0
so that e<3.]
Now log (2y) =log « +log v and in particular
log #*=21log#, loga*=3loga, ..., loga™=nlogx,
where n is any positive integer. Hence
log ¢® =nloge=mn.

Again, if p and ¢ are any positive integers, and e?? denotes the
positive gth-root of e?, we have

p= ]og eP = ]og (eP/Q)(I =q log erla,

so that log (¢??) = p/q. Thus 1if y has any positive rational value
and ¢¥ denotes the positive yth-power of e, we have

loge? =9y .ovoviiiiii (1),
and loge¥=—loge! =—v. Hence the equation (1) is true for
all rational values of y, positive or negative. In other words the
equations

y=loge, z=e€V..........oo..on. e (2)
are consequences of one another so long as y is rational and e¥
has its positive value. At present we have not given any definition
of a power such as ¢ in which the index is irrational, and the
function e is defined for rational values of y only.

186. 'The exponential function ¢V. We now define the
exponential function e for all real values of y as the inverse of
the logarithmic function. In other words, if y = log «, we write

x=é.
We saw that, as # varies from 0 towards 4+ o0, 7 increases steadily
(in the stricter sense) from — o towards + w. To one value of «
corresponds one value of ¥ and conversely. Also v is a continuous
function of «, and it follows from § 88 that « is likewise a con-
tinuous function of .

A direct proof of the continuity of the exponential function is easily
given. For if #=e¥ and z+£=e?*7, it is clear that

x+£ (¢
n= 7 .
X
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Thus | 7| is greater than &/(z+§) if £>0, and than | £|/z if £<0; and if 5 is
very small & must also be very small.

Thus ¢¥ is a continuous function of y which increases steadily
from O towards + oo as y increases from — « towards + «. More-
over, by the results of § 185, ¢¥ is the positive yth-power of the
number ¢, according to the elementary definitions, whenever y is
a rational number. In particular ¢¥=1 when y=0. The general
form of the graph of e¥ is therefore as shown in Fig. 68. It is to
be observed that e is positive for all values of .

Y
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Frc. 68.

187. 'The principal properties of ¢v. (1) If z=¢, so
that y =log #, we have dy/dz=1/z and
da/dy = = = ev.
Thus the derivative of the exponential function is equal to the
function itself. In other words the exponential function is a
function whose rate of increase is always equal to its own value.

More generally, if y = ¢** then dy/dz = ae*®.
(2) The exponential function satisfies the functional equation

S @+y)=F(@)f )
This is evident if # and y are rational, by the ordinary rules
of indices. If z or v, or both, are irrational we can choose two

series of rational numbers @, @y, .oy Zny oo Yis Yoo coos Yny oees
such that lim 4, =2, limy,=gy. Then, since the exponential

function 1s continuous,
¢ x ¢ = lim ¢ x lim €/» = lim ¢"¥n = @+,
In particular ¢® x e *=¢'=1, or e™® = 1/¢".

Or we may deduce the functional equation satisfied by ¢ from
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that satisfied by loga. For if y,=log a, y,=log a,, so that
@ =", x,=¢"% we have y, + y,=log #, + log #, =log (2,2,) and
eVt = g l08(@%) = g 1, = %1 X Y2,
Examples LXXXVIL. 1. If dz/dy=x then x=Ke¥, where K is a
constant.

2. There is no solution of the equation f(#+y)=7(z) f(y) fundamentally
distincet from f(y)=ev. [For, differentiating the equation with respect to x
and # in turn, we obtain

f @ty =r (@) f@), F@+y=7@)f )
and so [’ (z)[f (#)=F" (¥)[f(v), and therefore each is constant. Thus if z=7(y),
dejdy=z/A, or
y:Af%Z-:Alogz+B,

A and B being constants; so that z=e(~BV4,]

3. Prove that (e**~1)/x->a as x—0. [Applying the Mean Value
Theorem, we obtain e*—1=ae*¢ where 0 < £ < x.]

188. (3) The function ¢¥ tends to + oo with y more rapudly
than any power of vy, or

lim y#/e¥ = lim e %y* = 0

as Y-+ oo, for all values of a, however great.

We saw that (log #)/2f — 0 as 2 — + <o, for any positive value
of B, however small. Hence, if a=1/8, (logz)*/z =0 for any
value of a, however large. The result follows by putting x = ev.

From this result it follows that we can construct a ‘scale of infinity’
similar to that constructed in § 184, but extended in the opposite direction—
i.e. a scale of functions which tend to +o with # more and more rapidly.
This scale 1s

Ty 2 T ... e & L 6P L, L, e .. e,
where of course 7, ..., ¢, ... denote e(®), ..., @), ....

The reader should try to apply the remarks made in § 184 and Exs. LXXXVI,
about the logarithmic scale, to this ‘exponential scale’ also. The two scales
may of course (if the order of one is reversed) be combined into one scale

...loglogz, ... loga, ... ... €% ... € ...

189. The general power ¢”. The function ¢® has been
defined only for rational values of , except in the particular case
when ¢ =e¢. When « i1s rational and positive, the positive value
of the power a® 1s given by the equations

a¥ = (6 log a)w = g% log a

We take this as our definition of a® when « is irrational. Thus
1072 = ¥2-10810 Tt is to be observed that a®, when « is irrational,
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is defined only for positive values of @, and 1s itself essentially
positive. The reader will find no difficulty in verifying the
following statements.

(1) Whatever value ¢ may have, a® X a¥ = ¢®¥ and (a®)¥ = a*.
In other words the laws of indices hold for irrational no less than
for rational indices.

(2) Ifa>1, a*=e*182=¢" where a is positive. The graph
of ¢® is in this case similar to that of ¢%, and a®* =+ o with =,
more rapidly than any power of #. For if a>0 and az =y,
then a™e=® = (y/ayme™¥ — 0 as « and y tend to + .

If a <1, o® = ¢*1%6 @ = ¢=9* where a is positive. The graph of
a® is then similar in shape to that of e”, but reversed as regards
richt and left, and ¢* -0 as z— 4 o, more rapidly than any
power of 1/x.

(3) a®is a continuous function of z, and Dya® = a®log a.

(4) a” is also a continuous function of @, and D,a® = za*

(5) (a® - 1)/xz —loga as & — 0. This of course is a mere
corollary from the fact that D,a” = a® log a, but the particular
form of the result is often useful; it is of course equivalent to the
result (Ex. LXXXVIL 3) that (¢** — 1)/z —a as - 0.

In the course of the preceding chapters a great many results involving
the function a* have been stated with the limitation that x is rational. The
definition which we have now given, and the theorems proved above, enable
us to remove this restriction.

190. ‘The representation of ¢ as a limit. In Ch. IV,
§ 67, we proved that {1+ (1/n)}" tends, as n - », to a limit
which we provisionally denoted by e. We shall now identify this
limit with the number e of the preceding sections. We can
however establish a more general result, viz. that expressed by
the equations
lim (1 +%) = lim (1—%) e, Q).

N —>= 0 9 —>= 0
As the result is of very great importance, we shall indicate alter-
native lines of proof.

(1) Since D,log (1 + yx) =y/(1 + y=), it follows that

lim {log (1 + yh)}/h =y,
as h—0; or, putting » =1/,

lim[£log {1 + (y/E)}] =y



