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One can proceed similarly with the curl operator: Calculating the circula-
tion of the electric field E(r) along a Stokes interface loop (i.e., a small closed
loop running in one direction on the upper side of the horizonal interface and
in the opposite direction on the lower side but with negligible vertical height),
one obtains from curlE = ∇×E = 0:

n×
(
E(+) −E(−)

)
= 0 . (17.59)

From (17.58) and (17.59) one can derive a law of refraction the electric
field lines at the interface between two different dielectric materials. This law
follows from the fact that the tangential components of E are continuous,
whereas the normal components

n ·E(i) with i = 1, 2

(i.e., corresponding to the two different materials) are inversely proportional
to the respective εi. It then follows that tanα2

tanα1
≡ ε2

ε1
, with angles αi to the

normal. For ε2/ε1 → ∞ one obtains conditions such as those for a metal
surface in vacuo, α2 → 90◦, α1 → 0 (a sketch is recommended).
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18.1 Ampère’s Law

For centuries it had been assumed that electricity and magnetism were com-
pletely separate phenomena. Therefore it was quite a scientific sensation when
in 1818 the Danish physicist Hans Christian Ørsted proved experimentally
that magnetic fields were not only generated by permanent magnetic dipoles,
but also by electric currents, and when slightly later André Marie Ampère
showed quantitatively that the circulation of the magnetic field H along
a closed loop followed the simple relation:

∮

∂F

H(r) · dr = I(F ) (Ampere’s law) . (18.1)

Here, I(F ) is the flux of electric current through a surface F inserted into
the closed loop Γ = ∂F 1

I(F ) :=
∫∫

F

j · nd2A . (18.2)

j := 
(r)v(r)

is the vector of the current density (dimensionality: A/cm2 = C/(cm2s)).
With Stokes’s integral theorem it follows that the differential form of

Ampère’s law (18.1) is given by:

curlH = j . (18.3)

For the special case of a thin wire aligned along the z-axis from (−∞) to
(+∞), in which a steady electric current I flows, using cylindrical coordinates
one obtains

H ‘z−wire′ = eϕ
I

2πr⊥
. (18.4)

Just as the electrostatic field of a point charge possesses a (three-
dimensional) δ-divergence,
1 The surface F is not uniquely defined by Γ , since different surfaces can be in-

serted into the same closed loop. This is the topological reason underlying gauge
freedom of the vector potential, which is discussed below.
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div
(

qr

4πε0r3

)
= qδ(x, y, z) ,

an analogous relation is also valid for the curl of the magnetic field of the
above “z-wire”:

(curlH“z−wire′′)(x, y, z) = Iδ(x, y)ez .

We can formulate these ideas in a general way:
The effective electric charges are the sources of the electrostatic field E(r)

(whereas the vortices of E vanish); in contrast the vortices of the magneto-
static field B(r) correspond to effective electric currents (whereas the sources
of B vanish).

Generally, a vector field v(r) is determined by its sources and vortices.
Note that we have written B, not H , and “effective” quantities, not

“true” ones (see above). In particular, the relations between E and D as well
as B and H are not quite simple, and not all magnetic fields are produced
by electric currents (Sect. 18.5 → spin magnetism).

18.1.1 An Application: 2d Boundary Currents
for Superconductors; The Meissner Effect

As already detailed in Sect. 17.2.9, at an interface Ampère’s equation

curlH = j

must be generalized to

n× (H+ −H−) = js ,

where js is an interface-current density (dimensionality: A/cm, not A/cm2;
and we have js ≡ σv, analogously to j ≡ 
v).

As we shall see, this formulation yields a simple explanation of the so-
called Meissner effect of superconductivity. This effect amounts to “expelling”
the magnetic field from the interior of a superconducting material, by loss-
free interface (super)currents that flow tangentially at the interface between
a superconducting region “1” (e.g., the r.h.s. of a plane) and a normally
conducting region “2” (e.g., vacuum on the l.h.s.). For example, if the in-
terface normal (from “1” to “2”) is in the (−x)-direction and the external
magnetic field (in the normal conducting region “2”) is (as usual) in the +z-
direction, then in “1” (at the interface towards “2”) supercurrents flow in the
y-direction, producing in “1” a field −Bez, which is different from zero only
in a very thin layer of typical width

Δx = λ ≈ 10 nm .
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For energy reasons (the magnetic field energy in region “1” can be saved)
the supercurrents flow with such a strength that in the interior of region “1”,
outside the above-mentioned interface zone of width

Δx = λ ,

the external magnetic field is exactly compensated. Further details cannot be
given here.

18.2 The Vector Potential; Gauge Transformations

Since
curlH = j(�= 0) ,

the magnetic field can no longer be calculated from a scalar potential: With

H(r) = −gradφm(r)

one would derive
curlH ≡ 0 ,

since
curl gradφm(r) ≡ 0

for arbitrary scalar functions φm(r). (∇× (∇φm) is formally a cross-product
of two identical vectors and thus ≡ 0.) Fortunately we have

divB(r) ≡ 0 ,

so that one can try:
B = curlA(r) ,

because
div curlv(r) ≡ 0

for all vector fields v(r), as can easily be shown. (Formally div curlv is a so-
called spate product, the determinant of a 3 × 3-matrix, i.e., of the form
u · [v × w], with two identical vectors, ∇ · [∇ × v], and therefore it also
vanishes identically.)

In fact an important mathematical theorem, Poincaré’s lemma, states the
following: For source-free vector fields B, i.e., if

∫∫
©
∂G

d2AB · n ≡ 0 ,

in a convex open region G (e.g., in the interior of a sphere) with a sufficiently
well-behaved connected boundary ∂G, one can write vector potentialsA with

B = curlA .
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One should note that A is not at all unique, i.e., there is an infinity of
different vector potentialsA, but essentially they are all identical. If one adds
an arbitrary gradient field to A, then curlA is not changed at all. A so-called
gauge transformation:

A→ A′ := A+ gradf(r) , (18.5)

with arbitrary f(r), implies

curlA ≡ curlA′ , since curl gradf ≡ 0 .

Therefore, the physical quantity B is unchanged.

18.3 The Biot-Savart Equation

In the following we consider, as usual, G = R3.

a) Firstly, we shall use a gauge such that divA(r) = 0 (Landau gauge).
b) Secondly, from Ampère’s law,

curlH = j , with B = μ0H + J ,

we conclude that

curlB = μ0j + curlJ =: μ0jB ,

with the effective current

jB := j +M , where M :=
J

μ0

is the magnetization and J the magnetic polarization2.
c) Thirdly, we now use the general identity

curl curlA ≡ grad divA−∇2A . (18.6)

Hence, due to
curl B =: μ0jB ,

the Cartesian components of A satisfy the Poisson equations

−∇2Ai = μ0 · (jB)i , for i = x, y, z .

The solution of these equations is analogous to the electrostatic problem,
viz

A(r) =
∫∫∫

dV ′
μ0jB(r′)
4π|r − r′| . (18.7)

2 In the cgs system the corresponding quantities areM ′
“
= (ΔV )−1P

ri∈ΔV m
′
i

”

and 4πM ′.
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One can easily show by partial integration that this result also satisfies
the equation

divA ≡ 0 , since divjB = 0 .

Later, in the context of the so-called continuity equation, this relation will be
discussed more generally.

By applying the curl operator, equation (18.7) leads to the formula of
Biot and Savart :

B(r) =
∫∫∫

dV ′
μ0

4π
jB(r′)× (r − r′)
|r − r′|3 . (18.8)

In the integrand one has the same dependence on distance as in Coulomb’s
law for E, but complemented by the well-known right-hand rule connecting
the directions of the effective current jB and the magnetic induction B, i.e.,
the product

1
ε0

E(r′)

(r − r′)
|r − r′|3

is replaced by the cross-product

μ0jB(r′)× (r − r′)
|r − r′|3 .

(It is no coincidence that the equation for A, (18.7), is easier to remember
than its consequence, the Biot-Savart equation (18.8).)

18.4 Ampère’s Current Loops and their Equivalent
Magnetic Dipoles

This section is especially important, since it shows that the relationships be-
tween electric currents and magnetic dipoles are very strong indeed. Firstly
we state (without proof, but see the next footnote) that the magnetic induc-
tion B(r) produced by a current loop Γ = ∂F (current I) is quantitatively
identical to the magnetic field that would be produced by an infinitesimal
film of magnetic dipoles inserted into the same loop, i.e., for the fictitious
2d-dipole density dm of that film the following formula would apply:

dm ≡ μ0Ind2A .

a) For a current loop, one obtains from Biot and Savart’s equation

B(r) =
μ0I

4π

∮

∂F

dr′ × r − r′
|r − r′|3 . (18.9)
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b) In the dipole case one would obtain outside the (fictitious) dipole film the
equivalent result

B = μ0H ,

with

H(r) = −grad
I

4π

∫∫

F

d2A′
n(r′) · (r − r′)
|r − r′|3 . (18.10)

Proof of the equivalence of the two results proceeds analogously to Stokes’s
theorem, but since it is somewhat difficult in detail, we only give an outline
in a footnote3. An example is given in Fig. 18.1.

In this context we additionally keep two useful identities in mind:

A = m× r

4πr3

Fig. 18.1. The diagram illustrates a typical section of the magnetic field lines
produced by a current loop of two (infinitely) long straight wires. The wires intersect
the diagram at the points (±1, 0). The plane of the loop of area A (→ ∞) and
carrying a current I (i.e., of opposite signs in the two long wires) is perpendicular
to the plane of the diagram. Exactly the same inductionB(= μ0H) is also produced
by a layer of magnetic dipoles inserted into the current loop, with the quantitative
relation, dm ≡ μ0Ind2A, given in the text

3 In the following we use the antisymmetric unit-tensor eijk and Ein-
stein’s summing convention, i.e., all indices which appear twofold
are summed over. With these conventions Stokes’s theorem becomes:H

∂F
Ejdxj =

RR
F ejlm∂lEmnjd

2A. Now the following chain of equations is true:H
∂F
eijk

dx′
j(xk−x′

k)

|r−r′|3
“
≡ H

∂F
dx′

jejki∂
′
k

1
|r−r′|

”
=
RR

F ejlm∂
′
lemki∂

′
k

1
|r−r′|njd

2A′ =

− RRF eikmejlm∂
′
lk

1
|r−r′|njd

2A′. With the basic identity eikmejlm = δijδkl−δilδkj

and the simple relations ∂′
i

1
|r−r′| = −∂i

1
|r−r′| and ∂kk

1
|r−r′| = 0 (for r′ 	= r)

our statement of equivalence is obtained.
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for the vector potential of a magnetic dipole and

curl
(
m× r

r3

)
=mdiv

r

r3
− grad

m · r
r3

(cf. problem 5 of the exercises, summer 2002 [2]).
Because of the above-mentioned equivalence it would be natural to suggest

that all magnetic dipole moments are generated in this way by Ampèrian
current loops. However, this suggestion would be wrong: There are magnetic
moments which cannot be generated in this “classical” way, but which are
related to the non-classical concept of “electron spin” (see Part III: Quantum
Mechanics). The following section deals with the difference.

18.5 Gyromagnetic Ratio and Spin Magnetism

An atomic electron orbiting the nucleus on a circular path of radius R with
velocity

v = ωR

(
time period T =

2π
ω

)

has an angular momentum of magnitude

L = R ·mev = meωR
2 .

According to the Ampèrian “current loop” picture it would be equivalent to
a magnetic dipole moment

m = μ0
e

T
πR2 =

μ0eωR
2

2
,

where we have used I = e
T (me is the electron mass).

For a current loop, therefore, the gyromagnetic ratio

γ :=
m

L

is given by
γ ≡ μ0e

2me
.

However, in the nineteen-twenties due to an experiment by Einstein and
de Haas it was shown that for the usual magnetic materials, e.g., alloys of Fe,
Co and Ni, the gyromagnetic ratio is twice as large as the above ratio. For
these materials the magnetism is due almost entirely to pure spin magnetism.
For the angular momentum of these alloys the “classical” orbital contribution
(see Part I) is almost negligible; the (dominant!) contribution is essentially
“non-classical”, i.e., due to spin magnetism, which is only understandable
in a quantum mechanical context. (In fact, a profound analysis is not even
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possible in non-relativistic quantum mechanics, but only in Dirac’s relativistic
version.)

In elementary texts one often reads that the spin angular momentum of
a (charged) particle is some kind of “proper angular momentum”, this being
acceptable if one does not consider the particle to be rotating like a “spinning
top”, since a spinning charge would have the classical value,

γ =
μ0

2me
,

for the gyromagnetic ratio and not twice this value. One has to admit that
these relations are complicated and not understandable at an elementary
level.
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of Induction; the Continuity Equation;
Maxwell’s Displacement Current

Maxwell’s first and second equations, divD = 
 and divB = 0 (i.e., Gauss’s
law for the electric and the (non-existent) magnetic charges, respectively)
also apply without change for time-dependent electrodynamic fields. This is
different with respect to the third and fourth Maxwell equations:

a) Faraday’s law of induction (Faraday 1832)

curlE = −∂B
∂t

, (19.1)

and
b) Ampère’s law including Maxwell’s displacement current :

curlH = j +
∂D

∂t
. (19.2)

These two equations, (19.1) and (19.2), will be discussed in the following
subsections. To aid our understanding of the last term in (19.2), known as
Maxwell’s displacement current, we shall include a subsection on the conti-
nuity equation. This general equation contains an important conservation law
within it, the conservation of total charge (see below).

19.1 Faraday’s Law of Induction and the Lorentz Force;
Generator Voltage

In 1832 Faraday observed that a time-dependent change of magnetic flux

φB(F ) =
∫∫

F

B · nd2A

through a current loop Γ = ∂F gives rise to an electromotive force (i.e., a force
by which electric charges of different sign are separated). This corresponds
to a generator voltage which is similar to the off-load voltage between the
two poles of a battery. (In the interior of a battery the current flows from the
minus pole to the plus pole; only subsequently, in the external load circuit,
does the current flow from plus to minus.) In Fig. 19.1 we present a sketch
of the situation.
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Fig. 19.1. Sketch to illustrate Faraday’s law of induction. The three arrows on the
r.h.s. of the figure denote a magnetic induction B. An oriented loop Γ is plotted, as
well as a paved surface F , which is inserted into Γ (Γ = ∂F ) but which does not need
to be planar as in the diagram. A change in magnetic flux φB(F ) :=

RR
F
B ·nd2A

gives rise to an induced voltage Ui(Γ )

 
=

r1−εH
r1+ε

E · dr
!

between two infinitesimally

close points r1+ε and r1−ε on the loop. These two points – which are formally the
initial and end points of the loop – can serve as the poles of a voltage generator
(the initial point r1+ε corresponds to the negative pole). The related quantitative

equation is Faraday’s law: Ui(t) = − dφB(F )
dt

Faraday’s law of induction states that the induced voltage (i.e., the gen-
erator voltage mentioned above)

Ui =

r1−ε∮

r1+ε

E(r) · dr

between (arbitrary) initial points r1+ε and (almost) identical end points r1−ε
of an (almost) closed line1 Γ = ∂F obeys the following law:

Ui(t) = −dφB(F )
dt

. (19.3)

As already mentioned, the initial and end points of the (almost) closed
loop Γ differ only infinitesimally. They correspond to the minus and plus
poles of the generator, i.e., Ui is the generator voltage.

It does not matter at which position of the curve Γ the voltage is
“tapped”, nor does it matter whether the change of the magnetic flux re-
sults

a) from a change of Γ (i.e., form or size) relative to the measuring equipment,
b) from a change of the magnetic induction B(r, t), or
c) by a combination of both effects.
1 A sketch is recommended. The normal vector n of the area F should coincide

with the orientation of the loop Γ = ∂F .
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