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p=10P; (2.32)
this choice implies: ' )
p=v Y+ PP
If we assume, for instance, the wave equation corresponding to (2.29):
)= ay + BV, (2.33)

we obtain:
p=0" (ap + V) + ¢ (o™ + V) .

If we also assume that the current probability density be
J =ik (Vi — V) | (2.34)
with k real so as to make J real as well, we easily derive
V- J =ik (v*V — Vi) .
It can be easily verified that the continuity equation (2.27) is satisfied if
a+a* =0, 8= —ik. (2.35)

It is of great physical interest to consider the case in which the wave
function has more than two real components. In particular, the wave function
of electrons has four components or, equivalently, two complex components. In
general, the multiplicity of the complex components is linked to the existence
of an intrinsic angular momentum, which is called spin. The various complex
components are associated with the different possible spin orientations. In the
case of particles with non-vanishing mass, the number of components is 25+1,
where S is the spin of the particle. In the case of the electron, S =1/2.

For several particles, as for the electron, spin is associated with a magnetic
moment which is inherent to the particle: it behaves as a microscopic magnet
with various possible orientations, corresponding to those of the spin, which
can be selected by placing the particle in a non-uniform magnetic field and
measuring the force acting on the particle.

2.4 Schrodinger’s Equation

The simplest case to which our considerations can be applied is that of a non-
relativistic free particle of mass m. To simplify notations and computations,
we will confine ourselves to a one-dimensional motion, parallel for instance,
to the x axis; if the particle is not free, forces will be parallel to the same
axis as well. The obtained results will be extensible to three dimensions by
exploiting the vector formalism. In practice, we will sistematically replace
V by its component V, = 3/0x = 9, and the Laplacian operator V2 =
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0?/0x? + 9% /0y? + 9202 by 9?/0x* = 0?; the probability current density
J will be replaced by J, (J) as well. The inverse replacement will suffice to
get back to three dimensions.

The energy of a non-relativistic free particle is

2 P’ p*
E =cy/m2c2 +p? ~mc (0] ,
\/ P + 2m * (m302>
where we have explicitely declared our intention to neglect terms of the or-
der of p*/(m3c?). Assuming de Broglie’s interpretation, we write the wave

function:
QZJP(.’E,t) ~ eZﬂi(w/A—ut) _ ei(pw—Et)/h (236)

(we are considering a motion in the positive x direction). Our choice implies
the following wave equation

, iE i , 1,
— — = — . 2~
vp p P 5 (mc to,P )¢P (2.37)
We have also )
i
Oatop =, pUP (2.38)
from which we deduce
. K2
ihipp = mc®Pp — . 0%Yp. (2.39)
2m

Our construction can bg) simplified by multiplying the initial wave function
by the phase factor €™ */" i.e. defining

. i 2
P = e”mzt/hz/)p ~ exp <h (px — 2pmt)> . (2.40)

Since the dependence on z is unchanged, ¢ still satisfies (2.38) and has the
same probabilistic interpretation as 1p. Indeed both p and J are unchanged.
The wave equation instead changes:
h2
i) =—_ 92p=Ty (2.41)

2m *T T T '
This is the Schrddinger equation for a free (non-relativistic) particle, in which
the right-hand side has a natural interpretation in terms of the particle energy,
which in the free case is only of kinetic type.

In the case of particles under the influence of a force field corresponding
to a potential energy V(z), the equation can be generalized by adding V (z)
to the kinetic energy :
h2

iy = — Qmaiz/) +V(z)p. (2.42)
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This is the one-dimensional Schrédinger equation that we shall apply to var-
ious cases of physical interest.

Equations (2.34) and (2.35) show that the probability density current does
not depend on V' and is given by:

J=—y (W0 —40:97) . (2.43)

Going back to the free case and considering the plane wave function given

in (2.36), it is interesting to notice that the corresponding probability density,

p = |1|?, is a constant function. This result is paradoxical since, by reducing
(2.25) to one dimension, we obtain

o0 o0

[ dwoen= [ do P =1, (2.44)
— 00 — 00

which cannot be satisfied in the examined case since the integral of a constant

function is divergent. We must conclude that our interpretation excludes the

possibility that a particle have a well defined momentum.

We are left with the hope that this difficulty may be overcome by admit-
ting some (small) uncertainty on the knowledge of momentum. This possibility
can be easily analyzed thanks to the linearity of Schrodinger equation. Indeed
equation (2.41) admits other different solutions besides the simple plane wave,
in particular the wave packet solution, which is constructed as a linear super-
position of many plane waves according to the following integral:

/_Z dp (p) exp (711 <p:c— éit)) :

The squared modulus of the superposition coefficients, \QZ(p)\Q, can be nat-
urally interpreted, apart from a normalization constant, as the probability
density in terms of momentum, exactly in the same way as p(z) is interpreted
as a probability density in terms of position.

Let us choose in particular a Gaussian distribution:

Qz(p) ~ o (P—p0)?/(44%) , (2.45)
corresponding to
Valz,t) = k/oo dp e~ (P=p0)*/(44%) ol(pz—p®t/2m)/h (2.46)

where k must be determined in such a way that [~ _dz|pa(z,t)[? =1.
The integral in (2.46) can be computed by recalling that, if « is a complex
number with positive real part (Re (o) > 0), then

o0
/ dper ="
o «
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and that the Riemann integral measure dp is left invariant by translations in
the complex plane,

— 00 — 00
oo 2 2 o0 2
o —a(p+ _ —« —a —2«
7/ dp e P+ — ¢ v/ dp e P ¢20P
— 00 — 00

for every complex number «y. Therefore we have

/ dp e PP = \/Weﬁz/‘m . (2.47)

o !
Developing (2.46) with the help of (2.47) we can write

PS > 1 it 2 PO | iz
pa(z,t) = ke 1a2 / dp e Lan2 Tamn]p” o[22+ 1P
— 00
12
" [+ 5
= k‘\/ ) 4 €exp ( 2? ;t — ] (2.48)
4A2 + 2mh A2 + mh 44
We are interested in particular in the x dependence of the probability density

p(x): that is solely related to the real part of the exponent of the rightmost
term in (2.48), which can be expanded as follows:

2 IR, 2 2 A4 A2 A2
Po ipor _ = 2 2 4t"A 2it A 2,..2 : _2itA
4A4 + A%R 2 Po _  Po m2m? + mh <A r= lpo.’B) 1 mh

1 2it 2 2 412 A4 2 412 A4
A2 + mh 44 44 1+ m2h? h h 1 m2h?

the real part being

M) )
W) TR )

Since py is clearly the average momentum of the particle, we have introduced
the corresponding average velocity vg = pg/m. Recalling the definition of p as
well as its normalization constraint, we finally find

A 2 2A2 (J? — ’U(]t)2
xz,t) = exp | — , 2.49
o= sy o (8 o
while the probability distribution in terms of momentum reads

1 2 2

5(p) — —(p—p0)*/(24%)
= e . 2.50
Pp) V2rA ( )

Given a Gaussian distribution p(z) = 1/(v/27rc)e~(@=20)"/(2%) it is a well
known fact, which anyway can be easily derived from previous formulae, that
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the mean value T is x¢ while the mean quadratic deviation (z — Z)? is equal
to o2. Hence, in the examined case, we have an average position Z = wgt
with a mean quadratic deviation equal to h?/(4A?) + t2A%/m?, while the
average momentum is py with a mean quadratic deviation A2. The mean
values represent the kinematic variables of a free particle, while the mean
quadratic deviations are roughly inversely proportional to each other: if we
improve the definition of one observable, the other becomes automatically less
defined.

The distributions given in (2.49) and (2.50), even if derived in the context
of a particular example, permit to reach important general conclusions which,
for the sake of clarity, are listed in the following as distinct points.

2.4.1 The Uncertainty Principle

While the mean quadratic deviation relative to the momentum distribution
(p—p)? = A2

has been fixed a-priori by choosing zﬁ(p) and is independent of time, thus
confirming that momentum is a constant of motion for a free particle, that
relative to the position

4t2A4) K2

_7)2 =
(x —%)2 = <1+ m2n? ) 4n2

does not contain further free parameters and does depend on time. Indeed,
A, grows significantly for 2¢A%/(mh) > 1, hence for times greater than
ts = mh/(2A2%). Notice that t, is nothing but the time needed for a par-
ticle of momentum A to cover a distance h/(2A), therefore this spreading has
a natural interpretation also from a classical point of view: a set of indepen-
dent particles having momenta distributed according to a width A, spreads
with velocity A,/m = vs; if the particles are statistically distributed in a
region of size initially equal to A,, the same size will grow significantly after
times of the order of A, /vs.

What is new in our results is, first of all, that they refer to a single particle,
meaning that uncertainties in position and momentum are not avoidable;
secondly, these uncertainties are strictly interrelated. Without considering the
spreading in time, it is evident that the uncertainty in one variable can be
diminished only as the other uncertainty grows. Indeed, A can be eliminated
from our equations by writing the inequality:

h
Ay A, = \/(x -2 (p—p)? > o (2.51)
which is known as the Heinsenberg uncertainty principle and can be shown
to be valid for any kind of wave packet. The case of a real Gaussian packet

corresponds to the minimal possible value A, A, = h/2.
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From a phenomenological point of view this principle originates from the
universality of diffractive phenomena. Indeed diffractive effects are those which
prevent the possibility of a simultaneous measurement of position and mo-
mentum with arbitrarily good precision for both quantities. Let us consider
for instance the case in which the measurement is performed through optical
instruments; in order to improve the resolution it is necessary to make use
of radiation of shorter wavelength, thus increasing the momenta of photons,
which hitting the object under observation change its momentum in an un-
predictable way. If instead position is determined through mechanical instru-
ments, like slits, then the uncertainty in momentum is caused by diffractive
phenomena.

It is important to evaluate the order of magnitude of quantum uncertainty
in cases of practical interest. Let us consider for instance a beam of electrons
emitted by a cathode at a temperature 7' = 1000°K and accelerated through
a potential difference equal to 10* V. The order of magnitude of the kinetic
energy uncertainty Ag is kT, where k = 1.381 10723 J/°K is the Boltz-
mann constant (alternatively one can use k = 8.617 1075 eV /°K ). Therefore
Ag = 1.38 1072 J while E = 1.6 10~!® J, corresponding to a quite precise
determination of the beam energy (Ag/E ~ 107°). We can easily compute
the momentum uncertainty by using error propagation (4A,/p = ;Ag/E) and
computing p = v/2m.E = 5.6 10723 N s; we thus obtain A, =28 1028 N s,
hence, making use of (2.51), A, > 2 10~7 m. It is clear that the uncertainty
principle does not place significant constraints in the case of particle beams.

A macroscopic body of mass M = 1 Kg placed at room temperature
(T ~ 300°K) has an average thermal momentum , caused by collisions with
air molecules, which is equal to A, ~ \/ZM 3kT/2 ~ 9 107! N s, so that
the minimal quantum uncertainty on its position is A, ~ 10~2* m, hence not
appreciable.

The uncertainty principle is instead quite relevant at the atomic level,
where it is the stabilizing mechanism which prevents the electron from collaps-
ing onto the nucleus. We can think of the electron orbital radius as a rough es-
timate of its position uncertainty (A, ~ r) and evaluate the kinetic energy de-
riving from the momentum uncertainty; we have Ey ~ A2/(2m) ~ h*/(2mr?).
Taking into account the binding Coulomb energy, the total energy is

2
h e?

~ - .
2mr?  Admegr

E(r)

We infer that the system is stable, since the total energy F(r) has an abso-
lute minimum. The stable radius r,, corresponding to this minimum can be
computed through the equation

2
e? h

2 3
dmeors,  mry,

hence
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2
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me
which nicely reproduce the value of the atomic radius for the fundamental
level in Bohr’s model, see (2.22).

2.4.2 The Speed of Waves

It is known that electromagnetic waves move without distortion at a speed
¢ = 1/\/eopo and that, for a harmonic wave, c is given by the wavelength
multiplied by the frequency.

In the case of de Broglie’s waves introduced in (2.40), we have v =
p?/(2mh) and X\ = h/p; therefore the velocity of harmonic waves is given
by vp = Av = p/(2m). If we consider instead the wave packet given in (2.48)
and its corresponding probability density given in (2.49), we clearly see that
it moves with a velocity vg = po/m, which is equal to the classical velocity of
a particle with momentum py. We have used different symbols to distinguish
the velocity of plane waves vg, which is called phase velocity, from vg, which
is the speed of the packet and is called group velocity. Previous equations lead
to the result that, contrary to what happens for electromagnetic waves prop-
agating in vacuum, the two velocities are different for de Broglie’s waves, and
in particular the group velocity does not coincide with the average value of the
phase velocities of the different plane waves making up the packet. Moreover,
the phase velocity depends on the wavelength (v = h/(2mA)). The relation
between frequency and wavelength is given by v = ¢/X for electromagnetic
waves, while for de Broglie’s waves it is v = h/(2mA?).

There is a very large number of examples of wave-like propagation in
physics: electromagnetic waves, elastic waves, gravity waves in liquids and
several other ones. In each case the frequency presents a characteristic de-
pendence on the wavelength, v(\). Considering as above the propagation
of gaussian wave packets, it is always possible to define the phase velocity,
vrp = A v(A), and the group velocity, which in general is defined by the rela-

tion:

)2 dv(X) )
dX
Last equation can be verified by considering that, for a generic dependence of
the wave phase on the wave number exp(ikx — iw(k)t) and for a generic wave
packet described by superposition coefficients strongly peaked around a given
value k = kg, the resulting wave function

v = — (2.52)

o0
(x) / dk f(k — ko) elFz=w®t)
— 00
will be peaked around an zy such that the phase factor is stationary, hence
almost constant, for k ~ ko, leading to xg ~ w'(ko)t.
In the case of de Broglie’s waves (2.52) reproduces the result found previ-
ously. Media where the frequency is inversely proportional to the wavelength,
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as for electromagnetic waves in vacuum, are called non-dispersive media, and
in that case the two velocities coincide.

It may be interesting to notice that, if we adopt the relativistic form for
the plane wave, we have v(\) = \/m2ct/h2 + c2 /)2, hence

m2ct 2 B

vp = A B2 +/\2:p>07
2 /m2ct 2 -1/2 nc
VG = A B2 +/\2 = B <c.

In particular vg, which describes the motion of wave packets, satisfies the
constraint of being less than ¢ and coincides with the relativistic expression for
the speed of a particle in terms of momentum and energy given in Chapter 1.

2.4.3 The Collective Interpretation of de Broglie’s Waves

The description of single particles as wave packets is at the basis of a rig-
orous formulation of Schrodinger’s theory. There is however an alternative
interpretation of the wave function, which is of much simpler use and can be
particularly useful to describe average properties, like a particle flow in the
free case.

Let us consider the plane wave in (2.40): ¢ = exp (i (p « — p*t/(2m)) /h)
and compute the corresponding current density J:

J= g (O — YO = = (¢ Tv—v w)m, (2:53)
while p = ¢¥*y = 1. On the other hand we notice that given a distribution of
classical particles with density p and moving with velocity v, the corresponding
current density is J = pv.

That suggests to go beyond the problem of normalizing the probability
distribution in (2.44), relating instead the wave function in (2.40) not to a
single particle, as we have done till now, but to a stationary flux of independent
particles, which are uniformly distributed with unitary density and move with
the same velocity v.

It should be clear that in this way we are a priori giving up the idea of
particle localization, however we obtain in a much simpler way information
about the group velocity and the flux. We will thus be able, in the following
Chapter, to easily and clearly interpret the effects of a potential barrier on a
particle flux.

2.5 The Potential Barrier

The most interesting physical situation is that in which particles are not
free, but subject to forces corresponding to a potential energy V' (z). In these
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conditions the Schrodinger equation in the form given in (2.42) has to be
used. Since the equation is linear, the study can be limited, without loss of
generality, to solutions which are periodic in time, like:

Yz, t) = efiEt/hz/)E(x) ) (2.54)

Indeed the general time dependent solution can always be decomposed in
periodic components through a Fourier expansion, so that its knowledge is
equivalent to that of ¢ (z) plus the expansion coefficients.

Furthermore, according to the collective interpretation of de Broglie waves
presented in last Section, the wave function in (2.54) describes either a sta-
tionary flow or a stationary state of particles. In particular we shall begin
studying a stationary flow hitting a potential barrier.

The function g (z) is a solution of the equation obtained by replacing
(2.54) into (2.42), i.e.

2
ih e M (3) = Be PN (x) = eI fjmaiwz; + V(ar)%}
(2.55)
hence )
Bys(r) =~ 920m() +V@)s(), (2.56)

which is known as the time-independent or stationary schrédinger equation.

Fig. 2.3. A typical example of a potential barrier, referring in particular to that due
to Coulomb repulsion that will be used when discussing Gamow’s theory of nuclear
a-emission

We will consider at first the case of a potential barrier, in which V(z)
vanishes for £ < 0 and = > L, and is positive in the segment [0, L], as shown
in Fig. 2.3. A flux of classical particles hitting the barrier from the left will
experience slowing forces as « > 0. If the starting kinetic energy, corresponding
in this case to the total energy F in (2.56), is greater than the barrier height Vj,
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the particles will reach the point where V' has a maximum, being accelerated
from there forward till they pass point * = L, where the motion gets free
again. Therefore the flux is completely transmitted, the effect of the barrier
being simply a slowing down in the segment [0, L]. If instead the kinetic energy
is less than Vj, the particles will stop before they reach the point where V' has
a maximum, reversing their motion afterwards: the flux is completely reflected
in this case. Quantum Mechanics gives a completely different result.

In order to analyze the differences

from a qualitative point of view, it is Wiz

convenient to choose a barrier which

makes the solution of (2.56) easier:

that is the case of a potential which 0
is piecewise constant, like the square
barrier depicted on the side. The
choice is motivated by the fact that,

if V' is constant, then (2.56) can be ¢ : "
rewritten as follows:
2m
e (x) + 52 (E=V)Yg(z)=0, (2.57)

and has the general solution:

YE(x) = at exp (i \/Zm(f -V) x) +a_ exp (—i \/2m(§ -V x) , (2.58)

if B>V, while

Ye(r) = ayexp <\/2m(;/ -P x) +a_exp (— \/ngj - B) x> , (2.59)

in the opposite case. The problem is then to establish how the solution found
in a definite region can be connected to those found in the nearby regions.
In order to solve this kind of problem we must be able to manage differential
equations in presence of discontinuities in their coefficients, and that requires
a brief mathematical interlude.

2.5.1 Mathematical Interlude: Differential Equations
with Discontinuous Coefficients

Differential equations with discontinuous coefficients can be treated by smooth-
ing the discontinuities, then solving the equations in terms of functions which
are derivable several times, and finally reproducing the correct solutions in
presence of discontinuities through a limit process. In order to do so, let us
introduce the function . (x), which is defined as

pe(x) =0 if |z| >,
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€%+ a? 1 _
we(z) = 5 5 s o if |z| <e.
2 (e2 — 22)° cosh” (z /(€2 — a2))

This function, as well as all of its derivatives, is continuous and it can be
easily shown that

/OO Ye(x)dr = 1.

— 00
Based on this property we conclude that if f(x) is locally integrable, i.e. if it
admits at most isolated singularities where the function may diverge with a
degree less than one, like for instance 1/|z|*~® when § > 0, then the integral

o0
| o= niwin= 1.
— 00

defines a function which can be derived in x an infinite number of times; the
derivatives of f. tend to those of f in the limit ¢ — 0 and in all points where
the latter are defined. We have in particular, by part integration,

vt = | T e —y) o L)y, (2.60)

n
dx oo

fe is called regularized function. If for in-

stance we consider the case in which f is

the step function in the origin, i.e. f(z) =0

for x < 0 and f(z) = 1 for z > 0, f(x)
we have for fc(x), Opfc(z) = fl(x) and ¢
92 f.(x) = f(x) the behaviours showed in /
the respective order on the side. Notice in /
particular that since /
f = [ ede—uin= |

we(z)dz — :

— 00

we have O, fc(r) = @e(x). By looking at

the three figures it is clear that fc(x) con- prL
tinuously interpolates between the two val- 2
ues, zero and one, which the function as- / \
sumes respectively to the left of —e and to ;
the right of ¢, staying less than 1 for every f;/ \\
value of x. It is important to notice that in- / \
stead the second figure, showing 0, fe(x), ~—¢ £
i.e. pe(x), has a maximum of height pro-

portional to 1/€2, hence diverging as € — 0.
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The third figure, showing the second

derivative 92f.(x), has an oscillation of

amplitude proportional to 1/e* around the el o i
discontinuity point. Since, for small e, the g
regularized function depends, close to the |
discontinuity, on the nearby values of the \
original function, it is clear that the qual- / N
itative behaviors showed in the figures are \
valid, close to discontinuities of the first
kind (i.e. where the function itself has a
discontinuous gap), for every starting func-
tion f.

Let us now consider (2.57) close to a discontinuity point of the first kind
(step function) for V', and suppose we regularize both terms on the left hand
side. Assuming that the wave function do not present discontinuities worse
than first kind, the second term in the equation may present only steps so that,
once regularized, it is limited independently of . However the first term may
present oscillations of amplitude ~ 1/¢* if ¢)g has a first kind discontinuity, or
a peak of height ~ +1/€? if ¢p is continuous but its first derivative has such
discontinuity: in each case the modulus of the first regularized term would
diverge faster than the second in the limit € — 0. That shows that in presence
of a first kind discontinuity in V', both the wave function g and its derivative
must be continuous.

In order to simply deal with barriers of length L much smaller than the
typical wavelengths of the problem, it is useful to introduce infinitely thin bar-
riers: that can be done by choosing a potential energy which, once regularized,
be equal to Ve(z) =V ¢c(z), ie.

(%)

V(z)=V 251(1) we(z) = Vi(z). (2.61)

Equation (2.61) defines the so-called Dirac’s delta function as a limit of ¢..

When studying Schrédinger equation regularized as done above, it is pos-
sible to show, by integrating the differential equation between —e and ¢, that
in presence of a potential barrier proportional to the Dirac delta function the
wave function stays continuous but its derivative has a first kind discontinuity
of amplitude

lin((0) — V(=€) = 75 Vi (0). (262)

Notice that a potential barrier proportional to the Dirac delta function can
be represented equally well by a square barrier of height V/L and width L, in
the limit as L — 0 with [*°_dxV (z) =V kept constant.

2.5.2 The Square Barrier

Let us consider the stationary Schrodinger equation (2.56) with a potential
corresponding to the square barrier described above, that is V(z) = V for



