
CHAPTER 0. THE FUNCTION 8

Let x be any member of the domain of f .

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) by definition of h ◦ (g ◦ f))

= h(g(f(x)) by definition of g ◦ f

= (h ◦ g)(f(x)) by definition of h ◦ g

= ((h ◦ g) ◦ f)(x) by definition of (h ◦ g) ◦ f

!

Associativity means that parentheses are unnecessary in composition expression: since h ◦
(g ◦ f) is the same as (h ◦ g) ◦ f , we can write either of them as simply h ◦ g ◦ f .

0.3.7 Functional inverse

Let us take the perspective of a lieutenant of Caesar who has received a cyphertext: PDWULA.
To obtain the plaintext, the lieutenant must find for each letter in the cyphertext the letter that
maps to it under the encryption function (the function of Example 0.3.3 (Page 3)). That is, he
must find the letter that maps to P (namely M), the letter that maps to D (namely A), and
so on. In doing so, he can be seen to be applying another function to each of the letters of
the cyphertext, specifically the function that reverses the effect of the encryption function. This
function is said to be the functional inverse of the encryption function.

For another example, consider the functions f and h in Example 0.3.11 (Page 7): f is a
function from {A, . . . , Z} to {0, . . . , 25} and h is a function from {0, . . . , 25} to {A, . . . , Z}. Each
one reverses the effect of the other. That is, h ◦ f is the identity function on {A, . . . , Z}, and
f ◦ h is the identity function on {0, . . . , 25}. We say that h is the functional inverse of f . There
is no reason for privileging f , however; f is the functional inverse of h as well.

In general,

Definition 0.3.13: We say that functions f and g are functional inverses of each other if

• f ◦ g is defined and is the identity function on the domain of g, and

• g ◦ f is defined and is the identity function on the domain of f .

Not every function has an inverse. A function that has an inverse is said to be invertible.
Examples of noninvertible functions are shown in Figures 2 and 3

Definition 0.3.14: Consider a function f : D −→ F . We say that f is one-to-one if for every
x, y ∈ D, f(x) = f(y) implies x = y. We say that f is onto if, for every z ∈ F , there exists
x ∈ D such that f(x) = z.

Example 0.3.15: Consider the function prod defined in Example 0.3.5 (Page 4). Since a prime

CHAPTER 0. THE FUNCTION 9

U V

Figure 2: A function f : U → V is depicted that is not onto, because the fourth element of the
co-domain is not the image under f of any element

U V

Figure 3: A function f : U → V is depicted that is not one-to-one, because the third element of
the co-domain is the image under f of more than one element.

number has no pre-image, this function is not onto. Since there are multiple pairs of integers,
e.g. (2, 3) and (3, 2), that map to the same integer, the function is also not one-to-one.

Lemma 0.3.16: An invertible function is one-to-one.

Proof

Suppose f is not one-to-one, and let x1 and x2 be distinct elements of the domain such
that f(x1) = f(x2). Let y = f(x1). Assume for a contradiction that f is invertible. The
definition of inverse implies that f−1(y) = x1 and also f−1(y) = x2, but both cannot be
true. !

Lemma 0.3.17: An invertible function is onto.

Proof

Suppose f is not onto, and let ŷ be an element of the co-domain such that ŷ is not the
image of any domain element. Assume for a contradiction that f is invertible. Then ŷ has

CHAPTER 0. THE FUNCTION 10

an image x̂ under f−1. The definition of inverse implies that f(x̂) = ŷ, a contradiction. !

Theorem 0.3.18 (Function Invertibility Theorem): A function is invertible iff it is one-
to-one and onto.

Proof

Lemmas 0.3.16 and 0.3.17 show that an invertible function is one-to-one and onto. Suppose
conversely that f is a function that is one-to-one and onto. We define a function g whose
domain is the co-domain of f as follows:

For each element ŷ of the co-domain of f , since f is onto, f ’s domain contains
some element x̂ for which f(x̂) = ŷ; we define g(ŷ) = x̂.

We claim that g ◦ f is the identity function on f ’s domain. Let x̂ be any element of f ’s
domain, and let ŷ = f(x̂). Because f is one-to-one, x̂ is the only element of f ’s domain
whose image under f is ŷ, so g(ŷ) = x̂. This shows g ◦ f is the identity function.

We also claim that f ◦ g is the identity function on g’s domain. Let ŷ be any element of
g’s domain. By the definition of g, f(g(ŷ)) = ŷ. !

Lemma 0.3.19: Every function has at most one functional inverse.

Proof

Let f : U → V be an invertible function. Suppose that g1 and g2 are inverses of f . We show
that, for every element v ∈ V , g1(v) = g2(v), so g1 and g2 are the same function.

Let v ∈ V be any element of the co-domain of f . Since f is onto (by Lemma 0.3.17),
there is some element u ∈ U such that v = f(u). By definition of inverse, g1(v) = u and
g2(v) = u. Thus g1(v) = g2(v). !

0.3.8 Invertibility of the composition of invertible functions

In Example 0.3.11 (Page 7), we saw that the composition of three functions is a function that
implements the Caesar cypher. The three functions being composed are all invertible, and the
result of composition is also invertible. This is not a coincidence:

Lemma 0.3.20: If f and g are invertible functions and f ◦ g exists then f ◦ g is invertible and
(f ◦ g)−1 = g−1 ◦ f−1.

CHAPTER 0. THE FUNCTION 11

1 A

2 B

3 C

A

B

C

p

r

g f

q

1

2

3

p

r

f!g

q

A 1

B 2

C 3

g-1
p

q

r

A

C

f-1

B

p

q

r

1

3

(f!g)-1=g-1!f-1

2

Figure 4: The top part of this figure shows two invertible functions f and g, and their composition
f ◦ g. Note that the composition f ◦ g is invertible. This illustrates Lemma 0.3.20. The bottom
part of this figure shows g−1, f−1 and (f ◦g)−1. Note that (f ◦g)−1 = g−1 ◦f−1. This illustrates
Lemma 0.3.20.

Problem 0.3.21: Prove Lemma 0.3.20.

Problem 0.3.22: Use diagrams like those of Figures 1, 2, and 3 to specify functions g and f
that are a counterexample to the following:

False Assertion 0.3.23: Suppose that f and g are functions and f ◦ g is invertible. Then f
and g are invertible.

!

CHAPTER 0. THE FUNCTION 12

0.4 Probability

Random Number (http://xkcd.com/221/)

One important use of vectors and matrices arises in probability. For example, this is how they
arise in Google’s PageRank method. We will therefore study very rudimentary probability theory
in this course.

In probability theory, nothing ever happens—probability theory is just about what could
happen, and how likely it is to happen. Probability theory is a calculus of probabilities. It is
used to make predictions about a hypothetical experiment. (Once something actually happens,
you use statistics to figure out what it means.)

0.4.1 Probability distributions

A function Pr(·) from a finite domain Ω to the set R+ of nonnegative reals is a (discrete) probability
distribution if

∑

ω∈Ω Pr(ω) = 1. We refer to the elements of the domain as outcomes. The image
of an outcome under Pr(·) is called the probability of the outcome. The probabilities are supposed
to be proportional to the relative likelihoods of outcomes. Here I use the term likelihood to mean
the common-sense notion, and probability to mean the mathematical abstraction of it.

CHAPTER 0. THE FUNCTION 13

Psychic, http://xkcd.com/628/

Uniform distributions

For the simplest examples, all the outcomes are equally likely, so they are all assigned the same
probabilities. In such a case, we say that the probability distribution is uniform.

Example 0.4.1: To model the flipping of a single coin, Ω = {heads, tails}. We assume that the
two outcomes are equally likely, so we assign them the same probability: Pr(heads) = Pr(tails).
Since we require the sum to be 1, Pr(heads) = 1/2 and Pr(tails) = 1/2. In Python, we would
write the probability distribution as

>>> Pr = {'heads':1/2, 'tails':1/2}

Example 0.4.2: To model the roll of a single die, Ω = {1, 2, 3, 4, 5, 6}, and Pr(1) = Pr(2) =
· · · = Pr(6). Since the probabilities of the six outcomes must sum to 1, each of these probabilities
must be 1/6. In Python,

>>> Pr = {1:1/6, 2:1/6, 3:1/6, 4:1/6, 5:1/6, 6:1/6}

Example 0.4.3: To model the flipping of two coins, a penny and a nickel,
Ω = {HH, HT, TH, TT}, and each of the outcomes has the same probability, 1/4. In Python,

>>> Pr = {('H', 'H'):1/4, ('H', 'T'):1/4, ('T','H'):1/4, ('T','T'):1/4}

Nonuniform distributions

In more complicated situations, different outcomes have different probabilities.

Example 0.4.4: Let Ω = {A, B, C, . . . , Z}, and let’s assign probabilities according to how
likely you are to draw each letter at the beginning of a Scrabble game. Here is the number of
tiles with each letter in Scrabble:

A 9 B 2 C 2 D 4
E 12 F 2 G 3 H 2
I 9 J 1 K 1 L 1
M 2 N 6 O 8 P 2
Q 1 R 6 S 4 T 6
U 4 V 2 W 2 X 1
Y 2 Z 1

The likelihood of drawing an R is twice that of drawing a G, thrice that of drawing a C, and
six times that of drawing a Z. We need to assign probabilities that are proportional to these

CHAPTER 0. THE FUNCTION 14

likelihoods. We must have some number c such that, for each letter, the probability of drawing
that letter should be c times the number of copies of that letter.

Pr[drawing letter X] = c · number of copies of letter X

Summing over all letters, we get

1 = c · total number of tiles

Since the total number of tiles is 95, we define c = 1/95. The probability of drawing an E is
therefore 12/95, which is about .126. The probability of drawing an A is 9/95, and so on. In
Python, the probability distribution is

{'A':9/95, 'B':2/95, 'C':2/95, 'D':4/95, 'E':12/95, 'F':2/95,
'G':3/95, 'H':2/95, 'I':9/95, 'J':1/95, 'K':1/95, 'L':1/95,
'M':2/95, 'N':6/95, 'O':8/95, 'P':2/95, 'Q':1/95, 'R':6/95,
'S':4/95, 'T':6/95, 'U':4/95, 'V':2/95, 'W':2/95, 'X':1/95,
'Y':2/95, 'Z':1/95}

0.4.2 Events, and adding probabilities

In Example 0.4.4 (Page 13), what is the probability of drawing a vowel from the bag?
A set of outcomes is called an event. For example, the event of drawing a vowel is represented

by the set {A, E, I, O, U}.

Principle 0.4.5 (Fundamental Principle of Probability Theory): The probability of
an event is the sum of probabilities of the outcomes making up the event.

According to this principle, the probability of a vowel is

9/95 + 12/95 + 9/95 + 8/95 + 4/95

which is 42/95.

0.4.3 Applying a function to a random input

Now we think about applying a function to a random input. Since the input to the function is
random, the output should also be considered random. Given the probability distribution of the
input and a specification of the function, we can use probability theory to derive the probability
distribution of the output.

Example 0.4.6: Define the function f : {1, 2, 3, 4, 5, 6} −→ {0, 1} by

f(x) =

{

0 if x is even
1 if x is odd

CHAPTER 0. THE FUNCTION 15

Consider the experiment in which we roll a single die (as in Example 0.4.2 (Page 13)), yielding
one of the numbers in {1, 2, 3, 4, 5, 6}, and then we apply f(·) to that number, yielding either
a 0 or a 1. What is the probability function for the outcome of this experiment?

The outcome of the experiment is 0 if the rolled die shows 2, 4, or 6. As discussed in
Example 0.4.2 (Page 13), each of these possibilies has probability 1/6. By the Fundamental
Principle of Probability Theory, therefore, the output of the function is 0 with probability 1/6 +
1/6 + 1/6, which is 1/2. Similarly, the output of the function is 1 with probability 1/2. Thus
the probability distribution of the output of the function is {0: 1/2., 1:1/2.}.

Quiz 0.4.7: Consider the flipping of a penny and a nickel, described in Example 0.4.3 (Page
13). The outcome is a pair (x, y) where each of x and y is 'H' or 'T' (heads or tails). Define
the function

f : {(’H’, ’H’) (’H’, ’T’), (’T’,’H’), (’T’,’T’)}

by
f((x, y)) = the number of H’s represented

Give the probability distribution for the output of the function.

Answer

{0: 1/4., 1:1/2., 2:1/4.}

Example 0.4.8 (Caesar plays Scrabble): Recall that the function f defined in Exam-
ple 0.3.11 (Page 7) maps A to 0, B to 1, and so on. Consider the experiment in which f
is applied to a letter selected randomly according to the probability distribution described in
Example 0.4.4 (Page 13). What is the probability distribution of the output?

Because f is an invertible function, there is one and only one input for which the output is 0,
namely A. Thus the probability of the output being 0 is exactly the same as the probability of
the input being A, namely 9/95.. Similarly, for each of the integers 0 through 25 comprising the
co-domain of f , there is exactly one letter that maps to that integer, so the probability of that
integer equals the probability of that letter. The probability distribution is thus

{0:9/95., 1:2/95., 2:2/95., 3:4/95., 4:12/95., 5:2/95.,
6:3/95., 7:2/95., 8:9/95., 9:1/95., 10:1/95., 11:1/95.,
12:2/95., 13:6/95., 14:8/95., 15:2/95., 16:1/95., 17:6/95.,
18:4/95., 19:6/95., 20:4/95., 21:2/95., 22:2/95., 23:1/95.,
24:2/95., 25:1/95.}

The previous example illustrates that, if the function is invertible, the probabilities are pre-
served: the probabilities of the various outputs match the probabilities of the inputs. It follows
that, if the input is chosen according to a uniform distribution, the distribution of the output is

CHAPTER 0. THE FUNCTION 16

also uniform.

Example 0.4.9: In Caesar’s Cyphersystem, one encrypts a letter by advancing it three posi-
tions. Of course, the number k of positions by which to advance need not be three; it can
be any integer from 0 to 25. We refer to k as the key. Suppose we select the key k ac-
cording to the uniform distribution on {0, 1, . . . , 25}, and use it to encrypt the letter P. Let
w : {0, 1, . . . , 25} −→ {A, B, . . . , Z} be the the function mapping the key to the cyphertext:

w(k) = h(f(P) + k mod 26)

= h(15 + k mod 26)

The function w(·) is invertible. The input is chosen according to the uniform distribution, so the
distribution of the output is also uniform. Thus when the key is chosen randomly, the cyphertext
is equally likely to be any of the twenty-six letters.

0.4.4 Perfect secrecy

Cryptography (http://xkcd.com/153/)

We apply the idea of Example 0.4.9 (Page 16) to some even simpler cryptosystems. A cryp-
tosystem must satisfy two obvious requirements:

• the intended recipient of an encrypted message must be able to decrypt it, and

• someone for whom the message was not intended should not be able to decrypt it.

The first requirement is straightforward. As for the second, we must dispense with a miscon-
ception about security of cryptosystems. The idea that one can keep information secure by

CHAPTER 0. THE FUNCTION 17

not revealing the method by which it was secured is often called, disparagingly, security through
obscurity. This approach was critiqued in 1881 by a professor of German, Jean-Guillame-Hubert-
Victor-François-Alexandre-August Kerckhoffs von Niewenhof, known as August Kerckhoffs. The
Kerckhoffs Doctrine is that the security of a cryptosystem should depend only on the secrecy of
the key used, not on the secrecy of the system itself.

There is an encryption method that meets Kerchoffs’ stringent requirement. It is utterly
unbreakable if used correctly.1 Suppose Alice and Bob work for the British military. Bob is the
commander of some troops stationed in Boston harbor. Alice is the admiral, stationed several
miles away. At a certain moment, Alice must convey a one-bit message p (the plaintext) to Bob:
whether to attack by land or by sea (0=land, 1=sea). Their plan, agreed upon in advance, is
that Alice will encrypt the message, obtaining a one-bit cyphertext c, and send the cyphertext c
to Bob by hanging one or two lanterns (say, one lantern = 0, two lanterns = 1). They are aware
that the fate of a colony might depend on the secrecy of their communication. (As it happens,
a rebel, Eve, knows of the plan and will be observing.)

Let’s go back in time. Alice and Bob are consulting with their cryptography expert, who
suggests the following scheme:

Bad Scheme: Alice and Bob randomly choose k from {♣,♥,♠} according to the uniform
probability function (pr(♣) = 1/3, pr(♥) = 1/3, pr(♠) = 1/3). Alice and Bob must both
know k but must keep it secret. It is the key.
When it is time for Alice to use the key to encrypt her plaintext message p, obtaining the
cyphertext c, she refers to the following table:

p k c
0 ♣ 0
0 ♥ 1
0 ♠ 1
1 ♣ 1
1 ♥ 0
1 ♠ 0

The good news is that this cryptosystem satisfies the first requirement of cryptosystems: it will
enable Bob, who knows the key k and receives the cyphertext c, to determine the plaintext p.
No two rows of the table have the same k-value and c-value.

The bad news is that this scheme leaks information to Eve. Suppose the message turns out
to be 0. In this case, c = 0 if k = ♣ (which happens with probability 1/3), and c = 1 if k = ♥
or k = ♠ (which, by the Fundamental Principle of Probability Theory, happens with probability
2/3). Thus in this case c = 1 is twice as likely as c = 0. Now suppose the message turns out to
be 1. In this case, a similar analysis shows that c = 0 is twice as likely as c = 1.

Therefore, when Eve sees the cyphertext c, she learns something about the plaintext p. Learn-
ing c doesn’t allow Eve to determine the value of p with certainty, but she can revise her estimate
of the chance that p = 0. For example, suppose that, before seeing c, Eve believed p = 0 and
p = 1 were equally likely. If she sees c = 1 then she can infer that p = 0 is twice as likely as
p = 1. The exact calculation depends on Bayes’ Rule, which is beyond the scope of this analysis

1For an historically significant occurence of the former Soviet Union failing to use it correctly, look up VENONA.

CHAPTER 0. THE FUNCTION 18

but is quite simple.
Confronted with this argument, the cryptographer changes the scheme simply by removing

♠ as a possible value for p.

Good Scheme: Alice and Bob randomly choose k from {♣,♥} according to the uniform
probability function (pr(♣) = 1/2, pr(♥) = 1/2)
When it is time for Alice to encrypt her plaintext message p, obtaining the cyphertext c,
she uses the following table:

p k c
0 ♣ 0
0 ♥ 1
1 ♣ 1
1 ♥ 0

0.4.5 Perfect secrecy and invertible functions

Consider the functions
f0 : {♣,♥} −→ {0, 1}

and
f1 : {♣,♥} −→ {0, 1}

defined by
f0(x) = encryption of 0 when the key is x

f1(x) = encryption of 1 when the key is x

Each of these functions is invertible. Consequently, for each function, if the input x is chosen
uniformly at random, the output will also be distributed according to the uniform distribution.
This in turn means that the probability distribution of the output does not depend on whether 0
or 1 is being encrypted, so knowing the output gives Eve no information about which is being
encrypted. We say the scheme achieves perfect secrecy.

CHAPTER 0. THE FUNCTION 19

0.5 Lab: Introduction to Python—sets, lists, dictionaries, and

comprehensions

Python http://xkcd.com/353/

We will be writing all our code in Python (Version 3.x). In writing Python code, we empha-
size the use of comprehensions, which allow one to express computations over the elements
of a set, list, or dictionary without a traditional for-loop. Use of comprehensions leads to
more compact and more readable code, code that more clearly expresses the mathematical
idea behind the computation being expressed. Comprehensions might be new to even some
readers who are familiar with Python, and we encourage those readers to at least skim the
material on this topic.

CHAPTER 0. THE FUNCTION 20

To start Python, simply open a console (also called a shell or a terminal or, under
Windows, a “Command Prompt” or “MS-DOS Prompt”), and type python3 (or perhaps
just python) to the console (or shell or terminal or Command Prompt) and hit the Enter
key. After a few lines telling you what version you are using (e.g., Python 3.4.1), you should
see >>> followed by a space. This is the prompt; it indicates that Python is waiting for you
to type something. When you type an expression and hit the Enter key, Python evaluates
the expression and prints the result, and then prints another prompt. To get out of this
environment, type quit() and Enter, or Control-D. To interrupt Python when it is running
too long, type Control-C.

This environment is sometimes called a REPL, an acronym for “read-eval-print loop.” It
reads what you type, evaluates it, and prints the result if any. In this assignment, you will
interact with Python primarily through the REPL. In each task, you are asked to come up
with an expression of a certain form.

There are two other ways to run Python code. You can import a module from within the
REPL, and you can run a Python script from the command line (outside the REPL). We
will discuss modules and importing in the next lab assignment. This will be an important
part of your interaction with Python.

0.5.1 Simple expressions

Arithmetic and numbers

You can use Python as a calculator for carrying out arithmetic computations. The binary
operators +, *, -, / work as you would expect. To take the negative of a number, use -
as a unary operator (as in -9). Exponentiation is represented by the binary operator **,
and truncating integer division is //. Finding the remainder when one integer is divided by
another (modulo) is done using the % operator. As usual, ** has precedence over * and /
and //, which have precedence over + and -, and parentheses can be used for grouping.

To get Python to carry out a calculation, type the expression and press the Enter/Return
key:

>>> 44+11*4-6/11.
87.454545454545454
>>>

Python prints the answer and then prints the prompt again.

Task 0.5.1: Use Python to find the number of minutes in a week.

Task 0.5.2: Use Python to find the remainder of 2304811 divided by 47 without using the
modulo operator %. (Hint: Use //.)

Python uses a traditional programming notation for scientific notation. The notation

CHAPTER 0. THE FUNCTION 21

6.022e23 denotes the value 6.02×1023, and 6.626e-34 denotes the value 6.626×10−34. As
we will discover, since Python uses limited-precision arithmetic, there are round-off errors:

>>> 1e16 + 1
1e16

Strings

A string is a series of characters that starts and ends with a single-quote mark. Enter a
string, and Python will repeat it back to you:

>>> 'This sentence is false.'
'This sentence is false.'

You can also use double-quote marks; this is useful if your string itself contains a single-quote
mark:

>>> "So's this one."
"So's this one."

Python is doing what it usually does: it evaluates (finds the value of) the expression it is
given and prints the value. The value of a string is just the string itself.

Comparisons and conditions and Booleans

You can compare values (strings and numbers, for example) using the operators ==, < , >,
<=, >=, and !=. (The operator != is inequality.)

>>> 5 == 4
False
>>> 4 == 4
True

The value of such a comparison is a Boolean value (True or False). An expression whose
value is a boolean is called a Boolean expression.

Boolean operators such as and and or and not can be used to form more complicated
Boolean expressions.

>> True and False
False
>>> True and not (5 == 4)
True

Task 0.5.3: Enter a Boolean expression to test whether the sum of 673 and 909 is divisible
by 3.

CHAPTER 0. THE FUNCTION 22

0.5.2 Assignment statements

The following is a statement, not an expression. Python executes it but produces neither an
error message nor a value.

>>> mynum = 4+1

The result is that henceforth the variable mynum is bound to the value 5. Consequently, when
Python evaluates the expression consisting solely of mynum, the resulting value is 5. We say
therefore that the value of mynum is 5.

A bit of terminology: the variable being assigned to is called the left-hand side of an
assignment, and the expression whose value is assigned is called the right-hand side.

A variable name must start with a letter and must exclude certain special symbols such
as the dot (period). The underscore is allowed in a variable name. A variable can be bound
to a value of any type. You can rebind mynum to a string:

>>> mynum = 'Brown'

This binding lasts until you assign some other value to mynum or until you end your Python
session. It is called a top-level binding. We will encounter cases of binding variables to values
where the bindings are temporary.

It is important to remember (and second nature to most experienced programmers) that
an assignment statement binds a variable to the value of an expression, not to the expression
itself. Python first evaluates the right-hand side and only then assigns the resulting value
to the left-hand side. This is the behavior of most programming languages.

Consider the following assignments.

>>> x = 5+4
>>> y = 2 * x
>>> y
18
>>> x = 12
>>> y
18

In the second assignment, y is assigned the value of the expression 2 * x. The value of that
expression is 9, so y is bound to 18. In the third assignment, x is bound to 12. This does
not change the fact that y is bound to 18.

0.5.3 Conditional expressions

There is a syntax for conditional expressions:

⟨expression⟩ if ⟨condition⟩ else ⟨expression⟩

	The Function (and other mathematical and computational preliminaries)
	The function
	Functional inverse
	Invertibility of the composition of invertible functions

	Probability
	Probability distributions
	Events, and adding probabilities
	Applying a function to a random input
	Perfect secrecy
	Perfect secrecy and invertible functions

	Lab: Introduction to Python—sets, lists, dictionaries, and comprehensions
	Simple expressions
	Assignment statements
	Conditional expressions

