CHAPTER 2

STATICS

Basic Attacks and Strategles for
Solving Problems in this Chapter

Statics is the study of the condition of objects (usually at rest) with
especial regard to the forces involved. Fundamental to physics is the
concept of a force. Intuitively, a force is a push or a pull acting on some
object. More precisely, Newton's laws help us to define a force. Newton’s
first law states that an object at rest remains at rest and an object in
motion remains in motion with constant velocity in the absence of external
forces. Newton's second law is the basis of dynamics, but one consequence
of it is that the weight force of any mass is W = mg, where g is the
gravitational acceleration = 9.8 m/s? near the surface of the Earth.
Newton’s third law says that for every action force there is an equal and
opposite reaction force.

Other than weight, several important forces are tension (the force in
a string or cable), the normal force N acting perpendicular to a surface,
the force of static friction (F, <p N), the force of kinetic friction (F, = pN),
and a pivot or reaction force R acting at an angle 0 with respect to the
surface. For example, in standing on the floor, you exert a force of
magnitude W on the floor; the floor responds by exerting a force N=Ron
you. The reaction force of the floor prevents you from falling through the
floor.

Inorder to solve a statics (or any) physics problem, first write down the
information in terms of numbers and symbols. Then draw a figure
showing the relevant objects and angles. Next, choose points in the system
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and draw free body diagrams for those points. For example, in Figure 1,
two important free body diagrams are shown for the case of a mass
suspended by a cord from a ceiling.

In statics, we now apply the two conditions of equilibrium. The first
condition is that the sum of the forces in each direction is zero: EF=0.The
equilibrium is said to be static if also the velocity ¥'= 0. For example, in

Figure 1, choosing the positive direction as down, we get
LF,=W-T=0and T-R=0.
Hence, T = W and R = T; the weight determines both the tension in the
string and the reaction force of the ceiling. In Figure 2, a force F pulls an
object of mass m on a flat but rough surface with coefficient of static
friction i and coefficient of kinetic friction |\, Resolving F into its x and
y components, we find F, = F cos 0 and F = F sin 0. Static equilibrium
in the y-direction gives
LF,=F,+N-W=0 or N=mg-Fsinb
to find the normal force. Note that the normal force is not always equal to
mg! If the object starts out at rest, then it will begin to move when
EF =F,-F,=0 or Fcos8=pN.
If the object is moving at constant velocity, then

LF,=F -F,=0 or pN=Fcos®.

Figure 2

mmndwndiﬁmthatofmtahonaleq is that the sum
of all torques is zero: L 7= ﬂwhemthetorque 1=rx F i a cross product.
Note that position vector T where the force acts and the force F must be
drawn with a common origin of find the angle 6 between them; then the
right hand rule is used to find the direction of the torque. Figure 3 shows
a standard boom problem, where the boom has weight B = m,g and the
person has weight W = mg. The first equilibrium condition gives
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zF,‘:R.-T,-ﬂ.'hmoeR‘:Tmuﬂ.
Also,
IZF,=R +T,-W-B=0orR =W+B-Tsin6.
If R and T are unknown, one cannot find them just from these two
equations. Hence, choose the point where the boom contacts the wall as the
origin for calculating torques. Rotational equilibrium then implies
21=szﬁnﬂ
=(0) (R) — xW sin 90 - d/2 B sin 90 + dT sin (180 - 6)
=0

or solving for the tension T = (xW + Bd/2) / (d sin 8). The positive and
negative directions come from the right hand rule. The angles come from
moving the position vector such that it and the force have a common origin
(Figure 4).

The concept of rotational equilibrium can also be used to locate the
center of gravity or gravitational center of a system of objects. This is just
the pivot point where the system balances as in the childhood seesaw.
More importantly, the center of gravity often coincides with the center of
mass of an object where T, = Em¥ / Zm. In the beam problem, Figure 3,
we assumed the weight of the beam acted at the center of mass of the beam
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In order that both forces have the same line
of action, the center of gravity of the body must
lie vertically below the point of attachment of the
cord.

Let us emphasize again that the forces ;1 and ?,

are not an action-reaction pair, although they are
equal in magnitude, opposite in diregtion, and have

the same line of action. The weight w; is a force of
attraction exerted on the body by the earth. Its

reaction is an equal and opposite force of attraction
exerted on the earth by the body. The reaction is one
of the set of forces acting on the earth, and therefore
it does not appear in the free-body diagram of the
suspended block.

The reaction to the force T, is an equal down-

ward force.?l, exerted on the cord by the suspended
body.

T, = T] (from Newton's third law).

The force T is shown in part (c), which is the
froe-body diagram of the cord. The other forces on

the cord are its own weight w, and the upward force
%; exerted on its upper end by the ceiling. Since
the cord is also in equilibrium,

EPY-T,—wg-—Ti-D

T, =ws + T} . {lst law)

The reaction to T, is the downward force T} in
part (d), exerted on the ceiling by the cord.

Tz = T} (3rd law}

As a numerical example, let the body weight 20 1lb
and the cord weigh 1 lb. Then

Tl-url-iﬂlb.
T] = Ty = 20 1lb,
T, =wz; +T) =11b + 20 1b = 21 1b,

T} = T; = 21 1b.

Three forces acting on a particle and keeping it in
equilibrium must be coplanar and concurrent. Show that
the vectors representing the forces, when added in
order, form a closed triangle; and further show that
the magnitude of any force divided by the sine of the
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angle between the lines of action of the other two is
a constant quantity.
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Splution: Let the three forces be B, Q, and 3, at
angles o, #, and v to one another as shown in figure
(a). In order that the three forces shall be in equi-

librium, the resultant ﬁ of P and a must be egqual and
opposite to §. The vectors 3. 3. and § are concurrent
and, since the vector R is in the same plane as P and
0, they are coplanar.

But the resultant of P and ﬁ is ohicined by wvector
addition, as in figure (b). That is, is the third
side of the triangle formed by placing the tail of 6
at the head of P. The force 8 is equal and opposite to

R and thus will occupy the same space as R, the third
side of the triangle, but will be opposite in di-

rection to R. Thus 3 + 5 + § taken in order,form a
closed triangle and their sum is of necessity zero.
Applying the law of sines to the triangle of figure
(b)

P s
sin 0 _ sin Y < sin [
. P - s
* ¢+ Bin 1snm =y '1_(1%; n (180 = B) sin (180 - ¥)

-]
. T—Bnunsn s—i—-’nT-chSt.

e PROBLEM 2-3

A 200 1b man hangs from the middle of a tightly stretched rope so

that the sngle between the rope and the horizontal direction is 3°, as
shown in Figure A. Calculate the tension in the rope. (Figure B).
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Figure A

Solution: Since the two sections of the rope are symmetrical with
Tespect to the man, the tensions in them must have the same magnitude,
(Fig. B.) This can be arrived at by summing the forces in the horizon-
tal direction and setting them equal to zero since the system is in
equilibrium. Then

E!‘x-'.tlcmi -'Izems =0

Tl - T2 =T
Considering the forces in the vertical directiom,

LF =Tsin 5" +Tsin 5 - 2001b =0

and

200 1b = 2T sin 5 = 2T(0.0871)

I= 1‘%’——7& (0.0871 = 1150 1bs.

Note the significant force that can be exerted on objecta
at either end of the rope by this arrangement. The tension
in the rope is over five times the weight of the man. Had
the angle been as small as 1°, the tension would have been

1«20 - 200 = 5730 1bs.

28in1l"  (2)(0.0174)

This technique for exerting a large force would only be useful to move
something a very small distance, since any motion of one end of the
rope would change the small angle considerably and the ten-

sion would decrease accordingly.

® PROBLEM 2-4

Find the tension in the cable shown in Figure A. HNeglect the

weight of the wooden boom.

T 2000 1b
PON\60°
Fig. A Fig. B: Force Diagram

Solution: Take the directions of the tensions in the cable and
the boom to be as shown in the force diagram(fig.B). We assume
at this point, that the given directions are correct. However,
the forces may turn out to int in the opposite direction. If
this is the case, our solutions for the tensions will be negative.
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We can thus correct ourselves at the end of the problem, The
first condition of equilibrium yields

L F: - Tz cos 60 - Tl cos 30 = 0 (1)
Er,-'rzuuau'-'rl.tnao'-zmn-n @)
We wish to find Tl' the tension in the cable. Solving for Tz in
terms of 11 in equation (1) gives
T, cos 30
T u 'L""'T
2 cos 60
Subatituting this in equation (2),
T, cos 30 .
(—1—— sin 60" - T, sin 30" = 2000
cos 60

Solving for le

T, (cos 30" tan 60" - sin 30°) = 2000
. 2000 2000
1 cos 30° tan 60" - sin 30"  (0.8660)(1.7321) - (0.5000)

2000
"1.5-0.5

Since our answer is positive, the force acts in the direction assumed
in the beginning.

= 2000 1b

In figure A, a block of weight w hangs from a cord
which is knotted at O to two other cords fastened
to the ceiling. Find the tensions in these three

cords. Let w = 50 1b, 0; = 30°, and 6; = 60°., The
weights of the cords are negligible.

A h!T' Eg
3
2
T TI
I:"I.
T
(a) (v) Lo

{a} A block hanging in equilibrium. (b) Forces acting on
the block, on the knot, and and the ceiling. (c) Forces
on the knot 0 resolved into x- and y- components.
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: In order to use the conditions of
equ rium to compute an unknown force, we must
consider some body which is in equilibrium and on
which the desired force acts. The hanging block is
one such body and the tension in the vertical cord
supporting the block is egqual to the weight of the
block. The inclined cords do not exert forces on
the block, but they do act on the knot at O. Hence,
we consider the knot as a small body in equilibrium,
whose own weight ia negligible.

The free body diagrams fogy the block d the knot
are shown in figure B, where T,, T, and T, represent

*he {grcas ex-;;ad on the knot by the three cords and
! + T} , and T} are the reactions to these forces,

Consider first the hanging block. Since it is in
eguilibrium,

Ty =w=501b

Since T, and T| form an action-reaction pair,

Ty =T,

Hence T, = 50 1lb.

To find the forces Tg and T,, we resolve these

forces (see fig. C) into rectangular components. Then,
from Newton's second law,

IFx = Ty cos 6, - T; cos 8y = 0,

:FY =T; 8sin 8, + Ty 8in 83 - T, = 0

We have T; cos 30° - T, cos 60° = 0
Tz sin 309 + T, sin 60° = 50
or 0.866 T - 0.500 Ty = 0

0.500 Tz + 0.355 T; = 0

Solving these equations simultaneously, we find
. the tensions to be

T: = 25 1b, Ty = 43.3 1lb.
Finally, we know from Newton's third law that the

inclined cords exert on the ceiling the forces T} and
-+ +
%y, equal and opposite to T; and T, respectively.
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