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Fig. 6.1 Archimedes’
parabolic segment

definition of area; that is the subject of measure theory. Nevertheless this will not
stop us from discussing it, any more than it stopped the mathematicians of antiquity.

Archimedes calculated the area of a circle and the area of a parabolic segment
(the figure bounded by a parabola and one of its chords). He gave the formula πr2

for the circle and showed that 223/71 < π < 22/7. His greatest achievement in the
computation of area was the parabolic segment, stating that its area was 4/3 times
the area of a certain inscribed triangle (with base the given chord and top vertex
at the point on the parabola where the tangent was parallel to the chord). To reach
this conclusion he had to invent a method, the method of exhaustion, that in its use
of an infinite sequence of approximations from below resembles modern integration
theories.He also had to compute the sumof the geometric series

∑∞
n=0 1/4

n (Fig. 6.1).
Fast forward to the fifteenth century and we find Kepler considering the volume of

a wine barrel. This is a solid of revolution and the calculation of its volume depends
on calculating the area of a plane figure.

Only with the invention of calculus was a method proposed that could be used to
calculate the areas of general plane figures, starting with the area under the graph
of a function. In the first place we consider the area between the graph of a positive
function f and the x-axis, cut off by two vertical lines x = a and x = b (Fig. 6.2).
This leads to the definition of the Riemann integral or the Darboux integral; two
different approaches that turn out to be equivalent. We shall call it the Riemann–
Darboux integral, although in defining it we shall take Darboux’s approach.

We therefore proceed to Problem B and only later show how it leads to a solution
to Problem A.

6.2 Defining the Riemann–Darboux Integral

Let f : [a, b] → R be a bounded function. Its domain is a bounded and closed
interval. We do not assume that f is continuous. This is an advantage because it
is necessary for practical applications to be able to integrate some discontinuous
functions. But it is essential for the following considerations to make sense that f
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Fig. 6.2 Problem B.
Calculate the area of a plane
figure

should be bounded. This, and the requirement that the domain is a bounded and
closed interval, are defects of the Riemann integral that were successfully removed
by the introduction of the Lebesgue integral in the early twentieth century.

We do not assume that f is positive. However, in the case that f (x) > 0 for all x ,
the integral, when successfully defined, will give an acceptable notion for the area
bounded by the lines x = a, y = 0, x = b and the graph y = f (x).

Definition A partition P of the interval [a, b] is a finite sequence (t j )mj=0 (not nec-
essarily uniformly spaced), such that

a = t0 < t1 < t2 < · · · < tm = b.

The intervals [t j , t j+1] are called the subintervals of the partition.

For a given partition (t0, t1, t2, ..., tm) we set

m j = inf[t j ,t j+1]
f, Mj = sup

[t j ,t j+1]
f, j = 0, 1, ...m − 1

and define the lower sum L( f, P) and the upper sum U ( f, P) by

L( f, P) =
m−1∑

j=0

m j (t j+1 − t j ), U ( f, P) =
m−1∑

j=0

Mj (t j+1 − t j ).

It is clear that L( f, P) ≤ U ( f, P), since m j ≤ Mj for each j .

Definition A partition P ′ is said to be finer than the partition P if every point of P
is also a point of P ′.

In the next three propositions we assume that f is a bounded function on the
interval [a, b].
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Proposition 6.1 Let P and P ′ be partitions of [a, b]. If P ′ is finer than P then

L( f, P) ≤ L( f, P ′) ≤ U ( f, P ′) ≤ U ( f, P).

Proof Consider how L( f, P) changes if an additional point r is included in the
partition. Suppose that t j < r < t j+1. The only change in L( f, P) that arises is due
to the replacement of the term m j (t j+1 − t j ) by the sum of two terms

m ′
j (r − t j ) + m ′′

j (t j+1 − r),

where m ′
j = inf [t j ,r ] f and m ′′

j = inf [r,t j+1] f . But m ′
j ≥ m j and m ′′

j ≥ m j (since the
new infima are taken over smaller sets), so that

m ′
j (r − t j ) + m ′′

j (t j+1 − r) ≥ m j (t j+1 − t j ),

and therefore L( f, P) ≤ L( f, P ′). The other inequality is proved by a similar argu-
ment. �

Proposition 6.2 Let P1 and P2 be partitions of [a, b]. Then

L( f, P1) ≤ U ( f, P2).

Proof Create a new partition P3 by uniting the points in P1 and P2 into one sequence.
Then P3 is finer than P1 and also finer than P2. This implies that

L( f, P1) ≤ L( f, P3) ≤ U ( f, P3) ≤ U ( f, P2),

so that L( f, P1) ≤ U ( f, P2) as required. �

Consider next all numbers L( f, P), that is, all lower sums, as P ranges over
all possible partitions. These form a set (we could define it by specification for
example). This set is moreover bounded above; for example, if we fix a partition P1,
then L( f, P) ≤ U ( f, P1) for every partition P . Similarly the set of all upper sums
U ( f, P) is bounded below. We therefore define the lower and upper integrals

∫

f := sup
P

L( f, P),

∫

f := inf
P
U ( f, P)

as the supremum of the lower sums and the infimum of the upper sums respectively,
taken over all possible partitions.

If f is a positive function and we wish to assign an area to the region between
the graph y = f (x) and the x-axis, bounded by the lines x = a and x = b, then it
seems clear that whatever this area might be, it should lie between the lower and
upper integrals.
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Proposition 6.3
∫

f ≤
∫

f

Proof Let P1 and P2 be partitions of [a, b]. Then L( f, P1) ≤ U ( f, P2). Taking the
supremum over all partitions P1, we obtain

∫

f ≤ U ( f, P2).

Taking next the infimum over all partitions P2, we obtain
∫
f ≤ ∫

f as required. �

Nowwe can define theDarboux integral. It has to be said that the process leading to
this definition is remarkably short. As with the treatment of some previous concepts,
such as limit or derivative, the definition singles out a class of functions, here called
integrable, and for each integrable function defines a number called its integral.

Definition Let the function f be bounded on the interval [a, b]. If the upper and
lower integrals of f are equal, we say that f is integrable (on the interval [a, b]). If f
is integrable, the common value of its upper and lower integrals is called the integral
of f (on the interval [a, b]). It is commonly denoted by one of the following:

∫

f,
∫

[a,b]
f,

∫ b

a
f or

∫ b

a
f (x) dx .

6.2.1 Thoughts on the Definition

The concept of integral has a reputation for being hard to define. The definition we
have just given for the Riemann–Darboux integral is actually quite short and some
of its complexities may be concealed.

First of all the role of the completeness axiom comes out clearly in the repeated
use of supremum and infimum. The supremum of the set of lower sums (defining the
lower integral) is analogous to the supremum of a function. It is not though a function
that assigns a real number to each real number in its domain, for the domain here
is not a set of real numbers, but the set of partitions. The notation L( f, P) reflects
this and emphasises the dependence on P (whilst f remains fixed throughout the
discussion).

It appears that the integral is essentially a more complex concept than the deriva-
tive. Previously the only sets we encountered were sets of real numbers, mainly
intervals, or sets of natural numbers, and one could quite happily define the deriva-
tive without using more complex sets. When it comes to the integral, we have to
embrace the set of all partitions of an interval. A partition is a sequence of real num-
bers with certain constraints; so the set of all partitions is a set of sequences of real
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numbers. This is a higher level of complexity than a set of real numbers. It seems
that every approach to the integral involves complexity at this level.

Another approach to the integral is possible in which we approximate f from both
above and below by step functions. We will then encounter sets of step functions.

Definition A function g : [a, b] → R is called a step function if there exists a parti-
tion (t0, t1, t2, ..., tm) of [a, b], and numbers (c0, c1, c2, ..., cm−1), such that g(x) = c j
for t j < x < t j+1, j = 0, 1, 2, ...,m − 1. In other words g is constant on each open
interval ]t j , t j+1[.

The area under the graph of a positive step function ought by rights to be∑m−1
j=0 c j (t j+1 − t j ). This suggests that we first define the integral for the step func-

tion g, whether positive or not, as

S(g) =
m−1∑

j=0

c j (t j+1 − t j ).

For a function f , supposed bounded on [a, b], we can define the set of lower
approximations as the set of all numbers S(g) as g ranges through step functions
such that g ≤ f (it is here that a set of step functions is needed). This set is not empty
thanks to the boundedness of f . Similarly the set of upper approximations is the set
of all numbers S(g) as g ranges through step functions such that g ≥ f .

So far neither supremum nor infimum has been used. Next, we define the lower
integral as the supremum of the set of all lower approximations and the upper integral
as the infimum of the set of all upper approximations. Finally, the function is called
integrable when the lower and upper integrals coincide.

The idea of approximating a function from above and below by simpler functions
for which the integral has an obvious definition is common to many approaches to
defining integrals. In particular it recurs in the definition of the Lebesgue integral,
one of the greatest achievements of analysis in the twentieth century, to which the
Riemann–Darboux integral is but a halfway house, and many of its faults are thereby
alleviated.

Exercise Prove that the integral defined using approximation by step functions is
the same as the Riemann–Darboux integral.

6.3 First Results on Integrability

The definition of the Riemann–Darboux integral raises some questions:

(a) What functions are integrable? More precisely, what conditions can we impose
on f (in addition to its being bounded) that suffice for f to be integrable?

(b) Continuous functions on the interval [a, b] are necessarily bounded. Are they
integrable?
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(c) Are step functions integrable? If so, and if f is a step function, is
∫

f = S( f )
(as defined in the last section)?

(d) If f is integrable can we find a practical way to calculate the integral? It is clearly
impractical to compute the supremum over all lower sums.

We shall devote a considerable effort and a large part of this text to answering these
questions.

One step is used repeatedly in the proofs and it is useful to set it out in advance.
Let ε > 0. Since the lower integral is the supremum of the lower sums L( f, P) over
all partitions P , and the upper integral is the infimum of all upper sumsU ( f, P) over
all partitions P , there exists a partition P1, such that

L( f, P1) >

∫

f − ε,

and another partition P2, such that

U ( f, P2) <

∫

f + ε.

Now construct a partition P by uniting the points of P1 and P2. Then P is simul-
taneously finer than both P1 and P2. Hence in passing from P1 and P2 to P , the
lower sum cannot decrease and the upper sum cannot increase. Therefore the above
inequalities hold also for P in place of P1 and P2.

The convenience is that both inequalities hold for the same partition. We can even
do the same for a finite set of functions. For example, for two functions f and g, and
a given ε, we can find a single partition P , such that the inequalities hold for both f
and g.

6.3.1 Riemann’s Condition

The condition introduced here is basic for proving that given functions are integrable.

Proposition 6.4 The function f is integrable if and only if the following condition
(which we shall call Riemann’s condition1) is satisfied: for each ε > 0 there exists a
partition P, such that

U ( f, P) − L( f, P) < ε.

Proof Assume that f is integrable. Then
∫
f = ∫

f . Choose a partition P , such that

1The name “Riemann’s condition” appears in the book “Mathematical Analysis” by T. Apostol. I
do not know of any other author who names it after Riemann. It is, however, convenient to have a
name for it.
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U ( f, P) <

∫

f + ε

2
and L( f, P) >

∫

f − ε

2
.

It follows that

U ( f, P) − L( f, P) <

∫

f + ε

2
−

∫

f + ε

2
= ε.

Conversely, assume that Riemann’s condition is satisfied. Let ε > 0. Choose a
partition P , such that U ( f, P) − L( f, P) < ε. Now we have

L( f, P) ≤
∫

f ≤
∫

f ≤ U ( f, P)

so that
∫
f − ∫

f < ε. But this holds for all ε > 0. We conclude that
∫
f = ∫

f . �

The great strength of Riemann’s condition is that we only have to find a single
partition that satisfies U ( f, P) − L( f, P) < ε. At this point it is useful to note that

U ( f, P) − L( f, P) =
m−1∑

j=0

� j ( f )(t j+1 − t j )

where � j ( f ) denotes the oscillation of f on the interval [t j , t j+1], that is, the dif-
ference between the supremum and the infimum (see Sect. 4.5). We recall (Sect. 4.5
Exercise4) that the oscillation of f on the interval [c1, c2] is the same as the quantity

sup
c1≤x,y≤c2

| f (x) − f (y)|.

The supremum here is taken over all pairs of points, x and y, in the interval [c1, c2].
This formula is very useful for comparing the oscillation of two functions, espe-
cially when it is required to deduce the integrability of one of them from the known
integrability of the other, as we shall see.

6.3.2 Integrability of Continuous Functions and Monotonic
Functions

We begin to answer the question as to which functions are integrable. We shall
show that, loosely paraphrased, continuous functions and monotonic functions are
integrable.

Proposition 6.5 Let f : [a, b] → R be continuous. Then f is integrable.
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Fig. 6.3 Picture of the
proof, adapted from
Newton’s Principia

Proof Let ε > 0. We use the small oscillation theorem (Proposition4.14; now is
the time to read it). There exists a partition P , such that Mj − m j < ε for each
subinterval of the partition. But then

U ( f, P) − L( f, P) =
m−1∑

j=0

(Mj − m j )(t j+1 − t j ) <

m−1∑

j=0

ε(t j+1 − t j ) = ε(b − a)

and Riemann’s condition is satisfied. �
Newton’s pictorial proof of the integrability of monotonic functions is illustrated

in Fig. 6.3.

Proposition 6.6 Let f : [a, b] → R be monotonic. Then f is integrable.

Proof Assume for example that f is increasing (though not necessarily strictly). If
f (a) = f (b) then f is constant and obviously integrable; see the next section. So
we may suppose that f (a) < f (b).

Let ε > 0. Construct a partition P = (t0, t1, ..., tm), such that

t j+1 − t j <
ε

f (b) − f (a)

for j = 0, 1, 2, ...,m. Since f is increasing we havem j = f (t j ) and Mj = f (t j+1),
and we verify Riemann’s condition by the calculation

U ( f, P) − L( f, P) =
m−1∑

j=0

(Mj − m j )(t j+1 − t j )

=
m−1∑

j=0

( f (t j+1) − f (t j ))(t j+1 − t j )

≤ ε

f (b) − f (a)

m−1∑

j=0

( f (t j+1) − f (t j ))

≤ ε

f (b) − f (a)
( f (b) − f (a)) = ε. �
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6.3.3 Two Simple Integrals Computed

In this short section we shall compute our first integrals. The two results are not very
impressive, and the treatment of the first function may seem tortuous, but a wait and
see attitude is required. They will be used to find the integrals of step functions in
Sect. 6.4.

Function A. Let f : [a, b] → R where f (x) = 0 for a < x < b but f (a) and f (b)
are not necessarily 0. Then f is integrable and

∫
f = 0.

For each ε > 0 we consider the partition Pε = (a, a + ε, b − ε, b). If f (a) and
f (b) are positive, then, for all ε, we have

U ( f, Pε) = ε( f (a) + f (b)).

If f (a) > 0 ≥ f (b), then, for all ε, we have

U ( f, Pε) = ε f (a).

If f (b) > 0 ≥ f (a), then, for all ε, we have

U ( f, Pε) = ε f (b).

Finally, if neither f (a) nor f (b) is positive, then, for all ε, we have

U ( f, Pε) = 0.

From these facts it is clear that

∫

f = inf
P
U ( f, P) ≤ inf

ε>0
U ( f, Pε) = 0.

That is,
∫
f ≤ 0. Similar considerations apply to L( f, P) and show that

∫
f ≥ 0.

Hence
∫
f = ∫

f = 0 and sowe have
∫

f = 0. The argument is illustrated in Fig. 6.4.

Fig. 6.4 An upper sum for
function A
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Function B. Let g : [a, b] → R be the constant C . Then
∫
g = C(b − a).

Now U (g, P) = L(g, P) = C(b − a) for every partition and therefore g is inte-
grable with

∫
g = C(b − a).

6.4 Basic Integration Rules

The rules proved in this section enable us to build new integrable functions from the
old ones. Loosely described, the sum and product of integrable functions are inte-
grable. Moreover integration is a linear operation in the space of functions integrable
on a given interval.

In the preamble to rules and propositions, we shall often write that the functions
are bounded before assuming that they are integrable. Though logically unnecessary,
it could be useful to emphasise that Riemann–Darboux integration applies only to
bounded functions.

Proposition 6.7 (Sum of functions) Let f : [a, b] → R and g : [a, b] → R be
bounded functions and assume that they are both integrable. Then f + g is inte-
grable and ∫

( f + g) =
∫

f +
∫

g.

Proof Let P = (t0, t1, ..., tm) be a partition of [a, b]. Set

m j = inf[t j ,t j+1]
( f + g), m ′

j = inf[t j ,t j+1]
f, m ′′

j = inf[t j ,t j+1]
g,

with similar definitions for Mj , M ′
j , M

′′
j using suprema instead of infima.

For x in [t j , t j+1]we have f (x) + g(x) ≤ M ′
j + M ′′

j , so that we find Mj ≤ M ′
j +

M ′′
j . Similarly m j ≥ m ′

j + m ′′
j . These give the inequalities

U ( f + g, P) ≤ U ( f, P) +U (g, P), L( f + g, P) ≥ L( f, P) + L(g, P).

Let ε > 0. There exists a partition P (see the discussion in Sect. 6.3 on this point),
such that

U ( f, P) <

∫

f + ε, U (g, P) <

∫

g + ε

L( f, P) >

∫

f − ε, L(g, P) >

∫

g − ε.

We obtain

U ( f + g, P) − L( f + g, P) ≤ U ( f, P) − L( f, P) +U (g, P) − L(g, P) < 4ε.

This shows that Riemann’s condition holds for f + g. In addition we have
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∫

f +
∫

g − 2ε < L( f, P) + L(g, P) ≤ L( f + g, P)

≤
∫

( f + g) ≤ U ( f + g, P) ≤ U ( f, P) +U (g, P) <

∫

f +
∫

g + 2ε

so that the inequality

∫

f +
∫

g − 2ε <

∫

( f + g) <

∫

f +
∫

g + 2ε

holds for all ε > 0. We conclude that
∫
( f + g) = ∫

f + ∫
g. �

Proposition 6.8 (Multiplication by scalars) Let f : [a, b] → R be bounded and
integrable. Let α be a real number. Then the function α f is integrable on [a, b] and

∫

α f = α

∫

f.

Proof For an arbitrary set B we have the equalities

sup
B

(α f ) = α sup
B

f, inf
B

(α f ) = α inf
B

f (α > 0) (6.1)

and
sup
B

(α f ) = α inf
B

f, inf
B

(α f ) = α sup
B

f (α < 0). (6.2)

Hence
U (α f, P) = αU ( f, P), L(α f, P) = αL( f, P) (α > 0)

and
U (α f, P) = αL( f, P), L(α f, P) = αU ( f, P) (α < 0).

In the case α > 0 we therefore have

sup
P

L(α f, P) = α sup
P

L( f, P) = α

∫

f = α inf
P
U ( f, P) = inf

P
U (α f, P).

The extreme terms are therefore equal. Hence each is the same as
∫

α f and at the
same time α

∫
f .

In the case α < 0 we have

sup
P

L(α f, P) = α inf
P
U ( f, P) = α

∫

f = α sup
P

L( f, P) = inf
P
U (α f, P)

with the same conclusion. �

Exercise Prove the formulas (6.1) and (6.2) in the proof of Proposition6.8.
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Proposition 6.9 (Join of intervals) Let f : [a, b] → R be bounded and let a < c
< b. If f is integrable on [a, c] and also on [c, b] then f is integrable on [a, b] and

∫

[a,b]
f =

∫

[a,c]
f +

∫

[c,b]
f.

Conversely if f is integrable on [a, b], then f is also integrable on [a, c] and on
[c, b] and the same equation holds.

Proof Consider the first assertion. Let f be integrable both on [a, c] and on [c, b].
Denote by f1 the restriction of f to [a, c] and by f2 the restriction of f to [c, b].

Let ε > 0. Choose partitions P1 on [a, c] and P2 on [c, b], such that

U ( f1, P1) − ε <

∫

[a,c]
f < L( f1, P1) + ε

and

U ( f2, P2) − ε <

∫

[c,b]
f < L( f2, P2) + ε.

Next construct a partition P on [a, b] by uniting P1 and P2. It is clear that

L( f, P) = L( f1, P1) + L( f2, P2)

and
U ( f, P) = U ( f1, P1) +U ( f2, P2).

But then we get

U ( f, P) − 2ε <

∫

[a,c]
f +

∫

[c,b]
f < L( f, P) + 2ε.

This gives U ( f, P) − L( f, P) < 4ε and Riemann’s condition is satisfied for f on
[a, b]. This allows us to expand the last inequalities to

∫

[a,c]
f +

∫

[c,b]
f − 2ε < L( f, P) ≤

∫

[a,b]
f ≤ U ( f, P) <

∫

[a,c]
f +

∫

[c,b]
f + 2ε

which are valid for all ε > 0. The first claim of the proposition now follows.
For the second assertion we must show that f1 and f2 are integrable given that

f is integrable. Let ε > 0. We consider a partition P of [a, b], which contains the
point c and satisfies U ( f, P) − L( f, P) < ε. From P we make in an obvious way
partitions P1 of [a, c] and P2 of [c, b] which satisfyU ( f1, P1) − L( f1, P1) < ε and
U ( f2, P2) − L( f2, P2) < ε. �
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