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Course Overview and Introduction

Logics with Probability Operators and Quantifiers
Area: Logic and Computation (LoCo)
Level: Advanced
Lecturers: Neboǰsa Ikodinović and Dragan Doder
Goals:

Present the major areas of research that connect probability theory
and mathematical logic

Provide guidelines for developing probabilistic (formal) logics
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Motivating example

Deductive reasoning (Mathematics, Mathematical logic)

Inductive reasoning (Philosophy, Logic)

The connections between logic and computer science are growing rapidly
and are becoming deeper.

Carnap (1891–1970) was probably the first who tried to give a
mathematically rigorous foundation of inductive reasoning.
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Motivating example

By ’inductive logic’ I understand a theory of logical probability
providing rules for inductive thinking. (R. Carnap, R. C. Jeffrey,
Studies in Inductive Logic and Probability (I))

Exercise

What is the probability of picking a black ball from the box?

1)
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Motivating example

By ’inductive logic’ I understand a theory of logical probability
providing rules for inductive thinking. (R. Carnap, R. C. Jeffrey,
Studies in Inductive Logic and Probability (I))

Exercise

What is the probability of picking a black ball from the box?

2) experience:

12 balls, 6 of which are black

knowledge:

The colors of the balls are uniformly
distributed in the box, but exceptions
are possible.

Write down your ’feeling-based’ answer.
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1.1. ... Sentences of Predicate languages

Universe (of discourse):

Ann Ben Cam Deb Eva Fox
a b c d e f

Predicates:
’· · · is an artist’ ’· · · is a barber’ ’· · · is following · · · ’

A(·) B(·) F (·, ·)
Atomic sentences:
Ann is a artist. Ann is a barber. Fox is following Cam.

A(a) B(a) F (f , c)

L(U) is the set of all atomic sentences, where L is the set of predicate
symbols, and U is the universe.
How many atomic sentences are there in {A,B,F}({a, b, c , d , e, f })?
#{A,B,F}({a, b, c , d , e, f }) = 61 + 61 + 62 = 48

If L and U are finite sets, then #L(U) =
∑
P∈L

#Uarity(P).
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Truth assignments

An atomic truth assignment (a valuation) is any function
M : L(U) → {0, 1}.
A(a) A(b) A(c) A(d) A(e) A(f )
B(a) B(b) B(c) B(d) B(e) B(f )

F (a, a) F (a, b) F (a, c) F (a, d) F (a, e) F (a, f )
F (b, a) F (b, b) F (b, c) F (b, d) F (b, e) F (b, f )
F (c, a) F (c, b) F (c, c) F (c, d) F (c, e) F (c, f )
F (d , a) F (d , b) F (d , c) F (d , d) F (d , e) F (d , f )
F (e, a) F (e, b) F (e, c) F (e, d) F (e, e) F (e, f )
F (f , a) F (f , b) F (f , c) F (f , d) F (f , e) F (f , f )
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Truth assignments

An atomic truth assignment (a valuation) is any function
M : L(U) → {0, 1}.

How many truth assignments are there for {A,B,F}({a, b, c , d , e, f })?
248 = 281 474 976 710 656

(#{A,B,F}({a, b, c , d , e, f }) = 61 + 61 + 62 = 48)

nebojsa.ikodinovic@matf.bg.ac.rs Logic and Probability ESSLLI 2023 12 / 108



Relational structures and Pure predicate language

An L-model (structure, interpretation) with the universe U is a pair
(U,M), where M : L(U) → {0, 1} is a truth assignment.

Pure predicate language
non logical symbols (vocabulary):

names for individuals; lower case letters, with or without numeric
subscripts, from the beginning of the alphabet will be used to denote
individual names: a, b, c , d , a1, . . . we always assume that the names
exhausted the universe;

names for predicates; upper case letters, with or without numeric
subscripts will be used to denote predicates: A, B, C , . . . , A1, . . .

logical symbols:

variables; lower case letters, with or without numeric indices, from the
end of the alphabet will be used for variables – x , y , z , x1, . . .

connectives – not ¬, and ∧, or ∨, if ... then ⇒, iff ⇔;

quantifiers – there exists ∃, for all ∀
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Formulas

Atomic formulas: Predicate( , . . . ,︸ ︷︷ ︸
places for individuals and variables

)

E.g. A(a), A(x), B(x), F (x , y), F (x2, y1), etc. F (z1, z1)

Formulas:

Each atomic formula is a formula;

If P and Q are formulas, then ¬P, P ∧ Q, P ∨ Q, P ⇒ Q, P ⇔ Q
are formulas too.

If x is a variable and P is a formula, then ∀xP and ∃xP are formulas
too.

E.g.
¬F (a, b) A(x) ∧ ¬F (a, x) ∀y B(y)
∃x F (a, x) ∧ ¬∃xF (x , y) B(x) ∨ ∀x B(x) ∀x∃y F (x , y)
∀x(∀yF (x , y) ∨ F (y , x)) A(z) ∨ ∃y B(y) ⇒ ∀z(F (x , z) ∧ F (z , y))
etc.

nebojsa.ikodinovic@matf.bg.ac.rs Logic and Probability ESSLLI 2023 14 / 108



Formulas

A variable may occur free or bound in a formula.

E.g.
¬F (a, b) A(x) ∧ ¬F (a, x) ∀y B(y)
∃x F (a, x) ∧ ¬∃xF (x , y) B(x) ∨ ∀x B(x) ∀x∃y F (x , y)
∀x(∀yF (x , y) ∨ F (y , x)) A(z) ∨ ∃y B(y) ⇒ ∀z(F (x , z) ∧ F (z , y))
etc.

A formula F is denoted by F (x1, . . . , xk) when we want to emphasize that
all free variables of F are among x1, . . . , xk .

E.g. The formula F :

A(x) ∨ B(y) ⇒ ∀z(F (y , z) ∧ F (z , y))

could be denoted F (x , y), but also F (x , y , z), F (x , y , x1, y2) etc.
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Sentences

A sentence is a formula with no free occurrence of a variable.

E.g.
¬F (a, b) A(x) ∧ ¬F (a, x) ∀y B(y)
∃x F (a, x) ∧ ¬∃xF (x , y) B(x) ∨ ∀x B(x) ∀x∃y F (x , y)
∀x(∀yF (x , y) ∨ F (y , x)) A(z) ∨ ∃y B(y) ⇒ ∀z(F (x , z) ∧ F (z , y))
∀x∀y (F (x , y) ∨ F (y , x)) A(b) ∨ ∃y B(y) ⇒ ∀z(∀x F (x , z) ∧ F (z , e))
etc.

L(U) ⊂ Lω0(U) ⊂ Lωω(U)
P(ci1 , . . . , cik ) ¬, ∧, ∨, ⇒, ⇔ ∀, ∃, No free variables!
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Truth assignments

Every atomic truth assignment M : L(U) → {0, 1} has a unique extension
to a truth assignment that determines the truth-values of all the
sentences M : Lωω(U) → {0, 1}.

¬
0 1
1 0

∧ 0 1

0 0 0
1 0 1

∨ 0 1

0 0 1
1 1 1

⇒ 0 1

0 1 1
1 0 1

⇔ 0 1

0 1 0
1 0 1

M(∃x F ) = maxc∈UM(F [x/c]),

M(∀x F ) = minc∈UM(F [x/c]),

An assignment M models a sentence S (M |= S) if M(S) = 1.
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Truth assignments

M(F (b, a) ∧ ¬F (a, b)) = 1
M |= F (b, a) ∧ ¬F (a, b)

M(∀x F (x , a)) = 0
M ̸|= ∀x F (x , a)

M(∃x F (x , b)) = 0
M ̸|= ∃x F (x , b)

M(∀x∀y (F (x , y) ⇒ F (y , x))) = 0
M ̸|= ∀x∀y (F (x , y) ⇒ F (y , x))

M(∃x∃y (F (x , y) ∧ F (y , x))) = 1
M |= ∃x∃y (F (x , y) ∧ F (y , x))

M(∃y∀x ¬F (x , y)) = 1
M |= ∃y∀x ¬F (x , y)

M(∀x (A(x) ∨ ∃y (F (x , y) ∧ A(y)))) = 1
M |= ∀x (A(x) ∨ ∃y (F (x , y) ∧ A(y)))
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Fundamental logical notions

A is valid (|= A) if A is true in all models.

Q is a (semantical or logical) consequence of P (P |= Q) if every
assignment that models P also models Q.

P and Q are equivalent (A ≡ B) if both, Q is a consequence of P
and P is a consequence of Q.

E.g:

|= A ⇒ (B ⇒ A ∧ B) |= ∃x∀y F ⇒ ∀y∃x F etc.

∃x(A ∧ B) |= ∃x A ∧ ∃x B ∀x A ∨ ∀x B |= ∀x(A ∨ B) etc.

∀x(A ∧ B) ≡ ∀x A ∧ ∀x B ∃x(A ∨ B) ≡ ∃x A ∨ ∃x B
¬(A ∧ B) ≡ ¬A ∨ ¬B ¬(A ∨ B) ≡ ¬A ∧ ¬B etc.

nebojsa.ikodinovic@matf.bg.ac.rs Logic and Probability ESSLLI 2023 19 / 108



DNF

A literal is an atomic formula (also known as a positive literal) or its
negation (a negative literal): ±Predicate( , . . . ,︸ ︷︷ ︸

places for individuals and variables

)

Positive literals: A(a), A(x), B(x), F (x , y), F (x2, y1), etc.

Negative literals: ¬A(a), ¬A(x), ¬B(x), ¬F (x , y), ¬F (x2, y1), etc.
An atoms is a conjunction of literals.

DNF theorem

Every quantifier free sentence F is equivalent to a disjunction of atoms:

m∨
i=1

 n∧
j=1

±Atomic ij


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1.2. ... Specifying Probability functions ...

A typical probabilistic model consists of:

a sample space Ω,

a family of events B ⊆ 2Ω (2Ω is the power set of Ω, i.e. the set of all
subsets of Ω) and

a probability µ : B → [0, 1].

Rolling two dice:

Ω = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6)}
B = 2Ω

E = {(5, 5)} F = {(1, 3), (3, 1), (2, 2)}
G = {at least one six is rolled} = {(6, 1), (6, 1), (6, 2), . . . , (6, 6)} etc.

µ(X ) = #X
36 , where #X is the number of elements in X

µ(E ) = 1
36 µ(F ) = 3

36 µ(G ) = 11
36
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Probability spaces

(Ω,B) is a measurable space:

B is a σ-algebra of subsets of Ω

Ω ∈ B
if E ∈ B then E∁ = Ω \ E ∈ B
if E1,E2 ∈ B then E1 ∪ E2 ∈ B
from any sequence (En) of sets in B,

∞⋃
n=1

En ∈ B.

(Ω,B, µ) is a probability space:

µ : B → [0, 1] is a σ-additive probability measure

µ(Ω) = 1
if E1 ∩ E2 = ∅, then µ(E1 ∪ E2) = µ(E1) + µ(E2)
for any sequence ⟨En : n ⩾ 1⟩ of pairwise disjoint sets,

µ(
∞⋃
i=1

Ei ) =
∞∑
i=1

µ(Ei ).

nebojsa.ikodinovic@matf.bg.ac.rs Logic and Probability ESSLLI 2023 22 / 108



Discrete probability spaces

(Ω, 2Ω, µ) is a discrete probability space if

Ω is countable and

µ is defined by a function m : Ω → [0, 1] that assigns a real number
from [0, 1] to each member of Ω in such a way that

∑
w∈Ωm(w) = 1:

µ(E ) =
∑
w∈E

m(w),E ⊆ Ω.

The number m(w) is called the weight of the point w .

If Ω is finite and m(w) = 1
#Ω , for all w ∈ ω, then µ is called the counting

measure.
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Probability of sentences

L = {F}, where F is a 2-placed predicate symbol; U = {a, b}
What is the probability that a {F}({a, b})-sentence is true?
E.g. P(∀x∃y F (x , y)) =?

P(∀x∃y F (x , y)) = 9
16 = 0.56

P(∃y∀x F (x , y)) = 7
16 = 0.4375

P(∃z F (a, z)) = 12
16 = 0.75

P(∃x F (x , x)∨∀x ¬F (x , x)) = 16
16 = 1

P(∃x (F (x , x) ∧ ¬F (x , x))) = 0
16 = 0
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Probability of sentences

Definition

A probability is a function P : Lωω(U) → [0, 1] that satisfies:

P1 if |= A, P(A) = 1; any valid sentence is a certain (sure) sentence;

P2 if A |= ¬B, then P(A ∨ B) = P(A) + P(B);

P3 P(∃x A) = lim
n→∞

P(A(c1) ∨ · · · ∨ A(cn)), in that case that the universe

is countable U = {c1, c2, c3, . . .}.

(P2′) if A |= B, then P(B ⇒ A) = 1 + P(A)− P(B)
(P2′′) if |= ¬(A ∧ B), then P(A ∨ B) = P(A) + P(B)
(P3) Gaifman’s condition that could be omit, since ...
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Probability of sentences

Definition

A probability is a function P : Lωω(U) → [0, 1] that satisfies:

P1 if |= A, P(A) = 1; any valid sentence is a certain (sure) sentence;

P2 if A |= ¬B, then P(A ∨ B) = P(A) + P(B);

P3 P(∃x A) = lim
n→∞

P(A(c1) ∨ · · · ∨ A(cn)), in that case that the universe

is countable U = {c1, c2, c3, . . .}.

Proposition

Let P : Lωω(U) → [0, 1] be a probability. Then for A,B ∈ Lωω(U).
1 P(¬A) = 1− P(A)

2 if A |= B, P(A) ⩽ P(B)

3 if A ≡ B, P(A) = P(B)

4 P(A ∨ B) = P(A) + P(B)− P(A ∧ B)
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Convex sums of probabilities

Definition

A probability is a function P : Lωω(U) → [0, 1] that satisfies:

P1 if |= A, P(A) = 1; any valid sentence is a certain (sure) sentence;

P2 if A |= ¬B, then P(A ∨ B) = P(A) + P(B);

P3 P(∃x A) = lim
n→∞

P(A(c1) ∨ · · · ∨ A(cn)), in that case that the universe

is countable U = {c1, c2, c3, . . .}.

Any truth assignment M : Lωω(U) → {0, 1} is a probability.

For a family of structures Mi , i ∈ I , and numbers ai ⩾ 0, i ∈ I such that∑
i ai = 1,

S 7→
∑
i

aiM(S) is a probability.

Every probability is a convex combination of some classical structures.
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Probability of sentences

L = {F}, where F is a 2-placed predicate symbol; U = {a, b}
What is the probability that a {F}({a, b})-sentence is true?

P(∀x∀y (F (x , y) ⇒ F (y , x)))
= 0+0.09+0.1+0.1+0.1+0.1+0.2+0.09
= 0.78

P(¬∀x∀y F (x , y)) = 1− 0.09 = 0.91

P(∀x∀y ¬F (x , y)) = 0

P(∃x F (x , x) ∨ ∀x ¬F (x , x)) = 16
16 = 1

P(∃x (F (x , x) ∧ ¬F (x , x))) = 0
16 = 0
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Probability of sentences

L = {F}, U = {a, b}; P : {F}ωω(U) → [0, 1]

There is a bijection between all structures and so-called complete atoms.

A1 ¬F (a, a) ∧ ¬F (a, b) ∧ ¬F (b, a) ∧ ¬F (b, b)
A2 ¬F (a, a) ∧ F (a, b) ∧ ¬F (b, a) ∧ ¬F (b, b)
A3 ¬F (a, a) ∧ ¬F (a, b) ∧ F (b, a) ∧ ¬F (b, b)
...
A16 F (a, a) ∧ F (a, b) ∧ F (b, a) ∧ F (b, b)

Mi (S) = 1 iff Ai |= S

S ≡
∨

Mi (S)=1 Ai

P(S) =
∑

Mi (S)=1

P(Ai ) =
16∑
i=1

P(Ai ) ·Mi (S)
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Probability of sentences

Exercise

Find a probability P : {F}ωω({a, b}) → [0, 1], if
it exists, such that:

P(∀x∃y F (x , y)) = 1
P(∀x∀y (F (x , y) ⇒ F (y , x))) = 0.9
P(∃x ¬F (x , x)) = 0.01
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Representation theorem

If L or U are infinite, then Lωω(U) are infinite too.

ML(U) – all L-structures over U;
[S ] = {M ∈ ML(U) | M(S) = 1}, S ∈ Lωω(U);
1[S] : ML(U) → {0, 1}, 1[S](M)

def
= M(S)

AL(U) = {[S ] | S ∈ Lω0(U)} – an algebra of subsets of ML(U);

BL(U) – an σ-algebra extending AL(U)

Representation theorem

For any probability function P : Lωω(U) → [0, 1] there is a probability
measure µP on BL(U) such that for any S :

P(S) =

∫
ML(U)

1[S](M)dµP(M)

In finite cases: P(S) =
∑

i 1[S](Mi )µ(Mi ) =
∑

i Mi (S)µ(Mi )
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Extension theorems

Carathéodory’s Extension Theorem

Let A be an algebra of subsets of Ω and µ0 : A → [0, 1] be a
finitely-additive probability measure such that:

(∗) µ(
∞⋃
i=1

Ei ) =
∞∑
i=1

µ(Ei ), for any sequence ⟨En : n ⩾ 1⟩ of disjoint sets

from A such that
∞⋃
n=1

Ei ∈ A.

Then there exists a unique measure µ : B → [0, 1], on the σ-algebra B
generated by A such that its restriction to A coincides with µ0.

Gaifman’s Extension Theorem

Assume that a function P : Lω0(U) → [0, 1] satisfies (P1) and (P2). Then
P has a unique extension to a probability function satisfying (P1), (P2),
(P3) for all sentences Lωω(U).
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Extension theorems

Gaifman’s Extension Theorem

Assume that a function P : Lω0(U) → [0, 1] satisfies (P1) and (P2). Then
P has a unique extension to a probability function satisfying (P1), (P2),
(P3) for all sentences Lωω(U).

Corollary

Gaifman’s and DNF theorems: to specify a probability function on Lωω(U)
it is enough to define probability function on atoms (conjunctions of
literals) in Lω0(U).
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Bayesian networks

Bayesian networks are closed acyclic graphs (DAG’s) whose nodes
represent assertions and edges represents some kind of conditional
dependencies.

The Chain Rule:
P(F (a, a) ∧ ¬F (a, b) ∧ ¬F (b, a) ∧ F (b, b))
= P(F (a, a))× P(¬F (a, b) | F (a, a))× P(F (b, a))× P(F (b, b) | ¬F (a, b) ∧ ¬F (b, a))
= 0.15× (1− 0.85)× (1− 0.25)× 0.97 ≈ 0.02
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Probability structures

Definition

A classical structure is a pair (U,M), where M is a truth-assignment on
Lωω(U).

Definition

A probability structure is a pair (U,P), where P is a probability on Lωω(U).

The representation theorem shows that a probability on a set of formulas,
i.e., a probability structure can be viewed as a kind of model consisting of
a family of classical models (called worlds) equipped with their ’weights’.

P(S) =
∑
i

worldi (S)× weight(worldi )
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Probability structures

Definition

A probability structure is a pair (U,P), where P is a probability on Lωω(U).

Many constructions for probability models can be developed by analogy
with ordinary model theory.
Indipendent union
Pi : Liωω(U) → [0, 1], i ∈ I

L =
⋃

i∈I Li ; Lω0(U) ∋ A ≡
∧

i∈I Ai , Ai ∈ Liω0(U)
P : Lωω(U) → [0, 1], P(A)

def
=

∏
i∈I

Pi (Ai )

Ultraproduct
Pi : Lωω(Ui ) → [0, 1], i ∈ I

U =
∏
i∈I

Ui , µ : 2I → [0, 1] is a probability

P : Lωω(U) → [0, 1], P(S)
def
=

∑
i∈I

Pi (S | i) · µ({i})
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1.3 Why ... ?

We have reason to hope that the results of probability logic may
have useful applications to deductive logic, inductive logic and to
probability theory. (D. Scott and P. Krauss, 1966)

Definition

Given a probability function P : Lωω(U) → [0, 1], and C ∈ Lωω(U) with
P(S) > 0, the conditional probability is a function
P(· | C ) : Lωω(U) → [0, 1] (said P conditioned on C ) defined by:

P(S | C ) =
P(S ∧ C )

P(C )
.

Sentences S1 and S2 are independent if P(S1 ∧ S2) = P(S1) · P(S2).
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A Basic System of Inductive Logic I/II

The vocabulary contains only a finite number of unary predicate
symbols L = {F1,F2, . . . ,Fk}, (k > 2);

The universe is countable, U = {c1, c2, . . .};
A sample S is a finite set of individuals, S ⊆ U. A sample
description DS is a complete atom (a maximal consistent conjunction
of literals) determined by atomic sentences from L(S).

Carnap looked for a probability P : Lω0(U) → [0, 1] ...

C1 [Regularity] P(A) > 0 if A is not a contradiction

C2 [Symmetry] P(DS) isn’t changed by permuting individuals from S.
C3 [Instantial relevance] P(Fi (ck) | Fi (cℓ)) > P(Fi (ck))

C4 [λ-condition] if S doesn’t involve ck then P(Fi (ck) | DS) depends
only on the number of individuals from S and the number of
individual from S having the property Fi .

nebojsa.ikodinovic@matf.bg.ac.rs Logic and Probability ESSLLI 2023 38 / 108



λ− γ theorem

λ− γ theorem

If P is a probability which satisfies C1-4 and k > 2, then there exist λ > 0
and γ1, . . . , γk ∈ (0, 1) such that the probability that ck has the property
Fi , given the simple description DS is given by the following equation:

P(Fi (ck) | DS) =
ni + λγi
n + λ

,

where

ck is any individual constant not in the sample S
n is the number of individuals in S
ni is the number of individuals from S having Fi .
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empirical factor vs. logical factor

P(Fi (ck) | DS) =
ni + λγi
n + λ

=

(
n

n + λ

)
ni
n

+

(
λ

n + λ

)
γi

γi – logical factor, i.e. a priori probability that something has Fi
ni
n

– empirical factor

The larger λ is, the more weight is put on the logical factor, and the
slower one learns from experience!

The colors of the balls are
uniformly distributed in
the box, but exceptions
are possible.

P(Black(ck) | DS)

=

(
12

12 + λ

)
6

12
+

(
λ

12 + λ

)
1

4

Exercise

Solve the equation(
12

12+λ

)
6
12 +

(
λ

12+λ

)
1
4 = your esitamtion.
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Pure Inductive Logic

Problem 1

Find a probability P : Lωω(U) → [0, 1] (if it exists) such that P(Si ) = ri ,
i ∈ I .

Problem 2

Find a probability P : Lωω(U) → [0, 1] (if it exists) that satisfies some
general conditions (such as regularity, symmetry etc.)

Studying additional properties of probabilities that are related to
various principles and laws of indicative logic, and

Searching for suitable representations of such probabilities.

J. Paris, A. Vencovská, Six Problems in Pure Inductive Logic, Journal of
Philosophical Logic volume 48, pages 731–747, 2019
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Motivating example

P : {R}ωω(Un) → [0, 1], Un = {1, 2 . . . , n} (n ⩾ 1, p ∈ [0, 1])

Pp(R(i , j)) = p, i , j ∈ Un

Pp

 ∧
(i ,j)∈I

R(i , j) ∧
∧

(m,ℓ)∈J

¬R(k, ℓ)

 = pk(1− p)n
2−k , where I and

J make a partition of the set {1, . . . , n} × {1, . . . , n}, and |I | = k .

(U8,P0.5)

For every pair of
nodes we flip a fair
coin to decide whether
the nodes should be
adjacent or not.
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Motivating example
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Pp

 ∧
(i ,j)∈I

R(i , j) ∧
∧

(m,ℓ)∈J
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2−k , where I and

J make a partition of the set {1, . . . , n} × {1, . . . , n}, and |I | = k .
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Motivating example

P : {R}ωω(Un) → [0, 1], Un = {1, 2 . . . , n} (n ⩾ 1, p ∈ [0, 1])

Pp(R(i , j)) = p, i , j ∈ Un

Pp

 ∧
(i ,j)∈I

R(i , j) ∧
∧

(m,ℓ)∈J

¬R(k, ℓ)

 = pk(1− p)n
2−k , where I and

J make a partition of the set {1, . . . , n} × {1, . . . , n}, and |I | = k .

(U8,P0.5)
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Motivating example

What is the probability that
the sentence ∀x∃y R(x , y) is
true in a randomly chosen
two-member structure?

P(∀x∃y R(x , y)) ≈ 0.56

The assertion ’a sentence S with no
individual names has a model with k
elements’ is expressible by a quantifier-free
formula Fk(x1, . . . , xk), where variables are
placeholders for individuals of
Uk = {c1, . . . , ck}.

F2(x , y) for ∀x∃y R(x , y):
(R(x , x) ∨ R(x , y)) ∧ (R(y , x) ∨ R(y , y))

F3(x , y , z) for ∀x∃y R(x , y):
(R(x , x) ∨ R(x , y) ∨ R(x , z))∧

∧(R(y , x) ∨ R(y , y) ∨ R(y , z))∧
∧(R(z , x) ∨ R(z , y) ∨ R(z , z))

etc.
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Motivating example

What is the probability that
the sentence ∀x∃y R(x , y) is
true in a randomly chosen
two-member structure?

P(∀x∃y R(x , y)) ≈ 0.56

What is the probability that a randomly
chosen pair from (U8,P0.5) satisfies F2(x , y):
(R(x , x) ∨ R(x , y)) ∧ (R(y , x) ∨ R(y , y))?

P(F (x , y)) =?
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Motivating example

What is the probability that
the sentence ∀x∃y R(x , y) is
true in an arbitrarily chosen
two-member structure?

P(∀x∃y R(x , y)) ≈ 0.56

What is the probability that a randomly
chosen pair from (U8,P0.5) satisfies F (x , y):
(R(x , x) ∨ R(x , y)) ∧ (R(y , x) ∨ R(y , y))?

P(F (x , y)) = 0.56
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Motivating example

If H is much greater than n, then (UH ,P0.5) contains (almost) all
n-structures as its substructures. Moreover, the distribution of n-structures
inside (UH ,P0.5) is (almost) uniform.
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Gaifman’s example

P : {R}ωω(U) → [0, 1], U = {c1, c2, . . .}, p ∈ [0, 1]

Pp(R(ci , cj)) = p, ci , cj ∈ U

P
(∧k

i=1 Ai ∧
∧n

i=k+1 ¬Ai

)
= pk(1− p)n−k

(U,P) is a probability structure (symmetric in U).
Logical independence implies statistical independence!

If the atoms A1,A2 ∈ {R}ω0(U) are logically independent, in the
sense that no atomic sentence is a part of both A1 and A2, then
P(A1 ∧ A2) = P(A1) · P(A2).

If S1, S2 ∈ {R}ωω(U) and no individual constant occurs both in S1
and S2, then P(S1 ∧ S2) = P(S1) · P(S2).
If S does not contain individual constants, then
P(S) = P(S ∧ S) = P(S)2, hence P(S) is either 0 or 1.

∗ The same result holds if the starting vocabulary contains more predicate
symbols, L = {R1, . . . ,Rk}, and a real number pi ∈ (0, 1) is assigned to
each predicate symbol Ri .
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Random structures

P : {R}ωω(U) → [0, 1], U = {c1, c2, . . .}, p ∈ [0, 1]

Pp(R(ci , cj)) = p, ci , cj ∈ U

P
(∧k

i=1 Ai ∧
∧n

i=k+1 ¬Ai

)
= pk(1− p)n−k

(U,P) is a probability structure (symmetric in U).
Logical independence implies statistical independence!

If S does not contain individual constants, then
P(S) = P(S ∧ S) = P(S)2, hence P(S) is either 0 or 1.

There is a classical L-structure R such that for any sentence S :

R(S) = 1 iff P(S) = 1

We call R the countable random structure over the vocabulary L.

∗ A random L-structure contains in some sense all finite L-structures as its
substructures.
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Languages Lkω0, L
k
ωω, k ⩾ 1

Lωω(U, Var) = the set of all formulas with predicates from L, constant
symbols for individuals from U, and variables from Var = {x1, x2, . . .};
Lkω0 = Lω0(∅, {x1, . . . , xk})
Lkωω = Lωω(∅, {x1, . . . , xk})
L0ω0 = the propositional language which always include ⊤ and ⊥
Lωω =

⋃
k⩾0

Lkωω = Lωω(∅, Var)

Exercise

The vocabulary consists of a binary predicate symbol <, and consider only
the structures in which the interpretation of < is a total order.
An = ’there are at least n elements’:

∃x1 · · · ∃xn (x1 < x2 ∧ x2 < x3 ∧ · · · ∧ xn−1 < xn).

Prove that, on total orders, An is equivalent to a sentence in {<}2ωω.
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Types (complete atoms over a tuple of variables)

Definition

If x = (x1, . . . , xk) is a sequence of distinct variables, then a type T (x) in
the variables x over L is the conjunction of all the formulas in a maximally
consistent set of atomic formulas and negated atomic formulas in variables
x .
The logical constant ⊤ is the type in the empty tuple of variables.

T (x1, . . . , xk) is a quantifier-free formula from Lkω0.

There are only finitely many distinct types in the variables x1, . . . , xk ,
if the vocabulary L is finite.
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Types (complete atoms over a tuple of variables)

There are 16 types in variables {x1, x2} that corresponds to all L-structures
over two-element universe.

T1(x1, x2) ¬R(x1, x1) ∧ ¬R(x1, x2) ∧ ¬R(x2, x1) ∧ ¬R(x2, x2)
T2(x1, x2) ¬R(x1, x1) ∧ R(x1, x2) ∧ ¬R(x2, x1) ∧ ¬R(x2, x2)
T3(x1, x2) ¬R(x1, x1) ∧ ¬R(x1, x2) ∧ R(x2, x1) ∧ ¬R(x2, x2)
...
T16(x1, x2) R(x1, x1) ∧ R(x1, x2) ∧ R(x2, x1) ∧ R(x2, x2)
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Types

Definition

A type T ′(x1, . . . , xk−1, xk) extends a type T (x1, . . . , xk−1) if every
conjunct of T (x1, . . . , xk−1) is also a conjunct of T ′(x1, . . . , xk−1, xk).

E.g. T ′(x1, x2, x3):

¬R(x1, x1) ∧ R(x1, x2) ∧R(x1, x3)∧
∧ ¬R(x2, x1) ∧ R(x2, x2) ∧¬R(x2, x3)∧
∧ R(x3, x1) ∧ ¬R(x3, x2) ∧ ¬R(x3, x3)
extends T (x1, x2):

¬R(x1, x1) ∧ R(x1, x2)∧
∧¬R(x2, x1) ∧ R(x2, x2)
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Extension axioms

A ’huge’ random structure contains all ’small’ structures;
and even more it is true
any small substructure be extended to any other possible small
substrukture.
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Extension axioms

A ’huge’ random structure contains all ’small’ structures;
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Extension axioms

Let T ′(x , xk) and T (x) be a pair of types such that T ′ extends T .
ET ,T ′ – the extension axiom ∀x (T (x) ⇒ ∃xk T ′(x , xk))

Ek – the conjunction of all extension axioms ET ,T ′ with at most k
variables; Ek is a sentence in Lkωω.

Exercise

Write down the sentence E2, if the vocabulary contains single 2-placed
predicate symbol R.

Exercise

Find the smallest model of E2, if the vocabulary contains single 2-placed
predicate symbol R.
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Extension axioms

Theorem

Let k and m be two positive integers such that m ⩽ k. If T (x1, . . . , xm) is
type over the vocabulary L and and F (x1, . . . , xm) is a formula of Lkωω with
free variables among x = (x1, . . . , xm), then exactly one of the following
two statements holds:

1 Ek |= ∀x(T (x) ⇒ F (x))

2 Ek |= ∀x(T (x) ⇒ ¬F (x))

Corollary

If S is a sentence of Lkωω, then either Ek |= S or Ek |= ¬S .

Theorem also holds for infinitary languages Lk∞ω
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Infinitary languages

L∞ω(U, Var) is an extension of Lωω(U, Var), defined by the usual
formation rules for pure predicate languages, and the following additional
rule:

If Γ is a set of formulas, then
∧
Γ and

∨
Γ are also formulas.

The semantics of infinitary formulas is a direct extension of the semantics
of pure predicate languages. Given an L-structure (U,M):

M(
∨

Γ) = maxγ∈ΓM(γ)

M(
∧

Γ) = minγ∈ΓM(γ)

Exercise

On total orders, express in {<}2∞ω the properties:

there are an even number of elements

the cardinality of the total order is a prime number

the universe is finite
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Asymptotic probability

The extension axioms are relevant to the study of probabilities on finite
structures. (R. Fagin, Probabilities on Finite Models, 1976)
Given a finite set L of predicate symbols, Fagin considered the sequence of
finite probability spaces with counting probability measure:

ML(Un) = all L-structures over Un = {c1, . . . , cn}, n ⩾ 1;

Pn : Lωω(∅) → [0, 1]

Pn(S) =
#[S]

#ML(Un)
=

#{M∈ML(Un)|M(S)=1}
#ML(Un)

, S ∈ Lωω(∅)

P(S) = lim
n→∞

Pn(S) – the asymptotic probability

Exercise

Find (estimate):
1) P10(E2) 2) Pk(E2), k > 10 3) lim

k→∞
Pk(E2)

4) P100(E3) 5) Pk(E3), k > 100 6) lim
k→∞

Pk(E3)
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0-1 low

Proposition

The asymptotic probability of all extension axioms is equal to 1, that is
P(Ek) = 1, for every k ⩾ 1.

Corollary

If S is a sentence of Lkωω, then either Ek |= S or Ek |= ¬S .

0-1 low

If S is a sentence in Lωω(∅), then the asymptotic probability P(S) exists
and is equal either 0 or 1.
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0-1 low

Glebskii et al. (Range and degree of realizability of formulas in the
restricted predicate calculus, 1969) proved the 0-1 low, using a different
approach – a certain quantifier elimination method.

Proposition

Let k be a positive integer and let F (x1, . . . , xm) be a formula of Lkωω
(m ⩽ k). Then there is a quantifier-free formula B(x1, . . . , xm) of L

k
ω0

such that:
Ek |= ∀x (F (x) ⇔ B(x)).

Taking x to be empty, the previous theorem says that each sentence with
k variables collapses to ⊤ or ⊥ almost everywhere, leading to the 0-1 law.
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almost everywhere

Proposition

Let k be a positive integer and let F (x1, . . . , xm) be a formula of Lkωω
(m ⩽ k). Then there is a quantifier-free formula B(x1, . . . , xm) of L

k
ω0

such that:
Ek |= ∀x (F (x) ⇔ B(x)).

... almost everywhere variants of important theorems:

Lkωω ≤w .a.e. L
k
ω0.

Lkωω admits almost everywhere quantifier elimination.

We can effectively deside whether a first-order sentence is valid in
almost all models.
(By Trakhtenbrot’s Theorem we cannot effectively decide whether a
first-order sentence is valid in all finite models!)
...
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Probabilities of formulas

counting small models satisfying a sentence
vs.
counting tuples in a ’huge’ models satisfying an open formula

Definition

A probability is a function P : Lωω(U, Var) → [0, 1] that satisfies the
properties

P1 if |= A, P(A) = 1; any valid formula is a certain (sure) formula;

P2 if A |= ¬B, then P(A ∨ B) = P(A) + P(B);

P3 P(∃x A) = lim
n→∞

P(A(c1) ∨ · · · ∨ A(cn)), in that case that the universe

is countable U = {c1, c2, c3, . . .}.
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Probabilities of formulas

Pn are counting measures
P1(A(x)) =

4
6

P2(F (x , y)) =
11
36

P1(∃x F (x , y)) = 5
6

P2(F (x , y) ∧ F (y , x)) = 4
36

P3(B(x)∧B(y)∧B(z)) = 8
216

P′
1 =

(
a b c d e f
0.1 0.1 0.3 0.4 0.1 0

)
P′
n(i1, · · · , in) = P′

1(i1) · · ·P′
1(in)

P′
1(A(x)) = 0

P′
1(B(x)) = 0.4

P′
1(∃x F (x , y)) = 0.9

P′
2(F (x , y) ∧ ¬F (y , x)) = 0.08
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Probabilities of formulas

Pn are counting measures P′
1 =

(
a b c d e f
0.1 0.1 0.3 0.4 0.1 0

)
P′
n(i1, · · · , in) = P′

1(i1) · · ·P′
1(in)

µ :

(
Mleft Mright

75% 25%

)
Pmix
n (F ) = 0.75 · Pn(F ) + 0.25 · P′

n(F )
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Representation theorem

A probability on the set of formulas may be understood as a result of two
consecutive drawings:

First a structure Mi will be chosen at random from among all
structures of a given class {Mi | i ∈ I} following a given probability
measure µ on I ; and then

having the so obtained structure Mi , a sequence of elements is
selected from it, following probabilities Pi

n, n ⩾ 1.
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Graded probability structures

▷ M : L(U) → {0, 1} is a classical structure.

▷ P : Lωω(U) → [0, 1] is a probability structure.

▷ P : Lωω(U, Var) → [0, 1] could be an even more general kind of
structure.

A graded probability structures (U,M,Pn)n⩾1 is a kind of
multidimensional probability space with a probability for each dimension,
where:

M is a classical structure, M : L(U) → {0, 1}
each Pn is a probability on the set of formulas with at n-free variables,
Pn : Lωω(U, {x1, . . . , xn}) → [0, 1] and Pn, n ⩾ 1 are related by some
additional requirements (Fubini’s properties, etc. ) which we omit.
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Values of terms

R. Fagin (1976)
Probabilities on Finite Models

↓

Finite model theory

Lk∞ω; L
ω
∞ω; L

k
ω1ω; L

II
ωω; etc.

J. Keisler (1977)
Hyperpinite Model Theory

↓

Model theory of stochastic processes

LωP; Lω1P; LC
∫ , L−C ∫ etc.
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LωP, Lω1P

LωP, Lω1P – the classical quantifiers are replaced by probability quantifiers
of the form (Px ⩾ r) and (Px > r), where r ∈ [0, 1]. The set of formulas
is defined as usual, with the following rule for probability quantifiers:

if F is a formula, then (Px ⩾ r)F and (Px > r)F are formulas too.

(U,M,Pn)n⩾1 |= (Px > r)F (x) iff Pn(F (x)) > r
(U,M,Pn)n⩾1 |= (Px ⩾ r)F (x) iff Pn(F (x)) ⩾ r

Formulas which are true in any graded structure:
• (Px ⩾ r)F (x) ⇒ (Px ⩾ s)F (x), s < r
• (Px > r)F (x) ⇒ (Px ⩾ r)F (x)
• (Px ⩾ r)F (x) ⇒ (Py ⩾ r)F (y)
• (Px ⩽ r)A(x) ∧ (Px ⩽ s)B(x) ⇒ (Px ⩽ r + s) (A(x) ∨ B(x))
Note also:
• If S ⇒ F (x) is true in a graded structure, then S ⇒ (Px ⩾ 1)F (x) is
also true in that structure.
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Graded probability structures

Why do not we detail the definition and variety of graded probability
structures.
Example.
An urn contains 1000 different balls, U = {b1, . . . , b1000}.
There are 50% of red (R) balls; 30% of blue (B) balls, and 20% of green
(G ) balls: P(R(x)) = 0.5, P(B(x)) = 0.3, P(G (x)) = 0.2.

We randomly choose 100 of them, one at a time, returning each ball to
the urn before choosing the next one (the same ball could be drawn
several times): b = (b1, . . . , b100)

pb(R(x)) =
R(b1)+R(b2)+···+R(b100)

100 ≈?

pb(B(x)) =
B(b1)+B(b2)+···+B(b100)

100 ≈?

pb(G (x)) = G(b1)+G(b2)+···+G(b100)
100 ≈?

({b1, . . . , b1000}, · · · ,P, . . .)≈ ({b1, . . . , b100}, · · · ,pb, . . .)
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Finite samples

Definition

Let G = (U,M,Pn)n⩾1 be a graded probability structure for L, and let
ak = (a1, . . . , ak) ∈ Uk be a k-tuple of elements of U. The finite sample
G(ak) is the graded probability structure whose universe is {a1, . . . , ak},
classical part is the substructure over {a1, . . . , ak} ⊆ M, and probabilities
pn are given by:

p1(F (x)) =
#{m ⩽ k | M(F (am)) = 1}

k
=

F (a1) + · · ·+ F (ak)

k

p2(F (x , y)) =

∑
1⩽i ,j⩽k F (ai , aj)

k2

p3(F (x , y , z)) =

∑
1⩽i ,j ,ℓ⩽k F (ai , aj , aℓ)

k3
etc.
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Weak Law of Large numbers for Lω1P

Proposition

Let G = (U,M,Pn)n⩾1 be a graded probability structure for L that
satisfies (Px > r)F (x), where F (x) is a quantifier-free formula. Then

lim
k→∞

Pk

{
ak ∈ Uk | G(ak) |= (Px > r)F (x)

}
= 1.

In other words, for large enough k, in almost all samples G(ak), the
formula (Px > r)F (x) is true.

Weak Law of Large numbers

Let G = (U,M,Pn)n⩾1 be a graded probability structure for L, satisfying
(Px1 > r1) · · · (Pxn > rn)B, where B is a finite quantifier-free formula of
L. Then

lim
k→∞

Pk

{
ak ∈ Uk | G(ak) |= (Px1 > r1) · · · (Pxn > rn)B

}
= 1.
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LCE

LCE uses the following symbols:

individual variables: x , y , z , x1, . . .

connectives: an n-ary connective C for each continuous real function
C : Rn → R from C
thee quantifiers: Ex , supx , infx

The set of terms is the smallest set which satisfies the following rules:

Every L-atomic formula is a term.

If C is an n-ary connective and T1, . . . ,Tn are terms, then
C(T1, . . . ,Tn) is a term.

If T is a term and x is a variable, ExT , supx T , infx T are terms.

Free and bound variables are defined as usual, with quantifiers binding the
variables. T (x1, . . . , xn) denotes a term with at most the free variables x .
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Values of terms

Pn – counting measures

The values of terms:

ExA(x) =
A(a)+A(b)+A(c)+A(d)+A(e)+A(f )

6 = 4
6

supx(A(x) + B(x)) = 2

ExF (x , y)

= F (a,y)+F (b,y)+F (c,y)+F (d ,y)+F (e,y)+F (f ,y)
6

ExF (x , a) =
5
6

ExF (x , b) = 0

ExF (x , c) =
1
6

maxy ExF (x , y) =
5
6 etc.
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Real-valued structures

LC E can be used to describe so-called real-valued structures.

A (classical) two-valued L-structure is of the form (U,M), where M is
a truth assignment to atomic formulas, M : L(U) → {0, 1}.
A real-valued L-structure is a pair (U,M), where M : L(U) → R,
i.e. M assigns a real number to every atomic L-sentence.

The rules for calculating the values of terms remain the same: ExT :

M(Ex T ) =

∫
U
T [x/c]dµ(c)

In discrete case: M(Ex T ) =
∑
c∈U

T [x/c] · µ({c})
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{0, 1}-valued structures

L = {A(1),B(1),F (2)}, U = {a, b, c}, M : L(U) → {0, 1}

M(A(a)) = 1 M(A(b)) = 0 M(A(c)) = 1
M(B(a)) = 0 M(B(b)) = 1 M(B(c)) = 1
M(F (a, a)) = 0 M(F (a, b)) = 1 M(F (a, c)) = 1
M(F (b, a)) = 1 M(F (b, b)) = 0 M(F (b, c)) = 0
M(F (c, a)) = 0 M(F (c, b)) = 0 M(F (c, c)) = 1
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R-valued structures

L = {A(1),B(1),F (2)}, U = {a, b, c}, M : L(U) → [0, 1]

M(A(a)) = 1 M(A(b)) = 9 M(A(c)) = 5
M(B(a)) = 0 M(B(b)) = 1 M(B(c)) = 1
M(F (a, a)) = 0.9 M(F (a, b)) = 0 M(F (a, c)) = 0.1
M(F (b, a)) = 1 M(F (b, b)) = 0.5 M(F (b, c)) = 0.4
M(F (c, a)) = 0.2 M(F (c, b)) = 0.4 M(F (c, c)) = 0.4
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Real-valued structures

L = {A(1),B(1),F (2)}, U = {a, b, c}, M : L(U) → [0, 1]

A(i) represents a quantitative characteristic
(weight, height, temperature, IQ etc.) of
an individual i ;

B(i) represents a qualitative characteristic
(a classical yes/no, i.e 1/0 property) of an
individual i ;

F (i , j) represents a degree of ’confidence’
of i in j .

Pn is the counting probability measures on
Un, for all n ⩾ 1.
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Real-valued structures

ExA(x) =
A(a)+A(b)+A(c)

3 = 15
3 = 5

maxx(A(x) + B(x)) = 10

ExF (x , a) =
F (a,a)+F (b,a)+F (c,a)

3
= 0.9+1+0.2

3 = 0.7

ExF (x , b) =
F (a,b)+F (b,b)+F (c,b)

3 = 0.3

ExF (x , c) =
F (a,c)+F (b,c)+F (c,c)

3 ≈ 0.4

maxy ExF (x , y) = 0.7

EyExF (x , y) =
0.7+0.3+0.4

3 = 1.4
3 ≈ 0.47 etc.
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Summary

✔ Probabilities on the set of all L-formulas led to graded probabilistic
L-structures – classical L-structures (U,M) extended by a sequence of
probabilities Pn, n ⩾ 1, for each dimension Un.

✔ We have roughly sketched several languages suitable for describing
such structures: LωP, Lω1P, etc.

✔ Any graded structure can be well approximated by a hyperfinite
structure, so that they satisfy ’almost’ the same sentence from Lω1P.

? One of the most important tasks of Mathematical logic is to
characterize the set of all formulas that are true for all structures of a
given type. It is conventional to begin the study of new logic by
proving a completeness theorem.
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Motivating example

First-order language is the most common language for talking about
relational structures. However, there are many alternative languages . . .

Modal languages provide an internal, local perspective on relational
structure. (P. Blackburn, M. de Rijke, Y. Venema, Modal logic, Cambridge
University Press, 2010)
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Motivating example

Modal languages provide an internal, local perspective on relational
structure.

The basic modal language uses symbols:

a countably many propositional letters p, q, r etc.,

the classical connectives ¬, ∧, ∨, ⇒, ⇔,

and a unary modal operator ♢ (’diamond’; possibly).

The well-defined modal formulas are given by the following rules:

a propositional letter is a formula;

if A is a formula, then ¬A is a formula, too

if A1 and A2 are formulas, then A1 ∧A2, A1 ∨A2, A1 ⇒ A2, A1 ⇔ A2

are formulas

if A is a formula, then ♢A is a formula.
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Motivating example

A model for this language is a triple (W,R, [·]), where
• W is a non-empty set (of words);
• R is a binary relation on W;
• [·] is a function (a valuation) assigning to each propositional letter p a
subset [p] ⊆ W.
Such an model can be viewed as a relational structure consisting of a
domain, a single relation binary relation, and the unary relation given by [·]:

W = (W,R, [p], [q], · · · )

A formula F is satisfied (or true) in W at w ∈ W:

W,w |= p iff w ∈ [p]

W,w |= ¬F iff W,w ̸|= ¬F
W,w |= F1 ∧ F2 iff W,w |= F1 and W,w |= F2 etc.

W,w |= ♢F iff for some v ∈ W, with R(w , v), W, v |= F .
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Motivating example

· · ·
W,w |= ♢F iff for some v ∈ W, with R(w , v), W, v |= F
iff from w there is an 1-arrow-long path to a world where F is true.

W,w |= ♢ · · ·♢︸ ︷︷ ︸
k times

F

iff

from w there is a k-arrows-long path
to a world where F is true.

W, a |= p ⇒ q W, b |= p ⇒ q W, c ̸|= p ⇒ q
W, a |= ♢(p ⇒ q) W, b ̸|= ♢(p ⇒ q) W, c |= ♢(p ⇒ q)
W, a |= ♢♢(p ⇒ q) W, b |= ♢♢(p ⇒ q) W, c |= ♢♢(p ⇒ q)

etc.
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Markov process

There are a wide range of probabilistic structures that come from different,
mostly practical areas such as theoretical computer science, artificial
intelligence, economics, game theory and so on.

Causal reasoning J. Pearl, Probabilistic Reasoning in Intelligent
Systems, Morgan Kaufmann, San Francisco, 1988.

Learning from data R. E. Neapolitan, Probabilistic Reasoning in
Expert Systems, Wiley, New York, 1990.

Multi-agent systems R. Fagin, J. Y. Halpern, Y. Moses, M. Y.
Vardi, Reasoning About Knowledge, MIT Press, Cambridge, 2003.

Robotics S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics,
MIT Press, Cambridge, 2005.

Logic Programming K. Kersting, L. D. Raedt, Bayesian logic
programming: Theory and tool, in Getoor, L. and Taskar, B., editors,
Introduction to Statistical Relational Learning, MIT Press,
Cambridge, 2007
...
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Markov process

(W, 2W), where W = {a, b, c} is a three-world set

µa =

(
a b c
0.9 0.1 0

)
µb =

(
a b c
0.1 0.5 0.4

)
µc =

(
a b c
0.2 0.1 0.7

)
µa({c}) = 0 µa({a, c}) = 0.9
µb({c}) = 0.4 µb({a, c}) = 0.5
µc({c}) = 0.7 µc({a, c}) = 0.9

What is the probability that after a an
outcome occurs after which c occurs with at
least 40% of probability?

{i ∈ W | µi ({c}) ⩾ 0.4} = {b, c}
µa{i | µi ({c}) ⩾ 0.4} = µa({b, c}) = 0, 1
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Markov process

Definition

A Markov process consists of a family of probability space
(W,F , µw )w∈W over the same measurable space (W,F), with an
additional requirement related to ’the measurability of probabilistic
assertions’:

(∗) for all X ∈ F and r ∈ [0, 1], {w ∈ W | µw (X ) ⩾ r} ∈ F .

A discrete Markov process is a triple (W, 2W, µ), where W is at most
countable, and µ : W×W → [0, 1] is a real-valued binary relation which
satisfies the property:∑

w ′∈W
µ(w ,w ′) = 1, for all w ∈ W.

In this case, µw (X )
def
=

∑
w ′∈X

µ(w ,w ′).
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Markov process

(W,F , µw )w∈W
1 individuals from W can be viewed as

agents (with different beliefs and different
degrees of trust in each other)

2 events from F can be considered as
statements; w ∈ X means: the agent w
believes that the statement X is true.

3 µw (X ) could be regarded as a degree of
the w ’s opinion about the general belief in
X .
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LP

The symbols for LP are:

propositional letters from a countable vocabulary L = {p, q, r , p1, . . .};
the logical constant ’true’ ⊤:

the classical connectives: ¬, ∧, ∨, ⇒, ⇔
modal-like probabilistic operators P⩾r , for every r ∈ [0, 1] ∩Q, with
the intended meaning the probability is at least r .

The set of formulas LP is the smallest set such that:

all prop. letters are formulas; ⊤ is a formula;

if F is a formula, then ¬F is a formula;

if F1 and F2 are formulas, and ⋆ ∈ {∧,∨,⇒,⇔}, then F1 ⋆ F2 is a
formula;

if F is a formula and r ∈ [0, 1] ∩Q, then P⩾rF is a formula.
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LP-models

Definition

An LP-structure is a quadruple W = (W,F , µw , [·]), where (W,F , µw ) is
a Markov process, and [·] : L → F is a function (valuation) which valued
propositional letters by members form F .

Each valuation [·] : V → F can be extended inductively to all formulas:

[⊤] = W, [¬F ] = W \ [F ], [F1 ∧ F2] = [F1] ∩ [F2], etc.

[P⩾rF ] = {w ∈ W | µ(w , [F ]) ⩾ r}
Thus, every LP-formula F defines the measurable set [F ] ∈ F .

Definition

A formula F is true (false) in W at w , denoted by W,w |= F
(W,w ̸|= F ), if w ∈ [F ] (w ̸∈ [F ]).
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LP-models

Definition

A formula F is true (false) in W at w , denoted by W,w |= F
(W,w ̸|= F ), if w ∈ [F ] (w ̸∈ [F ]).

W,w |= ⊤
W,w |= ¬F iff W,w ̸|= F

W,w |= F1 ∧ F2 iff W,w |= F1 and W,w |= F2

W,w |= F1 ∨ F2 iff W,w |= F1 or W,w |= F2

W,w |= F1 ⇒ F2 iff W,w ̸|= F1 or W,w |= F2

W,w |= P⩾rF iff µ(w , [F ]) ⩾ r
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LP-models

(W,F , µw , [·])w∈W

[p] = {b}
[q] = {b, c}
[r ] = {a, c} . . .

W, a |= p ⇒ q
W, b |= p ⇒ q
W, c ̸|= p ⇒ q

[p ⇒ q] = {a, b}
µa({a, b}) = 0.9
µb({a, b}) = 0.6
µc({a, b}) = 0.3

W, a |= P⩾0.8(p ⇒ q)
W, b ̸|= P⩾0.8(p ⇒ q)
W, c ̸|= P⩾0.8(p ⇒ q)
[P⩾0.8(p ⇒ q)] = {a}
µa({a}) = 0.9 µb({a}) = 0.1 µc({a}) = 0.2
W, a |= P⩾0.15P⩾0.8(p ⇒ q)
W, b ̸|= P⩾0.15P⩾0.8(p ⇒ q)
W, c |= P⩾0.15P⩾0.8(p ⇒ q)
[P⩾0.15P⩾0.8(p ⇒ q)] = {a, c} etc.
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Having a/no model

Definition

Let Γ be a set of LP-formulas. W,w |= Γ iff for all F ∈ Γ, W,w |= F . An
LP-structure W is a model of Γ if W,w |= Γ, for all w ∈ W.

Exercise

Show that any finite subset of

Γ = {¬P⩾1¬p} ∪ {¬P⩾ 1
n
p : n ⩾ 1}

has a model, but Γ have no model.
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Complete descriptions

From the model-theoretic point of view, the most important sets of
formulas are those which are complete descriptions of worlds of an
LP-structure W:

ΓW,w
def
= {F ∈ LP | W,w |= F}

Which sets of formulas could be (extended to) complete descriptions, i.e.
could determine the worlds of a model?

We take the proof-theoretic approach, and try to discover:

valid formulas belonging to each complete description;

closure properties of complete descriptions: if a set of formulas Γ is a
part of a complete description, which formulas must also belong to
that complete description.
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semantic consequence relation

Definition

A formula F is valid, denote by |= F , if it satisfied at every world of every
model.

Definition

A formula F is a semantic consequence of Γ, denote by Γ |= F iff

W,w |= Γ implies W,w |= F ,

for all worlds of every model W.

∅ |= F coincides with |= F .

Our main main objective is to axiomatize the relation |= by constructing a
deducibility relation ⊢ and showing: Γ |= F iff Γ ⊢ F .
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Valid formulas

We distinguish three main groups of valid formulas.

All LP-instances of the tautologies:

p ∨ ¬p; p ∧ q ⇒ q, p ∧ (p ⇒ q) ⇒ q, etc.
P⩾0.3p ∨ ¬P⩾0.3p; P⩾0.3p ∧ P⩾0.1¬q ⇒ P⩾0.1¬q, etc.

the consequences of the ordering properties of the rational numbers:

P⩾0.3p ⇒ P⩾0.2p; P⩾0.3(p ∧ q) ⇒ P⩾0.12(p ∧ q) etc.

the consequences of the basic properties of probability:

P⩾1(p ∨ ¬p); P⩾0(p ∨ q), P⩾0.5p ⇒ P⩾0.5(p ∨ q),
P⩾0.6p ⇒ ¬P⩾0.6¬p, etc.
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Valid formulas

Proposition

For all formulas A,B:

(A1) |= P⩾0A

(A2) |= P⩾r⊤, for all r ∈ [0, 1]Q

(A3) |= P⩾r (A ∧ B) ∧ P⩾s(A ∧ ¬B) ⇒ P⩾r+sA, r + s ≤ 1

(A4) |= ¬P⩾r (A ∧ B) ∧ ¬P⩾s(A ∧ ¬B) ⇒ ¬P⩾r+sA, r + s ≤ 1

(A5) |= P⩾rA ⇒ ¬P⩾s¬A, r + s > 1
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Closure properties

Proposition

For all formulas A,B,

A ⇔ B |= P⩾rA ⇔ P⩾rB, for all r ∈ [0, 1] ∩Q
{P⩾tA | t < r} |= P⩾rA, for all r ∈ (0, 1] ∩Q
P⩾t1A, . . . ,P⩾tkA ̸|= P⩾rA, for every choice of finitely many rationals
t1, . . . , tk < r .
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Ax(LP)

(A0) every LP-instance of a tautology

(A1) P⩾0A

(A2) P⩾r⊤, za svako r ∈ [0, 1]Q

(A3) P⩾r (A ∧ B) ∧ P⩾s(A ∧ ¬B) ⇒ P⩾r+sA, r + s ≤ 1

(A4) ¬P⩾r (A ∧ B) ∧ ¬P⩾s(A ∧ ¬B) ⇒ ¬P⩾r+sA, r + s ≤ 1

(A5) P⩾rA ⇒ ¬P⩾s¬A, r + s > 1

(MP)
A A ⇒ B

B

(EQr )
A ⇒ (B ⇔ C )

A ⇒ (P⩾rB ⇔ P⩾rC )

(Ar )
A ⇒ P⩾tB t < r

A ⇒ P⩾rB
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Syntactical consequence relation

Definition

A formula F can be deduced (derived, inferred etc.) from Γ (Γ ⊢ F ) if
there is a derivation of the form:

F1,F2, . . . . . .︸ ︷︷ ︸
possibly infinite sequence

Fκ

such that for all i ⩽ κ, Fi is either an instance of some axiom, or Fi ∈ Γ,
or it can be inferred from some of its predecessors by application of some
inference rule.

Exercise

{¬P⩾ 1
n
p | n ⩾ 1} ⊢ P⩾1¬p
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Consistency

Definition

A set of formulas Γ is consistent iff Γ ̸⊢ ⊥, where ⊥ is the abbreviation for
¬⊤ ; Γ is maximal consistent iff it is consistent and it is not contained in
any other consistent theory (i.e. it is maximal in the sense of inclusion).

{¬P⩾1¬p} ∪ {¬P⩾ 1
n
p | n ⩾ 1} is not consistent.

Deduction theorem

If Γ,F ⊢ G then Γ ⊢ F ⇒ G .

PROOF. The induction on the length of the derivation Γ,F ⊢ G . . .
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Extension theorem

Extension theorem

Every consistent set of formulas Γ can be extended to a maximal
consistent set Γ+.

PROOF. ⟨Fk : k ⩾ 1⟩ – an arbitrary enumeration of all LP-formulas.

Γ0 = Γ

n ⩾ 1

If Γn ∪ {Fn} is consistent, then Γn+1 = Γn ∪ {Fn};
Let Γn ∪ {Fn} is not consistent. Then we have the following cases:

Fn = A ⇒ P⩾rB. Then, there is tn < r such that
Γn ∪ {¬Fn,¬(A ⇒ P⩾tnB)} is consistent. In this case we define Γn+1 by

Γn+1 = Γn ∪ {¬Fn,¬(A ⇒ P⩾tnB)}.

The existence of such tn is provided by (Ar );
Otherwise, Γn+1 = Γn ∪ {¬Fn}.

Let Γ+ =
⋃
n⩾0

Γn.
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Extension theorem

Extension theorem

Every consistent set of formulas Γ can be extended to a maximal
consistent set Γ+.

PROOF. ⟨Fk : k ⩾ 1⟩ – an arbitrary enumeration of LP-formulas.
...

Let Γ+ =
⋃
n⩾0

Γn.

Calim 1 Γn is consistent for each n;
Calim 2 Γ+ is deductively closed, i.e. if Γ+ ⊢ F then F ∈ Γ+.
Calim 3 Γ+ is a maximal consistent set.
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Completeness theorem

Completeness theorem

Every consistent set of formulas has an LP-model.

PROOF.

W is the set of all maximal consistent extensions of Γ; according to
the previous theorem, W is not empty.

F = {[F ] | F ∈ LP}, where [F ] = {∆ ∈ W | F ∈ ∆};

for all ∆ ∈ W, µ∆[F ]
def
= sup{t ∈ [0, 1] ∩Q | P⩾tF ∈ ∆}.

1) F is an algebra of subsets of W?

2) µ∆ is finitely additive?

3) (W,F , µ∆) |= Γ?
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Completeness theorem

Corollary

Γ ⊢ F iff Γ |= F
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