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3. There is an integer k such that f .x/ � f .k/ for all x between k and kC 1.
4. For all x > 0 and all y > 0 there exists a z < 0 such that f .z/ � xf .y/.

Prove that the following limits do not exist.

5. f .x/ D x
jxj as x! 0

6. f .x/ D x sin
�

1
x�1

�
as x! 1

7. f .x/ D
�

5x if x < 3

4x if x � 3

�
as x! 3

8. f .x/ D 4
x2�4

as x! 2

3.7 Accumulation Points

A set A has an accumulation point p if for every � > 0 there is an x 2 A with x ¤ p
and jx � pj < �. Informally, p is an accumulation point of A if there are points of A
that are arbitrarily close to p. Note that the fact that p is an accumulation point of the
set A has nothing to do with whether p is actually an element of A. For example, the
set A D ˚ 1

n j n 2 N
�

has one accumulation point, 0, because for every � > 0 there is
an n 2 N with 1

n < �. Here the accumulation point 0 is not an element of the set A.
The set B D Œ0; 4� (the closed interval from 0 to 4) has infinitely many accumulation
points. Indeed, every element of the interval B is an accumulation point of B because
for each x 2 Œ0; 4� and each � > 0 there are infinitely many points in B within � of
x. Here all of the accumulation points of B are in B. Each point x 2 Œ0; 4� is also an
accumulation point of the set C D .0; 4/\Q, the set of rational numbers between 0
and 4. Here, some of the accumulation points are in C, and some are not. The set of
natural numbers, N, has no accumulation points. An element a of a set that is not an
accumulation point of that set is called an isolated point of the set. For any isolated
point a, there is an � > 0 such that a is the only element of the set in the interval
.a � �; aC �/ (Fig. 3.9).

A word of warning is needed here. The term accumulation point is not used the
same way by all authors. Many texts, especially those in Topology, will use the terms
limit point or cluster point instead of accumulation point. Even more confusing is
that some texts use the term accumulation point for something different.

b a

Fig. 3.9 Set with accumulation point a and isolated point b



3.7 Accumulation Points 75

The first observation to make about accumulation points is that if p is an
accumulation point of set A, then for every � > 0 there is not only one point of
A within � of p but infinitely many points of A within � of p. The definition of
accumulation point guarantees at least one point of A within � of p, but once one
point, x 2 A, is found to be within � of p, the definition also says that there must be
another point y 2 A with 0 < jy � pj < jx � pj. Since for each x 2 A close to p
there must be another point y 2 A even closer to p, it follows that there are infinitely
many points of A within � of p.

Perhaps the most used fact about accumulation points is known as the Bolzano–
Weierstrass Theorem which states that every infinite bounded set of real numbers
has an accumulation point. As pointed out earlier, N has no accumulation points,
and it is an infinite set. But N is not a bounded set. Intuitively, one cannot have a
bounded infinite set without an accumulation point because one runs out of places
to put the infinite number of points. If the points of a set are not allowed to bunch
up anywhere, then one will not be able to find room for infinitely many of the points
within a bounded interval.

There are several good strategies used to prove the Bolzano–Weierstrass Theo-
rem, and two of those strategies are presented here. Of course, one only needs one
good strategy to prove a theorem, but these proofs are instructive and use techniques
commonly employed in Analysis proofs. One begins each proof with a statement
about the set A being an infinite bounded set. Since A is a bounded set, it will have
a lower bound, a, and an upper bound, b showing that A � Œa; b�. The first strategy
is to construct the set S D fx � a j Œa; x� \ A is finiteg, that is, a value x � a is in
the set S if there are finitely many element of A which fall in the interval Œa; x�. First
observe that the set S is an interval. This follows because if y 2 S, then Œa; y� \ A is
finite, so if x is between a and y, then Œa; x�\ A � Œa; y�\ A must also be finite, and
x 2 A. The next observation is that S is not empty because the point a, whether or
not it is in A, is in S since Œa; a� \ A contains at most one point, so it is finite. Since
Œa; b�\ A D A is an infinite set, the set S is bounded above by b. The Completeness
Axiom now shows that S must have a least upper bound, p. It will follow that p is an
accumulation point of A because for all � > 0, the set A will have only finitely many
elements less than p � � but infinitely many elements less than pC � implying that
there are infinitely many elements of A within � of p. Here is the complete proof.



76 3 Limits

PROOF (Bolzano–Weierstrass Theorem): Every infinite bounded set of
real numbers has an accumulation point.

• Let A be an infinite bounded set of real numbers.
• Because A is bounded, it has a lower bound, a, and an upper bound, b,

showing that A � Œa; b�.
• Define set S D fx � a j Œa; x� \ A is finiteg.
• Note that a 2 S since Œa; a� \ A is finite, so S is nonempty.
• Note that if z � b, then Œa; z� \ A D A is an infinite set, so z … S showing

that S is bounded above by b.
• By the Completeness Axiom, S has a least upper bound, p.
• Given � > 0, p� � < p so p� � is not an upper bound of S. Hence, there is

a y 2 S with y > p� �. It follows that there are only finitely many elements
of A less than or equal to y.

• Also, pC � > p, so pC � … S. It follows that Œa; pC �� \ A is infinite.
• Thus, there must be infinitely many elements of A between p� � and pC �,

and there must be an element of A not equal to p within � of p.
• This shows that p is an accumulation point of A.

The second strategy also begins with the interval Œa; b� that contains the infinite
bounded set, A. One can rename the end points of this interval to be a1 D a and
b1 D b. Since Œa1; b1� \ A D A is infinite, it follows that either Œa1; a1Cb1

2
� \ A or

Œ a1Cb1

2
; b1� \ A is an infinite set. If Œa1; a1Cb1

2
� \ A is infinite, define a2 D a1 and

b2 D a1Cb1

2
. Otherwise, define a2 D a1Cb1

2
and b2 D b1. In either case, Œa2; b2� \ A

is an infinite set. This procedure can be repeated so that for every n 2 N, one gets an
interval Œan; bn� where Œan; bn� \ A is infinite, and each interval is half the length of
the previous interval. Also, the sequence of left endpoints, <an>, is a monotone
increasing sequence bounded above by b, and the sequence of right endpoints,
<bn>, is a monotone decreasing sequence bounded below by a. Thus, both of these
sequences converge. In fact, both of these sequences must converge to the same
limit, p. This follows because the distances between the terms of the sequences,
bn � an, keep getting smaller and converge to 0. Given an � > 0, it will follow that
there is an n such that an and bn are both within � of p. Thus, .p � �; p C �/ \ A
contains Œan; bn� \ A which is infinite. Here is the complete proof.
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PROOF (Bolzano–Weierstrass Theorem): Every infinite bounded set of
real numbers has an accumulation point.

• Let A be an infinite bounded set of real numbers.
• Because A is bounded, it has a lower bound, a1, and an upper bound, b1,

showing that A � Œa1; b1� and Œa1; b1� \ A is an infinite set.
• Define sequences <an> and <bn> recursively as follows.
• Suppose, for natural number n, an and bn have been defined so that Œan; bn�\

A is an infinite set. If Œan; anCbn
2

� \ A is infinite, then define anC1 D an and
bnC1 D anCbn

2
. Otherwise, define anC1 D anCbn

2
and bnC1 D bn. In either

case, ŒanC1; bnC1� \ A is an infinite set.
• By the way the sequences are constructed, for each n it follows that an �

anC1 < bnC1 � bn showing that <an> is a monotone increasing sequence
bounded above by each bi, and <bn> is a monotone decreasing sequence
bounded below by each ai.

• Also, by the way the sequences are constructed, for each n, bn�an D b1�a1

2n�1 .
• Thus, the bounded monotone sequence <an> must converge to a number

pa, and the bounded monotone sequence <bn> must converge to a number
pb. But pb � pa � bn � an D b1�a1

2n�1 and, therefore, pb � pa must be zero. Let
p D pa D pb, and note that for each n, p 2 Œan; bn�.

• Given � > 0, select a natural number n such that b1�a1

2n�1 < �. Then p � � <

an � p � bn < pC �. Hence, Œan; bn� \ A � .p � �; pC �/ \ A is infinite
showing that there is an element of A not equal to p but within � of p.

• This shows that p is an accumulation point of A.

You now have the machinery necessary to prove the result mentioned in Sect. 3.6
that all Cauchy sequences converge. The difficulty in proving this result earlier was
that given a Cauchy sequence <an>, it was not clear what real number would play
the role of the limit L of the sequence. Now, the Bolzano–Weierstrass Theorem can
provide an accumulation point to serve as this limit. There are two cases to consider.
If the set of values in the sequence, fang, is a finite set, then for the sequence to be
Cauchy, the sequence will necessarily need to be constant from some point on, and,
therefore, the sequence will converge. If the set of values in the sequence is infinite,
then since all Cauchy sequences are bounded, the set of values in the sequence will
be bounded and will have to have an accumulation point. It is then straightforward
to show that the sequence converges to this accumulation point.
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