CHAPTER 2. THE VECTOR 122

n-vector a;, a challenge vector, and sends it to the human. The human sends back a single bit (;,
which is supposed to be the dot-product of a; and the password &, and Carole checks whether
B; = a; - . If the human passes enough trials, Carole concludes that the human knows the
password, and allows the human to log in.

Example 2.9.17: The password is £ = 10111. Harry initiates log-in. In response, Carole
selects the challenge vector a; = 01011 and sends it to Harry. Harry computes the dot-product

ai - &:

0 1 0 1 1
o 1 0 1 1 1
O + 0 + 0 + 1 + 1 =0

and responds by sending the resulting bit ; = 0 back to Carole.
Next, Carole sends the challenge vector a; = 11110 to Harry. Harry computes the dot-
product as - &:

1 1 1 1 0
o 1 0 1 1 1
1 + 0 + 1 + 1 + 0 =1

and responds by sending the resulting bit 83 = 1 back to Carole.
This continues for a certain number k of trials. Carole lets Harry log in if 81 = a1 - &, (8 =
a2~5:,...,6;€:a;€-:i.

2.9.7 Attacking the simple authentication scheme

We consider how Eve might attack this scheme. Suppose she eavesdrops on m trials in which
Harry correctly responds. She learns a sequence of challenge vectors ai,as,...,a, and the
corresponding response bits 81, B2, ..., Bm. What do these tell Eve about the password?

Since the password is unknown to Eve, she represents it by a vector-valued variable x. Since
Eve knows that Harry correctly computed the response bits, she knows that the following linear
equations are true:

a-r = [
ay-x = [
Ay T = P (2.4)

Perhaps Eve can compute the password by using an algorithm for Computational Problem 2.9.12,
solving a linear system! Well, perhaps she can find some solution to the system of equations but
is it the correct one? We need to consider Question 2.9.11: does the linear system have a unique
solution?

Perhaps uniqueness is too much to hope for. Eve would likely be satisfied if the number of
solutions were not too large, as long as she could compute them all and then try them out one
by one. Thus we are interested in the following Question and Computational Problem:

CHAPTER 2. THE VECTOR 123

Question 2.9.18: Number of solutions to a linear system over GF(2)
How many solutions are there to a given linear system over GF'(2)?

Computational Problem 2.9.19: Computing all solutions to a linear system over GF(2)
Find all solutions to a given linear system over GF'(2).

However, Eve has another avenue of attack. Perhaps even without precisely identifying the
password, she can use her knowledge of Harry’s response bits to derive the answers to future
challenges! For which future challenge vectors a can the dot-products with & be computed from
the m equations? Stated more generally:

Question 2.9.20: Does a system of linear equations imply any other linear equations? If so,
what other linear equations?

We next study properties of dot-product, one of which helps address this Question.

2.9.8 Algebraic properties of the dot-product

In this section we introduce some simple but powerful algebraic properties of the dot-product.
These hold regardless of the choice of field (e.g. R or GF(2)).

Commutativity When you take a dot-product of two vectors, the order of the two does not
matter:

Proposition 2.9.21 (Commutativity of dot-product): v -v=v-u

Commutativity of the dot-product follows from the fact that scalar-scalar multiplication is com-
mutative:

Proof

[U,l,U;Q,.-.,un]'[Ul,/UQ,-.-,/Un} - U1U1—|—U2U2+"'+Un1)n

ViU + VU + -+ Upln

[,Ul)v27"' ;vn] N [u17u27"’7un]

CHAPTER 2. THE VECTOR 124

Homogeneity The next property relates dot-product to scalar-vector multiplication: multi-
plying one of the vectors in the dot-product is equivalent to multiplying the value of the dot-
product.

Proposition 2.9.22 (Homogeneity of dot-product): (au)-v =a(u-v)

Problem 2.9.23: Prove Proposition 2.9.22.

Problem 2.9.24: Show that (au) - (av) = o (u-v) is not always true by giving a counterex-
ample.

Distributivity The final property relates dot-product to vector addition.

Proposition 2.9.25 (Dot-product distributes over vector addition): (u +v)-w =
U -w+v-w

Proof
Write w = [uq, ..., uy],v = [v1,...,0,] and w = [wy, ..., wy].
(u+v)-w = ([ur,...,u] 4+ [v1,. . 00]) [Wi,...,wy]
= [u1+vlv~'~7un+vn]'[wla-”awn]

(ur +v1)wy + -+ (un + vp)wy
ULwy +viwy + - F UpWy, + VyWy
(wrwy + -+ Fupwy) + (Vwr + -+ -+ vwy,)

= (U1, U] [w, . wp] U1,y 0R] - W Wy

Problem 2.9.26: Show by giving a counterexample that (u +v) - (w+z) =u-w+v-xis
not true.

Example 2.9.27: We first give an example of the distributive property for vectors over the

CHAPTER 2. THE VECTOR 125

reals: [27,37,47] - [2,1,1] = [20,30,40] - [2,1,1] + [7,7,7] - [2, 1, 1]:

20 30 40

° 2 1 1
2002 + 30-1 4+ 40-1 = 110

7 7 7

° 2 1 1

72 4+ 7-1 4+ 7-1 =28

27 37 47

° 2 1 1
27-2 + 37-1 4+ 47-1 = 138

2.9.9 Attacking the simple authentication scheme, revisited

T asked in Section 2.9.7 whether Eve can use her knowledge of Harry’s responses to some challenges
to derive the answers to others. We address that question by using the distributive property for
vectors over GF(2).

Example 2.9.28: This example builds on Example 2.9.17 (Page 122). Carole had previously
sent Harry the challenge vectors 01011 and 11110, and Eve had observed that the response bits
were 0 and 1. Suppose Eve subsequently tries to log in as Harry, and Carole happens to send
her as a challenge vector the sum of 01011 and 11110. Eve can use the distributive property to
compute the dot-product of this sum with the password x even though she does not know the
password:

(01011 4+ 11110) -2 = 01011-2 + 11110 =
= 0 + 1
= 1

Since you know the password, you can verify that this is indeed the correct response to the
challenge vector.

This idea can be taken further. For example, suppose Carole sends a challenge vector that
is the sum of three previously observed challenge vectors. Eve can compute the response bit
(the dot-product with the password) as the sum of the responses to the three previous challenge
vectors.

Indeed, the following math shows that Eve can compute the right response to the sum of any
number of previous challenges for which she has the right response:

if al'm:ﬂl
and as - x = 9
and ap - =P

then (a;+as+---+ar) - x=(B1+ P2+ -+ Br)

CHAPTER 2. THE VECTOR 126

Problem 2.9.29: Eve knows the following challenges and responses:

challenge response

110011 0
101010 0
111011 1
001100 1

Show how she can derive the right responses to the challenges 011101 and 000100.

Imagine that Eve has observed hundreds of challenges a,...,a, and responses fS1,..., Bn,
and that she now wants to respond to the challenge a. She must try to find a subset of aq, ..., a,
whose sum equals a.

Question 2.9.20 asks: Does a system of linear equations imply any other linear equations?
The example suggests a partial answer:

if a-x =0
and as - = [
and ap-x =G

then (a;+as+---+ar) - x=(B1+ P2+ -+ Br)

Therefore, from observing challenge vectors and the response bits, Eve can derive the response
to any challenge vector that is the sum of any subset of previously observed challenge vectors.

That presumes, of course, that she can recognize that the new challenge vector can be ex-
pressed as such a sum, and determine which sum! This is precisely Computational Problem 2.8.7.
We are starting to see the power of computational problems in linear algebra; the same compu-
tational problem arises in addressing solving a puzzle and attacking an authentication scheme!
Of course, there are many other settings in which this problem arises.

2.10 Ouwur implementation of Vec

In Section 2.7, we gave the definition of a rudimentary Python class for representing vectors, and
we developed some procedures for manipulating this representation.

2.10.1 Syntax for manipulating Vecs

We will expand our class definition of Vec to provide some notational conveniences:

CHAPTER 2. THE VECTOR 127

operation syntax
vector addition utv
vector negation -v
vector subtraction u-v
scalar-vector multiplication alpha*v
division of a vector by a scalar | v/alpha
dot-product wkv
getting value of an entry v[d]
setting value of an entry v[d]l = ..
testing vector equality u ==
pretty-printing a vector print(v)
copying a vector v.copy)

In addition, if an expression has as a result a Vec instance, the value of the expression will be
presented not as an obscure Python incantation

>>> v
<__main__.Vec object at 0x10058cad0>

but as an expression whose value is a vector:
>>> v

Vec({'A', 'B', 'C'},{'A': 1.0})
2.10.2 The implementation

In Problem 2.14.10, you will implement Vec. However, since this book is not about the intricacies
of defining classes in Python, you need not write the class definition; it will be provided for you.
All you need to do is fill in the missing bodies of some procedures, most of which you wrote in
Section 2.7.

2.10.3 Using Vecs

You will write the bodies of named procedures such as setitem(v, d, val) and add(u,v) and
scalar mul (v, alpha). However, in actually using Vecs in other code, you must use operators
instead of named procedures, e.g.

>>> v['a'] = 1.0

instead of

>>> setitem(v, 'a', 1.0)
and

>>> b = b - (b*v)*v
instead of

>>> b = add(b, neg(scalar_mul(v, dot(b,v))))

CHAPTER 2. THE VECTOR 128

In fact, in code outside the vec module that uses Vec, you will import just Vec from the vec
module:

from vec import Vec

so the named procedures will not be imported into the namespace. Those named procedures in
the vec module are intended to be used only inside the vec module itself.

2.10.4 Printing Vecs
The class Vec defines a procedure that turns an instance into a string for the purpose of printing:

>>> print(v)

The procedure for pretty-printing a vector v must select some order on the domain v.D. Ours uses
sorted(v.D, key=hash), which agrees with numerical order on numbers and with alphabetical
order on strings, and which does something reasonable on tuples.

2.10.5 Copying Vecs

The Vec class defines a .copy() method. This method, called on an instance of Vec, returns a
new instance that is equal to the old instance. It shares the domain .D with the old instance.
but has a new function .f that is initially equal to that of the old instance.

Ordinarily you won’t need to copy Vecs. The scalar-vector multiplication and vector addition
operations return new instances of Vec and do not mutate their inputs.

2.10.6 From list to Vec

The Vec class is a useful way of representing vectors, but it is not the only such representation. As
mentioned in Section 2.1, we will sometimes represent vectors by lists. A list L can be viewed as a
function from {0,1,2,...,len(L) — 1}, so it is possible to convert from a list-based representation
to a dictionary-based representation.

Quiz 2.10.1: Write a procedure 1ist2vec (L) with the following spec:
e jnput: a list L of field elements

e output: an instance v of Vec with domain {0,1,2,...,len(L) — 1} such that v[i] = L]
for each integer i in the domain

Answer

def list2vec(L):

CHAPTER 2. THE VECTOR 129

return Vec(set(range(len(L))), {k:x for k,x in enumerate(L)})
or

def list2vec(L):
return Vec(set(range(len(L))), {k:L[k] for k in range(len(L))})

This procedure facilitates quickly creating small Vec examples. The procedure definition is
included in the provided file vecutil.py.

2.11 Solving a triangular system of linear equations

As a step towards Computational Problem 2.9.12 (Solving a linear system), we describe an
algorithm for solving a system if the system has a special form.

2.11.1 Upper-triangular systems

A upper-triangular system of linear equations has the form

[an, a2, a3, @, -+ Gip-1, a, | - = A
[0, ag, a3, au, -+ a2np-1, arn | - x = [P
[0, 0, ass asa, -+ azn-1, asn, | - x = fP3
[07 07 07 Oa e p—1,n—1, Qn—-1,n] L = anl
[07 07 07 Oa e 0) an,n] T = /Bn

That is,
e the first vector need not have any zeroes,
e the second vector has a zero in the first position,

e the third vector has zeroes in the first and second positions,

the fourth vector has zeroes in the first, second, and third positions,

the n — 15 vector is all zeroes except possibly for the n — 15 and n'" entries, and

e the n' vector is all zeroes except possibly for the n** entry.

CHAPTER 2. THE VECTOR 130

Example 2.11.1: Here's an example using 4-vectors:

[1, 05, -2, 4]2 = -8
[0, 3 3 2]z = 3
[0, 0 1, 5 |-z = —4
[0, 00 0, 2]z = 6

The right-hand sides are -8, 3, -4, and 6.

The origin of the term upper-triangular system should be apparent by considering the positions
of the nonzero entries: they form a triangle:

pessily nansera

ZETOES

Writing @ = [z1, 22, x3, 4] and using the definition of dot-product, we can rewrite this system
as four ordinary equations in the (scalar) unknowns 1, zo, x3, 24:

lzy + 0.5z9 — 23 + 4x4y = -8
3562 + 3.733 + 21‘4 = 3

1(133 + 51’4 = —4

21’4 = 6

2.11.2 Backward substitution

This suggests a solution strategy. First, solve for x4 using the fourth equation. Plug the resulting
value for x4 into the third equation, and solve for z3. Plug the values for 3 and x4 into the
second equation and solve for zo. Plug the values for xo, x3, and x4 into the first equation and
solve for z1. In each iteration, only one variable needs to be solved for.

Thus the above system is solved as follows:

21‘4 = 6
S0 x4 = 6/2 = 3
log = —4— By - —4—5(3) - _19
S0 w3 = -19/1 = —-19
31y = 3~ 315 — 214 - 3 2(3) — 3(—19) - 54
S0 g = 54/3 = 18
1oy = —8— 05104225 — 42y = —8—4(3)+2(—19)—0.5(18) = —67
so T = —67/1 = —67

The algorithm I have illustrated is called backward substitution (“backward” because it starts
with the last equation and works its way towards the first).

CHAPTER 2. THE VECTOR 131

Quiz 2.11.2: Using the above technique, solve the following system by hand:

2$1 + 31’2 — 4163 = 10
lze + 23 = 3
Sry3 = 15
Answer
x3=15/5=3

$2:3—2$3:—3

21 = (10 4 4xg — 325)/2 = (10 + 124 9)/2 = 31/2

Exercise 2.11.3: Solve the following system:

lzy, — 3z — 2x3 =
2ry + 4dx3 = 4

2.11.3 First implementation of backward substitution

There is a convenient way to express this algorithm in terms of vectors and dot-products. The
procedure initializes the solution vector x to the all-zeroes vector. The procedure will populate
x entry by entry, starting at the last entry. By the beginning of the entry in which x; will be
populated, entries x;41, %42, ..,2, Will have already been populated and the other entries are
zero, so the procedure can use a dot-product to calculate the part of the expression that involves
variables whose values are already known:

entry a;; - value of x; = 8; — (expression involving known variables)

S0
B; — (expression involving known variables)

value of z; =
Qi5
Using this idea, let’s write a procedure triangular_solve_n(rowlist, b) with the following
spec:

e input: for some integer n, a triangular system consisting of a list rowlist of n-vectors, and
a length-n list b of numbers

e oulput: a vector & such that, for i = 0,1,...,n — 1, the dot-product of rowlist[i] with &
equals bl7]

The n in the name indicates that this procedure requires each of the vectors in rowlist to have
domain {0,1,2,...,n — 1}. (We will later write a procedure without this requirement.)

CHAPTER 2. THE VECTOR 132

Here is the code:

def triangular_solve_n(rowlist, b):
D = rowlist[0].D
n = len(D)
assert D == set(range(n))
x = zero_vec(D)
for i in reversed(range(n)):
x[i] = (b[i] - rowlist[i] * x)/rowlist[i][i]
return x

Exercise 2.11.4: Enter triangular_solve_n into Python and try it out on the example
system above.

CHAPTER 2. THE VECTOR 133

2.11.4 When does the algorithm work?

The backward substitution algorithm does not work on all upper triangular systems of equations.
If rowlist[i] [i] is zero for some i, the algorithm will fail. We must therefore require when
using this algorithm that these entries are not zero. Thus the spec given above is incomplete.

If these entries are nonzero so the algorithm does succeed, it will have found the only solution
to the system of linear equations. The proof is by induction; it is based on the observation that
the value assigned to a variable in each iteration is the only possible value for that variable that
is consistent with the values assigned to variables in previous iterations.

Proposition 2.11.5: For a triangular system specified by a length-n list rowlist of n-vectors

and an n-vector b, if rowlist[i][i] # 0 for ¢ = 0,1,...,n — 1 then the solution found by
triangular_solve_n(rowlist, b) is the only solution to the system.

On the other hand,

Proposition 2.11.6: For a length-n list rowlist of n-vector, if rowlist[é][i{] = 0 for some
integer ¢ then there is a vector b for which the triangular system has no solution.

Proof

Let k be the largest integer less than n such that rowlist[k][k] = 0. Define b to be a
vector whose entries are all zero except for entry k which is nonzero. The algorithm iterates
i=n—1n—2,...,k+ 1. In each of these iterations, the value of x before the iteration is
the zero vector, and b[i] is zero, so x[i] is assigned zero. In each of these iterations, the
value assigned is is the only possible value consistent with the values assigned to variables
in previous iterations.

Finally, the algorithm gets to ¢ = k. The equation considered at this point is

rowlist [k] [k]*x[k]+rowlist [k] [k+1]*x[k+1]+ --- +rowlist[k] [n-1]*x[n-1] = nonzero

but the variables x [k+1], x [k+2], x [n-1] have all been forced to be zero, and rowlist [k] [k]
is zero, so the left-hand side of the equation is zero, so the equation cannot be satisfied. [

2.11.5 Backward substitution with arbitrary-domain vectors

Next we write a procedure triangular_solve(rowlist, label_list, b) to solve a triangular
system in which the domain of the vectors in rowlist need not be {0,1,2,...,n — 1}. What
does it mean for a system to be triangular? The argument label_list is a list that specifies an
ordering of the domain. For the system to be triangular,

e the first vector in rowlist need not have any zeroes,

e the second vector has a zero in the entry labeled by the first element of label_list,

CHAPTER 2. THE VECTOR 134

e the third vector has zeroes in the entries labeled by the first two elements of label_list,

and so on.
The spec of the procedure is:

e input: for some positive integer n, a list rowlist of n Vecs all having the same n-element
domain D, a list label_list consisting of the elements of D, and a list b consisting of n
numbers such that, for i =0,1,...,n— 1,

— rowlist[i][label list[4]] is zero for j =0,1,2,...,i — 1 and is nonzero for j =i

e output: the Vec x such that, for ¢ = 0,1,...,n — 1, the dot-product of rowlist[i] and =
equals bli].

The procedure involves making small changes to the procedure given in Section 2.11.3.
Here I illustrate how the procedure is used.

>>> label_list = ['a','b','c','d']

>>> D = set(label_list)

>>> rowlist=[Vec(D,{'a':4, 'b':-2,'c':0.5,'d':1}), Vec(D,{'b':2,'c':3,'d':3}),
Vec(D,{'c':5, 'd':1}), Vec(D,{'d':2.1)]

>>> b = [6, -4, 3, -8]

>>> triangular_solve(rowlist, label_list, b)

Vec({'d', 'b', 'c', 'a'},{'d': -4.0, 'b': 1.9, 'c': 1.4, 'a': 3.275})

Here is the code for triangular_solve. Note that it uses the procedure zero_vec(D).

def triangular_solve(rowlist, label_list, b):
D = rowlist[0].D
x = zero_vec(D)
for j in reversed(range(len(D))):
c = label_list[j]
row = rowlist[j]
x[c] = (b[j] - x*row)/rowlc]
return x

The procedures triangular_solve(rowlist, label_list, b) and
triancnlar solve n(rowlist. b) are nrovided in the module trianonlar.

2.12 Lab: Comparing voting records using dot-product

In this lab, we will represent a US senator’s voting record as a vector over R, and will use
dot-products to compare voting records. For this lab, we will just use a list to represent a
vector.

2.12.1 Motiwation

These are troubled times. You might not have noticed from atop the ivory tower, but take
our word for it that the current sociopolitical landscape is in a state of abject turmoil. Now

CHAPTER 2. THE VECTOR 135

is the time for a hero. Now is the time for someone to take up the mantle of protector, of
the people’s shepherd. Now is the time for linear algebra.

In this lab, we will use vectors to evaluate objectively the political mindset of the senators
who represent us. Each senator’s voting record can be represented as a vector, where each
element of that vector represents how that senator voted on a given piece of legislation. By
looking at the difference between the “voting vectors” of two senators, we can dispel the fog
of politics and see just where our representatives stand.

Or, rather, stood. Our data are a bit dated. On the bright side, you get to see how
Obama did as a senator. In case you want to try out your code on data from more recent
years, we will post more data files on resources.codingthematrix.com.

2.12.2 Reading in the file

As in the last lab, the information you need to work with is stored in a whitespace-
delimited text file. The senatorial voting records for the 109th Congress can be found
in voting record_dumpl09.txt.

Each line of the file represents the voting record of a different senator. In case you've
forgotten how to read in the file, you can do it like this:

>>> f = open('voting_record_dumpl09.txt')
>>> mylist = list(f)

You can use the split(:) procedure to split each line of the file into a list; the first
element of the list will be the senator’s name, the second will be his/her party affiliation (R
or D), the third will be his/her home state, and the remaining elements of the list will be
that senator’s voting record on a collection of bills. A “1” represents a ’yea’ vote, a “-1”7 a
‘nay’, and a “0” an abstention.

Task 2.12.1: Write a procedure create_voting dict(strlist) that, given a list of
strings (voting records from the source file), returns a dictionary that maps the last name
of a senator to a list of numbers representing that senator’s voting record. You will need to
use the built-in procedure int (-) to convert a string representation of an integer (e.g. ‘1")
to the actual integer (e.g. 1).

2.12.3 Two ways to use dot-product to compare vectors

Suppose u and v are two vectors. Let’s take the simple case (relevant to the current lab) in
which the entries are all 1, 0, or -1. Recall that the dot-product of w and v is defined as

uU-v= Zu[k]v[k]

k

Consider the k' entry. If both u[k] and v[k] are 1, the corresponding term in the sum is 1.
If both u[k] and v[k] are -1, the corresponding term in the sum is also 1. Thus a term in the

CHAPTER 2. THE VECTOR 136

sum that is 1 indicates agreement. If, on the other hand, u[k] and v[k] have different signs,
the corresponding term is -1. Thus a term in the sum that is -1 indicates disagreement. (If
one or both of u[k] and v[k] are zero then the term is zero, reflecting the fact that those
entries provide no evidence of either agreement or disagreement.) The dot-product of u and
v therefore is a measure of how much u and v are in agreement.

2.12.4 Policy comparison

We would like to determine just how like-minded two given senators are. We will use the
dot-product of vectors u and v to judge how often two senators are in agreement.

Task 2.12.2: Write a procedure policy_compare(sen_a, sen b, voting.dict) that,
given two names of senators and a dictionary mapping senator names to lists representing
voting records, returns the dot-product representing the degree of similarity between two
senators’ voting policies.

Task 2.12.3: Write a procedure most_similar(sen, voting dict) that, given the name
of a senator and a dictionary mapping senator names to lists representing voting records,
returns the name of the senator whose political mindset is most like the input senator
(excluding, of course, the input senator him/herself).

Task 2.12.4: Write a very similar procedure least_similar(sen, voting dict) that
returns the name of the senator whose voting record agrees the least with the senator whose
name is sen.

Task 2.12.5: Use these procedures to figure out which senator is most like Rhode Island
legend Lincoln Chafee. Then use these procedures to see who disagrees most with Pennsyl-
vania’s Rick Santorum. Give their names.

Task 2.12.6: How similar are the voting records of the two senators from your favorite
state?

2.12.5 Not your average Democrat

CHAPTER 2. THE VECTOR 137

Task 2.12.7: Write a procedure find_average_similarity(sen, sen_set, voting dict)
that, given the name sen of a senator, compares that senator’s voting record to the voting
records of all senators whose names are in sen_set, computing a dot-product for each, and
then returns the average dot-product.

Use your procedure to compute which senator has the greatest average similarity with
the set of Democrats (you can extract this set from the input file).

In the last task, you had to compare each senator’s record to the voting record of each
Democrat senator. If you were doing the same computation with, say, the movie preferences
of all Netflix subscribers, it would take far too long to be practical.

Next we see that there is a computational shortcut, based on an algebraic property of
the dot-product: the distributive property:

(vi+v) - x=v-x+ve-x

Task 2.12.8: Write a procedure find _average_record(sen_set, voting dict) that,
given a set of names of senators, finds the average voting record. That is, perform vector
addition on the lists representing their voting records, and then divide the sum by the number
of vectors. The result should be a vector.

Use this procedure to compute the average voting record for the set of Democrats, and
assign the result to the variable average Democrat_record. Next find which senator’s
voting record is most similar to the average Democrat voting record. Did you get the same
result as in Task 2.12.77 Can you explain?

2.12.6 Bitter Rivals

Task 2.12.9: Write a procedure bitter_rivals(voting dict) to find which two sena-
tors disagree the most.

This task again requires comparing each pair of voting records. Can this be done faster than
the obvious way? There is a slightly more efficient algorithm, using fast matriz multiplication.
We will study matrix multiplication later, although we won’t cover the theoretically fast
algorithms.

2.12.7 Open-ended study

You have just coded a set of simple yet powerful tools for sifting the truth from the sordid
flour of contemporary politics. Use your new abilities to answer at least one of the following
questions (or make up one of your own):

e Who/which is the most Republican/Democratic senator/state?

e Is John McCain really a maverick?

CHAPTER 2. THE VECTOR 138

e Is Barack Obama really an extremist?
e Which two senators are the most bitter rivals?

e Which senator has the most political opponents? (Assume two senators are opponents
if their dot-product is very negative, i.e. is less than some negative threshold.)

2.13 Review Questions

What is vector addition?
What is the geometric interpretation of vector addition?
What is scalar-vector multiplication?

What is the distributive property that involves scalar-vector multiplication but not vector
addition?

What is the distributive property that involves both scalar-vector multiplication and vector
addition?

How is scalar-vector multiplication used to represent the line through the origin and a given
point?

How are scalar-vector multiplication and vector addition used to represent the line through
a pair of given points?

What is dot-product?

What is the homogeneity property that relates dot-product to scalar-vector multiplication?
What is the distributive property property that relates dot-product to vector addition?
What is a linear equation (expressed using dot-product)?

What is a linear system?

What is an upper-triangular linear system?

How can one solve an upper-triangular linear system?

2.14 Problems

Vector addition practice

Problem 2.14.1: For vectors v = [—1,3] and u = [0, 4], find the vectors v + u, v — u, and
3v — 2u. Draw these vectors as arrows on the same graph..

CHAPTER 2. THE VECTOR 139

Problem 2.14.2: Given the vectors v = [2,—1,5] and u = [—1,1, 1], find the vectors v + u,
v—u, 2v —u, and v + 2u.

Problem 2.14.3: For the vectors v = [0, one, one| and u = [one, one, one| over GF(2), find
v+uand v+u+u.

Expressing one GF'(2) vector as a sum of others

Problem 2.14.4: Here are six 7-vectors over GF(2):

a= 1100000 | d = 0001100
b= 0110000 | e= 0000110
c= 0011000 | f= 0000011
For each of the following vectors w, find a subset of the above vectors whose sum is u, or report
that no such subset exists.

1. w = 0010010
2. u = 0100010

Problem 2.14.5: Here are six 7-vectors over GF(2):

a= 1110000 | d= 0001110

b= 0111000 | e= 0000111

c= 0011100 | f= 0000011
For each of the following vectors w, find a subset of the above vectors whose sum is u, or report
that no such subset exists.

1. = 0010010
2. u = 0100010

Finding a solution to linear equations over GF(2)

Problem 2.14.6: Find a vector = [z1, 22, x3, 24] over GF(2) satisfying the following linear
equations:

1100 - & =
1010- =2 =
1111 -2 =

— = =

CHAPTER 2. THE VECTOR

Show that x + 1111 also satisfies the equations.

Formulating equations using dot-product

Problem 2.14.7: Consider the equations

QIO T
o —
4150 P

31‘1
51’1
Z1

+

4$2
21‘2
T2

T I3
= OCE3
_ T3

10
35
8

140

Your job is not to solve these equations but to formulate them using dot-product. In particular,
come up with three vectors v1, v2, and v3 represented as lists so that the above equations are

equivalent to

where z is a 4-vector over R.

vli-x
V2@

v3-x

Plotting lines and line segments

Problem 2.14.8: Use the plot module to plot

(a) a substantial portion of the line through [-1.5,2] and [3,0], and

(b) the line segment between [2,1] and [-2,2].

For each, provide the Python statements you used and the plot obtained.

Practice with dot-product

10
35
8

Problem 2.14.9: For each of the following pairs of vectors w and v over R, evaluate the

expression u - v:

(a) u = [1,0],v = [5,4321]
(b) w = [0,1],v = [12345, 6]
(c) wu=1[-1,3],v=[5,7]
(d)

d [2 2

u

2 2 20 2

V2V gy (2 V2

Writing procedures for the Vec class

	The Vector
	Dot-product
	Attacking the simple authentication scheme
	Algebraic properties of the dot-product
	Attacking the simple authentication scheme, revisited

	Our implementation of Vec
	Syntax for manipulating Vecs
	The implementation
	Using Vecs
	Printing Vecs
	Copying Vecs
	From list to Vec

	Solving a triangular system of linear equations
	Upper-triangular systems
	Backward substitution
	First implementation of backward substitution
	When does the algorithm work?
	Backward substitution with arbitrary-domain vectors

	Lab: Comparing voting records using dot-product
	Motivation
	Reading in the file
	Two ways to use dot-product to compare vectors
	Policy comparison
	Not your average Democrat
	Bitter Rivals
	Open-ended study

	Review Questions
	Problems

