A formal technical text

Verilog is a Hardware Description Language (HDL). A language like C is used to describe software programs that execute on some hardware device; a language like Verilog can describe the hardware device itself. Using a HDL, usually within some form of Electronic Design Automation (EDA) software suite, offers the engineer similar benefits to a programmer using a high-level language like C over a low-level machine language. The Verilog language was first developed in 1984 at a company called Gateway Design Automation as a hardware modelling tool. Some of the language design goals were simplicity and familiarity; as a result Verilog resembles both C and Pascal with many similar constructs. Coupled with the provision of a familiar and flexible development environment, Verilog promotes many of the same advantages that software developers are used to. That is, the language makes it easy to abstract away from the implementation and concentrate on design; it makes design modularisation and reuse easier; associated tools such as simulators make test and verification easier and more efficient. There are two standards for the language: an initial version 3.1 Introduction 99 termed Verilog-95 was improved and resubmitted to the IEEE for standardisation as Verilog-2001 or IEEE 1364-2001. Much of this improvement was driven by input from users in companies such as Motorola and National Semiconductor. This standardisation, along with the production of software to synthesise real hardware from Verilog descriptions at a variety of abstraction levels, has made the language a popular choice for engineers. Verilog models, so-called because they are somewhat abstract models of physical circuits, can be described at several different levels. Each level is more abstract than the last, leaving less work for the engineer and allowing them to be more expressive: Switch Level At the lowest level, Verilog allows one to describe a circuit in terms of transistors. Although this gives very fine-grained control over the circuit comosition, developing large designs is still a significant challenge since the building blocks are so small. Gate Level Above the transistor level, and clearly more attractive for actually getting anything useful done, is the concept of gate-level description. At this level, the designer describes the functionality of the circuit in terms of basic logic gates and the connections between them; this is somewhat equivalent to the level of detail in the previous chapter. Register Transfer Level (RTL) RTL allows the designer to largely abstract away the concept of logic gates as an implementation technology and simply describe the flow of data around the circuit and the operations performed on it. Behavioural Level The most abstract and hence most expressive form of Verilog is so-called behavioural-level design. At this level, the designer uses high-level constructs, similar to those in programming languages like C, to simply specify the required behaviour rather than how that behaviour is implemented.(an excerpt from the textbook a Practical introduction to Computer architecture)

A literary technical text

Relativity permitted continuous deformation, but no cutting and pasting. Why not? Because it had to allow for cause and effect. Influences had to be localized, traveling from point to point at a finite velocity; chop up space-time and rearrange it, and the causal structure would fall apart. What if you were an observer, though, who had no causal structure? A self-aware pattern appearing by chance in the random twitches of a noise machine, your time coordinate dancing back and forth through causally respectable “real time”? Why should you be declared a second-class being, with no right to see the universe your way? Ultimately, what difference was there between so-called cause and effect, and any other internally consistent pattern?
Why shouldn’t the pattern we think of as “the universe” assemble itself, find itself, in exactly the same way?“I can piece together my own coherent space and time from data scattered so widely that it might as well be part of some giant cloud of random numbers … then what makes you think that you’re not doing the very same thing?”
The djinn’s expression hovered between alarm and irritation.
Squeak.
“Paul… what’s the point of all this? ‘Space-time is a construct; the universe is really nothing but a sea of disconnected events…’ Assertions like that are meaningless. You can believe it if you want to… but what difference would it make?”
“What difference? We perceive—we inhabit—one arrangement of the set of events. But why should that arrangement be unique? There’s no reason to believe that the pattern—”
Squeak. randomly allocated to one thousand clusters.”
“One. Two. Three.”
Paul stopped counting, stretched his arms wide, stood up slowly. He wheeled around once, to examine the room, checking that it was still intact, still complete.
Then he whispered:
“This is dust. All dust. This room, this moment, is scattered across the planet, scattered across five hundred seconds or more—but it still holds itself together. Don’t you see what that means?”
The djinn reappeared, but Paul didn’t give him a chance to speak. The words flowed out of him, unstoppable. He understood.
“Imagine… a universe entirely without structure, without shape, without connections. A cloud of microscopic events, like fragments of space-time… except that there is no space or time.
[bookmark: _GoBack]What characterizes one point in space, for one instant? Just the values of the fundamental particle fields, just a handful of numbers. Now take away all notions of position, arrangement, order—and what’s left?A cloud of random numbers.”
“That’s it. That’s all there is. The cosmos has no shape at all—no such thing as time or distance, no physical laws, no cause and effect.
What we’ve found is the only coherent way of ordering the dust.
There must be billions of other universes coexisting with us, made of the very same stuff—just differently arranged.
If I can perceive events thousands of kilometers and hundreds of seconds apart to be side by side and simultaneous, there could be worlds, and creatures, built up from what we’d think of as points in space-time scattered all over the galaxy, all over the universe.
We’re one possible solution to a giant cosmic anagram… but it would be ludicrous to believe that we’re the only one.”
Squeak.
Durham snorted.
“A cosmic anagram? So where are all the leftover letters? If any of this were true—and the primordial alphabet soup really is random—don’t you think it’s highly unlikely that we could structure the whole thing?”
Paul thought about it.
“We haven’t structured the whole thing. The universe is random, at the quantum level. Macroscopically, the pattern seems to be perfect; microscopically, it decays into uncertainty. (an excerpt from Greg Evan’s novel Permutation city)

