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Introduction to Quantum Physics

The gestation of Quantum Physics has been very long and its phenomeno-
logical foundations were various. Historically the original idea came from the
analysis of the black body spectrum. This is not surprising since the black
body, in fact an oven in thermal equilibrium with the electromagnetic radi-
ation, is a simple and fundamental system once the law of electrodynamics
are established. As a matter of fact many properties of the spectrum can be
deduced starting from the general laws of electrodynamics and thermodynam-
ics; the crisis came from the violation of energy equipartition. This suggested
to Planck the idea of quantum, from which everything originated. Of course
a long sequence of different phenomenological evidences, first of all the pho-
toelectric effect, the line nature of atomic spectra, the Compton effect and so
on, gave a compelling evidence for the new theory.

Due to the particular limits of the present notes an exhaustive analysis of
the whole phenomenology is impossible. Even a clear discussion of the black
body problem needs an exceeding amount of space. Therefore we have chosen
a particular line, putting major emphasis on the photoelectric effect and on
the inadequacy of a classical approach based on Thomson’s model of the atom,
followed by Bohr’s analysis of the quantized structure of Rutherford’s atom
and by the construction of Schrödinger’s theory. This does not mean that
we have completely overlooked the remaining phenomenology; we have just
presented it in the light of the established quantum theory. Thus, for example,
Chapter 3 ends with the analysis of the black body spectrum in the light of
quantum theory.

2.1 The Photoelectric Effect

The photoelectric effect was discovered by H. Hertz in 1887. As sketched in
Fig. 2.1, two electrodes are placed in a vacuum cell; one of them (C) is hit
by monochromatic light of variable frequency, while the second (A) is set to
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a negative potential with respect to the first, as determined by a generator G
and measured by a voltmeter V.

Fig. 2.1. A sketch of Hertz’s photoelectric effect apparatus

By measuring the electric current going through the amperometer I, one
observes that, if the light frequency is higher than a given threshold νV , de-
termined by the potential difference V between the two electrodes, the am-
perometer reveals a flux of current i going from A to C which is proportional
to the flux of luminous energy hitting C. The threshold νV is a linear function
of the potential difference V

νV = a + bV . (2.1)

The reaction time of the apparatus to light is substantially determined by the
(RC) time constant of the circuit and can be reduced down to values of the
order of 10−8 s. The theoretical interpretation of this phenomenon remained
an open issue for about 14 years because of the following reasons.

The current direction and the possibility to stop it by increasing the po-
tential difference clearly show that the electric flux is made up of electrons
pulled out from the atoms of electrode C by the luminous radiation.

A reasonable model for this process, which was inspired by Thomson’s
atomic model, assumed that electrons, which are particles of mass m =
9 10−31 Kg and electric charge −e � −1.6 10−19 C, were elastically bound
to atoms of size RA ∼ 3 10−10 m and subject to a viscous force of constant
η. The value of η is determined as a function of the atomic relaxation time,
τ = 2m/η, that is the time needed by the atom to release its energy through
radiation or collisions, which is of the order of τ = 10−8 s. Let us confine
ourselves to considering the problem in one dimension and write the equation
of motion for an electron
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mẍ = −kx − ηẋ − eE , (2.2)

where E is an applied electric field and k is determined on the basis of atomic
frequencies. In particular we suppose the presence of many atoms with differ-
ent frequencies continuously distributed around√

k

m
= ω0 = 2πν0 ∼ 1015 s−1 . (2.3)

If we assume an oscillating electric field E = E0 cos(ωt) with ω ∼ 1015 s−1,
corresponding to visible light, then a general solution to (2.2) is given by

x = x0 cos(ωt + φ) + A1e
−α1t + A2e

−α2t , (2.4)

where the second and third term satisfy the homogeneous equation associated
with (2.2), so that α1/2 are the solutions of the following equation

mα2 − ηα + k = 0 ,

α =
η ±

√
η2 − 4km

2m
=

1

τ
±
√

1

τ2
− ω2

0 � 1

τ
± i ω0 , (2.5)

where last approximation is due to the assumption τ 
 ω−1
0 .

Regarding the particular solution x0 cos(ωt+φ), we obtain by substitution:

−mω2x0 cos(ωt+φ) = −kx0 cos(ωt+φ)+ηωx0 sin(ωt+φ)−eE0 cos(ωt) (2.6)

hence

(k − mω2)x0 (cos(ωt)cosφ − sin(ωt) sinφ)

= ηωx0 (sin(ωt)cosφ + cos(ωt) sinφ) − eE0 cos(ωt)

from which, by taking alternatively ωt = 0, π/2, we obtain the following sys-
tem (

m
(
ω2

0 − ω2
)
cosφ − ηω sinφ

)
x0 = −eE0 ,

m
(
ω2

0 − ω2
)
x0 sin φ + ηω x0 cosφ = 0 (2.7)

which can be solved for φ

tan φ =
2ω

τ (ω2 − ω2
0)

,

cosφ =
ω2 − ω2

0√
(ω2

0 − ω2)
2

+ 4ω2

τ2

, sin φ =
(2ω/τ)√

(ω2
0 − ω2)

2
+ 4ω2

τ2

(2.8)

and finally for x0, for which we obtain the well known resonant form
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x0 =
eE0/m√

(ω2
0 − ω2)

2
+ 4ω2

τ2

. (2.9)

To complete our computation we must determine A1 and A2. On the other
hand, taking into account (2.5) and the fact that x is real, we can rewrite the
general solution in the following equivalent form:

x = x0 cos(ωt + φ) + Ae−t/τ cos(ω0t + φ0) . (2.10)

If we assume that the electron be initially at rest, we can determine A and φ0

by taking x = ẋ = 0 for t = 0, i.e.

x0 cosφ + A cosφ0 = 0 , (2.11)

x0 ω sin φ = −A

(
cosφ0

τ
+ ω0 sin φ0

)
, (2.12)

hence in particular

tan φ0 =
ω

ω0
tanφ − 1

ω0τ
. (2.13)

These equations give us enough information to discuss the photoelectric effect
without explicitly substituting A in (2.10).

Indeed in our simplified model the effect, i.e. the liberation of the electron
from the atomic bond, happens as the amplitude of the electron displacement
x is greater than the atomic radius. In equation (2.10) x is the sum of two
parts, the first corresponding to stationary oscillations, the second to a tran-
sient decaying with time constant τ . In principle, the maximum amplitude
could take place during the transient or later: to decide which is the case we
must compare the value of A with that of x0. It is apparent from (2.11) that
the magnitude of A is of the same order as x0 unless cosφ0 is much less than
cosφ. On the other hand, equation (2.13) tells us that, if tanφ0 is large, then
tan φ is large as well, since (ω0τ)−1 ∼ 10−7 and ω/ω0 ∼ 1. Therefore, the
order of magnitude of the maximum displacement is given by x0, and can be
sensitive to the electric field frequency. That happens in the resonant regime,
where ω differs from ω0 by less than 2

√
ω/τ .

Let us consider separately the generic case from the resonant one. In the
first case the displacement is of the order of eE0/(ω2m), since the square root
of the denominator in (2.9) has the same order of magnitude as ω2. In order
to induce the photoelectric effect it is therefore necessary that

eE0

ω2m
∼ RA ,

from which we can compute the power density needed for the luminous beam
which hits electrode C:

P = cε0E
2
0 ∼ cε0

(
RAω2m

e

)2

,
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where c is the speed of light and ε0 is the vacuum dielectric constant. P comes
out to be of the order of 1015 W/m2, a power density which is difficult to
realize in practice and which would anyway be enough to vaporize any kind of
electrode. We must conclude that our model cannot explain the photoelectric
effect if ω is far from resonance. Let us consider therefore the resonance case
and set ω = ω0. On the basis of (2.11), (2.13) and (2.9), that implies:

φ = φ0 =
π

2
, A = −x0 ,

hence

x =
−eE0τ

2mω0

(
1 − e−t/τ

)
sin(ω0t) . (2.14)

In order for the photoelectric effect to take place, the oscillation amplitude
must be greater than the atomic radius:

eE0τ

2mω0

(
1 − e−t/τ

)
≥ RA .

That sets the threshold field to 2mω0RA/(eτ) and the power density of the
beam to

P = cε0

(
4ω0mRA

τe

)2

∼ 100 W/m2 ,

while the time required to reach the escape amplitude is of the order of τ .
In conclusion, our model predicts a threshold on the power of the beam,

but not on its frequency, which however must be tuned to the resonance
frequency: the photoelectric effect would cease both below and above the
typical resonance frequencies of the atoms in the electrode. Moreover the
expectation is that the electron does not gain any further appreciable energy
from the electric field once it escapes the atomic bond: hence the emission from
the electrode could be strong, but made up of electrons of energy equal to that
gained during the last atomic oscillation. Equation (2.14) shows that, during
the transient (t << τ), the oscillation amplitude grows roughly by eE0/(mω2

0)
in one period, so that the energy of the escaped electron would be of the order
of magnitude of kRAeE0/(mω2

0) = eE0RA, corresponding also to the energy
acquired by the electron from the electric field E0 when crossing the atom. It
is easily computed that for a power density of the order of 10 − 100 W/m2,
the electric field E0 is roughly 100 V/m, so that the final kinetic energy of
the electron would be 10−8 eV ∼ 10−27 J: this value is much smaller than the
typical thermal energy at room temperature (3kT/2 ∼ 10−1 eV).

The prediction of the model is therefore in clear contradiction with the
experimental results described above. In particular the very small energy of
the emitted electrons implies that the electric current I should vanish even
for small negative potential differences.

Einstein proposed a description of the effect based on the hypothesis that
the energy be transferred from the luminous radiation to the electron in a
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single elementary (i.e. no further separable) process, instead than through a
gradual excitation. Moreover he proposed that the transferred energy be equal
to hν = hω/(2π) ≡ h̄ω, a quantity called quantum by Einstein himself. The
constant h had been introduced by Planck several years before to describe the
radiation emitted by an oven and its value is 6.63 10−34 J s.

If the quantum of energy is enough for electron liberation, i.e. according to
our model it is larger than Et ≡ kR2

A/2 = ω2
0R

2
Am/2 ∼ 10−19 J ∼ 1 eV and

the frequency exceeds 1.6 1014 Hz (corresponding to ω in our model), then
the electron is emitted keeping the energy exceeding the threshold in the form
of kinetic energy. The number of emitted electrons, hence the intensity of the
process, is proportional to the flux of luminous energy, i.e. to the number of
quanta hitting the electrode.

Since E = hν is the energy gained by the electron, which spends a part Et

to get free from the atom, the final electron kinetic energy is T = hν −Et, so
that the electric current can be interrupted by placing the second electrode
at a negative potential

V =
hν − Et

e
,

thus reproducing (2.1).
The most important point in Einstein’s proposal, which was already no-

ticed by Planck, is that a physical system of typical frequency ν can exchange
only quanta of energy equal to hν. The order of magnitude in the atomic case
is ω ∼ 1015 s−1, hence h̄ω ≡ (h/2π) ω ∼ 1 eV.

2.2 Bohr’s Quantum Theory

After the introduction of the concept of a quantum of energy, quantum theory

was developed by N. Bohr in 1913 and then perfected by A. Sommerfeld in
1916: they gave a precise proposal for multi-periodic systems, i.e. systems
which can be described in terms of periodic components.

The main purpose of their studies was that of explaining, in the framework
of Rutherford’s atomic model, the light spectra emitted by gasses (in partic-
ular mono-atomic ones) excited by electric discharges. The most simple and
renowned case is that of the mono-atomic hydrogen gas (which can be pre-
pared with some difficulties since hydrogen tends to form bi-atomic molecules).
It has a discrete spectrum, i.e. the emitted frequencies can assume only some
discrete values, in particular:

νn,m = R

(
1

n2
− 1

m2

)
(2.15)

for all possible positive integer pairs with m > n: this formula was first pro-
posed by J. Balmer in 1885 for the case n = 2, m ≥ 3, and then generalized by
J. Rydberg in 1888 for all possible pairs (n, m). The emission is particularly
strong for m = n + 1.
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Rutherford had shown that the positive charge in an atom is localized in a
practically point-like nucleus, which also contains most of the atomic mass. In
particular the hydrogen atom can be described as a two-body system: a heavy
and positively charged particle, which nowadays is called proton, bound by
Coulomb forces to a light and negatively charged particle, the electron.

We will confine our discussion to the case of circular orbits of radius r,
covered with uniform angular velocity ω, and will consider the proton as if it
were infinitely heavy (its mass is about 2 103 times that of the electron). In
this case we have

mω2r =
e2

4πε0r2
,

where m is the electron mass. Hence the orbital frequencies, which in clas-
sical physics correspond to those of the emitted radiation, are continuously
distributed as a function of the radius

ν =
ω

2π
=

e√
16π3ε0mr3

, (2.16)

this is in clear contradiction with (2.15). Based on Einstein’s theory of the
photoelectric effect, Bohr proposed to interpret (2.15) by assuming that only
certain orbits be allowed in the atom, which are called levels, and that the
frequency νn,m correspond to the transition from the m-th level to n-th one.
In that case

hνn,m = Em − En , (2.17)

where the atomic energies (which are negative since the atom is a bound
system) would be given by

En = −hR

n2
. (2.18)

Since, according to classical physics for the circular orbit case, the atomic
energy is given by

Ecirc = − e2

8πε0r
,

Bohr’s hypothesis is equivalent to the assumption that the admitted orbital
radii be

rn =
e2n2

8πε0hR
. (2.19)

It is clear that Bohr’s hypothesis seems simply aimed at reproducing the
observed experimental data; it does not permit any particular further devel-
opment, unless further conditions are introduced. The most natural, which is
called correspondence principle is that the classical law, given in (2.16), be
reproduced by (2.15) for large values of r, hence of n, and at least for the
strongest emissions, i.e. those with m = n + 1, for which we can write

νn,n+1 = R
2n + 1

n2(n + 1)2
→ 2R

n3
, (2.20)
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these frequencies should be identified in the above mentioned limit with what
resulting from the combination of (2.16) and (2.19):

ν =
e√

16π3ε0mr3
n

=
2

5
2 ε0(hR)

3
2

e2
√

mn3
. (2.21)

By comparing last two equations we get the value of the coefficient R in (2.15),
which is called Rydberg constant:

R =
me4

8ε20h
3

and is in excellent agreement with experimental determinations. We have then
the following quantized atomic energies

En = − me4

8ε20h
2n2

, n = 1, 2, ...

while the quantized orbital radii are

rn =
ε0h

2n2

πme2
. (2.22)

In order to give a numerical estimate of our results, it is convenient to intro-
duce the ratio e2/(2ε0hc) ≡ α � 1/137, which is adimensional and is known
as the fine structure constant.Constant!fine structure The energy of the state
with n = 1, which is called the fundamental state, is

E1 = −hR = −mc2

2
α2 ;

noticing that mc2 ∼ 0.5 MeV, we have E1 � −13 eV. The corresponding
atomic radius is r1 � 0.5 10−10 m.

Notwithstanding the excellent agreement with experimental data, the
starting hypothesis, to be identified with (2.18), looks still quite conditioned
by the particular form of Balmer law given in (2.15). For that reason Bohr
tried to identify a physical observable to be quantized according to a simpler
and more fundamental law. He proceeded according to the idea that such ob-
servable should have the same dimensions of the Planck constant, i.e. those
of an action, or equivalently of an angular momentum. In the particular case
of quantized circular orbits this last quantity reads:

L = pr = mωr2 =
e√
4πε0

√
mrn =

h

2π
n ≡ nh̄ , n = 1, 2, ... (2.23)

2.3 De Broglie’s Interpretation

In this picture of partial results, even if quite convincing from the point of
view of the phenomenological comparison, the real progress towards under-
standing quantum physics came as L. de Broglie suggested the existence of
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a universal wave-like behavior of material particles and of energy quanta as-
sociated to force fields. As we have seen in the case of electromagnetic waves
when discussing the Doppler effect, a phase can always be associated with a
wave-like process, which is variable both in space and in time (e.g. given by
2π (x/λ − νt) in the case of waves moving parallel to the x axis). The assump-
tion that quanta can be interpreted as real particles and that Einstein’s law
E = hν be universally valid, would correspond to identifying the wave phase
with 2π (x/λ − Et/h). If we further assume the phase to be relativistically
invariant, then it must be expressed in the form (p x − E t) /h̄, where E and
p are identified with relativistic energy and momentum, i.e. in the case of
material particles:

E =
mc2√(
1 − v2

c2

) , p =
mv√(
1 − v2

c2

) .

In order to simplify the discussion as much as possible, we will consider here
and in most of the following a one dimensional motion (parallel to the x
axis). In conclusion, by comparing last two expressions given for the phase,
we obtain de Broglie’s equation:

p =
h

λ
,

which is complementary to Einstein’s law, E = hν.
These formulae give an idea of the scale at which quantum effects are visi-

ble. For an electron having kinetic energy Ek = 102 eV � 1.6 10−17 J quantum
effects show up at distances of the order of λ = h/p = h/

√
2mEk ∼ 10−10 m,

corresponding to atomic or slightly subatomic distances; that confirms the
importance of quantum effects for electrons in condensed matter and in par-
ticular in solids, where typical energies are of the order of a few electron-Volts.
For a gas of light atoms in equilibrium at temperature T , the kinetic energy
predicted by equipartition theorem is 3kT/2, where k is Boltzmann’s con-
stant. At a temperature T = 300◦K (room temperature) the kinetic energy
is roughly 2.5 10−2 eV, corresponding to wavelengths of about 10−10 m for
atom masses of the order of 10−26 Kg. However at those distances the picture
of a non-interacting (perfect) gas does not apply because of strong repulsive
forces coming into play: in order to gain a factor ten on distances, it is neces-
sary to reduce the temperature by a factor 100, going down to a few Kelvin
degrees, at which quantum effects are manifest. For a macroscopic body of
mass 1 Kg and kinetic energy 1 J quantum effects would show up at distances
roughly equal to 3 10−34 m, hence completely negligible with respect to the
thermal oscillation amplitudes of atoms, which are proportional to the square
root of the absolute temperature, and are in particular of the order of a few
nanometers at T = 103 ◦K, where the solid melts.

On the other hand, Einstein’s formula gives us information about the scale
of times involved in quantum processes, which is of the order of h/∆E, where
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∆E corresponds to the amount of exchanged energy. For ∆E ∼ 1 eV, times
are roughly 4 10−15 s, while for thermal interactions at room temperature
time intervals increase by a factor 40.

In conclusion, in the light of de Broglie’s formula, quantum effects are
not visible for macroscopic bodies and at macroscopic energies. For atoms in
matter they show up after condensation or anyway at very low temperatures,
while electrons in solids or in atoms are fully in the quantum regime.

In Rutherford’s atomic model illustrated in previous Section, the circular
motion of the electron around the proton must be associated, according to de
Broglie, with a wave closed around the circular orbit. That resembles wave-like
phenomena analogous to the oscillations of a ring-shaped elastic string or to

air pressure waves in a toroidal reed pipe.
That implies well tuned wavelengths, as in
the case of musical instruments (which are
not ring-shaped for obvious practical rea-
sons). The need for tuned wavelength can be
easily understood in the case of the toroidal
reed pipe: a complete round of the ring must
bring the phase back to its initial value, so
that the total length of the pipe must be an
integer multiple of the wavelength.

Taking into account previous equations regarding circular atomic orbits,
we have the following electron wavelength:

λ =
h

p
=

h

e

√
4πε0r

m
,

so that the tuning condition reads

2πr = nλ =
nh

e

√
4πε0r

m

giving

r =
n2h2ε0
πe2m

,

which confirms (2.22) and gives support to the picture proposed by Bohr and
Sommerfeld. De Broglie’s hypothesis, which was formulated in 1924, was con-
firmed in 1926 by Davisson and Gerner by measuring the intensity of an
electron beam reflected by a nickel crystal. The apparatus used in the experi-
ment is sketched in Fig. 2.2. The angular distribution of the electrons reflected
in conditions of normal incidence shows a strongly anisotropic behavior with
a marked dependence on the beam accelerating potential. In particular, an
accelerating potential equal to 48 V leads to a quite pronounced peak at a re-
flection angle φ = 55.3◦. An analogous X-ray diffraction experiment permits
to interpret the nickel crystal as an atomic lattice of spacing 0.215 10−9 m.
The comparison between the angular distributions obtained for X-rays and
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for electrons shows relevant analogies, suggesting a diffractive interpretation
also in the case of electrons. Bragg’s law giving the n-th maximum in the
diffraction figure is d sinφn = nλ.

Fig. 2.2. A schematic description of Davisson-Gerner apparatus and a polar coor-
dinate representation of the results obtained at 48 V electron energy, as they appear
in Davisson’s Noble Price Lecture, from Nobel Lectures, Physics 1922-1941 (Elsevier
Publishing Company, Amsterdam, 1965)

For the peak corresponding to the principal maximum at 55.3◦ we have

d sin φ = λ � 0.175 10−9 m .

On the other hand the electrons in the beam have a kinetic energy

Ek � 7.68 10−18 J ,

hence a momentum p � 3.7 10−24 N s, in excellent agreement with de Broglie’s
formula p = h/λ. In the following years analogous experiments were repeated
using different kinds of material particles, in particular neutrons.

Once established the wave-like behavior of propagating material particles,
it must be clarified what is the physical quantity the phenomenon refers to, i.e.
what is the physical meaning of the oscillating quantity (or quantities) usually
called wave function, for which a linear propagating equation will be supposed,
in analogy with mechanical or electromagnetic waves. It is known that, in the
case of electromagnetic waves, the quantities measuring the amplitude are
electric and magnetic fields. Our question regards exactly the analogous of
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those fields in the case of de Broglie’s waves. The experiment by Davisson
and Gerner gives an answer to this question. Indeed, as illustrated in Fig. 2.2,
the detector reveals the presence of one or more electrons at a given angle; if
we imagine to repeat the experiment several times, with a single electron in
the beam at each time, and if we measure the frequency at which electrons are
detected at the various angles, we get the probability of having the electron in
a given site covered by the detector.

In the case of an optical measure, what is observed is the interference effect
in the energy deposited on a plate; that is proportional to the square of the
electric field on the plate. Notice that the linearity in the wave equation and
the quadratic relation between the measured quantity and the wave ampli-
tude are essential conditions for the existence of interference and diffractive
phenomena. We must conclude that also in the case of material particles some
positive quadratic form of de Broglie’s wave function gives the probability of
having the electron in a given point.

We have quite generically mentioned a quadratic form, since at the mo-
ment it is still not clear if the wave function has one or more components, i.e.
if it corresponds to one or more real functions. By a positive quadratic form
we mean a homogeneous second order polynomial in the wave function com-
ponents, which is positive for real and non-vanishing values of its arguments.
In the case of a single component, we can say without loss of generality that
the probability density is the wave function squared, while in the case of two
or more components it is always possible, by suitable linear transformations,
to reduce the quadratic form to a sum of squares.

We are now going to show that the hypothesis of a single component must
be discarded. Let us indicate by ρ(r, t)d3r the probability of the particle being
in a region of size d3r around r at time t, and by ψ(r, t) the wave function,
which for the moment is considered as a real valued function, defined so that

ρ(r, t) = ψ2(r, t) . (2.24)

If Ω indicates the whole region accessible to the particle, the probability den-
sity must satisfy the natural constraint:∫

Ω

d3rρ (r, t) = 1 , (2.25)

which implies the condition:∫
Ω

d3r ρ̇(r, t) ≡
∫

Ω

d3r
∂ρ(r, t)

∂t
= 0 . (2.26)

This expresses the fact that, if the particle cannot escape Ω, the probability of
finding it in that region must always correspond to certainty. This condition
can be given in mathematical terms analogous to those used to express electric
charge conservation: the charge contained in a given volume, i.e. the integral of
the charge density, may change only if the charge flows through the boundary
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surface. The charge flux through the boundaries is expressed in terms of the
current density flow and can be rewritten as the integral of the divergence of
the current density itself by using Gauss–Green theorem∫

Ω

ρ̇ = −Φ∂Ω(J) = −
∫

Ω

∇ · J .

Finally, by reducing the equation from an integral form to a differential one, we
can identify the temporal derivative of the charge density with the divergence
of the current density. Based on this analogy, let us introduce the probability

current density J and write

ρ̇(r, t) = −∂Jx(r, t)

∂x
− ∂Jy(r, t)

∂y
− ∂Jz(r, t)

∂z
≡ −∇ · J(r, t) . (2.27)

The conservation equation must be automatically satisfied as a consequence
of the propagation equation of de Broglie’s waves, which we write in the form:

ψ̇ = L
(
ψ, ∇ψ,∇2ψ, ..

)
, (2.28)

where L indicates a generic linear function of ψ and its derivatives like:

L
(
ψ, ∇ψ,∇2ψ, ..

)
= αψ + β∇2ψ . (2.29)

Notice that if L were not linear the interference mechanism upon which quan-
tization is founded would soon or later fail. Furthermore we assume invariance
under the reflection of coordinates, so that terms proportional to first deriva-
tives are excluded.

From equation (2.24) we have ρ̇ = 2ψψ̇, which can be rewritten, using
(2.28), as:

ρ̇ = 2ψL
(
ψ, ∇ψ,∇2ψ, ..

)
. (2.30)

The right-hand side of last equation must be identified with −∇·J(r, t). More-
over J must necessarily be a bilinear function of ψ and its derivatives exactly
like ρ̇. Therefore, since J is a vector-like quantity, it must be expressible as

J = c ψ∇ψ + d ∇ψ∇2ψ + . . .

from which it appears that ∇ ·J(r, t) must necessarily contain bilinear terms
in which both functions are derived, like ∇ψ · ∇ψ: however such terms are
clearly missing in (2.30).

We come to the conclusion that the description of de Broglie’s waves re-
quires at least two wave functions ψ1 and ψ2, defined so that ρ = ψ2

1 + ψ2
2 . In

an analogous way we can introduce the complex valued function:

ψ = ψ1 + iψ2 , (2.31)

defined so that
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ρ = |ψ|2 ; (2.32)

this choice implies:
ρ̇ = ψ∗ψ̇ + ψψ̇∗ .

If we assume, for instance, the wave equation corresponding to (2.29):

ψ̇ = αψ + β∇2ψ , (2.33)

we obtain:
ρ̇ = ψ∗ (αψ + β∇2ψ

)
+ ψ

(
α∗ψ∗ + β∗∇2ψ∗) .

If we also assume that the current probability density be

J = ik (ψ∗
∇ψ − ψ∇ψ∗) , (2.34)

with k real so as to make J real as well, we easily derive

∇ · J = ik
(
ψ∗∇2ψ − ψ∇2ψ∗) .

It can be easily verified that the continuity equation (2.27) is satisfied if

α + α∗ = 0 , β = −ik . (2.35)

It is of great physical interest to consider the case in which the wave
function has more than two real components. In particular, the wave function
of electrons has four components or, equivalently, two complex components. In
general, the multiplicity of the complex components is linked to the existence
of an intrinsic angular momentum, which is called spin. The various complex
components are associated with the different possible spin orientations. In the
case of particles with non-vanishing mass, the number of components is 2S+1,
where S is the spin of the particle. In the case of the electron, S = 1/2 .

For several particles, as for the electron, spin is associated with a magnetic
moment which is inherent to the particle: it behaves as a microscopic magnet
with various possible orientations, corresponding to those of the spin, which
can be selected by placing the particle in a non-uniform magnetic field and
measuring the force acting on the particle.

2.4 Schrödinger’s Equation

The simplest case to which our considerations can be applied is that of a non-
relativistic free particle of mass m. To simplify notations and computations,
we will confine ourselves to a one-dimensional motion, parallel for instance,
to the x axis; if the particle is not free, forces will be parallel to the same
axis as well. The obtained results will be extensible to three dimensions by
exploiting the vector formalism. In practice, we will sistematically replace
∇ by its component ∇x = ∂/∂x ≡ ∂x and the Laplacian operator ∇2 =
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∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 by ∂2/∂x2 ≡ ∂2
x; the probability current density

J will be replaced by Jx (J) as well. The inverse replacement will suffice to
get back to three dimensions.

The energy of a non-relativistic free particle is

E = c
√

m2c2 + p2 � mc2 +
p2

2m
+ O

(
p4

m3c2

)
,

where we have explicitely declared our intention to neglect terms of the or-
der of p4/(m3c2). Assuming de Broglie’s interpretation, we write the wave
function:

ψP (x, t) ∼ e2πi(x/λ−νt) = ei(px−Et)/h̄ (2.36)

(we are considering a motion in the positive x direction). Our choice implies
the following wave equation

ψ̇P = − iE

h̄
ψP = − i

h̄

(
mc2 +

1

2m
p2

)
ψP . (2.37)

We have also

∂xψP =
i

h̄
pψP , (2.38)

from which we deduce

ih̄ψ̇P = mc2ψP − h̄2

2m
∂2

xψP . (2.39)

Our construction can be simplified by multiplying the initial wave function
by the phase factor eimc2t/h̄, i.e. defining

ψ ≡ eimc2t/h̄ψP ∼ exp

(
i

h̄

(
px − p2

2m
t

))
. (2.40)

Since the dependence on x is unchanged, ψ still satisfies (2.38) and has the
same probabilistic interpretation as ψP . Indeed both ρ and J are unchanged.
The wave equation instead changes:

ih̄ψ̇ = − h̄2

2m
∂2

xψ ≡ Tψ . (2.41)

This is the Schrödinger equation for a free (non-relativistic) particle, in which
the right-hand side has a natural interpretation in terms of the particle energy,
which in the free case is only of kinetic type.

In the case of particles under the influence of a force field corresponding
to a potential energy V (x), the equation can be generalized by adding V (x)
to the kinetic energy :

ih̄ψ̇ = − h̄2

2m
∂2

xψ + V (x)ψ . (2.42)
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This is the one-dimensional Schrödinger equation that we shall apply to var-
ious cases of physical interest.

Equations (2.34) and (2.35) show that the probability density current does
not depend on V and is given by:

J = − ih̄

2m
(ψ∗∂xψ − ψ∂xψ∗) . (2.43)

Going back to the free case and considering the plane wave function given
in (2.36), it is interesting to notice that the corresponding probability density,
ρ = |ψ|2, is a constant function. This result is paradoxical since, by reducing
(2.25) to one dimension, we obtain∫ ∞

−∞
dx ρ(x, t) =

∫ ∞

−∞
dx |ψ(x, t)|2 = 1 , (2.44)

which cannot be satisfied in the examined case since the integral of a constant
function is divergent. We must conclude that our interpretation excludes the
possibility that a particle have a well defined momentum.

We are left with the hope that this difficulty may be overcome by admit-
ting some (small) uncertainty on the knowledge of momentum. This possibility
can be easily analyzed thanks to the linearity of Schrödinger equation. Indeed
equation (2.41) admits other different solutions besides the simple plane wave,
in particular the wave packet solution, which is constructed as a linear super-
position of many plane waves according to the following integral:∫ ∞

−∞
dp ψ̃(p) exp

(
i

h̄

(
px − p2

2m
t

))
.

The squared modulus of the superposition coefficients, |ψ̃(p)|2, can be nat-
urally interpreted, apart from a normalization constant, as the probability
density in terms of momentum, exactly in the same way as ρ(x) is interpreted
as a probability density in terms of position.

Let us choose in particular a Gaussian distribution:

ψ̃(p) ∼ e−(p−p0)
2/(4∆2) , (2.45)

corresponding to

ψ∆(x, t) = k

∫ ∞

−∞
dp e−(p−p0)2/(4∆2) ei(px−p2t/2m)/h̄ . (2.46)

where k must be determined in such a way that
∫∞
−∞ dx|ψ∆(x, t)|2 = 1.

The integral in (2.46) can be computed by recalling that, if α is a complex
number with positive real part (Re (α) > 0), then∫ ∞

−∞
dp e−αp2

=

√
π

α
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and that the Riemann integral measure dp is left invariant by translations in
the complex plane,∫ ∞

−∞
dp e−αp2 ≡

∫ ∞

−∞
d(p + γ) e−α(p+γ)2

=

∫ ∞

−∞
dp e−α(p+γ)2 = e−αγ2

∫ ∞

−∞
dp e−αp2

e−2αγp ,

for every complex number γ. Therefore we have∫ ∞

−∞
dp e−αp2

eβp =

√
π

α
eβ2/4α . (2.47)

Developing (2.46) with the help of (2.47) we can write

ψ∆(x, t) = ke−
p2
0

4∆2

∫ ∞

−∞
dp e−[ 1

4∆2 + it
2mh̄ ]p2

e[
p0

2∆2 + ix
h̄ ]p

= k

√
π

1
4∆2 + it

2mh̄

exp

([
p0

2∆2 + ix
h̄

]2
1

∆2 + 2it
mh̄

− p2
0

4∆2

)
. (2.48)

We are interested in particular in the x dependence of the probability density
ρ(x): that is solely related to the real part of the exponent of the rightmost
term in (2.48), which can be expanded as follows:

p2
0

4∆4 + ip0x
∆2h̄ − x2

h̄2

1
∆2 + 2it

mh̄

− p2
0

4∆2
= − p2

0

4∆2

4t2∆4

m2h̄2 + 2it∆2

mh̄

1 + 4t2∆4

m2h̄2

−
(

∆2x2

h̄2 − ip0x

h̄

)
1 − 2it∆2

mh̄

1 + 4t2∆4

m2h̄2

the real part being

− ∆2
(
x − p0t

m

)2
h̄2
(
1 + 4t2∆4

m2h̄2

) ≡ − ∆2 (x − v0t)
2

h̄2
(
1 + 4t2∆4

m2h̄2

) .

Since p0 is clearly the average momentum of the particle, we have introduced
the corresponding average velocity v0 = p0/m. Recalling the definition of ρ as
well as its normalization constraint, we finally find

ρ(x, t) =
∆

h̄

√
2

π
(
1 + 4t2∆4

m2h̄2

) exp

(
−2∆2

h̄2

(x − v0t)
2

1 + 4t2∆4

m2h̄2

)
, (2.49)

while the probability distribution in terms of momentum reads

ρ̃(p) =
1√
2π∆

e−(p−p0)2/(2∆2) . (2.50)

Given a Gaussian distribution ρ(x) = 1/(
√

2πσ)e−(x−x0)
2/(2σ2), it is a well

known fact, which anyway can be easily derived from previous formulae, that
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the mean value x̄ is x0 while the mean quadratic deviation (x − x̄)2 is equal
to σ2. Hence, in the examined case, we have an average position x̄ = v0t
with a mean quadratic deviation equal to h̄2/(4∆2) + t2∆2/m2, while the
average momentum is p0 with a mean quadratic deviation ∆2. The mean
values represent the kinematic variables of a free particle, while the mean
quadratic deviations are roughly inversely proportional to each other: if we
improve the definition of one observable, the other becomes automatically less
defined.

The distributions given in (2.49) and (2.50), even if derived in the context
of a particular example, permit to reach important general conclusions which,
for the sake of clarity, are listed in the following as distinct points.

2.4.1 The Uncertainty Principle

While the mean quadratic deviation relative to the momentum distribution

(p − p̄)2 = ∆2

has been fixed a-priori by choosing ψ̃(p) and is independent of time, thus
confirming that momentum is a constant of motion for a free particle, that
relative to the position

(x − x̄)2 =

(
1 +

4t2∆4

m2h̄2

)
h̄2

4∆2

does not contain further free parameters and does depend on time. Indeed,
∆x grows significantly for 2t∆2/(mh̄) > 1, hence for times greater than
ts = mh̄/(2∆2). Notice that ts is nothing but the time needed for a par-
ticle of momentum ∆ to cover a distance h̄/(2∆), therefore this spreading has
a natural interpretation also from a classical point of view: a set of indepen-
dent particles having momenta distributed according to a width ∆p, spreads
with velocity ∆p/m = vs; if the particles are statistically distributed in a
region of size initially equal to ∆x, the same size will grow significantly after
times of the order of ∆x/vs.

What is new in our results is, first of all, that they refer to a single particle,
meaning that uncertainties in position and momentum are not avoidable;
secondly, these uncertainties are strictly interrelated. Without considering the
spreading in time, it is evident that the uncertainty in one variable can be
diminished only as the other uncertainty grows. Indeed, ∆ can be eliminated
from our equations by writing the inequality:

∆x∆p ≡
√

(x − x̄)2 (p − p̄)2 ≥ h̄

2
, (2.51)

which is known as the Heinsenberg uncertainty principle and can be shown
to be valid for any kind of wave packet. The case of a real Gaussian packet
corresponds to the minimal possible value ∆x∆p = h̄/2.
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From a phenomenological point of view this principle originates from the
universality of diffractive phenomena. Indeed diffractive effects are those which
prevent the possibility of a simultaneous measurement of position and mo-
mentum with arbitrarily good precision for both quantities. Let us consider
for instance the case in which the measurement is performed through optical
instruments; in order to improve the resolution it is necessary to make use
of radiation of shorter wavelength, thus increasing the momenta of photons,
which hitting the object under observation change its momentum in an un-
predictable way. If instead position is determined through mechanical instru-
ments, like slits, then the uncertainty in momentum is caused by diffractive
phenomena.

It is important to evaluate the order of magnitude of quantum uncertainty
in cases of practical interest. Let us consider for instance a beam of electrons
emitted by a cathode at a temperature T = 1000◦K and accelerated through
a potential difference equal to 104 V. The order of magnitude of the kinetic
energy uncertainty ∆E is kT , where k = 1.381 10−23 J/◦K is the Boltz-
mann constant (alternatively one can use k = 8.617 10−5 eV/◦K ). Therefore
∆E = 1.38 10−20 J while E = 1.6 10−15 J, corresponding to a quite precise
determination of the beam energy (∆E/E ∼ 10−5). We can easily compute
the momentum uncertainty by using error propagation (∆p/p = 1

2∆E/E) and
computing p =

√
2meE = 5.6 10−23 N s; we thus obtain ∆p = 2.8 10−28 N s,

hence, making use of (2.51), ∆x ≥ 2 10−7 m. It is clear that the uncertainty
principle does not place significant constraints in the case of particle beams.

A macroscopic body of mass M = 1 Kg placed at room temperature
(T � 300◦K) has an average thermal momentum , caused by collisions with
air molecules, which is equal to ∆p ∼ √

2M 3kT/2 � 9 10−11 N s, so that
the minimal quantum uncertainty on its position is ∆x ∼ 10−24 m, hence not
appreciable.

The uncertainty principle is instead quite relevant at the atomic level,
where it is the stabilizing mechanism which prevents the electron from collaps-
ing onto the nucleus. We can think of the electron orbital radius as a rough es-
timate of its position uncertainty (∆x ∼ r) and evaluate the kinetic energy de-
riving from the momentum uncertainty; we have Ek ∼ ∆2

p/(2m) ∼ h̄2/(2mr2).
Taking into account the binding Coulomb energy, the total energy is

E(r) ∼ h̄2

2mr2
− e2

4πε0r
.

We infer that the system is stable, since the total energy E(r) has an abso-
lute minimum. The stable radius rm corresponding to this minimum can be
computed through the equation

e2

4πε0r2
m

− h̄2

mr3
m

= 0 ,

hence
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