


Algorithmic Adventures



Juraj Hromkovič

Algorithmic
Adventures

From Knowledge to Magic



Prof. Dr. Juraj Hromkovič

ETH Zentrum
Department of Computer Science
Swiss Federal Institute of Technology
8092 Zürich
Switzerland
juraj.hromkovic@inf.ethz.ch

ISBN 978-3-540-85985-7
DOI 10.1007/978-3-540-85986-4

e-ISBN 978-3-540-85986-4

Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009926059

ACM Computing Classification (1998): K.3, A.1, K.2, F.2, G.2, G.3

c© Springer-Verlag Berlin Heidelberg 2009
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KünkelLopka GmbH, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



For

Urs Kirchgraber

Burkhard Monien

Adam Okrúhlica

Péťa and Peter Rossmanith

Georg Schnitger

Erich Valkema

Klaus and Peter Widmayer

and all those

who are fascinated

by science



Science is an innerly compact entity.
Its division into different subject areas
is conditioned not only by the essence of the matter
but, first and foremost, by the limited
capability of human beings in the process of getting insight.

Max Planck

Preface

The public image of computer science does not reflect its true
nature. The general public and especially high school students
identify computer science with a computer driving license. They
think that studying computer science is not a challenge, and that
anybody can learn it. Computer science is not considered a sci-
entific discipline but a collection of computer usage skills. This
is a consequence of the misconception that teaching computer sci-
ence is important because almost everybody possesses a computer.
The software industry also behaved in a short-sighted manner, by
putting too much pressure on training people in the use of their
specific software products,

Searching for a way out, ETH Zurich offered a public lecture series
called The Open Class — Seven Wonders of Informatics in the fall
of 2005. The lecture notes of this first Open Class were published
in German by Teubner in 2006. Ten lectures of this Open Class
form the basis of Algorithmic Adventures.



VIII Preface

The first and foremost goal of this lecture series was to show the
beauty, depth and usefulness of the key ideas in computer science.
While working on the lecture notes, we came to understand that
one can recognize the true spirit of a scientific discipline only by
viewing its contributions in the framework of science as a whole.
We present computer science here as a fundamental science that,
interacting with other scientific disciplines, changed and changes
our view on the world, that contributes to our understanding of
the fundamental concepts of science and that sheds new light on
and brings new meaning to several of these concepts. We show
that computer science is a discipline that discovers spectacular,
unexpected facts, that finds ways out in seemingly unsolvable sit-
uations, and that can do true wonders. The message of this book
is that computer science is a fascinating research area with a big
impact on the real world, full of spectacular ideas and great chal-
lenges. It is an integral part of science and engineering with an
above-average dynamic over the last 30 years and a high degree of
interdisciplinarity.

The goal of this book is not typical for popular science writing,
which often restricts itself to outlining the importance of a research
area. Whenever possible we strive to bring full understanding of
the concepts and results presented. We take the readers on a voy-
age where they discover fundamental computer science concepts,
and we help them to walk parts of this voyage on their own and
to experience the great enthusiasm of the original explorers. To
achieve this, it does not suffice to provide transparent and simple
explanations of complex matters. It is necessary to lure the reader
from her or his passive role and to ask her or him frequently to
do some work by solving appropriate exercises. In this way we
deepen the understanding of the ideas presented and enable read-
ers to solve research problems on their own.

All selected topics mark milestones in the development of com-
puter science. They show unexpected turns in searching for so-
lutions, spectacular facts and depth in studying the fundamen-
tal concepts of science, such as determinism, causality, nonde-



Preface IX

terminism, randomness, algorithms, information, computational
complexity and automation.

I would like to express my deepest thanks to Yannick Born and
Robin Künzler for carefully reading the whole manuscript and for
their numerous comments and suggestions as well as for their tech-
nical support with LATEX. I am grateful to Dennis Komm for his
technical support during the work on the final version. Very spe-
cial thanks go to Jela Skerlak for drawing most of the figures and
to Tom Verhoeff for his comments and suggestions that were very
useful for improving the presentation of some central parts of this
book. The excellent cooperation with Alfred Hofmann and Ro-
nan Nugent of Springer is gratefully acknowledged. Last but not
least I would like to cordially thank Ingrid Zámečniková for her
illustrations.

Zürich, February 2009 Juraj Hromkovič



Contents

1 A Short Story About the Development of
Computer Science or Why Computer Science Is
Not a Computer Driving Licence . . . . . . . . . . . . . . . . 1
1.1 What Do We Discover Here? . . . . . . . . . . . . . . . . . . . 1
1.2 Fundamentals of Science . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The End of Euphoria . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 The History of Computer Science . . . . . . . . . . . . . . . 24
1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Algorithmics, or What Have Programming and
Baking in Common? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1 What Do We Find out Here? . . . . . . . . . . . . . . . . . . . 37
2.2 Algorithmic Cooking . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 What About Computer Algorithms? . . . . . . . . . . . . 45
2.4 Unintentionally Never-Ending Execution . . . . . . . . . 61
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Infinity Is Not Equal to Infinity, or Why Infinity
Is Infinitely Important in Computer Science . . . . . 73
3.1 Why Do We Need Infinity? . . . . . . . . . . . . . . . . . . . . 73
3.2 Cantor’s Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3 Different Infinite Sizes . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



XII Contents

4 Limits of Computability or Why Do There Exist
Tasks That Cannot Be Solved Automatically by
Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2 How Many Programs Exist? . . . . . . . . . . . . . . . . . . . . 118
4.3 YES or NO, That Is the Question . . . . . . . . . . . . . . . 125
4.4 Reduction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5 Complexity Theory or What to Do When the
Energy of the Universe Doesn’t Suffice for
Performing a Computation? . . . . . . . . . . . . . . . . . . . . . 161
5.1 Introduction to Complexity Theory . . . . . . . . . . . . . 161
5.2 How to Measure Computational Complexity? . . . . . 163
5.3 Why Is the Complexity Measurement Useful? . . . . . 169
5.4 Limits of Tractability . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.5 How Do We Recognize a Hard Problem? . . . . . . . . . 178
5.6 Help, I Have a Hard Problem . . . . . . . . . . . . . . . . . . . 190
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6 Randomness in Nature and as a Source of
Efficiency in Algorithmics . . . . . . . . . . . . . . . . . . . . . . . 201
6.1 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.2 Does True Randomness Exist? . . . . . . . . . . . . . . . . . . 203
6.3 Abundant Witnesses Are Useful . . . . . . . . . . . . . . . . 210
6.4 High Reliabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
6.5 What Are Our Main Discoveries Here? . . . . . . . . . . 234

7 Cryptography, or How to Transform Drawbacks
into Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.1 A Magical Science of the Present Time . . . . . . . . . . 239
7.2 Prehistory of Cryptography . . . . . . . . . . . . . . . . . . . . 241
7.3 When Is a Cryptosystem Secure? . . . . . . . . . . . . . . . 246
7.4 Symmetric Cryptosystems . . . . . . . . . . . . . . . . . . . . . 249
7.5 How to Agree on a Secret in Public Gossip? . . . . . . 253
7.6 Public-Key Cryptosystems . . . . . . . . . . . . . . . . . . . . . 260
7.7 Milestones of Cryptography . . . . . . . . . . . . . . . . . . . . 272



Contents XIII

8 Computing with DNA Molecules, or Biological
Computer Technology on the Horizon . . . . . . . . . . . 277
8.1 The Story So Far . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
8.2 How to Transform a Chemical Lab into a DNA

Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
8.3 Adleman’s Experiment . . . . . . . . . . . . . . . . . . . . . . . . 288
8.4 The Future of DNA Computing . . . . . . . . . . . . . . . . 296

9 Quantum Computers, or Computing in the
Wonderland of Particles . . . . . . . . . . . . . . . . . . . . . . . . . 299
9.1 Prehistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
9.2 The Wonderland of Quantum Mechanics . . . . . . . . . 302
9.3 How to Compute in the World of Particles? . . . . . . 309
9.4 The Future of Quantum Computing . . . . . . . . . . . . . 320

10 How to Make Good Decisions for an Unknown
Future or How to Foil an Adversary . . . . . . . . . . . . . 325
10.1 What Do We Want to Discover Here? . . . . . . . . . . . 325
10.2 Quality Measurement of Online Algorithms . . . . . . 327
10.3 A Randomized Online Strategy . . . . . . . . . . . . . . . . . 338
10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361



By living always with enthusiasm,
being interested in everything that seems inaccessible,
one becomes greater by striving constantly upwards.
The sense of life is creativity,
and creativity itself is unlimited.

Maxim Gorky

Chapter 1

A Short Story About the
Development of Computer
Science or Why Computer
Science Is Not a Computer
Driving Licence

1.1 What Do We Discover Here?

The goal of this chapter differs from the following chapters that
each are devoted to a specific technical topic. Here, we aim to tell
the story of the foundation of computer science as an autonomous
research discipline in an understandable and entertaining way. Try-
ing to achieve this goal, we provide some impressions about the
way in which sciences develop and what the fundamental building
blocks of computer sciences look like. In this way we get to know

J. Hromkovič, Algorithmic Adventures, DOI 10.1007/978-3-540-85986-4 1,
c© Springer-Verlag Berlin Heidelberg 2009

1

http://dx.doi.org/10.1007/978-3-540-85986-4_1


2 1 The Development of Computer Science

some of the goals of the basic research in computer science as well
as a part of its overlap with other research disciplines. We also use
this chapter to introduce all ten subjects of the following chapters
in the context of the development of computer science.

1.2 Does the Building of Science Sit on
Unsteady Fundamentals?

To present scientific disciplines as collections of discoveries and
research results gives a false impression. It is even more mislead-
ing to understand science merely in terms of its applications in
everyday life. What would the description of physics look like if
it was written in terms of the commercial products made possible
by applying physical laws? Almost everything created by people
—from buildings to household equipment and electronic devices—
is based on knowledge of physical laws. However, nobody mistakes
the manufacturer of TVs or of computers or even users of elec-
tronic devices for physicists. We clearly distinguish between the
basic research in physics and the technical applications in electri-
cal engineering or other technical sciences. With the exception of
the computer, the use of specific devices has never been considered
a science.

Why does public opinion equate the facility to use specific software
packages to computer science? Why is it that in some countries
teaching computer science is restricted to imparting ICT skills,
i.e., to learning to work with a word processor or to search on
the internet? What is the value of such education, when software
systems essentially change every year? Is the relative complexity
of the computer in comparison with other devices the only reason
for this misunderstanding?

Surely, computers are so common that the number of car drivers
is comparable to the number of computer users. But why then
is driving a car not a subject in secondary schools? Soon, mobile
phones will become small, powerful computers. Do we consider



1.2 Fundamentals of Science 3

introducing the subject of using mobile phones into school educa-
tion? We hope that this will not be the case. We do not intend to
answer these rhetorical questions; the only aim in posing them is
to expose the extent of public misunderstanding about computer
science. Let us only note that experience has shown that teaching
the use of a computer does not necessarily justify a new, special
subject in school.

The question of principal interest to us is: “What is computer
science?” Now it will be clear that it is not about how to use
a computer1. The main problem with answering this question is
that computer science itself does not provide a clear picture to
people outside the discipline. One cannot classify computer sci-
ence unambiguously as a metascience such as mathematics, or as
a natural science or engineering discipline. The situation would
be similar to merging physics and electrical and mechanical en-
gineering into one scientific discipline. From the point of view of
software development, computer science is a form of engineering,
with all features of the technical sciences, covering the design and
development of computer systems and products. In contrast, the
fundamentals of computer science are closely related to mathemat-
ics and the natural sciences. Computer science fundamentals play
a similar role in software engineering as theoretical physics plays
in electrical and mechanical engineering.

It is exactly this misunderstanding of computer science fundamen-
tals among the general public that is responsible for the bad image
of computer science. Therefore we primarily devote this book to
explaining some fundamental concepts and ideas of computer sci-
ence.

We already argued that the best way to understand a scientific
discipline is not by dealing with its applications. Moreover, we
said in the beginning that it does not suffice to view a scientific
discipline as sum of its research results. Hence, the next principal
questions are:

“How can a scientific discipline be founded?”

1 If this were the case, then almost anybody could be considered a computer scientist.



4 1 The Development of Computer Science

“What are the fundamental building blocks of a scientific disci-
pline?”

Each scientific discipline has its own language, that is, its own no-
tions and terminology. Without these one cannot formulate any
claims about the objects of interest. Therefore, the process of
evolving notions, aimed at approximating the precise meaning of
technical terms, is fundamental to science. To establish a precise
meaning with a clear interpretation usually takes more effort than
making historic discoveries. Let us consider a few examples. Agree-
ing on the definition of the notion “probability” took approxi-
mately 300 years. Mathematicians needed a few thousand years in
order to fix the meaning of infinity in formal terms2. In physics we
frequently use the term “energy”. Maybe the cuckoo knows what
that is, but not me. The whole history of physics can be viewed as
a never-ending story of developing our understanding of this no-
tion. Now, somebody can stop me and say: “Dear Mr. Hromkovič,
this is already too much for me. I do not believe this. I know what
energy is, I learnt it at school.” And then I will respond: “Do you
mean the Greek definition3 of energy as a working power? Or do
you mean the school definition as the facility of a physical system
to perform work? Then, you have to tell me first, what power and
work are.” And when you start to do that, you will find that you
are running in a circle, because your definition of power and work
is based on the notion of energy.

We have a similar situation with respect to the notion of “life” in
biology. An exact definition of this term would be an instrument
for unambiguously distinguishing between living and dead matter.
We miss such a definition at the level of physics and chemistry.

Dear reader, my aim is not to unnerve you in this way. It is not
a tragedy that we are unable to determine the precise meaning
of some fundamental terms. In science we often work with defi-
nitions that specify the corresponding notions only in an approx-
imate way. This is everyday business for researchers. They need

2 We will tell this story in Chapter 3.
3 Energy means ‘power with effects’ in Greek.



1.2 Fundamentals of Science 5

to realize that the meaning of their results cannot reach a higher
degree of precision than the accuracy of the specification of terms
used. Therefore, researchers continuously strive to transform their
knowledge into the definition of fundamental notions in order to
get a better approximation of the intended meaning. An excellent
example of progress in the evolution of notions, taken from the
history of science, is the deepening of our understanding of the
notion of “matter”.

To understand what it takes to define terms and how hard this
can be, we consider the following example. Let us take the word
“chair”. A chair is not an abstract scientific object. It is simply a
common object and most of us know or believe we know what it
is. Now, please try to define the term “chair” by a description.

To define a term means to describe it in such an accurate
way that, without having ever seen a chair and following
only your description, anybody could unambiguously decide
whether a presented object is a chair or not. In your defini-
tion only those words are allowed whose meaning has already
been fixed.

The first optimistic idea may be to assume that one already knows
what a leg of a piece of furniture is. In this case, one could start
the definition with the claim that a chair has four legs. But halt.
Does the chair you are sitting on have four legs? Perhaps it only
has one leg, and moreover this leg is a little bit strange4? Let it be!
My aim is not to pester you. We only want to impress upon you
that creating notions is not only an important scientific activity,
but also very hard work.

We have realized that creating notions is a fundamental topic of
science. The foundation of computer science as a scientific disci-
pline is also related to building a notion, namely that of “algo-
rithm”. Before we tell this story in detail, we need to know about
axioms in science.
4 In the lecture room of OpenClass, there are only chairs with one leg in the form
of the symbol “L” and the chair is fixed on a vertical wall instead of on the floor.



6 1 The Development of Computer Science

Axioms are the basic components of science. They are
notions, specifications, and facts, about whose validity and
truth we are strongly convinced, though there does not exist
any possibility of proving their correctness.

At first glance, this may look strange, even dubious. Do we want
to doubt the reliability of scientific assertions? Let us explain the
whole by using an example. One such axiom is the assumption that
we think in a correct way, and so our way of arguing is reliable.
Can we prove that we think correctly? How? Using our arguments,
which are based on our way of thinking? Impossible. Hence, noth-
ing else remains than to trust in our way of thinking. If this axiom
is not true, then the building of science will collapse. This axiom is
not only a philosophical one, it can be expressed in a mathemati-
cal way. And since mathematics is the formal language of science,
one cannot do anything without it.

Let us carefully explain the exact meaning of this axiom.

If

an event or a fact B is a consequence of another event or
fact A,

then the following must hold:

if A holds (if A is true),
then B holds (then B is true).

In other words,

untruthfulness cannot be a consequence of truth.

In mathematics one uses the notation

A ⇒ B

for the fact

B is a consequence of A.

We say also

A implies B.



1.2 Fundamentals of Science 7

Using this notation, the axiom says: If

both A ⇒ B, and A hold,

then

B holds.

We call attention to the fact that it is allowed that an untruth
implies a truth. The only scenario not permitted is that untruth
(falsehood) is a consequence of truth. To get a deeper understand-
ing of the meaning of this axiom, we present the following example.

Example 1.1 We consider the following two statements A and
B:

A is “It is raining”

and

B is “The meadow is wet”.

We assume that our meadow is in the open air (not covered).
Hence, we may claim that the statement

“If it is raining, then the meadow is wet”

i.e.,

A ⇒ B

holds.

Following our interpretation of the terms “consequence” and “im-
plication”, the meadow must be wet (i.e., B holds) when it is
raining (i.e., when A holds). Let us look at this in detail.

“A holds” means “it is raining”.
“A does not hold” means “it is not raining”.
“B holds” means “the meadow is wet”.
“B does not hold” means “the meadow is dry”.

With respect to the truth of A and B, there are the following four
possible situations:



8 1 The Development of Computer Science

S1: It is raining and the meadow is wet.
S2: It is raining and the meadow is dry.
S3: It is not raining and the meadow is wet.
S4: It is not raining and the meadow is dry.

Usually, scientists represent these four possibilities in a so-called
truth table (Fig. 1.1)

A B

S1 true true

S2 true false

S3 false true

S4 false false

Fig. 1.1: Truth table for A and B

Mathematicians like to try to write everything as briefly as pos-
sible and unfortunately they do it even when there is a risk that
the text essentially becomes less accessible for nonspecialists. They
represent truth by 1 and falsehood (untruth) by 0. Using this no-
tation, the size of the truth table in Fig. 1.1 can be reduced to the
size of the table in Fig. 1.2.

A B

S1 1 1

S2 1 0

S3 0 1

S4 0 0

Fig. 1.2: Truth table for A and B (short version)

It is important to observe that the truth of the implication A ⇒ B
excludes the situation S2 in the second row (A is true and B is
false) only. Let us analyze this in detail.

The first row corresponds to the situation S1, in which both A and
B hold. This means it is raining and consequently the meadow is
wet. Clearly, this corresponds to the validity of A ⇒ B and so
agrees with our expectation.



1.2 Fundamentals of Science 9

The second row with “A holds” and “B does not hold” corre-
sponds to the situation when it is raining and the meadow is dry.
This situation is impossible and contradicts the truthfulness of our
claim A ⇒ B, because our understanding of “A ⇒ B” means that
the validity of A (“it is raining”) demands the validity of B (“the
meadow is wet”).

The third row describes the situation S3 in which it is not raining
(A is false) and the meadow is wet (B is true). This situation
is possible and the fact A ⇒ B does not exclude this situation.
Despite the first fact that it is not raining, the meadow can be wet.
Maybe it was raining before or somebody watered the meadow. Or
in the early morning after a cold night the dew is on the grass.

The last row (both A and B do not hold) corresponds to the
situation in which it is not raining and the meadow is dry. Clearly,
this situation is possible and does not contradict the validity of
the claim A ⇒ B either.

We summarize our observations. If A ⇒ B holds and A holds (“it
is raining”), then B (“the meadow is wet”) must hold too. If A
does not hold (“it is not raining”), then the validity of A ⇒ B
does not have any consequences for B and so B may be true or
false (rows 3 and 4 in the truth table). �
When A ⇒ B is true, the only excluded situation is

“A holds and B does not hold”.

If one has a truth table for two claims A and B, in which all
situations with respect to the truthfulness of A and B are possible,
except the situation “A holds and B does not hold”, then one can
say that A ⇒ B holds. From the point of view of mathematics,
the truth table in Fig. 1.3 is the formal definition of the notion of
“implication”.

In this way, we have the following simple rule for recognizing and
for verifying the validity of an implication A ⇒ B.



10 1 The Development of Computer Science

A B A ⇒ B

true true possible (true)

true false impossible (false)

false true possible (true)

false false possible (true)

Fig. 1.3: Definition of the implication

If in all possible situations (in all situations that may occur)
in which A is true (holds), B is also true (holds), then A ⇒
B is true (holds).

Exercise 1.1 Consider the following two statements A and B. A means: “It is
winter” and B means “The brown bears are sleeping”. The implication A ⇒ B
means:

“If it is winter, then the brown bears are sleeping.”

Assume the implication A ⇒ B holds. Create the truth table for A and B and
explain which situations are possible and which ones are impossible.

Now, we understand the meaning of the notion of implication (of
consequence). Our next question is the following one:

What have the implication and correct argumentation in
common? Why is the notion of implication the basis for
faultless reasoning or even for formal, mathematical proofs?

We use the notion of implication for the development of so-called
direct argumentation (direct proofs) and indirect argumentation
(indirect proofs). These two argumentation methods form the ba-
sic instrument for faultless reasoning. In order to make our argu-
mentations in the rest of the book transparent and accessible for
everybody, we introduce these two basic proof methods in what
follows.

Consider our statements A (“It is raining”) and B (“The meadow
is wet”) from Example 1.1. Consider additionally a new statement
C saying that the salamanders are happy. We assume that A ⇒ B
holds and moreover that

B ⇒ C (“If the meadow is wet, then the salamanders are
happy”)



1.2 Fundamentals of Science 11

holds too. What can be concluded from that? Consider the truth
table in Fig. 1.4 that includes all 8 possible situations with respect
to the validity of A, B, and C.

A B C A ⇒ B B ⇒ C

S1 true true true

S2 true true false impossible

S3 true false true impossible

S4 true false false impossible

S5 false true true

S6 false true false impossible

S7 false false true

S8 false false false

Fig. 1.4: Truth table for A ⇒ B, B ⇒ C

Since A ⇒ B is true, the situations S3 and S4 are excluded (impos-
sible). Analogously, the truth of B ⇒ C excludes the possibility of
the occurrence of the situations S2 and S6. Let us view this table
from the point of view of A and C only. We see that the following
situations are possible:

(i) both A and C hold (S1)

(ii) both A and C do not hold (S8)

(iii) A does not hold and C holds (S5, S7).

The situations S2 and S4 in which A holds and C does not hold
are excluded because of A ⇒ B and B ⇒ C. In this way we obtain

A ⇒ C (“If it is raining, then the salamanders are happy”)

is true.

The implication A ⇒ C is exactly what one would expect. If it
is raining, then the meadow must be wet (A ⇒ B), and if the
meadow is wet then the salamanders must be happy (B ⇒ C).
Hence, through the wetness of the meadow, the rain causes the
happiness of the salamanders (A ⇒ C).



12 1 The Development of Computer Science

The argument

“If A ⇒ B and B ⇒ C are true,
then A ⇒ C is true”

is called a direct proof (direct argument). Direct proofs may be
built from arbitrarily many implications. For instance, the truth
of the implications

A1 ⇒ A2, A2 ⇒ A3, A3 ⇒ A4, . . . , Ak−1 ⇒ Ak

allows us to conclude that

A1 ⇒ Ak

holds. From this point of view, direct proofs are simply sequences
of correct implications. In mathematics lessons, we perform many
direct proofs in order to prove various statements. Unfortunately,
mathematics teachers often forget to express this fact in a trans-
parent way and therefore we present here a small example from a
mathematics lesson.

Example 1.2 Consider the linear equality 3x − 8 = 4. Our aim
is to prove that

x = 4 is the only solution of the equality 3x − 8 = 4.

In other words we aim to show the truth of the implication

“If 3x − 8 = 4 holds, then x = 4”.

Let A be the statement “The equality 3x−8 = 4 holds” and let Z
be the statement “x = 4 holds”. Our aim is to prove that A ⇒ Z
holds. To do it by direct proof, we build a sequence of undoubtedly
correct implications starting with A and finishing with Z.

We know that an equality5 remains valid if one adds the same
number to both sides of the equality. Adding the integer 8 to both
sides of the equality 3x − 8 = 4, one obtains

5 To be precise, the solutions of an equality do not change if one adds the same
number to both sides of the equality.



1.2 Fundamentals of Science 13

3x − 8 + 8 = 4 + 8

and consequently

3x = 12.

Let B be the assertion that the equality 3x = 12 holds. Above we
showed the truthfulness of the implication A ⇒ B (“If 3x− 8 = 4
is true, then 3x = 12 is true”).

Thus, we have already our first implication. We also know that an
equality remains valid if one divides both sides of the equality by
the same nonzero number. Dividing both sides of 3x = 12 by 3,
we obtain

3x

3
=

12

3

and so

x = 4.

In this way we get the truthfulness of the implication B ⇒ Z (“If
the equality 3x = 12 holds, then the equality x = 4 holds”).

The validity of the implications A ⇒ B and B ⇒ Z allows us to
claim that A ⇒ Z holds. Hence, if 3x − 8 = 4 holds, then x = 4.
One can easily verify that x = 4 satisfies the equality. Thus, x = 4
is the only solution of the equality 3x − 8 = 4. �
Exercise 1.2 Show by direct argumentation (through a sequence of implications)
that x = 1 is the only solution of the equality 7x − 3 = 2x + 2.

Exercise 1.3 Consider the truth table for the three statements A, B, and C in
Fig. 1.5.

We see that only 3 situations (S1, S2, and S8) are possible and all others are impos-
sible. Which implications hold? For instance, the implication C ⇒ A holds, because
whenever in a possible situation C is true, then A is true too. The implication B ⇒ C
does not hold, because in the possible situation S2 it happens that B holds and C
does not hold. Do you see other implications that hold?



14 1 The Development of Computer Science

A B C

S1 1 1 1

S2 1 1 0

S3 1 0 1 impossible

S4 1 0 0 impossible

S5 0 1 1 impossible

S6 0 1 0 impossible

S7 0 0 1 impossible

S8 0 0 0

Fig. 1.5: Truth table for A, B and C in Exercise 1.3

Most of us rarely have troubles understanding the concept of di-
rect argumentation. On the other hand indirect argumentation is
considered to be less easily understood. Judging whether indirect
argumentation is really more complex than direct argumentation,
and to what extent the problem arises because of poor didactic ap-
proaches in schools is left to the reader. Since we apply indirect ar-
gumentation for discovering some fundamental facts in Chapters 3
and 4, we take the time to explain the schema of this reasoning in
what follows.

Let us continue with our example. The statement A means “It
is raining”, B means “The meadow is wet”, and C means “The
salamanders are happy”. For each statement D, we denote by D
the opposite of D. In this notation, A means “It is not raining”,
B means “The meadow is dry”, and C means “The salamanders
are unhappy”. Assume, as before, that the implications A ⇒ B
and B ⇒ C hold.

Now, suppose we or the biologists recognize that

“The salamanders are unhappy”

i.e., that C holds (C does not hold). What can one conclude from
that?

If the salamanders are unhappy, the meadow cannot be wet, be-
cause the implication B ⇒ C guarantees the happiness of the
salamanders in a wet meadow. In this way one knows with cer-
tainty that B holds. Analogously, the truthfulness of B and of



1.2 Fundamentals of Science 15

the implication A ⇒ B implies that it is not raining, because in
the opposite case the meadow would be wet. Hence, A holds. We
observe in this way that the validity of

A ⇒ B, B ⇒ C, and C

implies the validity of

B and A.

We can observe this argumentation in the truth table in Fig. 1.6
too. The validity of A ⇒ B excludes the situations S3 and S4.
Since B ⇒ C holds, the situations S2 and S6 are impossible.

A B C A ⇒ B B ⇒ C C does not hold

S1 true true true impossible

S2 true true false impossible

S3 true false true impossible impossible

S4 true false false impossible

S5 false true true impossible

S6 false true false impossible

S7 false false true impossible

S8 false false false

Fig. 1.6: Truth table for A, B and C

Since C holds (since C does not hold), the situations S1, S3, S5,
and S7 are impossible. Summarizing, S8 is the only situation that
is possible. The meaning of S8 is that none of the statements A, B,
and C holds, i.e., that all of A, B, and C are true. Thus, starting
from the validity of A ⇒ B, B ⇒ C, and C, one may conclude
that B, and C hold.

Exercise 1.4 Consider the statements A, B, and C with the above meaning. As-
sume A ⇒ B, B ⇒ C and B hold. What can you conclude from that? Depict the
truth table for all 8 situations with respect to the validity of A, B, and C and
determine which situations are possible when A ⇒ B, B ⇒ C and B hold.

We observe that the validity of A ⇒ B, B ⇒ C, and C does
not help to say anything about the truthfulness of A and B. If
C holds, the salamanders are happy. But this does not mean that
the meadow is wet (i.e., that B holds). The salamanders can also



16 1 The Development of Computer Science

have other reasons to be happy. A wet meadow is only one of a
number of possible reasons for the happiness of the salamanders.

Exercise 1.5 Depict the truth table for A, B, and C, and determine which situa-
tions are possible when A ⇒ B, B ⇒ C, and C are true.

Exercise 1.6 Consider the following statements C and D. C means “The color
yellow and the color blue were mixed”, and D means “The color green is created”.
The implication C ⇒ D means:

“If one mixed the color yellow with blue, then the color green is created.”

Assume that C ⇒ D holds. Depict the truth table for C and D and explain which
situations are possible and which are impossible. Can you conclude from the validity
of C ⇒ D the validity of the following statement?

“If the created color differs from green, then the color yellow was not mixed
with the color blue.”

Slowly but surely, we are starting to understand the schema of
indirect argumentation. Applying the schema of the direct proof,
we know that a statement A holds and we aim to prove the validity
of a statement Z. To do this, we derive a sequence of correct
implications

A ⇒ A1, A1 ⇒ A2, . . . , Ak−1 ⇒ Ak, Ak ⇒ Z

that guarantees us the validity of A ⇒ Z. From the validity of A
and of A ⇒ Z we obtain the truthfulness of Z.

The schema of an indirect proof can be expressed as follows.

Initial situation: We know that a statement D holds.
Aim: To prove that a statement Z holds.

We start from Z as the opposite of Z and derive a sequence of
correct implications

Z ⇒ A1, A1 ⇒ A2, . . . , Ak−1 ⇒ Ak, Ak ⇒ D.

This sequence of implications ends with D that clearly does not
hold, because we assumed that D holds.

From this we can conclude that Z does not hold, i.e. that Z as the
opposite of Z holds.



1.2 Fundamentals of Science 17

The correctness of this schema can be checked by considering the
truth table in Fig. 1.7.

D Z D Z Z ⇒ D D holds

S1 true true false false

S2 true false false true impossible

S3 false true true false impossible

S4 false false true true impossible

Fig. 1.7: Truth table for D and Z

The situation S2 is impossible, because Z ⇒ D holds. Since D
holds6, the situations S3 and S4 are impossible. In the only re-
maining situation S1 the statement Z is true, and so we have
proved the aimed validity of Z.

This proof method is called indirect, because in the chain of im-
plications we argue in the opposite direction (from the end to the
beginning). If D does not hold (i.e., if D holds), then Z cannot
hold and so Z holds.

In our example we had D = C, i.e., we knew that the salamanders
are not happy. We wanted to prove that the consequence is that
it is not raining, i.e., our aim was to show that Z = A holds.
Expressing the implications

A ⇒ B, B ⇒ C

in our new notation one obtains

Z ⇒ B, B ⇒ D.

From the validity of Z ⇒ D and D, we were allowed to conclude
that the opposite of Z = A must hold. The opposite of Z is Z = A.
Hence, we have proved that it is not raining (i.e., that A holds).

The general schema of the indirect proofs is as follows. One wants
to prove the truth of a statement Z. We derive a chain of impli-
cations

6 This was our starting point.



18 1 The Development of Computer Science

Z ⇒ A1, A1 ⇒ A2, . . . , Ak ⇒ U ,

which in turn provides

Z ⇒ U ,

i.e., that Z as the opposite of our aim Z implies a nonsense U .
Since the nonsense U does not hold, the statement Z does not
hold, too. Hence, Z as the opposite of Z holds.

Exercise 1.7 Let x2 be an odd integer. We want to give an indirect proof that then
x must be an odd integer, too. We use the general schema for indirect proofs. Let A
be the statement that “x2 is odd” and let Z be the statement that “x is odd”. Our
aim is to prove that Z holds, if A is true. One can prove the implication Z ⇒ A by
showing that for each even number 2i

(2i)2 = 22i2 = 4i2 = 2(2i2)

and so (2i)2 is an even number. Complete the argumentation of this indirect proof.

Exercise 1.8 Let x2 be an even integer. Apply the schema of indirect proofs in
order to show that x is even.

Exercise 1.9 (Challenge) Prove by an indirect argument that
√

2 is not a rational
number. Note that rational numbers are defined as numbers that can be expressed
as fractions of integers.

In fact, one can view the axioms of correct argumentation as cre-
ating the notion of implication in a formal system of thinking.
Usually, axioms are nothing other than fixing the meaning of some
fundamental terms. Later in the book, we will introduce the defi-
nition of infinity that formalizes and fixes our intuition about the
meaning of the notion of infinity. Clearly, it is not possible to prove
that this definition exactly corresponds to our intuition. But there
is a possibility of disproving an axiom. For instance, one finds an
object, that following our intuition, has to be infinite but with
respect to our definition it is not. If something like this happens,
then one is required to revise the axiom.

A revision of an axiom or of a definition is not to be viewed as a
disaster or even as a catastrophe. Despite the fact that the change
of a basic component of science may cause an extensive reconstruc-
tion of the building of science, we view the revision as a pleasing



1.3 The End of Euphoria 19

event because the resulting new building of science is more stable
and so more reliable.

Up till now, we spoke about basic components of science only.
What can be said about those components that are above the
base? Researchers try to build science carefully, in such a way
that the correctness of the axioms (basic components) assures the
correctness of the whole building of science. Especially mathemat-
ics is systematically created in this way. This is the well-known
objectivity and reliability of science. At least in mathematics and
sciences based on arguments of mathematics the truthfulness of
axioms implies the validity of all results derived.

1.3 Origin of Computer Science as the End of
Euphoria

At the end of the nineteenth century, society was in a euphoric
state in view of the huge success of science, resulting in the tech-
nical revolution that transformed knowledge into the ability to
develop advanced machines and equipment. The products of the
creative work of scientists and engineers entered into everyday life
and essentially increased the quality of life. The unimaginable be-
came reality. The resulting enthusiasm of scientists led not only to
significant optimism, but even to utopian delusions about man’s
capabilities. The image of the causal (deterministic) nature of the
world was broadly accepted. People believed in the existence of an
unambiguous chain of causes and their effects like the following
one

cause1 ⇒ effect1

effect1 = cause2

cause2 ⇒ effect2

effect2 = cause3

cause3 ⇒ . . .

and attempted to explain the functioning of the world in these
terms. One believed that man is able to discover all laws of nature



20 1 The Development of Computer Science

and that this knowledge suffices for a complete understanding of
the world. The consequence of this euphoria in physics was that
one played the Gedankenexperiment in which one believes in the
existence of so-called demons, who are able to calculate and so pre-
dict the future. Physicists were aware of the fact that the universe
consists of a huge number of particles and that nobody is able
to record the positions and the states of all of them at a single
moment in time. Therefore, they knew that knowing all the laws
of nature does not suffice for a man to predict the future. Hence,
physicists introduced the so-called demons as superhumans able to
record the description of the state of the whole universe (the states
of all particles and all interactions between them). Knowing all the
laws of nature, the hypothetical demon has to be able to calculate
and so to predict the future. I do not like this idea and do not con-
sider it to be optimistic, because it means that the future is already
determined. Where then is place for our activities? Are we unable
to influence anything? Are we in the best case only able to predict
this unambiguously determined future? Fortunately, physics itself
smashed this image. First, chaos theory showed that there exist
systems such that an unmeasurably small change in their states
causes a completely different development in their future. This
fact is well known as the so-called butterfly effect. The final rea-
son for ending our belief in the existence of demons is related to the
discovery of the laws of quantum mechanics7 that became a funda-
ment of correct physics. Quantum mechanics is based on genuinely
random, hence unpredictable, events that are a crucial part of the
laws governing the behavior of particles. If one accepts this the-
ory (up to now, no contradiction has ever been observed between
the predictions of quantum mechanics and the experiments trying
to verify them), then there does not exist any unambiguously de-
termined future and so there is some elbow room for shaping the
future.

The foundation of computer science is related to another “unre-
alistic” delusion. David Hilbert, one of the most famous mathe-

7 We provide more information about this topic in Chapter 6 on randomness and in
Chapter 9 on quantum computing.



1.3 The End of Euphoria 21

maticians, believed in the existence of a method for solving all
mathematical problems. More precisely, he believed

(i) that all of mathematics can be created by starting from a finite
collection of suitable axioms,

(ii) that mathematics created in this way is complete in the sense
that every statement expressible in the language of mathemat-
ics can be either proved or disproved in this theory,

(iii) and that there exists a method for deciding the correctness of
any statement.

The notion of “method” is crucial for our consideration now. What
was the understanding of this term at that time?

A method for solving a problem (a task) describes an effec-
tive path that leads to the problem solution. This description
must consist of a sequence of instructions that everybody can
perform (even people who are not mathematicians).

The main point is to realize that one does not need to understand
why a method works and how it was discovered in order to be able
to apply it for solving given problem instances. For instance, con-
sider the problem of solving quadratic equations of the following
form:

x2 + 2px + q = 0

If p2 − q ≥ 0, then the formulae

x1 = −p +
√

p2 − q

x2 = −p −
√

p2 − q

describe the calculation of the two solutions of the given quadratic
equation. We see that one can compute x1 and x2 without any
knowledge about deriving these formulae and so without under-
standing why this way of computing solutions to quadratic equa-
tion works. One only needs the ability to perform arithmetic op-
erations. In this way, a computer as a machine without any intel-
ligence can solve quadratic equations by applying this method.



22 1 The Development of Computer Science

Therefore, one associates the existence of a mathematical method
for solving a problem to the possibility of calculating solutions in
an automatic way. Today, we do not use the notion “method”
in this context, because this term is used in many different areas
with distinct meanings. Instead, we use the term algorithm. The
choice of this new term as a synonym for a solution method was
inspired by the name of the Arabic mathematician al-Khwarizmi,
who wrote a book about algebraic methods in Baghdad in the
ninth century. Considering this interpretation of the notion of al-
gorithm, David Hilbert strove to automate the work of mathe-
maticians. He strove to build a perfect theory of mathematics in
which one has a method for verifying the correctness of all state-
ments expressible in terms of this mathematics. In this theory, the
main activity of mathematicians devoted to the creation of proofs
would be automated. In fact, it would be sad, if creating correct
argumentations—one of the hardest intellectual activities—could
be performed automatically by a dumb machine.

Fortunately, in 1931, Kurt Gödel definitively destroyed all dreams
of building such a perfect mathematics. He proved by mathemati-
cal arguments that a complete mathematics, as desired by Hilbert,
does not exist and hence cannot be created. Without formulating
these mathematical theorems rigorously, we present the most im-
portant statement in an informal way:

(a) There does not exist any complete, “reasonable” mathematical
theory. In each correct and sufficiently “large” mathematical
theory (such as current mathematics) one can formulate state-
ments, whose truthfulness cannot be verified inside this theory.
To prove the truthfulness of such theorems, one must add new
axioms and so build a new, even larger theory.

(b) A method (algorithm) for automatically proving mathematical
theorems does not exist.

If one correctly interprets the results of Gödel, one realizes that
this message is a positive one. It says that building mathematics
as a formal language of science is an infinite process. Inserting a
new axiom means adding a new word (building a new notion) to



1.3 The End of Euphoria 23

our vocabulary. In this way, on one side the expressive power of
the language of science grows, and on the other hand the power
of argumentation grows, too. Due to new axioms and the related
new terms, we can formulate statements about objects and events
we were not able to speak about before. And we can verify the
truthfulness of assertions that were not checkable in the old theory.
Consequently, the verification of the truthfulness of statements
cannot be automated.

The results of Gödel have changed our view on science. We un-
derstand the development of science more or less as the process
of developing notions and of discovering methods. Why were the
results of Gödel responsible for the founding of computer science?
Here is why. Before Gödel nobody saw any reason to try and give
an exact definition of the notion of a method. Such a definition
was not needed, because people only presented methods for solv-
ing particular problems. The intuitive understanding of a method
as an easily comprehensible description of a way of solving a prob-
lem was sufficient for this purpose. But when one wanted to prove
the nonexistence of an algorithm (of a method) for solving a given
problem, then one needed to know exactly (in the sense of a rigor-
ous mathematical definition) what an algorithm is and what it is
not. Proving the nonexistence of an object is impossible if the ob-
ject has not been exactly specified. First, we need to know exactly
what an algorithm is and then we can try to prove that, for some
concrete problems, there do not exist algorithms solving them. The
first formal definition of an algorithm was given by Alan Turing
in 1936 and later further definitions followed. The most important
fact is that all reasonable attempts to create a definition of the no-
tion of algorithm led to the same meaning of this term in the sense
of specifying the classes of automatically (algorithmically) solvable
problems and automatically unsolvable problems. Despite the fact
that these definitions differ in using different mathematical ap-
proaches and formalisms, and so are expressed in different ways,
the class of algorithmically solvable problems determined by them
is always the same. This confirmed the belief in the reasonability



24 1 The Development of Computer Science

of these definitions and resulted in viewing Turing’s definition of
an algorithm as the first8 axiom9 of computer science.

Now, we can try to verify our understanding of axioms once again.
We view the definition of an algorithm as an axiom, because it is
impossible to prove its truthfulness. How could one prove that our
rigorous definition of algorithmic solvability really corresponds to
our intuition, which is not rigorous? We cannot exclude the possi-
bility of a refutation of this axiom. If somebody designs a method
for a special purpose and this method corresponds to our intuitive
image of an algorithm, but is not an algorithm with respect to
our definition, then the definition was not good enough and we
have to revise it. In spite of many attempts to revise the definition
of an algorithm since 1936, each attempt only confirmed Turing’s
definition and so the belief in this axiom grew. After proving that
the class of problems algorithmically solvable by quantum com-
puters is the same as the class of problems solvable by Turing’s
algorithms, almost nobody sees any possibility of a violation of
this axiom.

The notion of an algorithm is so crucial for computer science that
we do not try to explain its exact meaning in a casual manner
now. Rather, we devote a whole chapter of this book to building
the right understanding of the notions of an algorithm and of a
program.

1.4 The History of Computer Science and the
Concept of This Book

The first fundamental question of computer science is the following
one:

8 All axioms of mathematics are considered axioms of computer science, too.
9 More precisely, the axiom is the claim that Turing’s definition of an algorithm
corresponds to our intuitive meaning of the term “algorithm”.



1.4 The History of Computer Science 25

Do there exist tasks (problems) that cannot be solved au-
tomatically (algorithmically)? And, if yes, which tasks are
algorithmically solvable and which are not?

We aim not only to answer these questions, but we attempt to
present the history of discovering the right answers in such a way
that, following it, anybody could fully understand the correctness
of these answers in detail. Since this topic is often considered to
be one of the hardest subjects of the first two years of computer
science study at university, we proceed towards our aim in a se-
quence of very small steps. Therefore, we devote to this oldest part
of computer science history three whole chapters.

The second chapter is titled as follows:

“Algorithmics, or What Do Programming and Baking Have
in Common?”

It is primarily devoted to developing and understanding the key
notions of an algorithm and of a program. To get a first idea of
the meaning of these terms, we start with baking a cake.

Have you ever baked a cake following a recipe? Or have you cooked
a meal without any idea why the recipe asks you to work in the
prescribed way? During the cooking you were aware of the fact that
the correct performance of every step is enormously important for
the quality of your final product. What did you discover? If you
are able to follow the detailed instructions of a well-written recipe
correctly, then you can be very successful in cooking without being
an expert. Even if, with considerable euphoria, we may think for a
moment we are masters in cooking, we are not necessarily excellent
cooks. One can become a good cook only if one grasps the deeper
relations between the product and the steps of its production, and
can write down the recipes.

The computer has a harder life. It can perform only a few very
simple activities (computation steps), in contrast to instructions
present in recipes, such as mixing two ingredients or warming the
content of a jar. But the main difference is that the computer does
not have any intelligence and therefore is unable to improvise. A



26 1 The Development of Computer Science

computer cannot do anything other than follow consistently step
by step the instructions of its recipe, which is its program. It does
not have any idea about what complex information processing it
is doing.

In this way, we will discover that the art of programming is to
write programs as recipes that make methods and algorithms “un-
derstandable” for computers in the sense that, by executing their
programs, computers are able to solve problems. To realize this
properly, we introduce a model of a computer, and show which in-
structions it can execute, and what happens when it is executing
an instruction. In doing so, we also learn what algorithmic prob-
lems and tasks are and what the difference is between the terms
algorithm and program.

The title of the third chapter is

“Infinity Is Not Equal to Infinity, or Why Is Infinity In-
finitely Important for Computer Scientists?”

This chapter is fully devoted to infinity. Why does one consider the
introduction of the notion of “infinity” to be not only useful, but to
be extremely important and even indispensable for understanding
the functioning of our finite world?

The whole new universe is huge, but finite. Everything we see, ev-
erything we experiment with, and everything we can influence is
finite. No one has ever been in touch with anything infinite. Nev-
ertheless, mathematics and computer science, and therefore many
other scientific disciplines are unable to exist without infinity. Al-
ready in the first class of elementary school, we meet the natural
numbers 0, 1, 2, 3, 4, . . . which are infinitely many.

Why does one need infinitely many numbers, when the number of
all particles in the universe is a big, but still a concrete number?
Why do we need larger numbers? What meaning does infinity
have in computer science and how is it related to the limits of the
automatically doable?



1.4 The History of Computer Science 27

Striving to answer these questions, we will learn not only the math-
ematical definition of infinity, but in addition we will see why the
concept of infinity is useful. We will realize that the, at first glance,
artificial notion of infinity turns out to be a successful, power-
ful and even irreplaceable instrument for investigating our finite
world.

In Chapter 4, titled

“Computability, or Why Do There Exist Tasks That Cannot
Be Solved by Any Computer Controlled by Programs?”

we first apply our knowledge about infinity to show the existence
of tasks that are not algorithmically (automatically) solvable.

How can one prove the algorithmic unsolvability of concrete tasks
and problems that are formulated in real life? We apply the re-
duction method, which is one of the most powerful and most suc-
cessful tools of mathematics for problem solving. It was originally
designed for getting positive results, and we use it here in a rather
surprising way. We modify this method to get an instrument for
producing and propagating negative results about algorithmic un-
solvability of problems. In this way, we are able to present several
well-motivated problems that cannot automatically be solved by
means of information technology (computers). With that, the first
key goal of our book—proving the existence of algorithmically un-
solvable problems—is reached.

In the early 1960s, after researchers successfully developed a theory
for classifying problems into automatically solvable and unsolv-
able ones, computers started to be widely used in industry. When
applying algorithms for solving concrete problems, the question
of their computational complexity and so of their efficiency be-
came more central than the question of the existence of algorithms.
Chapter 5 is devoted to the notions and concepts of complexity
theory and is titled

“Complexity Theory, or What Can One Do, If the Energy
of the Whole Universe Is Insufficient to Perform a Compu-
tation?”



28 1 The Development of Computer Science

After the notion of an algorithm, the notion of complexity is the
next key notion of computer science. ‘Complexity’ is understood,
in computer science, as the amount of work a computer does when
calculating a solution. Typically, this is measured by the number
of computer operations (instructions) performed or the amount of
memory used. We will also try to measure the intrinsic complexity
of problems. We do so by considering the complexity of the fastest
(or of the best in another sense) algorithm for solving this problem.

The main goal of complexity theory is to classify problems (algo-
rithmic tasks) into easy and hard with respect to their computa-
tional complexity. We know that the computational complexity of
problems may be arbitrarily high and so that there exist very hard
problems. We know several thousand problems from practice, for
which the best algorithms for solving them have to execute more
operations than the number of protons in the universe. Neither
the energy of the whole universe, nor the time since the Big Bang
is sufficient to solve them. Does there exist a possibility to try at
least something with such hard problems?

Here we outline the first miracle of computer science. There are
several promising possibilities for attacking hard problems. And
how to do so is the proper art of algorithmics. Many hard problems
are in the following sense unstable or sensitive. A small change in
the problem formulation or a small reduction in our requirements
can cause a huge jump from an intractable amount of computer
work to a matter of a few seconds on a common PC. How to obtain
such effects is the topic of the chapters ahead.

The miracles occur when our requirements are reduced so slightly
that this reduction (almost) does not matter in the applications
considered, although it saves a huge amount of computer work.

The most magical effects are caused by using randomized control.
The surprises are so fascinating as to be true miracles. Therefore,
we devote a whole chapter to the topic of randomization:

“Randomness and Its Role in Nature, or Randomness as a
Source of Efficiency in Algorithmics”



1.4 The History of Computer Science 29

The idea is to escape the deterministic control flow of programs
and systems by allowing algorithms to toss a coin. Depending on
the outcome (heads or tails), the algorithm may choose different
strategies for searching for a solution. This way, one sacrifices ab-
solute reliability in the sense of the guarantee to always compute
a correct solution, because one allows some sequences of random
events (coin tosses) to execute unsuccessful computations. An un-
successful computation may be a computation without any result
or even a computation with a false result. But if one can reduce
the probability of executing an unsuccessful computation to one
in a billion, then the algorithm may be very useful.

We call attention to the fact that in practice randomized algo-
rithms with very small error probabilities can even be more reliable
than their best deterministic counterparts. What do we mean by
this? Theoretically, all deterministic programs are absolutely cor-
rect, and randomized ones may err. But the nature of the story is
that the execution of deterministic programs is not absolutely reli-
able, because during their runs on a computer the probability of a
hardware error grows proportionally with the running time of the
program. Therefore a fast randomized algorithm can be more re-
liable than a slow deterministic one. For instance, if a randomized
program computes a result in 10 seconds with an error probabil-
ity 10−30, then it is more reliable than a deterministic program
that computes the result in 1 week. Hence, using randomization,
one can obtain phenomenal gains in efficiency by accepting a very
small loss in reliability. If one can jump from an intractable amount
of “physical” work to a 10 second job on a common PC by paying
with a merely hypothetical loss of reliability, then one is allowed
to speak about a miracle. Without this kind of miracles, current
Internet communication, e-commerce, and online banking would
not exist.

In addition to the applications of randomness in computer science,
we discuss in this chapter the fundamental questions about the
existence of true randomness and we show how our attitude toward
randomness has been changing in the history of science.



30 1 The Development of Computer Science

Chapter 7, titled

“Cryptography, or How to Transform Weak Points into Ad-
vantages”,

tells the history of cryptography as the science of secret codes.
Here, the reader finds out how cryptography became a serious
scientific discipline due to the concepts of algorithmics and com-
plexity theory. One can hardly find other areas of science in which
so many miracles occur in the sense of unexpected effects, unbe-
lievable possibilities and ways out.

Cryptography is the ancient art of creating secret codes. The goal
is to encrypt texts in such a way that the resulting cryptotext
can be read and understood by the legal receiver only. Classical
cryptography is based on keys that are a shared secret of the sender
and the receiver.

Computer science contributed essentially to the development of
cryptography. First of all, it enabled us to measure the reliability
(the degree of security) of designed cryptosystems. A cryptosys-
tem is hardly breakable if every program, without knowledge of
the secret key, requires an intractable amount of computer work
to decrypt a cryptotext. Using this definition, we discovered cryp-
tosystems with efficient encryption and decryption algorithms, but
whose decryption is computationally hard when the secret key is
unknown.

Here we will also see that the existence of hard problems not only
reveals our limits, but can be useful as well. Based on this idea, so-
called public-key cryptosystems were developed. They are called
public-key because the key for encrypting the text into the cryp-
totext may be made public. The secret knowledge necessary for
efficient decryption is known only to the legitimate receiver. This
secret cannot be efficiently calculated from the public encryption
key and so nobody else can read the cryptotext.

The next two chapters discuss the possibilities of miniaturizing
computers and thereby speeding up computations, by executing
computations in the world of particles and molecules.



1.4 The History of Computer Science 31

Chapter 8 is headed

“DNA Computing, or a Biocomputer on the Horizon”

and is devoted to the development of biotechnologies for solving
hard computing problems. Taking a simple instance of a hard prob-
lem, we show how data can be represented by DNA sequences and
how to execute chemical operations on these sequences in order to
“compute” a solution.

If one carefully analyzes the work of a computer, then one real-
izes that all computer work can be viewed as transforming texts
(sequences of symbols) into other texts. Usually, the input (prob-
lem instance description) is represented by a sequence of symbols
(for instance, 0’s and 1’s) and the output is again a sequence of
symbols.

Can nature imitate such symbolic computations? DNA sequences
can be viewed as sequences built from symbols A, T, C, and G

and we know that DNA sequences embody information, exactly
like computer data. Similar to a computer operating on its data,
chemical processes can change biological data. What a computer
can do, molecules can do just as easily. Moreover, they can do it
a little bit faster than computers.

In Chapter 8, we explain the advantages and the drawbacks of
DNA computing and discuss the possibilities of this biotechnol-
ogy in algorithmics. This research area introduced already several
surprises, and today nobody is able to predict anything about the
dimension of the applicability of this technology in the next 10
years.

Probably no scientific discipline had such a big influence on our
view of the world as physics. We associate physics with deep dis-
coveries and pure fascination. Quantum mechanics is the jewel
among jewels in physics. The importance of its discovery bears a
resemblance with the discovery of fire in primeval times. Quantum
physics derives its magic not only from the fact that the laws gov-
erning the behavior of particles seemingly contradict our physical
experiences in the macro world. But this theory, at first disputed



32 1 The Development of Computer Science

but now accepted, enables us to develop, at least hypothetically, a
new kind of computing on the level of particles. We devote Chap-
ter 9

“Quantum Computing, or Computing in the Wonderland of
Particles”

to this topic.

After discovering the possibility of computing with particles, the
first question posed was whether the first axiom of computer sci-
ence still holds. In other words, we asked whether quantum algo-
rithms can solve problems that are unsolvable using classical algo-
rithms. The answer is negative: quantum algorithms can solve ex-
actly the same class of problems as classical algorithms. Hence, our
first axiom of computer science became even more stable and more
reliable. What then can be the advantage of quantum computers,
if only hypothetically? There are concrete computing tasks of huge
practical importance that can be solved efficiently using quantum
algorithms, in spite of the fact that the best known determin-
istic and randomized classical algorithms for these tasks require
intractable amounts of computer work. Therefore, quantum me-
chanics promises a very powerful computer technology. The only
problem is that we are still unable to build sufficiently large quan-
tum computers capable of handling realistic data sets. Reaching
this goal is a stiff challenge for current physics. We do not strive
here to present any details of quantum algorithmics, because that
requires a nontrivial mathematical background, We only explain
why building a quantum computer is a very hard task, what the
basic idea of quantum computing is, and what unbelievable possi-
bilities would be opened up by quantum mechanics in the design
of secure cryptosystems.

Chapter 10, titled

“How to Come to Good Decisions for an Unknown Future,
or How to Outwit a Cunning Adversary”,

is a return to algorithmics as the kernel of computer science.



1.5 Summary 33

There are many situations in real life, in which one would like to
know what can be expected in the near future. Unfortunately, we
can very rarely look ahead and so we have to take decisions without
knowing the future. Let us consider the management of a medical
emergency center with mobile doctors. The aim of the center is
to deploy doctors efficiently, although nobody knows when and
from where the next emergency call will arrive. For instance, the
control desk can try to minimize the average (or the maximum)
waiting time of patients or to minimize the overall length of all
driven routes.

One can develop various strategies for determining what a doctor
has to do after handling a case: wait for the next case at the present
location, or go back to the medical center, or take up another,
strategically selected, waiting position. Another question is: Which
doctor has to be assigned to the next emergency call? The principal
question for these so-called online problems is whether there exists
a reasonable strategy at all without any knowledge of the future.

All this can be viewed as a game between a strategy designer
and a cunning adversary. After we take a decision, the aim of the
adversary is to shape the future in such a way that our decision is
as unfavorable as possible. Does the online strategy designer stand
a chance to make a reasonable and successful decision under these
circumstances? The answer varies from problem to problem. But
it is fascinating to recognize that by using clever algorithmics we
can often unexpectedly outwit the adversary.

1.5 Summary

Creating notions is an important and fundamental activity when
founding and developing scientific disciplines. By introducing the
notion of “algorithm”, the meaning of the term “method” was
defined exactly, and consequently computer science was founded.
Thanks to the exact definition of what an algorithm is, one was
able to investigate the border between the automatically (algo-
rithmically) solvable and unsolvable, thereby demarcating the au-



34 1 The Development of Computer Science

tomatically doable. After successfully classifying many problems
with respect to their algorithmic solvability, computational com-
plexity became and remained up till now central to research on
computer science fundamentals. The notion of computational com-
plexity enables us to investigate the border between “practical”
solvability and “impractical” solvability. It offered the basis for
defining the security of cryptographic systems and so provided
the fundamentals for the development of modern public-key cryp-
tography. The concept of computational complexity provides us
with a means to study the relative power of deterministic com-
putations, nondeterministic computations, and randomized and
quantum computations, and to compare them with respect to their
efficiency. This way, computer science has contributed to a deeper
understanding of general paradigm notions such as

determinism, nondeterminism, randomness, information,
truth, untruth, complexity, language, proof, knowledge, com-
munication, algorithm, simulation, etc.

Moreover, computer science also gives a new dimension and new
content to these notions, influencing their meaning. The most spec-
tacular discoveries of computer science are mainly related to at-
tempts at solving hard problems. This led to the discovery of many
magical results in algorithmics, to which we devote the remainder
of this book.

Solutions to Some Exercises

Exercise 1.3 As we see in the truth table in Fig. 1.5, only the situations S1, S2 and
S8 are possible. The question is, which implications hold. To answer this question,
we use the following rule:

If the statement Y is true in all situations in which the statement X is
true, then X ⇒ Y holds. The implication X ⇒ Y does not hold if there is
a possible situation in which Y holds, but X does not hold.

We look at A ⇒ B first. A is true in the situations S1 and S2, in which B holds too.
Hence, we conclude that the implication A ⇒ B holds.
Now, let us consider the implication B ⇒ A. The statement B holds in S1 and S2

only, and in these situations the statement A holds, too. Hence, B ⇒ A holds.
We consider A ⇒ C now. A holds in S1 and S2. But the statement C does not hold



1.5 Summary 35

in the situation S2. Hence, the implication A ⇒ C does not hold.
In contrast, the opposite implication C ⇒ A holds, because C holds only in the
situation S2, in which A holds too.
In this way, one can determine that the implications A ⇒ B, B ⇒ A, C ⇒ A, and
C ⇒ B hold and the implications A ⇒ C and B ⇒ C do not hold. The implication
A ⇒ C does not hold because in the situation S2 the statement A holds and the
statement C does not hold. Analogously, one can prove that B ⇒ C does not hold.
The implications A ⇒ A, B ⇒ B, and C ⇒ C are always true; it does not matter
which situations are possible.

Exercise 1.6 First, we draw the truth table for C and D and study in which
situations the implication C ⇒ D is true.

C D C ⇒ D

S1 holds holds

S2 holds does not hold impossible

S3 does not hold holds

S4 does not hold does not hold

We see that the situations S1, S3, and S4 are possible. What does it mean, to take
the additional information into account that “no green color was created”? This
means that D does not hold, i.e., that D holds. This fact excludes the situations S1

and S3. Hence, the only remaining possible situation is the situation S4, in which C
and D are true. Hence, D ⇒ C holds too, and we recognize that if no green color
was created (D holds), then the blue color and the yellow color were not mixed (C
holds).

Exercise 1.8 We consider two statements. The statement A means “x2 is even”
and the statement B means “x is even”. The truthfulness of A is a known fact. Our
aim is to prove the truthfulness of B. Applying the schema of the indirect proof,
we have to start with B. The statement B means that “x is odd”. Following the
definition of odd integers, we know that x can be expressed as

x = 2i + 1

for a positive integer i. Hence, the assertion “x = 2i + 1” holds and we denote it
as A1. In this way, we have B ⇒ A1. Starting from A1, we obtain the following
statement A2 about x2:

x2 = (2i + 1)2 = 4i2 + 4i + 1 = 2(2i2 + 2i) + 1 = 2m + 1.

We see x2 = 2m + 1 for m = 2i2 + 2i (i.e., x2 is expressed as two times an integer
plus 1) and so we obtain the statement A that x2 is an odd integer. In this way, we
have proved the following sequence of implications:

B ⇒ A1 ⇒ A2 ⇒ A

x is odd ⇒ x = 2i + 1 ⇒ x2 = 2m + 1 ⇒ x2 is odd.

We know that x2 is even and so that A does not hold. Hence, following the schema
of the indirect proofs, we conclude that B does not hold. Therefore, B holds and we
have reached our aim.



Perfection is based upon small things,
but perfection itself is no small thing at all.

Michelangelo Buonarroti

Chapter 2

Algorithmics, or What Have
Programming and Baking in
Common?

2.1 What Do We Find out Here?

The aim of this chapter is not to present any magic results or
real miracles. One cannot read Shakespeare or Dostoyevsky in
their original languages without undertaking the strenuous path
of learning English and Russian. Similarly, one cannot understand
computer science and marvel about its ideas and results if one has
not mastered the fundamentals of its technical language.

J. Hromkovič, Algorithmic Adventures, DOI 10.1007/978-3-540-85986-4 2,
c© Springer-Verlag Berlin Heidelberg 2009

37

http://dx.doi.org/10.1007/978-3-540-85986-4_2


38 2 What Programming and Baking Have in Common

As we already realized in the first chapter on computer science
history, the algorithm is the central notion of computer science.
We do not want to take the whole strenuous path of learning all
computer science terminology. We want to show that without using
formal mathematical means, one can impart an intuitive meaning
of the notion of an algorithm which is precise enough to imagine
what algorithms are and what they are not. We start with cooking
and then we discuss to what extent a recipe can be viewed as an
algorithm.

After that, we directly switch to computers and view program-
ming as a communication language between man and machine
and imagine that programs are for computers understandable rep-
resentations of algorithms. At the end of the chapter, you will be
able to write simple programs in a machine language on your own
and will understand to a fair extent what happens in a computer
during the execution of computer instructions (commands).

By the way, we also learn what an algorithmic problem (task) is
and that one is required to design algorithms in such a way that an
algorithm works correctly for each of the infinitely many problem
instances. To work correctly means to compute the correct result
in a finite time. In this way, we build a bridge to Chapter 3, in
which we show how important a deep understanding of the notion
of infinity is for computer science.

2.2 Algorithmic Cooking

In the first chapter, we got a rough understanding of the meaning
of the notion of algorithm or method. Following it, one can say:

An algorithm is an easily understood description of an ac-
tivity leading to our goal.

Hence, an algorithm (a method) provides simple and unambiguous
advice on how to proceed step by step in order to reach our goal.
This is very similar to a cooking recipe. A recipe tells us exactly



2.2 Algorithmic Cooking 39

what has to be done and in which order, and, correspondingly, we
perform our activity step by step.

To what extent may one view a recipe as an algorithm?

To give a simple answer to this question is not easy. But, searching
for an answer, we approach a better understanding of the meaning
of this crucial term.

Let us consider a recipe for an apricot flan of diameter 26 cm.

Ingredients: 3 egg whites

1 pinch of salt

6 tablespoons of hot water

100g cane sugar

3 egg yolks

1 teaspoon of lemon peel

150g flour

1/2 teaspoon of baking powder

400g peeled apricots

Recipe:

1. Put greaseproof paper into a springform pan!

2. Heat the oven up to 180◦C!

3. Heat up 6 tablespoons of water!

4. Mix three egg whites with the hot water and a pinch

of salt, beat them until you get whipped egg white!

5. Beat 100g cane sugar and 3 egg yolks until a solid

cream develops!

6. Add 1 teaspoon of lemon peel to the cream and mix

them together!

7. Mix 150g flour and 1/2 teaspoon of baking powder

and add it to the mixture! Then stir all contents

carefully using a whisk!

8. Fill the baking tin with the cream mixture!



40 2 What Programming and Baking Have in Common

9. Place the skinned apricots on the mixture in

a decorative way!

10. Put the baking tin into the oven for 25-30 minutes

until it gets a light brown color!

11. Take the flan out of the oven and let it cool!

The recipe is available and the only question is whether we are
able to bake the flan by following it. A possible answer may be
that success can depend to some extent on the experience and the
knowledge of the cook.

We are ready to formulate our first requirements for algorithms.

An algorithm has to be such an exact description of the
forthcoming activity that one can successfully perform it
even in the case where one does not have any idea why the
execution of the algorithm leads to the given aim. More-
over, the description (algorithm) has to be absolutely un-
ambiguous in the sense that different interpretations of the
particular instructions are excluded. It does not matter who
executes the algorithm, the resulting activity and so the re-
sulting outcome must be the same, i.e., each application of
the algorithm has to reach the same result.

Now, one can start a long discussion about which of the 11 steps
(instructions) of the recipe above can be viewed as unambiguous
and easily understood by everybody. For instance:

• What does it mean “to beat until then you get whipped
egg white” (step 4)?

• What does it mean “to stir. . . carefully” (step 7)?

• What does “decorative” mean (step 9)?

• What does “light brown” mean (step 10)?

An experienced cook would say: “Alright. Everything is clear, the
description is going into unnecessary detail.” Somebody trying to
bake her/his first cake could require even more help and may even



2.2 Algorithmic Cooking 41

fail to execute the whole procedure on her/his own. And this can
happen in spite of the fact that our recipe is a more detailed and
simpler description than the usual recipes described in cookery
books. What do you think about cookery book instructions such
as:

• Quickly put a little bit of cooked gelatin below the cheese
and stir them thoroughly?

We are not allowed to accept situations in which an experienced
person considers the recipe to be an algorithm and the rest of
the world does not. One has to search for a way in which we
can get general agreement. We already know that an algorithm
is a sequence of instructions that are correctly executable by any
person. This means that before defining the notion of a cooking
algorithm

we have to agree on a list of instructions (elementary oper-
ations) such that each of these instructions can be mastered
by anybody willing to cook or bake.

For instance, such a list can contain the following instructions that
are possibly correctly executable by a robot that does not have any
understanding of cooking and no improvization ability.

• Put x spoons of water into a container!

• Separate an egg into an egg yolk and the egg white!

• Heat the oven up to x◦C!

• Bake for y minutes at x◦C!

• Weigh x g of substance A and put it into a

container!

• Pour x l of liquid B into a pot!

• Stir the content of the container using a whisk for

t minutes!

• Mix the content of the container using a fork for

t minutes!



42 2 What Programming and Baking Have in Common

• Mix the content of the two containers!

• Pour the mixture into the baking tin!

Certainly, you can find many further instructions that one can
consider to be simple enough in the sense that we can expect that
anybody is able to execute them. In what follows we try to rewrite
the recipe in such a way that only simple instructions are applied.

Let us try to rewrite step 4 of our recipe into a sequence of simple
instructions.

4.1 Put the three egg yolks into the container G.

4.2 Put 1g of salt into G.

4.3 Put 6 tablespoons of water into the pot T.

4.4 Heat the water in T up to 60◦C.

4.5 Pour the contents of T into G.

Now, we get trouble. We do not know how to execute the in-
struction “mix until the content of G becomes whipped
egg white”. A solution may be to use some experimental values.
Maybe it takes 2 minutes until the mass is stiff enough. Hence,
one could write:

4.6 Mix the content of G for 2 minutes.

An instruction of this kind may also be risky. The time of mixing
depends on the speed of mixing, and that may vary from person
to person. Hence, we would prefer to stop mixing approximately
at the moment when the mass became stiff. What do we need for
that? We need the ability to execute tests in order to recognize
the moment at which the whipped egg white is ready. Depending
on the result of the tests, we have to make a decision on how to
continue. If the mass is not stiff, we have to continue to mix for a
time. If the mass is stiff then the execution of step 4 is over and
we have to start to execute step 5.

How can one write this as a sequence of instructions?



2.2 Algorithmic Cooking 43

4.6 Mix the content of G for 10 seconds.

4.7 Test whether the content of G is stiff or not.

If the answer is “YES”, then continue with step 5.

If the answer is “NO”, then continue with step 4.6.

In this way, one returns to step 4.6 until the required state of
the mass is reached. In computer science terminology, one calls
steps 4.6 and 4.7 a cycle that is executed until the condition
formulated in 4.7 is satisfied. To make it transparent one uses
a graphic representation such as in Fig. 2.1; this is called a
flowchart.

Fig. 2.1

Can one easily execute the test in step 4.6? Exactly as in the case
of instructions, we have to agree on a list of simply executable
tests. We do not want to discuss a possible execution of the test



44 2 What Programming and Baking Have in Common

in step 4.6 in detail because the author is not an expert in cook-
ing. Originally, I considered putting a teaspoon into the mass and
checking whether it stays up. But a female student explained to
me that this does not work and that instead it is sufficient to make
a cut in the mass using a knife, and when the cut does not close
(i.e., remains open) then the mass is stiff. Examples of other tests
are:

• Test whether the temperature of the liquid in a pot

is at least x degrees.

• Test whether the weight of the content of a

container is exactly x g.

Exercise 2.1 Create a list of instructions and tests you consider anybody could
execute. Then take your favorite recipe and rewrite it using the instructions and the
tests from your list only.

Exercise 2.2 You want to heat 1 l of water up to 90◦C. You are allowed to use
only the following instructions:

• Put the pot T on the hot plate for x seconds and then take it away.

• Pour x l of water into pot T.

Moreover, you are allowed to use the following tests.

• Test whether the water in pot T has reached at least x◦C.

Use this test and the two instructions above to write a cooking algorithm for heating
1 l of water up to 90◦C that enures that the pot is not longer than 15 s on the hot
plate after the water has reached 90◦C.

Whether you believe it or not, after successfully solving these two
exercises you have already been working as a programmer. The
most important fact we learnt by baking is that we cannot speak
about algorithms before the fundamental elements algorithms con-
sist of are fixed. These elements are simple instructions and tests
that everyone can execute without any problem.



2.3 What About Computer Algorithms? 45

2.3 What About Computer Algorithms?

Here, we want to discuss the similarities and the differences be-
tween algorithmic cooking and algorithmic computing in order to
realize exactly what computer algorithms and computer programs
are and what they are not.

Analogous to cooking, one has to fix first a list of fundamental in-
structions (operations) that a computer can execute without any
doubt. To get agreement here is essentially simpler than getting
it by cooking. A computer does not have any intelligence and so
any improvization ability. Due to this, the language of the com-
puter is very simple. Nobody doubts that a computer can add or
multiply two integers or execute other arithmetic operations with
numbers. Similarly, everyone accepts that a computer can com-
pare two numbers as a test. These simple instructions and tests
together with the ability to read the input data and to output the
results are sufficient for describing any algorithm as a sequence of
instructions.

It does not matter whether we consider cooking algorithms or
computer algorithms. Both are nothing other than a sequence of
simple instructions. But there is also an essential difference be-
tween cooking algorithms and algorithms in mathematics and in
computer science. The input of a cooking algorithm is a set of in-
gredients and the result is a meal. The only task is to cook the
aimed product from the given ingredients. Algorithmic tasks are
essentially different. We know that a problem may have infinitely
many problem instances as possible inputs. Consider, for in-
stance, the problem of solving a quadratic equation.

ax2 + bx + c = 0.

The input data are the numbers a, b, and c and the task is to find
all x that satisfy this equation.

For instance, a concrete problem instance is to solve the following
equation:



46 2 What Programming and Baking Have in Common

x2 − 5x + 6 = 0.

Here, we have a = 1, b = −5, and c = 6. The solutions are x1 = 2
and x2 = 3. By substituting these values, one can easily verify that

22 − 5 · 2 + 6 = 4 − 10 + 6 = 0

32 − 5 · 3 + 6 = 9 − 15 + 6 = 0

and so verify that x1 and x2 are really the solutions of the quadratic
equation x2 − 5x + 6 = 0.

Because there are infinitely many numbers, one has infinitely
many possibilities to choose the coefficients a, b, and c of the
quadratic equation. Our clear requirements for an algorithm for
solving quadratic equations is that the algorithm determines the
correct solution for all possible input data a, b, and c, i.e., for each
quadratic equation.

In this way, we get the second basic demand on the definition of
the notion of an algorithm.

An algorithm for solving a problem (a task) has to ensure
that it works correctly for each possible problem instance.
To work correctly means that, for any input, it finishes its
work in a finite time and produces the correct result.

Let us consider an algorithm for solving quadratic equations.
Mathematicians provided the following formulas for computing the
solutions

x1 =
−b +

√
b2 − 4ac

2a

x2 =
−b −

√
b2 − 4ac

2a
,

if b2 − 4ac ≥ 0. If b2 − 4ac < 0, there does not exist any real
solution1 to the equation. These formulas directly provide the fol-
lowing general method for solving quadratic equations.

1 The reason for that is that one cannot take the root of a negative number.



2.3 What About Computer Algorithms? 47

Input: Numbers a, b, and c representing the quadratic equation
ax2 + bx + c = 0.

Step 1: Compute the value b2 − 4ac.

Step 2: If b2 − 4ac ≥ 0, then compute

x1 =
−b +

√
b2 − 4ac

2a

x2 =
−b −

√
b2 − 4ac

2a

Step 3: If b2 − 4ac < 0, write “there is no real solution”.

Now, we believe the mathematicians when they say that this
method really works and we do not need to know why in order
to rewrite it as an algorithm.

However, we want to do more than to transform the description
of this method into a program. The notion of a program is con-
sidered here as a sequence of computer instructions that is rep-
resented in a form that is understandable for a computer. There
are essential differences between the notion of a program and the
notion of an algorithm.

1. A program does not need to be a representation of an algo-
rithm. A program may be a meaningless sequence of computer
instructions.

2. An algorithm does not necessarily need to be written in the
form of a program. An algorithm can also be described in a
natural language or in the language of mathematics. For in-
stance, the use of instructions such as “multiply a and c” or
“compute

√
c” is acceptable for the description of an algorithm

while a program must be expressed in a special formalism of
the given programming language.

We view programming as an activity of rewriting algorithms
(methods, descriptions) into programs. In what follows, we will
program a little bit in order to see how one can create a complex
behavior by writing a sequence of very simple instructions.



48 2 What Programming and Baking Have in Common

In order to be able to read and understand the forthcoming
chapters, it is not necessary to study the rest of this chap-
ter in detail. Hence, anybody not strongly interested in learn-
ing what programming is about and what happens in a com-
puter during the execution of concrete instructions can jump this
part.

We start by listing the simple operations and their representation
in our programming language that we call “TRANSPARENT”.
In passing we show the high-level structure of a computer and
see the main computer actions performed during the execution of
some particular instructions.

We consider a rough, idealized model of a computer as depicted
in Fig. 2.2.

This computer model consists of the following parts:

• A memory that consists of a large number of memory cells.
These memory cells are called registers. The registers are num-
bered by positive integers and we call them addresses of the
registers. For instance 112 is the address of Register(112).
This corresponds to the image in which the registers are houses
on one side of a long street. Each register can save an arbitrarily
large number2.

• A special memory in which the whole program is saved. Each
row of the program consists of exactly one instruction of the
program. The rows are numbered starting at 1.

• There is a special register Register(0) that contains the num-
ber of the just executed instruction (row) of the program.

• A CPU (central processing unit) that is connected to all other
parts of the computer. In order to execute one instruction,

2 In real computers, the registers consist of a fixed number of bits, 16 or 32. The
large integers or real numbers with many positions after the decimal point that
cannot be represented by 32 bits have to be handled in a special way by using
several registers for saving one number. Hence, we have idealized the computer
here in order to remain transparent and we assume that any register can save an
arbitrarily large number.



2.3 What About Computer Algorithms? 49

Fig. 2.2

the CPU starts by reading the content of Register(0) in or-
der to fix which instruction has to be executed. Then, look-
ing at the corresponding instruction of the program, the CPU
fetches the contents of the registers (the numbers saved in
the registers) that are arguments of the executed instructions
and executes the corresponding operation on these data. Fi-
nally, the CPU saves the result in the register determined
by the instruction and adjusts the contents of the register
Register(0) to the number of the instruction to be executed
next.



50 2 What Programming and Baking Have in Common

Additionally, the computer is connected to the world outside.
The input data are waiting in a queue and the computer can
read the first number in the queue and save it in a register. The
computer has also a tape, where it can write the results com-
puted.

Consider an analogy to baking or cooking. The computer is the
kitchen. The registers of the memory are containers, bowls, jars,
etc. Each container has an unambiguous name (exactly as each
register has an address), and because of this one always knows
which container is being considered. The memory containing the
program is a sheet or a cookery book. The CPU is a person or a
cookery robot together with all the other machines such as ovens,
mixers, microwaves, etc. that are available in the kitchen. The
content of Register(0) is the note telling us where we are in
this process of executing the recipe. The inputs are waiting in the
refrigerator or in the pantry. We have to note here that they are
not waiting in a queue, but one can take all the ingredients out and
build a queue that respects the order in which they are needed.
Certainly we do not write the output, instead we put it on the
table.

As we have already learnt by baking, the first step and the cru-
cial point for defining the notion of an algorithm is to agree on a
list of executable instructions (operations). Everybody has to be
convinced about their executability.

In what follows, we prefer to present the possible computer instruc-
tions in natural language instead of using the formal language of
the computer called machine code. We start with the instructions
for reading.

(1) Read into Register(n).

To execute this operation means to take the first number of the
queue and save it in Register(n). In this way this number is
deleted from the queue and the second number of the queue
takes over the first position of the queue.



2.3 What About Computer Algorithms? 51

Example 2.1 Consider the situation in which the three numbers
114, −67, and 1 are waiting to be picked up. All registers of the
memory contain the value 0, except for Register(0) which con-
tains 3. One has to execute the instruction

Read into Register(3)

in the third row of the program. After the execution of this instruc-
tion, Register(3) contains the number 114. Then, numbers −67
and 1 are still waiting in the queue. The content of Register(0)
is increased by 1 and becomes 4, because after executing the in-
struction of the third row of the program one has to continue by
executing the instruction of the next row.

The execution of this instruction is depicted in Fig. 2.3. We omit
describing the whole computer state before and after executing
this instruction and focus on the content of the registers only. �

Fig. 2.3



52 2 What Programming and Baking Have in Common

The next instruction enables us to put a concrete number into a
register without being forced to read it from the input queue

(2) Register(n) ← k

This instruction corresponds to the requirement to put the
number k into the register Register(n). Executing it means
deleting the old content of Register(n). After the execution
of this instruction, this old content is not available anymore, it
is definitely destroyed. There is no change in the queue related
to this instruction.

Example 2.2 Consider that Register(50) contains the number
100. After executing the instruction

Register(50) ← 22

Register(50) contains the number 22. The old content 100 of
Register(50) is not saved anywhere and so it is definitely lost.

If the next instruction is

Read into Register(50)

and the number 7 is waiting in the queue, then after the execution
of this instruction the number 22 in Register(50) is exchanged
for the number 7. �
Exercise 2.3 The numbers 11, 12, and 13 are waiting in the input queue. The
content of Register(0) is 1. Register(2) contains 1117 and Register(3) contains
21. All other registers contain 0.

a) Depict this situation analogously to Fig. 2.3.
b) Execute the following program

1 Read into Register(1)

2 Register(2) ← 100
3 Read into Register(3)

4 Read into Register(2)

Determine and depict the content of all registers and the input queue after the
execution of each particular instruction of the program.

Now we introduce some of the possible arithmetic instructions.



2.3 What About Computer Algorithms? 53

(3) Register(n) ← Register(j) + Register(i)

The meaning of this instruction is as follows. One has to add
the content of Register(j) to the content of Register(i) and
to save the result in Register(n). Executing this instruction,
the original content of Register(n) is overwritten by the re-
sult of the addition. The contents of all other registers remain
unchanged, except for the content of Register(0) that is in-
creased by 1 (i.e., the execution of the program has to continue
with the next instruction). There is also no change in the input
queue.

Example 2.3 Consider the situation (the state of the computer),
in which Register(0) contains 5 and each Register(i) contains
the number i for i = 1, 2, 3, 4, and 5 (Fig. 2.4a). All other regis-
ters contain 0. The 5th row of the program contains the following
instruction:

Register(7) ← Register(1) + Register(4).

Figure 2.4b shows the situation reached after the execution of this
instruction of addition.

The value 1 from Register(1) and the value 4 from Register(4)

are summed (1+ 4 = 5) and the result 5 is saved in Register(7).
The contents of Register(1) and Register(4) do not change
during the execution of this instruction.

Assume that row 6 of the program contains the following instruc-
tion:

Register(7) ← Register(1) + Register(7).

The content of Register(1) is 1 and the content of Register(7)
is 5. Accordingly, the computer computes 1 + 5 = 6 and saves 6
in Register(7). In this way, the original content of Register(7)
is deleted. Executing this instruction, we observe that one is also
allowed to save the result of a computer operation in one of the
two registers containing the operands (the incoming values for the
operation). �



54 2 What Programming and Baking Have in Common

Fig. 2.4

Exercise 2.4 Consider the computer state after executing the first addition (the
instruction in row 5) in Example 2.3. This situation is depicted in Fig. 2.4b. Depict
the memory state (analogously to Fig. 2.4b) after executing the second addition
operation from row 6! After that perform the following three instructions

7 Register(3) ← 101

8 Register(3) ← Register(3) + Register(3)

9 Register(3) ← Register(7) + Register(3)

of the program and depict the final state of the memory.

Analogously to addition one can perform other arithmetic opera-
tions too.

(4) Register(n) ← Register(j) - Register(i)

To execute this operation means to subtract the content of
Register(i) from the content of Register(j) and to save the
result in Register(n).

(5) Register(n) ← Register(j) ∗ Register(i)



2.3 What About Computer Algorithms? 55

The computer has to multiply the contents of the registers
Register(j) and Register(i) and to save the result in Re-

gister(n).

(6) Register(n) ← Register(j) / Register(i)

The computer has to divide the content of Register(j) by the
content of Register(i) and to save the result in Register(n).

(7) Register(n) ←
√
Register(m)

The computer has to compute3 the root of the content of
Register(m) and to save the result in Register(n).

Exercise 2.5 Consider the following situation. All registers except4 for Register(0)
contain the value 0. Register(0) contains the value 1. The numbers a and b are
waiting in the input queue. Explain what result is in Register(3) after the execution
of the following program:

1 Read into Register(1)

2 Register(1) ← Register(1) ∗ Register(1)

3 Read into Register(2)

4 Register(2) ← Register(2) ∗ Register(2)

5 Register(3) ← Register(1) + Register(2)

Similarly to cooking, it is not sufficient to be able to execute some
instructions only. We also need tests that decide about how to
continue in the work. For this purpose, we present the following
two simple basic operations:

(8) If Register(n) = 0, then go to row j

One has to test the content of Register(n). If it is 0, the con-
tent of Register(0) is overwritten by the value j. This means
that the execution of the program is going to continue by exe-
cuting the instruction of row j. If the content of Register(n)
is different from 0, then the computer adds 1 to the content of

3 To compute a root of a number is not a basic instruction of a computer and
we introduce it only because we need it for solving quadratic equations. On the
other hand, there is no doubt that a computer can compute a root of a number,
but to do so one has to write a program as a sequence of arithmetic instruc-
tions.

4 Remember that Register(0) contains the order of the instruction executed.



56 2 What Programming and Baking Have in Common

Register(0) and the work is going to continue by executing
the instruction in the next row.

(9) If Register(n) ≤ Register(m), then go to row j

If the content of Register(n) is not larger than the content of
Register(m), then the next instruction to be executed is the
instruction of row j. Else the computer is going to execute the
instruction of the next row.

The instruction (operation)

(10) Go to row j

is an ultimatum to continue the execution of the program in
row j.

Moreover, we still need operations for outputting (displaying) the
results of the computation.

(11) Output ← Register(j)

The content of Register(j) is written (displayed) as the out-
put.

(12) Output ← “Text”

The given text between “ ” will be displayed. For instance, the
following instruction

Output ← “Hallo”,

results in the word “Hallo” being written on the output tape.

The last instruction is

(13) End.

This instruction causes the end of the work of the computer on
the given program.

Now we are ready to rewrite our algorithm for solving quadratic
equations to a program. To make it transparent, we notice the
current state of registers in parentheses.



2.3 What About Computer Algorithms? 57

Fig. 2.5

Input: Integers a, b, c
Program:

1 Read into Register(1)

{Register(1) contains a}

2 Read into Register(2)

{Register(2) contains b}

3 Read into Register(3)

{Register(3) contains c}

4 Register(4) ← 2

5 Register(5) ← 4

6 Register(6) ← -1

{The state of the memory is described in Fig. 2.5}

7 Register(7) ← Register(2) * Register(2)

{Register(7) contains b2}

8 Register(8) ← Register(5) * Register(1)

{Register(8) contains 4a}



58 2 What Programming and Baking Have in Common

9 Register(8) ← Register(8) * Register(3)

{Register(8) contains 4ac}

10 Register(8) ← Register(7) - Register(8)

{Register(8) contains b2 − 4ac and so the first step of the
method for solving quadratic equations is finished.}

11 If Register(9) ≤ Register(8), then go to row 14

{Since all registers unused up to now contain the value 0, the
execution of the program continues in row 14 if b2 − 4ac ≥ 0,
i.e., if the quadratic equation has a real solution. If b2−4ac < 0,
the computation continues in the next row.}

12 Output ← “There is no solution.”

13 End

{After displaying “There is no solution”, the computer finishes
the execution of the program.}

14 Register(8) ←
√
Register(8)

{Register(8) contains the value
√

b2 − 4ac.}

15 Register(7) ← Register(2) * Register(6)

{Register(7) contains the value −b. The original content b2

of Register(7) is deleted in this way.}

16 Register(6) ← Register(1) * Register(4)

{The situation is depicted in Fig. 2.6.}

17 Register(11) ← Register(7) + Register(8)

18 Register(11) ← Register(11) / Register(6)

{Register(11) contains the first solution x1 = −b+
√

b2−4ac
2a

.}

19 Output ← Register(11)

20 Register(12) ← Register(7) - Register(8)

21 Register(12) ← Register(12) / Register(6)

{Register(12) contains the second solution x2 = −b−
√

b2−4ac
2a

.}



2.3 What About Computer Algorithms? 59

Fig. 2.6

22 Output ← Register(12)

23 End.

A transparent presentation of this program is given in Fig. 2.7.

Exercise 2.6 Describe the content of all registers after the execution of the whole
program!

Exercise 2.7 If b2 − 4ac = 0, then there is only one solution x1 = x2 to this
quadratic equation. Modify the presented program in such a way that in this case
the program outputs first the text “There is only one solution and this is” and then
the value of x1. Additionally, in the case b2 − 4ac > 0 the program has to write the
text “There are two solutions” before displaying x1 and x2.

Exercise 2.8 Explain what the following program computes!

1 Read into Register(1)

2 Read into Register(2)

3 Read into Register(3)

4 Register(4) ← Register(1) + Register(2)

5 Register(4) ← Register(3) + Register(4)

6 Register(5) ← 3

7 Register(6) ← Register(4) / Register(5)



60 2 What Programming and Baking Have in Common

Fig. 2.7

8 Output ← Register(6)

9 End

Use a table to transparently depict the contents of the registers after the execution
of the particular instructions of the program.



2.4 Unintentionally Never-Ending Execution 61

Exercise 2.9 Write a program that, for a given integer x, computes the following
value

3x2 − 7x + 11 .

Exercise 2.10 Write a program that, for four given numbers a, b, c, and x, com-
putes the value

ax2 + bx + c .

Exercise 2.11 Write a program that, for any four given integers a, b, c, and d de-
termines and outputs the maximum of these four values.

It is always necessary to implement a method into a program to
be able to see that the method is really an algorithm. For instance,
if we see that the arithmetic operations and number comparisons
are sufficient for performing the method for solving quadratic equa-
tions, then we are allowed to call this method an algorithm for
solving quadratic equations. Programming as rewriting of a method
into a program is considered as a translation of an algorithm into
the computer language. From the formal point of view this trans-
formation can be viewed as a proof of the automatic executability
of the algorithm described in a natural language.

2.4 How Can the Execution of a Program
Unintentionally Become a Never-Ending
Story?

One of our most important demands on the definition of an algo-
rithm for a computing task is that the algorithm finishes its work
for any input and provides a result. In the formal language of com-
puter science, we speak about halting. If an algorithm A finishes
its work on an input (a problem instance) in a finite time, then we
say that the algorithm A halts on x. In this terminology, we
force a halt of the algorithm on every possible input and in such
a case we say that A always halts.

One could say now: “This is obvious. Who can be interested in
developing programs for solving problems that work infinitely long
and do not provide any output?”. The problem is only that the



62 2 What Programming and Baking Have in Common

algorithm designer or a programmer can unintentionally build a
program that gets into an infinite repetition of a loop. How can
one expect such a mistake from a professional? Unfortunately, this
can happen very easily. The programmer can forget about a special
situation that can appear only under very special circumstances.
Let us return to our cooking algorithms to see how easily a mistake
leading to an infinite work can happen.

We want to make tea by heating water and then putting the tea
into the water. Our aim is to save energy and so to avoid letting
the water boil for more than 20 seconds. Starting with these re-
quirements, one can propose the cooking algorithm presented in
Fig. 2.8.

Fig. 2.8

At first glance, everything looks alright and works until a climber
wants to apply this cooking recipe for preparing tea on the top of
the Matterhorn on some afternoon. Do you already see the prob-



2.4 Unintentionally Never-Ending Execution 63

lem? Water boils at a lower temperature than 100◦C at this alti-
tude and so it may happen that it never reaches 100◦C. Thus, the
answer of our test will always be “NO”. In reality the water won’t
boil forever, because eventually the fuel will run out or the water
will completely vaporize.

We already see where the mistake happened. Writing the recipe,
one forgot to think about this special situation, where the at-
mospheric pressure is so low that the water cannot reach 100◦C.
And the same can happen to anybody, if one does not think
about all possible special problem instances of the given task and
about all special situations that can occur during the computa-
tion. The following example shows such a case for a computer
program.

Example 2.4 Assume, before starting the program, Register(0)
contains 1 and all other registers contain 0. The integers a and b
are waiting in the first input queue. We consider the following
program.

1 Read into Register(1)

2 Read into Register(2)

3 Register(3) ← -1

4 If Register(1) = 0, then go to row 8

5 Register(1) ← Register(1) + Register(3)

6 Register(4) ← Register(4) + Register(2)

7 Go to row 4

8 Output ← Register(4)

9 End

The corresponding graphic representation of this program is pre-
sented in Fig. 2.9.

The goal of this program is to compute a ∗ b. The strategy is to
compute a ∗ b in the following way



64 2 What Programming and Baking Have in Common

Fig. 2.9

b + b + b + . . . + b︸ ︷︷ ︸
a times

,

i.e., to sum a many values b.

Exercise 2.12 Assume a = 3 and b = 7. Execute the computation of the program
on this input. Depict a table that shows the content of all registers after particular
steps.

If a = 0, then the result has to be a · b = 0. The programs work
correctly for a = 0, because a is read into Register(1) and the
test in row 4 leads directly to row 8, in which the value 0 as the
content of Register(4) is displayed.
If a ≥ 0, the execution of the instruction in row 6 causes that b
is added to the content Register(4) that has to contain the final
result at the end of the computation. The execution of the instruc-
tion in row 5 results in a decrease of the content of Register(1)
by 1. At the beginning Register(1) contained a. After the i-th
execution of the loop (see Fig. 2.9) for an i < a, Register(1)
contains a − i and Register(4) contains the number



2.4 Unintentionally Never-Ending Execution 65

b + b + . . . + b︸ ︷︷ ︸
i times

= i · b.

If “Register(1) = 0”, we know that the loop was executed ex-
actly a times and so Register(4) contains the value

b + b + b + . . . + b︸ ︷︷ ︸
a times

= a · b.

In this way we developed a program that can multiply two integers
without using the operation of multiplication. This means that
removing multiplication from the list of our basic instructions does
not decrease the power of our algorithms and so does not affect
our notion of “algorithm”.

But the program in Fig. 2.9 has a drawback. At the beginning, we
said that a and b are integers. What does the program do if a or
b is negative? If b is negative and a is positive, then the program
works orderly. But if a is negative, the content of Register(1)
will never5 be 0 and so the loop will be repeated infinitely many
times. �
Exercise 2.13 How do we proceed in order to modify the program in Fig. 2.9 to a
program that correctly multiplies two integers a and b, also when a is negative?

Exercise 2.14 Try to write a program that computes the sum a + b for two given
natural numbers a and b and that uses only the new arithmetic instructions

Register(i) ← Register(i)+1
Register(j) ← Register(j)-1,

which increase respectively decrease the content of a register by 1. All other arith-
metic operations are not allowed and the only allowed test operation is the question
whether the content of a register is 0 or not.

Finally, one can see that all algorithms can be implemented as
programs that use the test on 0, addition by 1, subtraction by 1,
and some input/output instructions only. Therefore, there is no
doubt about the automatic executability of algorithms.

5 At the beginning Register (1) gets the negative value a that is only going to be
decreased during the run of the program.



66 2 What Programming and Baking Have in Common

Only for those who want to know the whole list of basic com-
puter instructions do we present more details. First of all, com-
puting the root of a number is not a basic instruction. To com-
pute the root of an integer, one has to write a program that
uses the arithmetic operations +,−, ∗, and / only. Since this re-
quires a non-negligible effort we avoid developing such a program
here.

On the other hand, some indispensable basic instructions are still
missing. To see this, consider the following task. The input is a
sequence of integers. We do not know how many there are. We
only recognize the end of the sequence by reading 0, which can be
viewed as the endmaker of the sequence. The task is only to read all
integers of the sequence and to save all of them in Register(101),
Register(102), Register(103), etc., one after another. This sav-
ing is finished when the last integer read is 0. One could start to
design a program as follows:

1 Read into Register(1)

2 If Register(1) = 0, then go to row �

3 Register(101) ← Register(1)

4 Read into Register(1)

5 If Register(1) = 0, then go to row �

6 Register(102) ← Register(1)

7 Read into Register(1)

8 If Register(1) = 0, then go to row �

9 Register(103) ← Register(1)
...

We always read the next number into Register(1), and if the
number is different from 0 then we save it in the first free register
after Register (101). The problem is that we do not know how to
continue writing the program. If the input queue contains 17,−6,



2.4 Unintentionally Never-Ending Execution 67

and 0, then we are already done. If the queue contains 1000 integers
different from 0, then this program has to have 3000 rows. But we
do not know when to stop writing the program and so we do not
know where to put the row with the instruction end. We used the
notation � in the program, because we did not know where to put
end. Certainly we are not allowed to write an infinite program. A
common idea in similar situations is to use a loop. One could try
to design a loop such as that in Fig. 2.10.

Fig. 2.10

The only problem is that we do not know in which Register(�)

the actual integer has to be saved. Clearly, we cannot always use
the same integer �, because we want to save all integers. We know
that we want to save the integer at the address 100 + i in the i-
th run of the loop. But we are not able to do this, because our
instructions allow us to use a fixed address for � in Register(�).

Therefore, we introduce new instructions that use so-called indi-
rect addressing. The instruction



68 2 What Programming and Baking Have in Common

(14) Register(Register(i)) ← Register(j)

for positive integers i and j means that the content of Register(j)
has to be saved in the register, whose address is the content of
Register(i).

Is this confusing? Let us explain it transparently using an ex-
ample. Assume that the content of Register(3) is 112 and that
Register(7) contains 24. The computer has to execute the in-
struction

Register(Register(3)) ← Register(7).

First, the computer takes the content of Register(3) and sees
that it is 112. Then the computer executes the already known
instruction

Register(112) ← Register(7).

In this way, the number 24 (the content of Register(7)) is saved
in Register(112). The contents of all registers except for Regis-
ter(112) remain unchanged.

Exercise 2.15 Most of the computer instructions introduced have a version with
indirect addressing. Try to explain the meanings of the following instructions!

a) Register(k) ← Register(Register(m))

b) Register(Register(i)) ← Register(l)*Register(j)

Using indirect addressing one can solve our problem of saving data
of unknown number as depicted in Fig. 2.11. We use Register(2)
for saving the address at which the next integer has to be saved.
At the beginning, we put 101 into Register(2), and then, after
saving the next integer, we increase the content of Register(2)
by 1. The number 1 lies in Register(3) during the whole compu-
tation.

Exercise 2.16 The input queue contains the integer sequence 113,−7, 20, 8, 0. Sim-
ulate step by step the work of the program in Fig. 2.11 on this input! Determine the
contents of the registers with the addresses 1, 2, 3, 100, 101, 102, 103, 104, and 105
after each step! Assume that at the beginning all registers contain 0.



2.5 Summary 69

Fig. 2.11

2.5 Summary or What We Have Learnt Here

It does not matter whether you believe it or not, if you were able
to solve a few of the exercises formulated above then you have
already programmed and so you have learnt a little bit about what
it means to work as a programmer. But this was not the main goal
of this chapter.

Our aim was to explain the meaning of the notion of an algorithm.
We understand that our expectation on the definition of the no-
tion of an algorithm as a formalization of the notion of a method
corresponds to the following requirements:



70 2 What Programming and Baking Have in Common

1. One has to be able to apply an algorithm (a method) even if
one is not an expert in solving the considered problem. One
does not need to understand why the algorithm provides the
solution of the problem. It is sufficient to be able to execute the
simple activities the algorithm consists of. Defining the notion
of an algorithm, one has to list all such simple activities and
everybody has to agree that all these activities are executable
by a machine.

2. An algorithm is designed not only to solve a problem instance,
but it must be applicable to solving all possible instances of a
given problem. (Please be reminded that a problem is a general
task such as sorting or solving quadratic equations. A problem
instance corresponds to a concrete input such as “Sort the in-
teger sequence 1, 7, 3, 2, 8” or “Solve the quadratic equation
2x2 − 3x + 5 = 0”.)

3. We require a guarantee that an algorithm for a problem suc-
cessfully finds a solution for each problem instance. This means
that the algorithm always finishes its work in a finite time and
its output corresponds to a correct solution to the given input.

An algorithm can be implemented as a program in a programming
language. A program is an algorithm representation that is under-
standable for the computer. But a program is not a synonym of
the notion of an algorithm. A program is only a sequence of in-
structions that are understandable and executable by a computer.
This instruction sequence does not necessarily lead to a reason-
able activity. For instance, the execution of a program can lead to
some pointless computations that do not solve any problem or to
an infinite work in a loop.

Solutions to Some Exercises

Exercise 2.2 A cooking algorithm for heating 1 l of water to 90◦C can be described
as follows:

1. Pour 1 l water into the pot T .
2. Put the pot T on the hotplate for 15 seconds and then take it away.



2.5 Summary 71

3. If the temperature of the water is at least 90◦C, finish the work! Else continue
with step 2.

Exercise 2.3 The development of memory can be transparently represented using
the following table:

1 2 3 4 5

Input queue 11, 12, 13 12, 13 12, 13 13

Register(0) 1 2 3 4 5

Register(1) 0 11 11 11 11

Register(2) 1117 1117 100 100 13

Register(3) 21 21 21 12 12

Register(4) 0 0 0 0 0

The first column represents the state of the memory before the execution of the
program started. The (i + 1)-th column describes the solution immediately after
the execution of the i-th instruction and so before the execution of the (i + 1)-th
instruction.

Exercise 2.8 The given program reads the three integers from the input queue (rows
1, 2, and 3). Then it computes their sum and saves it in Register(4) (program rows
4 and 5). In the program rows 6 and 7 the average of the input integers is computed
and saved in Register(6). The instruction in row 8 displays the average value. The
following table shows the development of the computer states after particular steps.
In contrast to the table in Exercise 2.3, we write the values in the table only when
the content of a register has changed in the previous step.

Input a, b, c b, c c

Register(0) 1 2 3 4 5 6 7 8 9 10

Register(1) 0 a

Register(2) 0 b

Register(3) 0 c

Register(4) 0 a + b a + b + c

Register(5) 0 3

Register(6) 0 a+b+c
3

Output a+b+c
3



Little progress would be made in the world
if we were always afraid of possible negative consequences.

Georg Christoph Lichtenberg

Chapter 3

Infinity Is Not Equal to Infinity,
or Why Infinity Is Infinitely
Important in Computer Science

3.1 Why Do We Need Infinity?

The known universe is finite, and most physical theories consider
the world to be finite. Everything we see and each object we touch
is finite. Whatever we do in reality, we come in contact with finite
things only.

Why then deal with infinity? Is infinity not something arti-
ficial, simply a toy of mathematics?

In spite of possible doubts that may appear when we meet the
concept of infinity for the first time, we claim that infinity is an
unavoidable instrument for the successful investigation of our finite
world. We touch infinity for the first time in elementary school,
where we meet the set

J. Hromkovič, Algorithmic Adventures, DOI 10.1007/978-3-540-85986-4 3,
c© Springer-Verlag Berlin Heidelberg 2009

73

http://dx.doi.org/10.1007/978-3-540-85986-4_3


74 3 Infinity Is Not Equal to Infinity

N = {0, 1, 2, 3, . . .}

of natural numbers (nonnegative integers). The concept of this set
can be formulated as follows:

For each natural number i, there is a larger natural number
i + 1.

In other words, there does not exist any number that is larger than
all other numbers (i.e., there exists no largest number), because
for each number x there are numbers larger than x. What is the
consequence of this concept? We are unable to write down the
list of all natural numbers. It does not matter how many of them
we have written already, there are still many missing. Hence, our
writing is a never-ending story, and because of this we speak about
potential infinity or about an unbounded number of natural
numbers. We have a similar situation with the idea (the notion)
of a line in geometry. Any line is potentially infinite, and so its
length is unbounded (infinitely large). One can walk along a line
for an arbitrarily long time and one never reaches the end; it does
not matter which point (position) of the line you have reached,
you can always continue to walk further in the same direction.

The main trouble with understanding the concept of infinity is
that we are not capable of imagining any infinite object at once.
We simply cannot see actual infinity. We realize that we have
infinitely (unboundedly) many natural numbers, but we are not
able to see all natural numbers at once. Similarly we are unable
to see a whole infinite line at once. We are only able to see a finite
fraction (part) of an infinite object. The way out we use is to denote
infinite objects by symbols and then to work with these symbols
as finite representations of the corresponding infinite objects.

To omit infinity, one can propose exchanging unbounded sizes with
a huge finite bound. For instance, one can take the number1 of
all protons in the Universe as the largest number and forbid all
larger numbers. For most calculations and considerations one can
be successful with this strategy. But not if you try to compute

1 This number consists of 79 decimal digits.



3.1 Why Do We Need Infinity? 75

the whole energy of the Universe or if you want to investigate all
possible relations between the particles of the Universe. It does
not matter what huge number one chooses as the largest number
allowed, there appear reasonable situations whose investigation
requires us to perform calculations with numbers larger than the
upper bound proposed. Moreover, for every number x, we are not
only aware of the existence of a number larger than x, we are even
able to write this larger number down and see it as a concrete
object. Why should we forbid something we can imagine (and thus
has a concrete representation in our mind) and that we may even
need?

To convince the reader of the usefulness of the concept of infinity,
we need to provide more arguments than presenting the natu-
ral existence of potential infinity. We claim that by means of the
concept of infinity we are able to investigate the world more suc-
cessfully than without, and so that infinity contributes to a better
understanding of the finite world around. Infinity does more than
enable us to deal with infinitely large sizes; we can also consider
infinitely small sizes.

What is the smallest positive rational number, i.e., what is
the smallest positive fraction larger than 0?

Consider the fraction 1/1000. We can halve it and get the frac-
tion 1/2000, which is smaller than 1/1000. Now we can halve the
resulting fraction again and get 1/4000 . . . . It does not matter
which small positive fraction

1

x

one takes, by halving it one gets the positive fraction

1

2x
.

This fraction 1/2x is smaller than 1/x and surely still larger than 0.
We see that this procedure of creating smaller and smaller numbers
does not have any end too. For each positive number, there exists
a smaller positive number, etc.



76 3 Infinity Is Not Equal to Infinity

David Hilbert (1862–1943), one of the most famous mathemati-
cians, said:

“In some sense, the mathematical analysis is nothing other
than a symphony about the topic of infinity.”

We add to this quotation that current physics as we know it would
not exist without the notion of infinity. The key concepts and no-
tions of mathematics such as derivation, limit, integral and differ-
ential equations would not exist without infinity. How can physics
model the world without these notions? It is unimaginable. One
would already have trouble in building fundamental notions of
physics. How can one define acceleration without these mathemat-
ical concepts? Many of the notions and concepts of mathematics
were created because physics had a strong need to introduce and
to use them.

The conclusion is that large parts of mathematics would disap-
pear if infinity were forbidden. Since mathematics is the formal
language of science, and we often measure a degree of “maturity”
of scientific disciplines with respect to use this language, the exclu-
sion of the notion of infinity would set science back several hundred
years.

We have the same situation in computer science where we have to
distinguish between programs, which allow infinite computations,
and algorithms, which guarantee a finite computation on each
input. There are infinitely many programs and infinitely many
algorithmic tasks. A typical computing problem consists of in-
finitely many problem instances. Infinity is everywhere in com-
puter science, and so computer scientists cannot live without this
concept.

The goal of this chapter is not only to show that the concept of
infinity is a research instrument of computer science. Our effort
will be strange because we do not satisfy ourselves with trouble
that appears when we are dealing with potential infinity and actual
infinity (which no one has ever seen). We will still continue to pose
the following strange question:



3.2 Cantor’s Concept 77

Does there exist only one infinity or do there exist several
differently large infinities?

Dealing with this question, which seems to be stupid and too ab-
stract at first, was and is of enormous usefulness for science. Here
we follow some of the most important discoveries about infinity
in order to show that there exist at least two differently sized in-
finities. What is the gain of this? We can use this knowledge to
show that the number of algorithmic problems (computing tasks)
is larger than the number of all programs. In this way we obtain
the first fundamental discovery of computer science.

One cannot automate everything. There are tasks for which
no algorithm exists and so which cannot be automatically
solved by any computer or robot.

As a result of this discovery we are able to present in the next chap-
ter concrete problems from practice that are not algorithmically
(automatically) solvable. This is a wonderful example showing how
the concept of an object that does not exist in the real world can
help to achieve results and discoveries that are of practical im-
portance. Remember, using hypothetical and abstract objects in
research is typical rather than exceptional. And the most impor-
tant thing is whether the research goal was achieved. Success is
the measure of usefulness of new concepts.

3.2 Cantor’s Concept for Comparing the Sizes
of Infinite Sets

Comparing finite numbers is simple. All numbers lie on the real
axis in increasing order from left to right. The smaller of two num-
bers is always to the left of the other one (Fig. 3.1).

Fig. 3.1



78 3 Infinity Is Not Equal to Infinity

Hence, 2 is smaller than 7 because it is to the left of 7 on the
axis. But this is not a concept for comparing numbers because the
numbers are a priori positioned on the axes in such a way that they
increase from left to right and decrease from right to left. Though
the axis is infinite in both directions, only finite numbers lie on
it. It does not matter which position (which point) we consider,
the number sitting there is always a concrete finite number. This
is the concept of potential infinity. One can move along the axis
arbitrarily far to the right or to the left, and each position reached
on this trip contains a concrete finite number. There are no infinite
numbers on the axis. To denote infinity in mathematics we use the
symbol

∞
called a “laying eight”. Originally this symbol came from the letter
aleph of the Hebrew alphabet. But if one represents infinity by just
one symbol ∞, there does not exist any possibility of comparing
different infinities.

What do we need to overcome this?

We need a new representation of numbers. To get it, we need the
notion of a set. A set is any collection of objects (elements) that are
pairwise distinct. For instance, {2, 3, 7} is a set that contains three
numbers 2, 3, and 7. The set {John, Anna, Peter, Paula} contains
four objects (elements): John, Anna, Peter, and Paula. For any set
A, we use the notation

|A|
for the number of elements in A and call |A| the cardinality
(size) of A. For instance,

|{2, 3, 7}| = 3, and |{John, Anna, Peter, Paula}| = 4 .

Now, we take the sizes of sets as representations of numbers. In this
way the cardinality of the set {2, 3, 7} represents the integer 3, and
the cardinality of the set {John, Anna, Peter, Paula} represents
the number 4. Clearly, every positive integer gets many different
representations in this way. For instance

|{1, 2}| , |{7, 11}| , |{Petra, Paula}| , |{�,©}|



3.2 Cantor’s Concept 79

are all representations of the integer 2. Is this not fussy? What is
the advantage of this seemingly too complicated representation of
integers?

Maybe you find this representation to be awkward for the com-
parison of finite numbers.2 But, by using this way of representing
numbers, we gain the ability to compare infinite sizes. The cardi-
nality

|N|
for N = {0, 1, 2, . . .} is the infinite number that corresponds to the
number of all natural numbers. If Q

+ denotes the set of all positive
rational numbers, then the number

|Q+|

represents the infinite number that corresponds to the number of
all positive rational numbers (fractions). And

|R|

is the infinite number that corresponds to the number of all real
numbers, assuming R denotes the set of all real numbers. Now we
see the advantage. We are allowed to ask

“Is |N| smaller than |R| ?”

or

“Is |Q+| smaller than |R| ?”

As a result of representing numbers this way we are now able
to pose the question whether an infinity is larger than another
infinity.

We have reduced our problem of comparing (infinite) numbers to
comparing sizes of (infinite) sets. But now the following question
arises:
2 With high probability, this is the original representation of natural numbers used

by Stone Age men. Small children use first the representation of numbers by sets
in order to later develop an abstract concept of a “number”.



80 3 Infinity Is Not Equal to Infinity

How to compare the sizes of two sets?

If the sets are finite, then the comparison is simple. One simply
counts the number of elements in both sets and compares the cor-
responding cardinalities. For sure, we cannot do this for infinite
sets. If one tried to count the elements of infinite sets, then the
counting would never end, and so the proper comparison would
never be performed. Hence, we need a general method for com-
paring sizes of sets that would work for finite as well as infinite
sets and that one could judge as reasonable and trustworthy. This
means that we are again at the deepest axiomatic level of science.
Our fundamental task is to create the notion of infinity and the
definition of “smaller than or equal to” for the comparison of
the cardinalities of two sets.

Now we let a shepherd help us. This is no shame because mathe-
maticians did the same.

Fig. 3.2



3.2 Cantor’s Concept 81

Fig. 3.3

A shepherd has a large flock of sheep with many black and white
sheep. He never went to school, and though he is wise (which
means that he cannot leave the mountains), he can count only to
five. He wants to find out whether he has more black sheep than
white ones or vice versa (Fig. 3.2).

How can he do it without counting? In the following simple and
ingenious way. He simply takes one black sheep and one white
sheep and creates one pair

(white sheep, black sheep),

and sends them away from the flock. Then he creates another
white–black pair and sends it away too (Fig. 3.3). He continues
in this way until he has sheep of one color only or there are
no remaining sheep at all (i.e., until there is no way to build a
white–black pair of sheep). Now he can reach the following con-
clusion:

(i) If no sheep remained, he has as many white sheep as black
ones.

(ii) If one or more white sheep remained in the flock, then he has
more white sheep than black ones (Fig. 3.3).



82 3 Infinity Is Not Equal to Infinity

(iii) If one or more black sheep remained in the flock, then he has
more black sheep than white ones.

Pairing the sheep and conclusion (i) is used by mathematicians as
the basic for comparing the sizes of sets.

Definition 3.1. Let A and B be two sets. A matching of A and
B is a set of pairs (a, b) that satisfies the following rules:

(i) Element a belongs to A (a ∈ A), and element b belongs to B
(b ∈ B).

(ii) Each element of A is the first element of exactly one pair (i.e.,
no element of A is involved in two or more pairs and no element
of A remains unmatched).

(iii) Each element of B is the second element of exactly one pair.

For each pair (a, b), we say that a and b are married. We say
that A and B have the same size or that the size of A equals
the size of B and write

|A| = |B |

if there exists a matching of A and B. We say that the size of A
is not equal to the size of B and write

|A| �= |B |

if there does not exist any matching of A and B.

Consider the two sets A = {2, 3, 4, 5} and B = {2, 5, 7, 11} de-
picted in Fig. 3.4. Figure 3.4 depicts the matching

(2, 2), (3, 5), (4, 7), (5, 11) .

Each element of A is involved in exactly one pair of the matching
as the first element. For instance, the element 4 of A is involved
as the first element of the third pair (4, 7). Each element of B is
involved in exactly one pair as the second element. For instance,
the element 5 of B is involved in the second pair. In other words,
each element of A is married to exactly one element of B, each



3.2 Cantor’s Concept 83

Fig. 3.4

element of B is married to exactly one element of A, and so no
element of A or B remains single. Therefore, we can conclude

|{2, 3, 4, 5}| = |{2, 5, 7, 11}| .

You can also find other matchings of A and B. For instance,

(2, 11), (3, 7), (4, 5), (5, 2)

is also a matching of A and B.

Exercise 3.1 (a) Give two other matchings of the sets A = {2, 3, 4, 5} and B =
{2, 5, 7, 11}.

(b) Why is (2, 2), (4, 5), (5, 11), (2, 7) not a matching of A and B?

Following this concept of comparing the sizes of two sets, a set A
of men and a set B of women are equally sized if all the women
and men from A and B can get married in such a way that no
single remains.3

A matching of the sets C = {1, 2, 3} and D = {2, 4, 6, 8} can-
not exist because every attempt to match the elements of D and
C ends in the situation where one element of D remains single.
Therefore, |D| �= |C| holds. An unsuccessful attempt to match C
and D is depicted in Fig. 3.5.

3 Building same-sex pairs is not allowed here.



84 3 Infinity Is Not Equal to Infinity

Fig. 3.5

Fig. 3.6

Figure 3.6 shows another attempt to match C and D. Here the
result is not a matching of C and D because element 3 of C is
married to two elements 4 and 8 of D.

But we do not need the concept of matching in order to compare
the sizes of finite sets. We were also able to do it without this
concept. In the previous description, we only checked that our
matching concept works in the finite world.4 In what follows we
try to apply this concept to infinite sets. Consider the two sets

Neven = {0, 2, 4, 6, 8, . . .}

of all even natural numbers and

Nodd = {1, 3, 5, 7, 9, . . .}
4 If the concept did not work in the finite world, then we would have to reject it.



3.2 Cantor’s Concept 85

Fig. 3.7

of all odd natural numbers. At first glance, these sets look to be of
the same size, and we try to verify this by means of our concept.
We match each even number 2i to the odd number 2i + 1.

Following Fig. 3.7, we see that we get an infinite sequence of pairs

(0, 1), (2, 3), (4, 5), (6, 7), . . . , (2i, 2i + 1), . . .

in this way. This sequence of pairs is a correct matching of A and
B. No element from Neven or of Nodd is involved in two or more
pairs (is married to more than one element). On the other hand
no element remains single (unmarried). For each even number 2k
from Neven, we have the pair (2k, 2k + 1). For each odd number
2m+1 from Nodd, we have the pair (2m, 2m+1). Hence, we verified
that the equality |Neven| = |Nodd| holds.

Exercise 3.2 Prove that
˛

˛Z
+
˛

˛ =
˛

˛Z
−˛
˛, where Z

+ = {1, 2, 3, 4, . . .} and Z
− =

{−1,−2,−3,−4, . . .}. Draw a figure depicting your matching as we did for Neven

and Nodd in Fig. 3.7.

Up to this point everything looks tidy, understandable, and ac-
ceptable. Now, we present something which may be difficult to



86 3 Infinity Is Not Equal to Infinity

Fig. 3.8

come to terms with, at least at the first attempt. Consider the
sets

N = {0, 1, 2, 3, . . .} and Z
+ = {1, 2, 3, 4, . . .} .

All elements of Z
+ are in N, and so

Z
+ ⊆ N ,

i.e., Z
+ is a subset of N. Moreover, the element 0 belongs to N

(0 ∈ N), but not to Z
+ (0 /∈ Z

+). We therefore say that Z
+ is a

proper subset of N and write Z
+ ⊂ N. The notion “A is a proper

subset of B” means that A is a part of B but not the whole of B.
We can see this situation transparently for the case

Z
+ ⊂ N

in Fig. 3.8. We see that Z
+ is completely contained in N but Z

+

does not cover the whole of N because 0 ∈ N and 0 /∈ Z
+.

However, we claim that

|N| =
∣
∣Z+

∣
∣

is true, i.e., that the sizes of |N| and |Z+| are equal. We justify this
claim by building the following matching

(0, 1), (1, 2), (2, 3), . . . , (i, i + 1), . . . ,

depicted in Fig. 3.9.

We clearly see that all elements of N and Z
+ are correctly married.

No element remains single. The conclusion is that N is not larger



3.2 Cantor’s Concept 87

Fig. 3.9

than Z
+ though N has one more element than Z

+. But this fact
may not be too surprising or even worrying. It only says that

∞ + 1 = ∞ ,

and so that increasing infinity by 1 does not lead to a larger infin-
ity. This does not look surprising. What is 1 in comparison with
infinity? It is nothing and can be neglected. This at first glance
surprising combination of the facts

Z
+ ⊂ N (Fig. 3.8) and

∣∣Z+
∣∣ = |N| (Fig. 3.9)

provides the fundamentals used for creating the mathematical def-
inition of infinity. Mathematicians took thousands of years to find
this definition and then a new generation of researchers was needed
to be able to accept it and fully imagine its meaning. It was not so
easy for these mathematicians to see that this definition provides
what they strived for, namely a formal criterion for distinguishing
between finite sets and infinite sets.

Definition 3.2. A set A is infinite if and only if there exists a
proper subset B of A such that

|A| = |B| .

In other words:



88 3 Infinity Is Not Equal to Infinity

An object is infinite if there is a proper part of the object
that is as large as the whole object.

Now you can say: “Stop! This is too much for me. I cannot accept
something like that. How can a part be of the same size as the
whole? Something like this does not exist.”

It is excellent that you have this opinion. Especially because of
this, this definition is good. In the real world in which everything
is finite, no part can be as large as the whole. This is exactly
what we can agree on. No finite (real) object can have this strange
property. And, in this way, Definition 3.2 says correctly that all
such objects are finite (i.e., not infinite). But in the artificial world
of infinity, it is not only possible to have this property, but also
necessary. And so this property is exactly what we were searching
for, since a thing that has this property is infinite and one that
does not have this property is finite. In this way, Definition 3.2
provides a criterion for classifying objects into finite and infinite
and this is exactly what one expects from such a definition.

To get a deeper understanding of this at first glance strange prop-
erty of infinite objects, we present two examples.

Example 3.1 Hotel Hilbert

Let us consider a hotel with infinitely many single rooms that is
known as the Hotel Hilbert. The rooms are enumerated as follows:

Z(0), Z(1), Z(2), Z(3), . . . , Z(i), . . . .

All rooms are occupied, i.e., there is exactly one guest in each
room. Now, a new guest enters the hotel and asks the porter: “Do
you have a free room for me?” “No problem”, answers the porter
and accommodates the new guest by the following strategy. He
asks every guest in the hotel to move to the next room with the
number that is 1 higher than the room number of the room used
up till now. Following this request, the guest in room Z(0) moves
to the room Z(1), the guest in Z(1) moves to Z(2), etc. In general,
the guest in Z(i) moves to the room Z(i+1). In this way, the room



3.2 Cantor’s Concept 89

Fig. 3.10

Z(0) becomes free, and so Z(0) can be assigned to the newcomer
(Fig. 3.10).

We observe that, after the move, every guest has her or his own
room and room Z(0) becomes free for the newcomer. Mathemati-
cians argue for the truthfulness of this observation as follows.
Clearly room Z(0) is free after the move. The task is to show
that every guest has his or her own room after the move. Let G be
an arbitrary guest. This person G stays alone in a specific room
before the move. Let Z(n) be the number of this room. Follow-
ing the instructions of the porter, guest G moves from Z(n) to
Z(n + 1). He can do this because Z(n + 1) becomes free because
the guest in this room moved to room Z(n + 2). Hence, after the
moves guest G stays alone in room Z(n + 1). Since our argument
is valid for every guest of the hotel, all guests have a single room
accommodation after the move.

The solution above shows why the real infinity was considered as
a paradox5 of mathematics for a long time. Hotel Hilbert is a real
infinity. Something like this can only be outlined by drawing a
finite part of it and adding · · · . But nobody can see it at once.
Hence, it is not possible to observe the whole move of infinitely
many guests at once. On the other hand, observing each particular
guest separately, one can verify that the move works successfully.

Only when one was able to realize that infinity differs from finite-
ness by having proper subparts of the same size as the whole, was
this paradox solved6. We observe that the move corresponds to

5 a seemingly contradictory fact or an inexplicable situation
6 and so it is not a paradox anymore



90 3 Infinity Is Not Equal to Infinity

matching the elements of the set N (the set of guests) with the set
Z

+ (the set of rooms up to room Z(1)). �
Exercise 3.3 (a) Three newcomers enter Hotel Hilbert. As usual, the hotel is com-

pletely booked. Play the role of the porter and accommodate the three new
guests in such a way that no former guest has to leave the hotel, and after
the move each new guest and each former guest possesses their own room. If
possible, arrange the accommodation using one move of each guest instead of
organizing 3 moves one after each other.

(b) A newcomer enters Hotel Hilbert and asks for his favored room, Z(7). How can
the porter satisfy this request?

We take the next example from physics. Physicists discovered it as
a remedy for depression caused by imagining that our Earth and
mankind are tiny in comparison with the huge Universe7.

Example 3.2 Let us view our Earth and Universe as infinite sets
of points of size 0 that can lie arbitrarily close each to each other.
To simplify our story we view everything two-dimensionally in-
stead of working in three dimensions. The whole Universe can be
viewed as a large sheet of paper, and Earth can be depicted as a
small circle on the sheet (Fig. 3.11). If somebody has doubts about
viewing our small Earth as an infinite set of points, remember that
there are infinitely many points on the finite part of the real axis
between the numbers 0 and 1. Each rational number between 0 and
1 can be viewed as a point on the line between 0 and 1. And there
are infinitely many rational numbers between 0 and 1. We proved
this fact already by generating infinitely many rational numbers
between 0 and 1 in our unsuccessful attempt to find the smallest
positive rational number.

Another justification of this fact is related to the proof of the
following claim.

For any two different rational numbers a and b, a < b, there
are infinitely many rational numbers between a and b.

The first number between a and b we generate is the number c1 =
a+b
2

, i.e., the average value of a and b. The next one is c2 = c1+b
2

,

7 In this way, physicists try to ease the negative consequences of their discoveries.



3.2 Cantor’s Concept 91

i.e., the average of c1 and b. In general, the i -th generated number
from [a, b] is

ci =
ci−1 + b

2
,

i.e., the average of ci−1 and b. When a = 0 and b = 1, then one
gets the infinite sequence

1

2
,

3

4
,

7

8
,

15

16
, . . .

of pairwise different rational numbers between 0 and 1.

Now let us finally switch to the fact physicists want to tell us.
All points of our huge Universe beyond Earth can be matched
with the points of Earth. This claim has two positive (healing)
interpretations:

(i) The number of points of our Earth is equal to the number of
points of the Universe outside Earth.

(ii) Everything that happens in the Universe can be reflected on
Earth and so can be imitated in our tiny world.

Hence, our task is to search for a matching between the Earth
points and the points outside Earth. In what follows we show how
to assign an Earth point PE to any point PU outside Earth.

First, we connect PU and the Earth center M by a line (Fig.
3.11). The point PE we are searching for has to lie on this line.
Next, we depict the two tangents t1 and t2 of the circle that goes
through the point PU (Fig. 3.11). Remember that a tangent of a
circle is a line that has exactly one common point with the cir-
cle. We call the point at which t1 touches the circle AP and we
denote by BP the common point8 of the circle and the line t2
(see Fig. 3.11). Finally, we connect the points BP and AP by
a line BP AP (Fig. 3.12). The point at the intersection of the
lines BP AP and PUM is the Earth point PE we assign to PU

(Fig. 3.12).

8 Mathematicians would say that the point AP is the intersection of the circle and
t1 and that BP is the intersection of the circle and t2.



92 3 Infinity Is Not Equal to Infinity

Fig. 3.11

Fig. 3.12

Next, we have to show that this geometric assignment of PE to
PU defines a matching between the Earth’s points and the points
outside Earth. Namely we have to show that one always assigns
two distinct Earth points PE and P ′

E to two different points PU

and P ′
U outside Earth.

To verify this fact, we distinguish two possibilities with respect to
the positions of PU and P ′

U according to M .

(i) The points M, PU , and P ′
U do not lie on the same line. This

situation is depicted in Fig. 3.13. We know that PE lies on the
line MPU and that P ′

E lies on the line MP ′
U . Since the only



3.2 Cantor’s Concept 93

common point of the lines MPU and MP ′
U is M , and M is

different from PE and P ′
E, independently of the positions of PE

and P ′
E on their lines, the points PE and P ′

E must be different.

Fig. 3.13: EU lies on MAU and E
′
U lies on MA

′
U , and therefore EU and E

′
U are

different points.

(ii) All three points M, PU , and P ′
U lie on the same line (Fig. 3.14).

Therefore, EU and E ′
U lie on this line, too. Then, we perform

our assignment construction for both points PU and P ′
U as de-

picted in Fig. 3.12. We immediately see in Fig. 3.14 that EU

and E ′
U are different.

Fig. 3.14



94 3 Infinity Is Not Equal to Infinity

We showed that, independently of the fact that the Universe is
many times larger than Earth, the number of points in Earth is
equal to the number of points in the Universe outside Earth. �
Exercise 3.4 Complete Fig. 3.13 by estimating the exact positions of points PE

and P ′
E .

Exercise 3.5 Consider the semicircle in Fig. 3.15 and the line AB that is the di-
ameter of the circle. Justify geometrically as well as by calculations that the number
of points of the line AB is the same as the number of points of the curve of the
semicircle.

Fig. 3.15

Exercise 3.6 Consider the curve of the function F in Fig. 3.16 and the line AB.
Why does this curve have as many points as the line AB?

Fig. 3.16

If you still have a stomach ache when trying to imagine and to
accept Cantor’s concept of infinity, please, do not worry. Mathe-
maticians needed many years to develop this concept, and, after
discovering it, 20 years were needed to get it accepted by the broad
mathematical community. Take time for repeated confrontations
with the definition of infinite sets. Only if one iteratively deals



3.2 Cantor’s Concept 95

with this topic can one understand why one uses this definition
of infinity as an axiom of mathematics, and why mathematicians
consider it not only trustworthy but they even do not see any
alternative to this definition.

In what follows we briefly discuss the most frequent proposal for
the concept of comparing infinite sizes that some listener proposed
after the first confrontation with infinity. If

A ⊂ B

holds (i.e., if A is a proper subset of B), then

|A| < |B| .

Clearly, this attempt to compare infinite sizes reflects in another
way the refusal of our key idea that a part of an infinite object
may be as large as the whole. This proposal for an alternative defi-
nition has two drawbacks. First, one can use it only for comparing
two sets where one is a subset of the other. This definition does
not provide the possibility to compare two different sets such as
Z

− = {−1,−2,−3, . . .} and Z
+ = {1, 2, 3, . . .}. For a comparison

of these two sets one has to search for another relation between
them. Realizing this drawback, some listeners propose accepting
the matching approach in the following way. One can find a match-
ing between one of the sets and a subset of another one and then
compare using the originally proposed subset principle. We show
that one can get nonsense in this way. Namely that

|N| < |N| ,

i.e., that N is smaller than N itself. Using the concept of matching
we proved

|N| = |Z+|. (3.1)

Since Z
+ ⊂ N, using the subset principle, one gets



96 3 Infinity Is Not Equal to Infinity

|Z+| < |N|. (3.2)

Combining Equations (3.1) and (3.2) we obtain

|N| = |Z+| < |N|,
and so |N| < |N|.

In this way we proved that the concept of the shepherd (of match-
ing) and the subset principle for comparing the cardinalities of two
sets contradict each other because adopting both at once leads to
obvious nonsense.

Why do we spend so much time discussing this axiom of mathe-
matics and why do we make such a big effort to understand it? As
you may already suspect, this axiom is only the beginning of our
troubles. The concept of infinity is not the only surprise of this
chapter. In some sense we showed ∞ = ∞ + 1 for ∞ = |N| and
also came to understand that ∞ = ∞+ c for any finite number c.
Example 3.2 and the following exercises even intimate

∞ = c · ∞
for an arbitrary finite number (constant) c.

Let us consider N and the set

Neven = {0, 2, 4, 6, . . .} = {2i | i ∈ N}
of all even natural numbers. At first glance N contains twice as
many elements as Neven. In spite of this view (Fig. 3.17) one can
match the elements of N and of Neven as follows:

(0, 0), (1, 2), (2, 4), (3, 6), . . . , (i, 2i), . . . .

We see that each element of both sets is married exactly once. The
immediate consequence is

|N| = |Neven| .

We can explain this somewhat surprising result

2 · ∞ = ∞
again using a story about Hotel Hilbert.



3.2 Cantor’s Concept 97

Fig. 3.17

Example 3.3 Consider once again Hotel Hilbert with infinitely
many single rooms

Z(0), Z(1), Z(2), . . .

that are all occupied by guests. Now, an infinite bus arrives. This
bus has infinitely many seats

B(0), B(1), B(2), . . . ,

and all seats are occupied by passengers9. The bus driver asks the
porter whether he can accommodate all the passengers. As usual,
the porter answers: “No problem”, and does the following:

He asks each guest in room Z(i) to move to room Z(2i) as de-
picted in the upper part of Fig. 3.18. After the move, each former
guest has her or his own room and all rooms with odd numbers
1, 3, 5, 7, . . . , 2i + 1 . . . are empty. Now, it remains to match the
free rooms with the bus passengers. The porter assigns room Z(1)
to the passenger sitting on seat B(0), room Z(3) to the passenger
sitting on sit B(1), etc. In general, the passenger from B(i) gets
room Z(2i + 1), as depicted in Fig. 3.18. In this way, one gets the
matching

9 Each seat is occupied by exactly one passenger.



98 3 Infinity Is Not Equal to Infinity

Fig. 3.18

(B(0), Z(1)), (B(1), Z(3)), (B(2), Z(5)), . . . , (B(i), Z(2i + 1)), . . .

between the empty rooms with odd numbers and the seats of the
infinite bus. �
Exercise 3.7 (a) Hotel Hilbert is only partially occupied. All rooms Z(0), Z(2),

Z(4), . . . , Z(2i), . . . with even numbers are occupied and all rooms with odd
numbers are free. Now, two infinite buses B1 and B2 arrive. The seats of the
buses are numbered as follows:

B1(0), B1(1), B1(2), B1(3), . . .

B2(0), B2(1), B2(2), B2(3), . . .

How can the porter act in order to accommodate all guests? Is it possible to ac-
commodate all newcomers without asking somebody to move to another room?

(b) Hotel Hilbert is fully occupied. Now, three infinite buses are coming. The seats of
each bus are enumerated by natural numbers. How can the porter accommodate
everybody?

Exercise 3.8 Show by matching Z and N that

|Z| = |N|

holds, where Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} is the set of all integers.

Exercise 3.9 (challenge) Let [a, b] be the set of all points (all real numbers) of
the real axis between a and b.

a) Show that
|[0, 1]| = |[1, 10]| .

Try to show this by geometric means as in Example 3.2.



3.2 Cantor’s Concept 99

b) Prove
|[0, 1]| = |[1, 100]|

by arithmetic arguments, i.e., find a function f such that the pairs (f(i), i) for
i ∈ [0, 100] build a matching of [0, 1] and [0, 100].

Exercise 3.10 (challenge) Assume that Hotel Hilbert is empty, i.e., there are
no guests accommodated in the hotel. Since all used accommodation strategies were
based on moving former guests from a room to another, there is the risk that to stay
in the hotel may become unpopular. Therefore, the porter needs an accommodation
strategy that does not require any move of an already accommodated guest. This
accommodation strategy has to work even if arbitrarily many finite and infinite
buses arrive in arbitrarily many different moments. Can you help the porter?

We observe that proving

|N| = |A|

for a set A means nothing other than numbering all elements of
set A using natural numbers. A matching between N and A unam-
biguously assigns a natural number from N to each element of A.
And this assigned natural number can be viewed as the order of
the corresponding element of A. For instance, if (3, John) is a pair
of the matching, then John can be viewed as the third element of
set A. Vice versa, each numbering of elements of a set A directly
provides a matching between N and A. The pairs of the are simply

order of a, a

for each element a of A. In what follows, the notion of number-
ing10 the elements of A enables us to present transparent argu-
ments for claims |N| = |A| for some sets A, i.e., to show that A
has as many elements as N.

The matching

(0, 0), (1, 1), (2,−1), (3, 2), (4,−2), (5, 3), (6,−3), . . .

of the sets N and Z assigns the following order to the elements of
Z:

0, 1,−1, 2,−2, 3,−3, . . . .

In this way 0 is the 0-th element, 1 is the first element, −1 is the
second element, 2 is the third element, etc.

10In the scientific literature one usually uses the term “enumeration” of the set A.



100 3 Infinity Is Not Equal to Infinity

Exercise 3.11 Assign to Z an order of elements other than the one presented above
by giving another matching.

Exercise 3.12 Prove that
|N| = |Nquad| ,

where Nquad = {i2 | i ∈ N} = {0, 1, 4, 9, 16, 25, . . .} is the set of all squares of natural
numbers. What order of the elements of Nquad do you get using the matching you
proposed?

Our attempt to answer the next question increases the degree of
difficulty of our considerations. What is the relation between |N|
and |Q+|? Remember that

Q
+ =

{
p

q
| p, q ∈ Z

+

}

is the set of all positive rational numbers. We have already ob-
served that by calculating averages repeatedly one can show that
there are infinitely many rational numbers between any two ratio-
nal numbers a and b with a < b. If one partitions the real axes into
infinitely many parts [0, 1], [1, 2], [2, 3], . . . as depicted in Fig. 3.19,
then the cardinality of Q

+ looks like

∞ ·∞ = ∞2

because each of these infinitely many parts (intervals) contains
infinitely many rational numbers.

Fig. 3.19

At first glance, trying to prove the equality |N| = |Q+| does not
seem very promising. The natural numbers 0, 1, 2, 3, . . . lie very
thinly on the right half of the axes, and between any two consecu-
tive natural numbers i and i+1 there are infinitely many rational



3.2 Cantor’s Concept 101

numbers. Additionally, we know that a matching between N and
Q

+ would provide a numbering of elements in Q
+. What does such

a numbering of positive rational numbers look like? It cannot fol-
low the size of the rational numbers, because, as we know, there
is no smallest positive rational number11.

Through this very clear impression, we show that the equality

|N| = |Q+|
and so, in some sense, that

∞ ·∞ = ∞
holds.

Observe first that the set Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} also
does not have any smallest number, and though we can number
their elements as follows:

0,−1, 1,−2, 2,−3, 3, . . . .

The idea for Q
+ is to write all positive rational numbers on an

infinite sheet as follows (the mathematicians among us would say
that one assigns positions of the two-dimensional infinite matrix
to positive rational numbers). Each positive rational number can
be written as

p

q
,

where p and q are positive integers. We partition the infinite sheet
of paper into infinitely many columns and infinitely many rows.
We number the rows by

1, 2, 3, 4, 5, . . .

from top to bottom, and we number the columns from left to right
(Fig. 3.20). We place the fraction

i

j

11For any small rational number a, one can get the smaller rational number a/2 by
halving a.



102 3 Infinity Is Not Equal to Infinity

Fig. 3.20

on the square in which the i-th row intersects the j-th column. In
this way we get the infinite matrix as described in Fig. 3.20.

We do not have any doubt that this infinite sheet (this infinite
matrix) contains all positive fractions. If one looks for an arbitrary
fraction p/q, one immediately knows that p/q is placed on the
intersection of the p-th row and the q-th column. But we have
another problem. Some12 positive rational numbers occur in the
matrix several times, even infinitely many times. For instance, the
number 1 can be represented as a fraction in the following different
ways:

1

1
,

2

2
,

3

3
,

4

4
, . . . .

The rational number 1/2 can be written as

1

2
,

2

4
,

3

6
,

4

8
, . . . .

Exercise 3.13 Which infinitely many representations as a fraction does the rational
number 3

7
have?

12 in fact all



3.2 Cantor’s Concept 103

But we aim to have each positive rational number appearing ex-
actly once on this sheet. Therefore, we take the fraction p/q that
cannot be reduced13 as a unique representation of the rational
number p/q. In this way 1 uniquely represents 1/1, one half is rep-
resented by 1/2, because all other fractions represented by 1 and
1/2 can be reduced. Hence, we remove (rub out) all fractions of
the sheet that can be reduced. In this way we get empty positions
(squares) on the intersections of some rows and columns, but this
does not disturb us.

Fig. 3.21

Now we want to number the fractions in Fig. 3.21 as the first, the
second, the third, etc. Clearly, we cannot do it in the way in which
first the elements (fractions) of the first row are numbered, then
the elements of the second row, etc., since the number of elements
in the first row is infinite. We would fail in such an attempt because
we could never start to number the elements of the second row. The
first row would simply consume all numbers of N. Analogously, it
is impossible to number the elements of the infinite sheet column
by column. What can we do then? We number the elements of the

13The greatest common divisor of p and q is 1.



104 3 Infinity Is Not Equal to Infinity

Fig. 3.22

sheet in Fig. 3.21 diagonal by diagonal. The k-th diagonal of
the sheet contains all positions (Fig. 3.22) for which the sum of
its row number i and its column number j is k + 1 (i + j = k + 1).

In this way the first diagonal contains only one element, 1
1
. The

second diagonal contains two elements, 2
1

and 1
2
. And, for instance,

the fourth diagonal contains the four elements 4
1
, 3

2
, 2

3
, and 1

4
. In

general, for each positive integer k, the k-th diagonal contains
exactly k positions, and so at most k fractions.

Now, we order (number) the positions of the infinite sheet, and in
this way we order the fractions lying there as shown in Fig. 3.23.

We order the diagonals according to their numbers, and we order
the elements of any diagonal from the left to the right. Follow-
ing this strategy and the placement of the fractions in Fig. 3.21,
we obtain the following numbering of all positive rational num-
bers:

1

1
,
2

1
,
1

2
,
3

1
,
1

3
,
4

1
,
3

2
,
2

3
,
1

4
,
5

1
,
1

5
,
6

1
,
5

2
,
4

3
,
3

4
,
2

5
,
1

6
, . . . .

Following our numbering convention, 1/1 is the 0-th rational num-
ber, 2/1 is the first positive rational number, etc. For instance, 3/1
is the third rational number, and 5/2 is the 12-th one.



3.2 Cantor’s Concept 105

Fig. 3.23

Exercise 3.14 Extend the matrix in Fig. 3.21 by two more rows and columns
and place the corresponding fractions in their visible positions. Use this extended
matrix to write the sequence of fractions that got the orders 17, 18, 19, . . . , 26, 27 by
our numbering.

The most important observation for seeing the correctness of our
numbering strategy is that each positive rational number (frac-
tion) is assigned a natural number as its order. The argument is
straightforward. Let p/q be an arbitrary positive fraction. The ra-
tional number p/q is placed on the intersection of the p-th row
and the q-th column, and so it lies on the diagonal (p+ q−1). Be-
cause each diagonal contains finitely many positions (frac-
tions), the numbering of elements of the forthcoming diagonals
1, 2, 3, . . . , p + q − 2 is completed in a finite time, and so the num-
bering of the elements of the diagonal p + q − 1 is performed too.
In this way, p/q as an element of the diagonal p + q − 1 is also
given an order. Since the i-th diagonal contains at most i rational
numbers, the order of p/q is at most

1 + 2 + 3 + 4 + . . . + (p + q − 1) .

In this way, one can conclude that

|Q+| = |N|

holds.



106 3 Infinity Is Not Equal to Infinity

Exercise 3.15 Figure 3.24 shows another strategy for numbering of positive ratio-
nal numbers that is also based on the consecutive numbering of diagonals. Write
the first 20 positive rational numbers with respect to this numbering. What order is
assigned to the fraction 7/3? What order does the number 7/3 have in our original
numbering following the numbering strategy depicted in Fig. 3.23?

Fig. 3.24

Exercise 3.16 Hotel Hilbert is completely empty; that is no guest is staying there.
At once (as sometimes happens in real life), infinitely many infinite buses arrive.
The buses are numbered as

B0, B1, B2, B3, . . . ,

i.e., there are as many buses as |N|. For each i ∈ N, bus Bi contains infinitely many
seats

Bi(0), Bi(1), Bi(2), Bi(3), . . . .

Each seat is occupied by exactly one passenger. How can the hotel porter accom-
modate all the passengers?

Exercise 3.17 (challenge) Prove that |Q| = |N|.

Exercise 3.18 (challenge) We define

N
3 = {(i, j, k) | i, j, k ∈ N}

as the set of all triples (i, j, k) of natural numbers. One can place any natural number
on each of the three positions of a triple. Hence, one could say that |N3| = |N| · |N| ·
|N| = ∞ ·∞ ·∞ = ∞3. Show that |N3| = |N|, and so that ∞ = ∞3 holds.



3.3 Different Infinite Sizes 107

3.3 There Are Different Infinite Sizes, or Why
There Are More Real Numbers than Natural
Ones

In Section 3.2 we learned Cantor’s concept for comparing the car-
dinalities of sets. Surprisingly, we discovered that the property dis-
tinguishing infinite objects from finite ones is that infinite objects
contain proper parts that are as large as the whole. We were un-
successful in searching for an infinity that is larger than |N| = ∞.
Even the unexpected equality |Q+| = |N| holds. This is true even
though the rational numbers are infinitely more densely placed on
the real axis than the natural ones. This means that ∞ ·∞ = ∞.
For each positive integer i, one can even prove that the infinite
number

|N| · |N| · . . . · |N|
︸ ︷︷ ︸

k times

= ∞ ·∞ · . . . · ∞︸ ︷︷ ︸
k times

= ∞k

is again the same as |N| = ∞.

We are not far from believing that all infinite sets are of the same
size. The next surprise is that the contrary is true. In what follows
we show that

|R+| > |N| .

Before reading Section 3.2 one would probably believe that the
number of real numbers is greater than the number of natural
numbers. But now we know that |Q+| = |N| holds. And the real
numbers have similar properties to those of the rational numbers.
There is no smallest positive real number, and there are infinitely
many real numbers on the real axis between any two different
real numbers. Since |N| = |Q+|, the inequality |R+| > |N| would
directly imply

|R+| > |Q+| .

Is this not surprising? Later, in Chapter 4, we will get a deeper
understanding of the difference between the sets R and Q that
is also responsible for the truthfulness of |R| > |Q|. For now, we
reveal only the idea that, in contrast to real numbers, all rational



108 3 Infinity Is Not Equal to Infinity

numbers have a finite representation as fractions. Most of the real
numbers do not possess any finite description. In order to prove
|R+| > |N|, we prove a stronger result. Let [0, 1] be the set of all
real numbers between 0 and 1, the numbers 0 and 1 included. We
show

|[0, 1]| �= |N| .

How can one prove inequality between the cardinalities (sizes) of
two infinite sets? For proving equality, one has to find a matching
between the two sets considered. This can be complicated, but
in some sense it is easy because this is constructive. You find a
matching and the work is done. To prove |A| �= |B| you have
to prove that there does not exist any matching between
A and B. The problem is that there may exist infinitely many
strategies for constructing a matching between A and B. How can
you exclude the success of any of theses strategies? You cannot
check all these infinitely many approaches one after another. When
one has to show that something does not exist, then we speak
about proofs of nonexistence.

To prove the nonexistence of an object or the impossibility
of an event is the hardest task one can pose to a researcher
in the natural sciences.

The word “impossible” is almost forbidden in this context, and
if one uses it then we have to be careful about its exact inter-
pretation. A well-known physicist told me that it is possible to
reconstruct the original egg from an egg fried in the pan. All is
based on the reversibility of physical processes14 and he was even
able to calculate the probability of success for the attempt to cre-
ate the original egg. The probability was so small that one could
consider success as a real miracle, but it was greater than 0. There
are many things considered impossible, though they are possible.

In mathematics we work in an artificial world; because of that
we are able to create many proofs of nonexistence of mathemati-
cal objects. What remains is the fact that proofs of nonexistence
belong to the hardest argumentations in mathematics.

14as formulated by quantum mechanics



3.3 Different Infinite Sizes 109

Let us try to prove that it is impossible to number all real numbers
from the interval [0, 1], and so that |[0, 1]| �= |N|. As already men-
tioned, we do it by indirect argumentation. We assume that there
is a numbering of real numbers from [0, 1], and then we show that
this assumption leads to a contradiction, i.e., that a consequence
of this assumption is evident nonsense15.

If there is a numbering of real numbers in [0, 1] (i.e., if there is
a matching between [0, 1] and N), then one can make a list of all
real numbers from [0, 1] in a table as shown in Fig. 3.25.

Fig. 3.25

This means that the first number in the list is

0.a11a12a13a14 . . . .

The symbols a11, a12, a13, . . . are digits. In this representation, a11

is the first digit to the right of the decimal point, a12 is the second
digit, a13 is the third one, etc. In general

0.ai1ai2ai3ai4 . . .

15Here, we recommend revisiting the schema of indirect proofs presented in Chapter
1. If a consequence of an assertion Z is nonsense or contradicts something known,
then the indirect proof schema says that Z does not hold, i.e., that the contrary
of Z holds. The contrary of the existence of a matching between [0, 1] and N is
the nonexistence of any matching between [0, 1] and N.



110 3 Infinity Is Not Equal to Infinity

is the i-th real number from [0, 1] in our list (numbering). Our
table is infinite in both directions. The number of rows is |N| and
the number of columns is also |N|, where the j-th column contains
j-th digits behind the decimal points of all numbered real numbers
in the list. The number of columns must be infinite, because most
real numbers cannot be represented exactly by a bounded number
of decimal positions behind the decimal point. For instance, the
representation of the fraction

1

3
= 0.3 = 0.33333 . . .

requires infinitely many digits to the right of the decimal point.
On the other hand, this real number is nice because it is periodic.
Numbers such as

√
2/2 and π/4 are not periodic and require in-

finitely many positions behind the decimal point for their decimal
representation.

To be more transparent, we depict a concrete fraction of a hypo-
thetical list of all real numbers from [0, 1] in Fig. 3.26 by exchang-
ing the abstract symbols aij for concrete digits.

Fig. 3.26



3.3 Different Infinite Sizes 111

In this hypothetical list the number 0.732110 . . . is the first real
number, 0.000000 . . . is the second real number, etc.

In what follows, we apply the so-called diagonalization method
in order to show that there is a real number from [0, 1] missing
in the list (Fig. 3.25). This contradicts our assumption that one
has a numbering of the elements of [0, 1] (i.e., each number from
[0, 1] has to occur in the list exactly once). Hence, our hypothetical
numbering is not a numbering, and we are allowed to conclude that
there does not exist any numbering of the elements from [0, 1].

Next, we construct a number c from [0, 1] that is not represented
by any row of the table (list), i.e., that differs from all numbers of
the list. We create c digit by digit. We write c as

c = 0.c1c2c3c4 . . . ci . . . ,

i.e., ci is the i-th digit of c behind the decimal point. We choose
c1 = a11 − 1 if a11 �= 0, and we set c1 = 1 if a11 = 0. For the
hypothetical numbering in Fig. 3.26 this means that c1 = 6 be-
cause a11 = 7. Now we know with certainty that c is different from
the number written in the first row of our list in Fig. 3.25 (Fig.
3.26). The second digit c2 of c is again chosen in such a way that it
differs from a22. We take c2 = a22 − 1 if a22 �= 0, and we set c2 = 1
if a22 = 0. Hence, c differs from the number in the second row
of the list, and so c is not the second number of the hypothetical
numbering. Next, one chooses c3 in such a way that c3 �= a33 in
order to ensure that c is not represented by the third row of the
list.

In general, one chooses ci = aii−1 for aii �= 0, and ci = 1 for a11 =
0. In this way c differs from the i-th number of our hypothetical
numbering. After six construction steps for the table in Fig. 3.26
one gets

0.617106 . . . .

We immediately see that c differs from the numbers in the first 6
rows of the table in Fig. 3.26.

We observe that c differs from each number of the list in at least
one decimal digit, and so c is not in the list. Therefore, the table in



112 3 Infinity Is Not Equal to Infinity

Fig. 3.26 is not a numbering of [0, 1]. A numbering of [0, 1] has to
list all real numbers from [0, 1], and c is clearly in [0, 1]. Hence, our
assumption that one has a numbering of [0, 1] (that there exists a
numbering of [0, 1]) is false. We are allowed to conclude

There does not exist any numbering of [0, 1], and so there
is no matching between N and [0, 1].

Exercise 3.19 Draw a table (as we did in Fig. 3.26) of a hypothetical numbering
of [0, 1] that starts with the numbers 1/4, 1/8,

√
2/2, 0, 1, π/4, 3/7. Use this table to

determine the digits c1, c2, . . . , c7 of the number c in such a way that c differs from
the numbers in the first seven rows of your table.

Exercise 3.20 Consider a hypothetical numbering of [0, 1], such that the 100-th
number is 2/3. Which digit of c is determined by this information?

Exercise 3.21 Determine the first seven digits of c behind the decimal point of a
hypothetical numbering of [0, 1] presented in Fig. 3.27.

Fig. 3.27

What exactly did we show and what was our argumentation? As-
sume somebody says, “I have a numbering of [0, 1].” We discovered
a method, called diagonalization, that enables us to reject any pro-
posal of a numbering of [0, 1] as incomplete because at least one
number from [0, 1] is missing there. Since we can do it for each



3.3 Different Infinite Sizes 113

hypothetical numbering of the elements of [0, 1], there does not
exist any (complete) numbering of [0, 1].

Another point of view is that of indirect argumentation introduced
in Chapter 1. Our aim was to prove the claim Z that there does
not exist any numbering of [0, 1]. We start with the opposite claim
Z and show that a consequence of Z is a claim which is nonsense.
In this moment we have reached our goal. The assertion Z as the
opposite of Z is the claim that there exists a numbering of the
elements of [0, 1]. Starting from Z we show that in any such num-
bering of [0, 1] one number from [0, 1] is missing. This is nonsense
because no number is allowed to be missing in a numbering. There-
fore, Z does not hold, and so there does not exist any numbering
of [0, 1].

Since we cannot number the elements of [0, 1] (there is no matching
between N and [0, 1]), we cannot number the elements of R

+ either.

Exercise 3.22 Explain why the nonexistence of a numbering of the elements of
[0, 1] implies the nonexistence of a numbering of the elements of R

+.

Hint: You can try to explain how to transform each numbering of R
+ into a num-

bering of [0, 1]. Why is this a correct argument?

Since N ⊂ R
+ and there is no matching between N and R

+, we
can conclude that

|N| < |R+|
holds. Hence, there are at least two infinite sets of different sizes,
namely N and R

+. One can even show that there are unbound-
edly many (infinitely many) different infinite sizes. We do not to
deal with the technical proof of this result here because we do
not need it for reaching our main goal. We are ready to show in
the next chapter that the number of computing tasks is larger
than the number of algorithms, and so that there exist problems
that cannot be solved algorithmically (automatically by means of
computers).

Exercise 3.23 Let us change the diagonalization method presented in Fig. 3.25 a
little bit. For each i ∈ N, we choose ci = ai,2i−1 for ai,2i �= 0 and ci = 1 for ai,2i = 0.



114 3 Infinity Is Not Equal to Infinity

a) Are we allowed again to say that the number 0.c1c2c3c4 . . . is not included in
the list? Argue for your answer!

b) Frame the digits ai,2i of the table in Fig. 3.25.
c) Which values are assigned to c1, c2, and c3 for the hypothetic list in Fig. 3.27

in this way? Explain why the created number c = 0.c1c2c3 . . . is not among the
first three numbers of the table.

3.4 The Most Important Ideas Once Again

Two infinite sizes can be compared. One has to represent them us-
ing the cardinalities of the two sets. Using this as a basis, Cantor
introduced the concept for comparing infinite sizes (cardinalities)
of two sets using the shepherd’s principle. Two sets are equally
sized if one can match their elements. A set A has the same car-
dinality as N if one can number all elements of A using natural
numbers. Clearly, each numbering of A corresponds to a matching
between A and N. Surprisingly, one can match N and Z, though N

is a proper part of Z. In this way we recognized that the property

having a proper part that is as large as the whole

is exactly the characteristic that enables us to distinguish finite
objects from infinite ones. No finite object may have this prop-
erty. For infinite objects, this is a must. Though there are infinitely
many rational numbers between any two consecutive natural num-
bers i and i + 1, we found a clever enumeration16 of all positive
rational numbers, and so we showed that |N| = |Q+|. After that,
we applied the schema of indirect proofs in order to show that
there is no numbering of all positive real numbers, and so that
there is no matching between N and R

+.

In Chapter 4, it remains to show that the number of programs is
equal to |N|, and that the number of algorithmic tasks is at least
|R+|.

In Chapter 3, we did not present any miracle of computer science.
But we did investigate the nature of infinity and the concept of

16not according to their sizes



3.4 Summary 115

comparing infinite sizes, and in this way we learned miracles of
mathematics that are real jewels of the fundamentals of science.
Jewels are not found lying on the street, and one usually has to
do something to obtain them. Therefore, we are also required to
sweat a bit in order to grasp infinity. And so, one may not be
surprised that taking our path to the computer science miracles
can be strenuous. But tenacity is a good property and the goal is
worth the effort. Let us stay this course in the next two chapters,
and then we will witness one miracle after the other. We will ex-
perience unexpected and elegant solutions to hopeless situations
that increase the pulse of each friend of science. Only by patience
and hard work can one attain knowledge that is really valuable.

Solutions to Some Exercises

Exercise 3.1 For the sets A = {2, 3, 4, 5} and B = {2, 5, 7, 11} there are 4! = 24
different matchings. For instance,

(2, 11), (3, 2), (4, 5), (5, 7)

or
(2, 11), (3, 7), (4, 5), (5, 2) .

The sequence of pairs (2, 2), (4, 5), (5, 11), (2, 7) is not a matching between A and B
because element 2 of A occurs in two pairs, (2, 2) and (2, 7), and element 3 of A
does not occur in any pair.

Exercise 3.8 A matching between N and Z can be found in such a way that one
orders the elements of Z in the following sequence

0, 1,−1, 2,−2, 3,−3, 4,−4, . . . , i,−i, . . .

and then creates a matching by assigning to each element of Z its order in this
sequence. In this way we get the matching

(0, 0), (1, 1), (2,−1), (3, 2), (4,−2), (5, 3), (6,−3), . . . .

In general we build the pairs

(0, 0), (2i,−i) and (2i − 1, i)

for all positive integers i.

Exercise 3.10 (challenge) First, the porter partitions all rooms into infinitely
many groups, each of an infinite size. Always when a group of guests arrives (it does
not matter whether the group is finite or infinite), the porter accommodates the
guest in the next (still unused) group of rooms.



116 3 Infinity Is Not Equal to Infinity

As usual for the staff of Hotel Hilbert, the porter is well educated in mathematics,
and so he knows that there are infinitely many primes

2, 3, 5, 7, 11, 13, 17, 19, . . . .

Let pi be the i-th prime of this sequence. The porter uses pi to determine the i-th
infinite group of natural numbers as follows:

group(i) = {pi, p
2
i , p

3
i , p

4
i , . . . , (pi)

j , . . .} .

For instance, group(2)= {3, 9, 27, 81, . . .}. Due to his knowledge of the Fundamental
Theorem of Arithmetics, the porter knows that no natural number belongs to more
than one group. Using this partition of rooms into the groups with respect to their
room numbers, the porter can assign the rooms to the guests without having any
more rooms even when infinitely many groups of guests arrive one after each other.
It does not matter whether the i-th group of guest is finite or infinite, the porter
books the whole room group(i) for the i-th guest group. If the guests of the i-th
group are denoted as

Gi,1, Gi,2, Gi,3, . . . , Gi,j , . . .

then guest Gi,1 gets the room Z(pi), guest Gi,2 gets room Z(p2
i ), etc.

Exercise 3.12 The sequence of pairs

(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), . . . , (i, i2), . . .

is a matching between N and Nquad. We see that each number from N appears exactly
once as the first element in a pair, and analogously each integer from Nquad can be
found exactly once as the second element of a pair.

Exercise 3.20 The decimal representation of the fraction 2/3 is

0.6 = 0.666666 . . . .

Hence, the 100-th position behind the decimal point is also 6. Therefore, one sets
c100 = 6 − 1 = 5.

Exercise 3.21 For the hypothetical numbering of real numbers from interval [0, 1]
in Fig. 3.27, one gets

c = 0.1631783 . . . .

Exercise 3.22 We perform an indirect proof by following the schema of the indirect
argumentation from Chapter 1. We know that there is no numbering of [0, 1]. The
aim is to show that there does not exist any numbering of R

+. Assume the contrary
of our aim, i.e., that there is a numbering of R

+. We consider this numbering of R
+

as a list and erase those numbers of this list that are not from [0, 1]. What remains
is the list of numbers from [0, 1] that is (without any doubt) a numbering of [0, 1].
But we know that there does not exist any numbering of [0, 1], and so the contrary
of our assumption must hold. The contrary of our assumption is our aim, i.e., that
there does not exist any numbering of R

+.



Discuss, commit errors, make mistakes,
but for God’s sake think –
even if you should be wrong –
but think your own thoughts.

Gotthold Ephraim Lessing

Chapter 4

Limits of Computability or Why
Do There Exist Tasks That
Cannot Be Solved Automatically
by Computers

4.1 Aim

In Chapter 3 we discovered that there exist different infinite sizes.
For instance, the number of real numbers is a larger infinity than
the number of natural numbers. An infinite set is exactly as large
as N if one can number the elements of A as the first one, the sec-
ond one, the third one, etc. Here we aim to show that computing
tasks exist that cannot be solved using any algorithm. The idea
of our argument is simple. We show that the number of different
tasks (computing problems) is a larger infinity than the number

J. Hromkovič, Algorithmic Adventures, DOI 10.1007/978-3-540-85986-4 4,
c© Springer-Verlag Berlin Heidelberg 2009

117

http://dx.doi.org/10.1007/978-3-540-85986-4_4


118 4 Limits of Computability

of all programs. Hence, there exist problems that cannot be algo-
rithmically solved, and so their solution cannot be automatically
found by means of computers. But it is not satisfactory to prove
the existence of algorithmically unsolvable problems. One could
think that all algorithmically unsolvable problems are so artificial
that none of them is really interesting for us. Therefore, we strive
to show that there are concrete problems of serious interest in
practice that cannot be algorithmically solved.

This chapter is the hardest one of this book, and so do not worry or
be frustrated when you do not get a complete understanding of all
details. Many graduate students at universities do not master this
topic in detail. It is already valuable if one is able to understand
and correctly interpret the computer science discoveries presented
in what follows. To gain full understanding of the way in which
these results were discovered usually requires multiple readings
and discussions of the proof ideas. How many confrontations with
this hard topic you perform is up to you.

It is important to know that one can successfully study the topics
of all following chapters even if you do not understand all the
arguments of Chapter 4.

4.2 How Many Programs Exist?

How many programs do we have? The first simple answer is “In-
finitely many.” Clearly, for each program A, there is another pro-
gram B that is longer by a row (by an instruction) than A. Hence,
there are infinitely many program lengths and so infinitely many
programs must exist. Our main question is whether the number
of programs is equal to |N| or not. First we aim to show that
the number of different programs is the same infinite size as the
number of natural numbers. We show it by giving a number of
programs.

Let us start by thinking about the number of texts that can be
written using a computer or a typewriter. Each text can be viewed



4.2 How Many Programs Exist? 119

as a sequence of symbols of the keyboard used. We have to take
into account all uppercase and lowercase letters of the Latin al-
phabet. Additionally, one is allowed to use symbols such as

?, !, ·, $, /, +, *, etc.

Moreover, every keyboard contains a key for the character blank.
For instance, we use a blank to separate two words or two sen-
tences. We often use the symbol to indicate the occurrence of
the character blank. Since blank has its meaning in texts, we con-
sider it as a symbol (letter). From this point of view, texts are not
only words such as

“computer” or “mother”

and not only sentences such as

“Computer science is full of magic”,

but also sequences of keyboard characters without any meaning
such as

xyz*-+?!abe/ .

This means that we do not expect any meaning of a text. Semantics
does not play any role in our definition of the notion of a text.
A text is simply a sequence of symbols that does not need to
have any interpretation. In computer science the set of symbols
used is called an alphabet, and we speak about texts over an
alphabet if all texts considered consist of symbols of this alphabet
only.

Because blank is considered as a symbol, the content of any book
may be viewed as a text. Hence, we can fix the following:

Every text is finite, but there is no upper bound on the length
of a text. Therefore, there are infinitely many texts.

Let us observe the similarity to natural numbers. Each natural
number has a finite decimal representation as a sequence of digits
(symbols) 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The length of the decimal
representation grows with the number represented, and so there



120 4 Limits of Computability

is no bound on the representation length of natural numbers1.
Hence, natural numbers can be viewed as texts over the alpha-
bet of decimal digits and so the number of texts over the alpha-
bet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is equal to |N|. If one uses the binary
alphabet {0, 1} to represent natural numbers, one sees that the
number of texts over the binary alphabet is also equal to |N|.

It appears that the size of the alphabet does not matter, and so
one can conjecture that

“The number of all texts over the characters of a keyboard
is equal to |N|.”

This is true, and we prove it by enumerating the texts. It is suf-
ficient to show that one can order all texts in an infinite list. The
ordering works in a similar way to creating a dictionary, but not
exactly in the same way. Following the sorting rules of the dictio-
nary, we would have to take first the texts a, aa, aaa, aaaa, etc.,
and we would never order texts containing a symbol different from
a, because there are infinitely many texts consisting of the letter
a only. Therefore, we have to change the sorting approach a little
bit. To order all texts in a list, we first apply the following rule:

Shorter texts are always before longer texts.

This means that our infinite list of all texts starts with all texts of
length 1, then texts of length 2 follow, after that texts of length 3,
etc. What still remains is to fix the order of the texts of the same
length for any length. If one uses the letters of the Latin alphabet
only, then one can do it in the same way as is used in dictionaries.
This means to start with texts that begin with the letter a, etc.
Since we also have many special symbols on our keyboard such
as ?, !, *, +, etc., we have to order the symbols of our keyboard
alphabet first. Which order of symbols we use is our choice, and
for our claim about the cardinality of the set of all texts over the
keyboard alphabet it does not matter. Figure 4.1 depicts a possible

1 This means that one cannot restrict the representation length by a concrete num-
ber. For instance, if one upperbounds the representation length by n, then one
would have at most 10n different representations available, and this is not enough
to represent all infinitely many natural numbers



4.2 How Many Programs Exist? 121

ordering of the symbols of the keyboard alphabet. Having an order
of the alphabet symbols,

One sorts the texts of the same length in the same way as
in dictionaries2.

1 2 3 . . . 25 26 27 28 . . . 51 52 53 54 . . . 61 62

a b c . . . y z A B . . . Y Z l 2 . . . 9 0

63 64 65 66 67 68 69 70 71 72 73 74 75 . . . 167

+ ” * ñ & ! . : , ; ? $ Ý . . .

Fig. 4.1

This means that for the same text length we start with texts begin-
ning with the first symbol of our alphabet ordering. For instance,
taking the order of symbols depicted in Fig. 4.1, the numbering of
texts starts with

1 a
2 b
3 c
...
167
...

Then, the texts of length 5 are ordered as follows:

aaaaa
aaaab
aaaac
...
aaaa
aaaba
aaabb
aaabc
...

2 Usually, we speak about the lexicographical order.



122 4 Limits of Computability

Why did we take the time to show that the number of texts is
equal to |N|? Because

Each program is a text over the keyboard alphabet.

Programs are nothing more than special texts that are understand-
able for computers. Therefore, the number of all programs is not
larger than the number of all texts over the keyboard alphabet,
and so we can claim

The number of programs is equal to |N|.

What we really have shown is that the number of programs is
infinite and not larger than |N|. The equality between |N| and
the number of programs is the consequence of the fact that |N| is
the smallest infinite size. But we did not prove this fact. Hence,
if we want to convince the reader and provide a full argumenta-
tion of this fact, then we have to find a matching between N and
programs. As we already know, any numbering provides a match-
ing. And

One gets a numbering of all programs by erasing all texts
that do not represent any program from our infinite list of
all texts over the keyboard alphabet.

It is important to observe that the deletion of texts without an
interpretation as programs can even be done automatically. One
can write programs, called compilers, that get texts as inputs
and decide whether a given text is a program in the programming
language considered or not. It is worth noting that

A compiler can check the syntactical correctness of a text as
a program but not the semantical correctness.

This means that a compiler checks whether a text is a correctly
written sequence of computer instructions, i.e., whether the text is
a program. A compiler does not verify whether the program is an
algorithm, i.e., whether the program does something reasonable
or not, or whether the program can repeat a loop infinitely many
times.



4.2 How Many Programs Exist? 123

Hence, we are allowed to number all programs, and so to list all
programs in a sequence

P0, P1, P2, P3, . . ., Pi, . . .

where Pi denotes the i-th program.

Why is it important for us that the number of programs and so
the number of algorithms is not larger than |N|? The answer is
that the number of all possible computing tasks is larger than
|N|, and so there are more problems than algorithms. The im-
mediate consequence is that there exist problems that cannot
be solved by any algorithm (for which no solution method ex-
ists).

We have already shown in Chapter 3 that the number of problems
is very large. For each real number c, one can consider the following
computer task Problem(c).

Problem(c)

Input: a natural number n

Output: a number c up to n decimal digits after the decimal point

We say that an algorithm Ac solves Problem(c) or that Ac

generates c, if, for any given n ∈ N, Ac outputs all digits of c
before the decimal point and the first n digits of c after the decimal
point.

For instance,

• For c = 4
3

and an input n = 5, the algorithm A 4
3

has to give
the output 1.33333.

• For
√

2, the algorithm A√
2 has to generate the number 1.4142

for the input n = 4 and the number 1.414213 for the input
n = 6.

• For c = π, the algorithm Aπ has to provide the output 3.141592
for n = 6.



124 4 Limits of Computability

Exercise 4.1 What is the output of an algorithm A 17
6

generating 17/6 for the

input n = 12? What are the outputs of an algorithm Aπ that generates π for inputs
n = 2, n = 0, n = 7, and n = 9?

Exercise 4.2 (challenge) Can you present a method for the generation of π up to
an arbitrarily large number of digits after the decimal point?

In Chapter 3, we proved that the number of real numbers is larger
than |N|, i.e., that |R| > |N|. Since the number of algorithms is
not larger than |N|, the number of real numbers is larger than the
number of algorithms. Therefore, we can conclude that

There exists a real number c such that Problem(c) is not
algorithmically solvable.

Thus, we proved that there are real numbers that cannot be gen-
erated by any algorithm. Do we understand exactly what this
means? Let us try to build our intuition in order to get a bet-
ter understanding of this result. Objects such as natural numbers,
rational numbers, texts, programs, recipes, and algorithms have
something in common.

All these objects have a finite representation.

But this is not true for real numbers. If one can represent a real
number in a finite way, then one can view this representation as a
text. Since the number of different texts is smaller than the num-
ber of real numbers, there must exist a real number without any
finite representation.

What does it mean exactly? To have a constructive description
of a real number e means that one is able to generate e com-
pletely digit by digit. Also, if the number e has an infinite decimal
representation, one can use the description to unambiguously es-
timate the digit on any position of its decimal representation. In
this sense, the finite description of e is complete. In other words,
such a finite description of e provides an algorithm for generating
e. For instance,

√
2 is a finite description of the irrational number

e =
√

2, and we can compute this number with an arbitrarily high
precision using an algorithm.3 Therefore, we are allowed to say:

3 For instance, using the algorithm of Heron.



4.3 YES or NO, That Is the Question 125

Real numbers having a finite representation are exactly the
numbers that can be algorithmically generated, and there
exist real numbers that do not possess a finite representation
and so are not computable (algorithmically generable).

Exercise 4.3 What do you mean? Are there more real numbers with finite repre-
sentations than real numbers without any finite representation, or vice versa? Justify
your answer!

We see that there are tasks that cannot be solved by algorithms.
But we are not satisfied with this knowledge. Who is interested
in asking for an algorithm generating a number e that does not
have any finite representation? How can one formulate such a task
in a finite way? Moreover, when only tasks of this kind are not
algorithmically solvable, then we are happy and forget about this
“artificial” theory and dedicate our time to solving problems of
practical relevance. Hence, you may see the reason why we do
not stop our investigation here and are not contented with our
achievements. We have to continue our study in order to discover
whether there are interesting computing tasks with a finite de-
scription that cannot be automatically solved by means of com-
puters.

4.3 YES or NO, That Is the Question, or
Another Application of Diagonalization

Probably the simplest problems considered in computer science
are decision problems. A decision problem is to recognize whether
a given object has a special property we are searching for or
not. For instance, one gets a digital picture and has to decide
whether a chair is in the picture. One can also ask whether a
person is in the picture, or even whether a specific person (for
instance, Albert Einstein) is in the picture. The answer has to
be an unambiguous “YES” or “NO”. Other answers are not al-
lowed and we impose the requirement that the answer is always
correct.



126 4 Limits of Computability

Here we consider a simple kind of decision problems. Let M be
an arbitrary subset of N, i.e., let M be a set that contains some
natural numbers. We specify the decision problem (N, M)as
follows.

Input: a natural number n from N

Output:

“YES” if n belongs to M
“NO” if n does not belong to M

For instance, one can take PRIME as M , where

PRIME = {2, 3, 5, 7, 11, 13, 17, 19, . . .}

is the infinite set of all primes. Then, (N, PRIME) is the problem
to decide whether a given natural number n is prime or not. The
problem (N, Neven) is to decide whether a given nonnegative integer
is even or not.

For each subset M of N we say that an algorithm A recog-
nizes M or that an algorithm A solves the decision problem
(N, M)if, for any input n, A computes

(i) the answer “YES” if n belongs to M , and

(ii) the answer “NO” if n does not belong to M (n /∈ M).

Sometimes one uses the digit “1” instead of “YES” and the
digit “0” instead of “NO”. If A answers “YES” for an input
n, then we say that algorithm A accepts the number n.
If A outputs “NO” for an input n, then we say that algo-
rithm A rejects the number n. Thus, an algorithm recogniz-
ing PRIME accepts each prime and rejects each composite num-
ber.

If there exists an algorithm solving a decision problem (N, M),
then we say that the problem (N, M) is algorithmically solvable
or that

the problem (N, M) is decidable.



4.3 YES or NO, That Is the Question 127

Clearly, the decision problem (N, Neven) is decidable. It is suffi-
cient to verify whether a given natural number is even or odd.
The problem (N, PRIME) is also decidable because we know
how to check whether a natural number is a prime or not, and
it is not too complicated to describe such a method as an algo-
rithm.

Exercise 4.4 The naive method for primality testing is to divide the given number
n by all numbers between 2 and n − 1. If none of these n − 2 numbers divides
n, then n is a prime. To test primality in this way means to perform a lot of
work. For the number 1000002 one has to execute 1000000 divisibility tests. Can
you propose another method that can verify primality by performing an essentially
smaller number of divisibility tests?

Exercise 4.5 (challenge) Write a program in the programming language TRANS-
PARENT of Chapter 2 that solves the problem (N, QUAD) where

QUAD = {1, 4, 9, 16, 25, . . .}

is the set of all squares i2.

First, we aim to show the existence of decision problems that are
not algorithmically solvable. Such decision problems are called

undecidable or algorithmically unsolvable.

We already recognized that we can list all programs as P0, P1, P2, . . .
and later we will see that one can do it using an algorithm. To list
all algorithms using an algorithm is not so easy. Therefore, we be-
gin our effort by proving a stronger result than we really need. We
show that there are decision problems that cannot be solved by
any program. What does “solved by a program” mean? What is
the difference between algorithmic solvability and solvability by a
program?

Remember that each algorithm can be written as a program, but it
does not hold that each program is an algorithm. A program can
perform a pointless work. A program can perform infinite work
for some inputs without producing any result. But an algorithm
must always finish its work in a finite time and produce a correct
result.



128 4 Limits of Computability

Let M be a subset of N. We say that a program P accepts the
set P , if, for any given natural number n,

(i) P outputs “YES”, if n belongs to M , and

(ii) P outputs “NO” or works infinitely long if n does not belong
to M .

For a program P , M(P ) denotes the set M accepted by P . In this
way, P can be viewed as a finite representation of the potentially
infinite set M(P ).

Immediately, we see the difference between the recognition of M
by an algorithm and the acceptance of M by a program. For inputs
from M both the algorithm and the program are required to work
correctly and provide the right answer “YES” in a finite time (see
requirement (i)). In contrast to an algorithm, for numbers not
belonging to M , a program is allowed to work infinitely long and
so never produce any answer. In this sense algorithms are special
programs that never run infinite computations. Therefore, it is
sufficient to show that there is no program accepting a set M , and
the direct consequence is that there does not exist any algorithm
that recognizes M (i.e., solves the decision problem (N, M)).

To construct such a “hard” subset M of N, we use the diagonal-
ization method from Chapter 3 again. For this purpose, we need
the following infinite representation of subsets of natural numbers
(Fig. 4.2).

0 1 2 3 4 . . . i i + 1 . . .

M 0 1 0 0 1 . . . 1 0 . . .

Fig. 4.2

M is represented as an infinite sequence of bits. The sequence
starts with the position 0 and has 1 at the i-th position if and
only if the number i is in M . If i is not in M , then the bit 0 is on
the i-th position of the sequence. The set M in Fig. 4.2 contains
the numbers 1, 4, and i. The numbers 0, 2, 3, and i + 1 are not in
M . The binary representation of Neven looks as follows



4.3 YES or NO, That Is the Question 129

101010101010101010 . . .

The representation of PRIM starts with the following bit sequence:

0011010100010100 . . .

Exercise 4.6 Write out the first 17 bits of the binary representation of QUAD.

Now, we again build a two-dimensional table that is infinite in
both directions. The columns are given by the infinite sequence of
all numbers:

0, 1, 2, 3, 4, 5, . . . , i, . . . .

The rows are given by the infinite sequence of all programs:

P0, P1, P2, P3, . . ., Pi, . . .

that reads an input number only once and their only possible out-
puts are “YES” and “NO”. One can recognize such programs by
determining whether they contain only one instruction “to rest”
and whether the only output instructions are writing the text
“YES” or the text “NO”. Each such program Pi unambiguously
defines a set M(Pi) of all natural numbers that are accepted4 by
Pi. Those numbers, for which Pi outputs “NO” or works infinitely
long do not belong to M(Pi).

The rows of our table are the binary representations of sets M(Pi).
The k-th row (see Fig. 4.3) contains the binary representation of
the set M(Pk) that is accepted by the program Pk. The intersection
of the i-th row and the j-th column contains “1” if Pi accepts the
number j (if Pi halts on the input j with the output “YES”). The
symbol “0” lies in the intersection of the i-th row and the j-th
column, if Pi outputs “NO” or works infinitely long for the input
j. Hence

The infinite table contains in its rows the representation of
all subsets of N that can be accepted by a program.

Next we aim to show that there is at least one subset of N miss-
ing in the table, i.e., that there is a subset of N whose binary

4 Pi finishes the work on them by printing “YES”.



130 4 Limits of Computability

0 1 2 3 4 5 6 · · · i · · · j · · ·
M(P0) 0 1 1 0 0 1 0 1 0

M(P1) 0 1 0 0 0 1 1 0 0

M(P2) 1 1 1 0 0 1 0 1 1

M(P3) 1 0 1 0 1 0 1 1 0

M(P4) 0 0 0 1 1 0 1 0 1

M(P5) 1 1 1 1 1 1 1 1 1

M(P6) 1 0 1 0 0 0 1 0 1
... · · ·

M(Pi) 0 1 1 0 0 1 0 1
... · · ·

M(Pj) 1 0 1 0 1 1 1 0
...

...

Fig. 4.3

0 1 2 3 4 5 6 · · · i · · · j · · ·
DIAG 1 0 0 1 0 0 0 0 1 · · ·

Fig. 4.4

representation differs from each row of the table (Fig. 4.3). We
show it by constructing a sequence of bits, called DIAG, that does
not occur in any row of the table. The construction of the bit se-
quence DIAG and the corresponding set M(DIAG) is done using
the diagonalization method.

First, see the binary value a00 in the intersection of the 0-th row
and the 0-th column. If a00 = 0 (Fig. 4.3), i.e., if 0 does not belong
to M(P0), then we set the 0-th position d0 of DIAG to 1. If a00 = 1
(i.e., if 0 is in M(P0)), then we set d0 = 0 (i.e., we do not take 0
into M(DIAG)). After this first step of the construction of DIAG
we fixed only the value of the first position of DIAG, and due to
this we are sure that DIAG differs from the 0-th row of the table
(i.e., from M(P0)), at least with respect to the membership of the
0-th element.

Analogously, we continue in the second construction step. We con-
sider the second diagonal square, where the first row intersects the
first column. We aim to choose the first position d1 of DIAG in



4.3 YES or NO, That Is the Question 131

such a way that DIAG differs from the binary representation of
M(P1) at least in the value of this position. Therefore, if a11 = 1
(i.e., if 1 is M(P1)), we set d1 to 0 (i.e., we do not take 1 into
M(DIAG)). If a11 = 0 (i.e., if 1 is not in M(P1)), then we set
d1 = 1 (i.e., we take 1 into M(DIAG)).

If āij represents the opposite value to aij for any bit in the inter-
section of the i-th row and the j-th column (the opposite value to
1 is the value 1̄ = 0, and 0̄ = 1 is the opposite value to 0), then,
after two construction steps, we reach the situation as depicted in
Fig. 4.5.

0 1 2 3 4 · · · i i + 1 · · ·
DIAG ā00 ā11 ? ? ? · · · ? ? · · ·

Fig. 4.5

The first two elements of DIAG are ā00 and ā11, and so DIAG
differs from both M(P0) and M(P1). The remaining positions of
DIAG are still not determined, and we aim to fix them in such a
way that DIAG will differ from each row of the table in Fig. 4.3.

In general, we guarantee a difference between DIAG, and the i-th
row of the table in Fig. 4.3 as follows. Remember that āii is the
bit of the square in the intersection of the i-th row and the i-th
column and that di denotes the i-th bit of DIAG. If āii = 1 (i.e.,
if i belongs to M(Pi)), then we set di = 0 (i.e., we do not take i
into M(DIAG)). If āii = 0 (i.e., if i is not in M(Pi)), then we set
di = 1 (i.e., we take i into M(DIAG)). Hence, M(DIAG) differs
from M(Pi).

0 1 2 3 4 · · · i · · ·
DIAG ā00 ā11 ā22 ā33 ā44 · · · āii · · ·

Fig. 4.6

By this approach DIAG is constructed in such a way that it does
not occur in any row of the table. For the concrete, hypothetical
table in Fig. 4.3, Fig. 4.4 shows the corresponding representation



132 4 Limits of Computability

of DIAG. In general, one can outline the representation of DIAG
as done in Fig. 4.6.

In this way we obtain the result that

M(DIAG) is not accepted by any program, and therefore the
decision problem (N, M(DIAG)) cannot be solved by any
algorithm.

One can specify M(DIAG) also in the following short way:

M(DIAG) = {n ∈ N | n is not in M(Pn)}
= the set of all natural numbers n,

such that n is not in M(Pn).

Exercise 4.7 Assume the intersection of the first 10 rows and the first 10 columns
in the table of all programs contains values as written in Fig. 4.7. Estimate the first
10 positions of DIAG.

0 1 2 3 4 5 6 7 8 9 · · ·
M(P0) 1 1 1 0 0 1 0 1 0 1

M(P1) 0 0 0 0 0 0 0 0 0 0

M(P2) 0 1 1 0 1 0 1 1 0 0

M(P3) 1 1 1 0 1 1 0 0 0 0

M(P4) 1 1 1 1 1 1 1 0 1 0

M(P5) 0 0 1 0 0 1 0 1 1 0

M(P6) 1 0 0 0 1 0 1 0 0 0

M(P7) 1 1 1 1 1 1 1 1 1 1

M(P8) 0 0 1 1 0 0 1 1 0 0

M(P9) 1 0 1 0 1 0 1 0 1 0

M(P10) 0 0 1 0 0 0 1 1 0 1
...

. . .

Fig. 4.7

Exercise 4.8 (challenge) Consider

M(2-DIAG) = the set of all even numbers 2i, such that 2i is not in M(Pi).

Is the decision problem (N, M(2-DIAG)) algorithmically solvable? Carefully explain
your argument! Draw diagrams that would, similarly to Fig. 4.3 and Fig. 4.4, show
the construction of 2-DIAG.



4.4 Reduction Method 133

Exercise 4.9 (challenge) Can you use the solution to Exercise 4.8 in order to
define two other subsets of N that are not algorithmically solvable? How many
algorithmically unsolvable problems can be derived by diagonalization?

Exercise 4.10 (challenge) Consider

M(DIAG2) as the set of all even natural numbers 2i such that 2i is not in
L(P2i).

Can you say something about the algorithmic solvability of (N, M(DIAG2))?

Now, we know that the decision problem (N, M(DIAG)) is not
algorithmically solvable. But we are not satisfied with this result.
The problem looks as if it could be described in a finite way by
our construction, though it is represented by an infinite sequence
of bits. But our construction does not provide any algorithm for
generating DIAG because, as we will see later, though the ta-
ble in Fig. 4.3 really exists, it cannot be generated by an algo-
rithm. Moreover, the decision problem (N, M(DIAG)) does not
correspond to any natural task arising in practice.

4.4 Reduction Method or How a Successful
Method for Solving Problems Can Be Used to
Get Negative Results

We already know how to use the diagonalization method in order
to describe algorithmically unsolvable problems. This provides a
good starting position for us. In this section, we learn how to “ef-
ficiently” spread the proofs of algorithmic unsolvability to further
problems. The main idea is to introduce the relation “easier or
equally hard” or “not harder than” with respect to the algorith-
mic solvability.

Let U1 and U2 be two problems. We say that

U1 is easier than or as hard as U2

or that



134 4 Limits of Computability

U1 is not harder than U2

with respect to algorithmic solvability, and we write

U1 ≤Alg U2,

if the algorithmic solvability of U2 implies (guarantees) the algo-
rithmic solvability of U1.

What does it mean exactly? If

U1 ≤Alg U2

holds, then the following situations are possible:

• U1 and U2 are both algorithmically solvable.

• U1 is algorithmically solvable, and U2 is not algorithmically solv-
able.

• Both U1 and U2 are not algorithmically solvable.

The only situation that the validity of the relation U1 ≤Alg U2

excludes is the following one5:

• U2 is algorithmically solvable and U1 is not algorithmically solv-
able.

Assume that the following sequence of relations

U1 ≤Alg U2 ≤Alg U3 ≤Alg . . . ≤Alg Uk

between the k problems U1, U2, . . . , Uk was proved. Moreover, as-
sume that one can show by the diagonalization method that

U1 is not algorithmically solvable.

What can be concluded from these facts? Since U1 is the easiest
problem among all problems of the sequence, all other problems
U2, U3, . . . , Uk are at least as hard as U1 with respect to algorithmic
solvability, and so one can conclude that

5 Remember the definition of the notion of implication in Chapter 1. The truth-
fulness of the implication “The solvability of U2 implies the solvability of U1”
excludes exactly this one situation.



4.4 Reduction Method 135

the problems U2, U3, . . . , Uk are not algorithmically solvable.

This is the way we want to walk around in order to prove the
algorithmic unsolvability of further problems. Due to diagonaliza-
tion we already have the initial problem U1 for this approach. This
problem is the decision problem (N, M(DIAG)). The only question
is, how to prove the validity of the relation U1 ≤Alg U2 between
two problems?

For this purpose, we apply the reduction method, which was de-
veloped in mathematics in order to solve new problems by clever
application of known methods for solving other problems. We
give two examples showing a simple application of the reduction
method.

Example 4.1 Assume one has a method for solving quadratic
equations in the so-called p, q-form

x2 + px + q = 0,

i.e., quadratic equations with the coefficient 1 before the term x2.
The method for solving such quadratic equations is given by the
so-called p-q-formula:

x1 = −p

2
+

√(p

2

)2

− q

x2 = −p

2
−

√(p

2

)2

− q.

If
(

p
2

)2 − q < 0 holds, then the quadratic equation in the p, q-form
does not have any real solution.

Now, we are searching for a method for solving arbitrary quadratic
equations

ax2 + bx + c = 0 .

Instead of deriving a new formula6 for this purpose, we reduce the
problem of solving general quadratic equations to the problem of
solving quadratic equations in the p, q-form.

6 We presented such a formula in Chapter 2 and wrote a program computing solu-
tions using this formula there.



136 4 Limits of Computability

Fig. 4.8

We know that the solutions of an arbitrary equation do not change
if one multiplies both sides of the equation by the same numbers
apart from 0. Hence, we are allowed to multiply both sides of the
general quadratic equation by 1/a.

ax2 + bx + c = 0 | · 1

a

a · 1

a
· x2 + b · 1

a
x + c · 1

a
= 0 · 1

a

x2 +
b

a
x +

c

a
= 0.

In this way we get a quadratic equation in the p, q-form and
this equation can be solved using the method presented above.
An algorithmic representation of this reduction is outlined in
Fig. 4.8.

Part A is an algorithm that corresponds to the reduction. Here,
one computes the coefficients p and q of the equivalent quadratic



4.4 Reduction Method 137

equation in the p, q-form. This is all one has to do in this algorith-
mic reduction. The coefficients p and q are the inputs for algorithm
B for solving quadratic equations in the form x2 + px + q = 0. B
solves this equation for the given p and q. The output of B (ei-
ther the solutions x1 and x2 or the answer “there is no solution”)
can used over as the output of the whole algorithm C for solving
general quadratic equations. �
Exercise 4.11 Assume we have an algorithm B for solving linear equations in the
form

ax + b = 0.

Design an algorithm for solving linear equations of the form

cx + d = nx + m

by reduction. The symbols c, d, n, and m stand for concrete numbers, and x is the
unknown. Outline the reduction in a way similar to that used in Fig. 4.8.

The reduction form in Example 4.1 is called 1-1-reduction (one
to one reduction). It is the simplest possible reduction, in which
the input of a problem U1 (a general quadratic equation) is directly
transformed to an input of a problem U2 (a quadratic equation in
the p, q-form), and the result of the computation of the algorithm
on the input of U2 is used one to one as the result for the given
input instance of U1. This means that

U1 ≤Alg U2 (4.1)

holds. In other words, solving U1 in an algorithmic way is not
harder than solving U2, because each algorithm B solving U2 can
be “modified” by reduction (Fig. 4.8) to an algorithm C that solves
U1.

Moreover, in the case of quadratic equations, we observe that U2

(solving quadratic equations in p, q-form) is a special case of U1

(solving general quadratic equations). Hence, each algorithm for
U1 is automatically an algorithm for U2, and so

U2 ≤Alg U1. (4.2)

Following Equations (4.1) and (4.2) we may claim that U1 and
U2 are equally hard. This means that either both problems are



138 4 Limits of Computability

algorithmically solvable or both are not algorithmically solvable.
Clearly, we know in this special case of solving quadratic equations
that the first possibility is true.

In general, the reductions need not be so simple as the one pre-
sented. To prove

U1 ≤Alg U2

one can need to apply the algorithm B solving U2 several times
for different inputs and additionally to work on the outputs of
B in order to compute the correct results for U1. To illustrate
such a more general reduction, we present the following exam-
ple.

Example 4.2 We assume that everybody is familiar with the
Pythagorean theorem, which says that in any right-angled triangle
(Fig. 4.9) the equality

c2 = a2 + b2

holds. In other words

The square of the length of the longest side of any right-
angled triangle is equal to the sum of the squares of the
lengths of the two shorter sides.

In this way, we obtain an algorithm B� that for given lengths
of two sides of a right-angled triangle computes the length of the
third side. For instance, for known a and b, one can compute c
using the formula

c =
√

a2 + b2.

If a and c are known, one can compute b as

b =
√

c2 − a2.

Let us denote by U� the problem of computing the missing side
length of a right-angled triangle.

Assume now a new task UArea. For a given equilateral triangle
(Fig. 4.10) with side lengths m, one has to compute the area of
the triangle. We see (Fig. 4.10) that the area of such a triangle is



4.4 Reduction Method 139

Fig. 4.9

m

2
· h

where h is the height of the triangle (Fig. 4.10).

Fig. 4.10

We are able to show
UArea ≤Alg U�

by reducing solving UArea to solving U�. How to do it is depicted
in Fig. 4.11.

We designed an algorithm AArea for solving UArea under the as-
sumption that one has an algorithm B� for solving U� (for com-
puting the missing side length in a right-angled triangle). We see
in Fig. 4.11 that one needs the height h of the triangle in order



140 4 Limits of Computability

Fig. 4.11

to compute the area of the triangle. The height h is the length of
the side CD of the right-angled triangle DBC. We also see that
the length of the side DB is equal to m. Algorithm A in Fig. 4.11
uses these facts to compute the values a and c and use them as
inputs for B�. The algorithm B� computes the missing length
b of �DBC, which is the height h of �ABC. Finally, the algo-
rithm C computes the area of �ABC from the values of m and
b. �
Exercise 4.12 Consider the problem UPyr of computing the height of a pyramid
with quadratic base of size m × m and the lengths of the edges also equal to m.
Solve this task by showing UPyr ≤Alg U�. Show the reduction as we did for Fig.
4.11.

[Hint: Consider the possibility of applying the algorithm B� twice for different
inputs.]

Exercise 4.13 (challenge) Let U2lin denote the problem of solving a system of
two linear equations

a11x + a12y = b1

a21x + a22y = b2



4.4 Reduction Method 141

Fig. 4.12

with two unknown x and y. Let U3lin denote the problem of solving a system of
three linear equations

a11x + a12y + a13z = b1

a21x + a22y + a23z = b2

a31x + a32y + a33z = b3

with three unknown x, y, and z. Show that U3lin ≤Alg U2lin.

We saw how reductions can be used to develop new methods for
solving problems by using known methods for solving other prob-
lems. In this way, one uses reduction to extend the positive results
about algorithmic solvability.

But our aim is not to use reduction as a means for designing new
algorithms (i.e., for broadcasting positive messages about algo-
rithmic solvability). We aim to use reduction as an instrument for
spreading negative messages about algorithmic unsolvability. How
can one reverse a method for designing positive results to a method
for proving negative results? We outlined this idea already at the
beginning of this chapter. If one is able to prove

U1 ≤Alg U2

by a reduction and one knows that U1 is not algorithmically solv-
able, then one can conclude that U2 is also not algorithmically
solvable.



142 4 Limits of Computability

There is a simple difference between proving

U1 ≤Alg U2

for extending algorithmic solvability to a new problem and for
showing algorithmic unsolvability. For deriving a positive result,
one already has an algorithm for U2 and one tries to use it in order
to develop an algorithm for U1. To broaden negative results about
unsolvability, we do not have any algorithm for U2. We only assume
that there exists an algorithm solving U2. Under this assumption
we build an algorithm that solves U1. This means that we have
to work with the hypothetical existence of an algorithm A2 for U2

and use it to design an algorithm for U1.

Applying reduction to show the algorithmic solvability of a prob-
lem corresponds to a direct proof (direct argumentation) that was
introduced in Chapter 1. Using reduction for proving the nonex-
istence of any algorithm for solving the problem considered corre-
sponds to an indirect proof, whose schema was presented in Section
1.2. To get a transparent connection to something known, we give
an example from geometry first, and then we switch to algorith-
mics.

Example 4.3 One knows that it is impossible to partition an ar-
bitrary given angle into three equal-sided angles by means of a
ruler and a pair of compasses. In other words, there is no method
as a sequence of simple construction steps executable by means
of a ruler and a pair of compasses that would guarantee a suc-
cessful geometric partitioning of any angle into three equal-sided
angles. The proof of this negative result is far from being obvi-
ous and so we prefer here to trust the mathematicians and be-
lieve it.

On the other hand, one may know that there are simple methods
for geometric doubling or halving of each angle.

For instance, Fig. 4.13 outlines how to double the angle ∠ab
between two lines a and b. An RC-algorithm (a ruler–compass-
algorithm) for doubling an angle can work as follows:



4.4 Reduction Method 143

Fig. 4.13: Doubling an angle

1. Take an arbitrary positive distance r with the compass and
draw a circle kM with center M (the intersection of a and b)
and radius r.

2. Denote by A the intersection of the circle km and the line a,
and denote by B the intersection of kM and the line b.

3. Take the distance AB between A and B using the compass and
draw a circle kB with center B and radius AB.

4. Denote by C the intersection of the circles km and kB that is
different from A.

5. Connect the points M and C with a line.

We see that the angle ∠AMC between the straight line a and the
straight line connecting M and C is twice as large as the original
angle ∠ab = ∠AMB.

Now, our aim is to show that there do not exist any RC-algorithms
that can partition an arbitrary angle into 6 equal-sided parts.
This does not look easier than to prove the nonexistence of any
RC-algorithm for partitioning angles into three equal-sided an-
gles. Our advantage is that we are not required to use this hard
way of creating a nonexistence proof. We know already that one
cannot partition angles into three equal-sided parts by means of
a ruler and a compass. We use this fact to reach our aim effi-
ciently.



144 4 Limits of Computability

Fig. 4.14

How to proceed? We assume the opposite of what we want to
prove and show under this assumption that one can partition an-
gles into three equal-sided parts using a RC-algorithm. But this
contradicts the already known fact about the impossibility of par-
titioning angles into three equal-sided parts. More precisely, we
assume that there is a RC-algorithm A6 for partitioning angles
into 6 equal-sided angles and use A6 to design a RC-algorithm
A3 that partitions each given angle into three equal-sided angles.
Since A3 does not exist (as we already know), A6 cannot exist
either.

We describe the reduction of the problem of partitioning angles
into three equal-sided angles to the problem of partitioning an-
gles into 6 equal-sided parts as follows (Fig. 4.14). We assume
that one has a RC-algorithm A6 for partitioning angles into 6
equal-sided parts. We design a RC-algorithm A3 that has an an-
gle W as its input. At the beginning, A3 applies A6 in order to
partition W into 6 equal-sided angles w1, w2, w3, w4, w5, w6 (Fig.
4.15). Then, A3 joins the angles w1 and w2 into the angle w12.
Similarly, A3 joins w3 and w4 into an angle w34, and w5 and w6



4.4 Reduction Method 145

Fig. 4.15

are joined into w56 (Fig. 4.15). We see that partitioning W into
three angles w12, w34, and w56 corresponds to the partitioning of
W .

Using the language of the indirect argumentation (indirect proof),
the reduction in Fig. 4.14 corresponds to the following implication:

If there is a RC-algorithm for partitioning angles into 6
equal-sided parts, then there is a RC-algorithm for parti-
tioning angles into 3 equal-sided angles.

Following the definition of the notion “implication”, the truth-
fulness of this implication proved above (Fig. 4.14) excludes the
second situation from the 4 possible situations listed in Fig. 4.16.

situation 6 parts 3 parts

1 possible possible

2 possible impossible

3 impossible possible

4 impossible impossible

Fig. 4.16

Taking into account that partitioning angles into three equal-
sided parts is impossible, situations 1 and 3 are excluded, too.
Hence, the only remaining possible situation is situation 4. Sit-
uation 4 contains the impossibility of partitioning angles into 6
equal-sided parts, and this completes our indirect argumentation
for the nonexistence of a RC-algorithm partitioning angles into 6
equal-sided angles. �



146 4 Limits of Computability

Exercise 4.14 The problem of partitioning of an angle into three parts also has
the following simplified representation. The task is to construct, for any given angle
W , an angle V by means of a ruler and a compass such that the size of V is one third
of the size of W . One can prove that this simplification does not change anything
about the RC-unsolvability of this problem. Use this fact to create in a similar way
as in Fig. 4.14 reductions (proofs) showing the nonexistence of RC-algorithms for
constructing angles of the size of

(i) one sixth
(ii) one ninth

of any given angle.

Now, we return from the world of RC-algorithms into the world of
general algorithms. Our problem DIAG plays here a similar role
as the problem of partitioning angles into three equal-sided parts
does for RC-algorithms. Starting from algorithmic unsolvability
of a problem, we want to conclude algorithmic unsolvability of
another problem.

The reduction schema for U1 ≤Alg U2 is outlined in Fig. 4.17.

Fig. 4.17



4.4 Reduction Method 147

The algorithm A1 solving the problem U1 is created as follows.
First, the input instance y of U1 is processed by an algorithm B
that transforms y into a problem instance x of the problem U2.
Following our assumption about the existence of an algorithm A2

solving U2, the algorithm A2 computes the correct solution for the
input x. As one may see in Fig. 4.17, A2 can be used repeatedly
several times. Finally, an algorithm C processes all outputs of A2

and computes the final result for the problem instance y of U1.
We call attention to the important fact that A2, B, and C are
algorithms and therefore they provide their outputs in a final time.
The number of requests on A2 must be finite and so the loop
containing B and A2 can run only finitely many times. Therefore,
we can conclude that A1 is an algorithm for U1 because it provides
the correct output in a finite time for any input instance of U1.

Next, we introduce two new decision problems that are of interest
for program developers.

UNIV (the universal problem)
Input: a program P and an input i ∈ IN for P
Output: YES, if P accepts the input i, i.e., if i is in M(P ).

NO, if P does not accept i
(i.e., if i /∈ M(P )), which means that P either
halts and rejects i or P works infinitely long on
the input i.

HALT (the halting problem)
Input: a program P and a natural number i
Output: YES, if P halts on the input i

(i.e., if P finishes its work on i in a finite time).
NO, if P does not halt on i

(i.e., if P has an infinite computation on i re-
peating a loop infinitely many times).

The halting problem is one of the fundamental tasks in testing soft-
ware products. We already know that only those programs can be
considered to be algorithms that never get into an infinite compu-
tation. Hence, an important part of checking the correct function-
ality of programs is to verify whether they always (for every input)



148 4 Limits of Computability

guarantee an output in a finite time. The halting problem HALT
is a simple version of such testing. We are only asking whether a
given program P halts on a concrete input i. (The real question is
whether a given program halts on every possible input.) Later, we
will see that even this simplified testing problem is algorithmically
unsolvable.

The universal problem UNIV is directly related to verifying the
correct functionality of a program solving a decision problem. We
test whether P provides the correct result YES or NO on an input
i. Now, somebody can propose the following simple way to solve
UNIV. Simulate the work of P on i and look at whether P outputs
YES or NO. Certainly, one can do it if one has a guarantee that P
halts on i (i.e., that P is an algorithm). But we do not have this
guarantee. If P executes an infinite computation on i, we would
simulate the work of P on i infinitely long and would never get the
answer to our question of whether P accepts i or not. An algorithm
for the universal problem is not allowed to work infinitely long on
any input P and i, and so it is not allowed to execute an infinite
simulation.

Following these considerations, we get the impression that the
halting problem and the universal problem are strongly inter-
locked. Really, we show that these problems are equally hard.

First we show that

UNIV ≤Alg HALT

i.e., that

UNIV is not harder than HALT with respect to algorithmical
solvability.

What do we have to show? We have to show that the existence of
an algorithm for HALT assures the existence of an algorithm that
solves UNIV. Following our schema of indirect proofs, we assume
that one has an algorithm AHALT solving the halting problem.
Using this assumption, we build an algorithm B that solves UNIV
(Fig. 4.18).



4.4 Reduction Method 149

Fig. 4.18

The algorithm B works on any input (P, i) as follows:

1. B transfers its input (P, i) without any change to the algorithm
AHALT.

2. The algorithm AHALT decides (in finite time) whether P halts
on i or not. AHALT answers YES if P halts on i. If P does not
hold on i, AHALT answers NO.

3. If AHALT outputs NO, B is sure about the fact that P does not
accept i (because P works on i infinitely long) and provides
the final output NO saying that “i is not in M(P )”.

4. If AHALT outputs YES, then B simulates using a subprogram
S (Fig. 4.18) the finite computation of P on i. Executing this
finite simulation B sees whether P accepts i or not and outputs
the corresponding claim.

Following the construction of B, we immediately see that B takes
the right decision with respect to the membership of i in M(P ).
We still have to verify whether B always finishes its work in a
finite time. Under the assumption that AHALT is an algorithm for



150 4 Limits of Computability

HALT, we know that AHALT provides outputs in a finite time, and
so B cannot run for an infinitely long time in its part AHALT. The
simulation program S starts to work only if one has the guarantee
that the computation of P on i is finite. Therefore, the simulation
runs always in a finite time, and hence B cannot get into an infinite
repetition of a loop in the part S. Summarizing, B always halts,
and so B is an algorithm that solves the universal problem.

We showed above that UNIV is easier than or equally hard as
HALT. Our aim is to show that these problems are equally hard.
Hence, we have to show that the opposite relation

HALT ≤Alg UNIV

holds, too. This means, we have to show that the algorithmic solv-
ability of UNIV implies the algorithmic solvability of HALT. Let
AUNIV be an algorithm that decides UNIV. Under this assumption
we design an algorithm D that solves HALT. For any input (P, i),
the algorithm D works as follows (Fig. 4.19).

Fig. 4.19



4.4 Reduction Method 151

1. D gives P to a subprogram C that transforms P into P ′ in the
following way. C finds all rows of P containing the instruction
output (“NO”) and exchanges “NO” for “YES”. Hence, the
constructed program never outputs “NO” and the following is
true:

Each finite computation of P finishes with the output
YES and P ′ accepts exactly those natural numbers i on
which P halts.

2. D gives P ′ and i as inputs to AUNIV (Fig. 4.19). AUNIV decides
whether i is in M(P ′) or not.

3. D takes over the answer YES or NO of AUNIV as the final
answer for its input (P, i).

Exercise 4.15 Provide a detailed explanation for why D is an algorithm that solves
the halting problem.

Exercise 4.16 (challenge) The reduction for AUNIV ≤Alg AHALT in Fig. 4.18
and the reduction AHALT ≤Alg AUNIV (Fig. 4.19) look different. Usually, one prefers
the kind of reduction presented in Fig. 4.19 because it corresponds to the typical
reduction in mathematics. Here, one transforms the input instance (P, i) of HALT
to an input instance (P ′, i) of UNIV in such a way that the solution for the instance
(P, i) of HALT is exactly the same as the solution for (P ′, i) of UNIV. Due to this,
one can take the answer of AUNIV for (P ′, i) as the final output for the input (P, i)
of HALT. The schema of this reduction is the simple schema presented in Fig. 4.8
and Fig. 4.19. Find such a simple reduction for the proof of AUNIV ≤Alg AHALT.
This means you have to algorithmically transform the instance (P, i) of UNIV into
such an instance (P ′, i) that the output of AHALT for (P ′, i) (i.e., the reduction for
(P ′, i) of the halting problem) corresponds to the solution for the instance (P, i) of
UNIV.

Above, we showed that the universal problem and the halting
problem are equally hard with respect to algorithmic solvability.
This means that either both problems are algorithmically solvable
or both are algorithmically unsolvable. As we already mentioned,
we aim to prove their unsolvability. To do that, it is sufficient to
show that one of them is not easier than (N, M(DIAG)). Here, we
prove

(N, M(DIAG)) ≤Alg UNIV.



152 4 Limits of Computability

We assume the existence of an algorithm AUNIV for UNIV and use
AUNIV to create an algorithm ADIAG that decides (N, M(DIAG)).
For any natural number i, the algorithm ADIAG has to compute
the answer YES if the i-th program Pi does not accept the number
i and the answer NO if Pi accepts i.

For any input i, our hypothetical algorithm ADIAG works on i as
follows (Fig. 4.20):

Fig. 4.20

1. ADIAG gives i to a subprogram Agen that generates the i-th
program Pi.

2. ADIAG gives i and Pi as inputs to the hypothetical algorithm
AUNIV. AUNIV decides whether Pi accepts i (providing the an-
swer YES) or not (providing the answer NO).

3. ADIAG exchanges the answers of AUNIV. If AUNIV outputted
YES (i.e., i is in M(Pi)), then i does not belong to M(DIAG)
and AUNIV computes NO. If AUNIV computed NO (i.e., i is not
in M(Pi)), then i is in M(DIAG) and AUNIV correctly answers
YES (Fig. 4.20).



4.4 Reduction Method 153

Following the description of the work of ADIAG on i, we see that
ADIAG provides the correct answers under the assumption that
AUNIV and Agen work correctly. The fact that AUNIV is an algo-
rithm solving UNIV is our assumption. The only open question is
whether one can build an algorithm Agen that, for each given nat-
ural number i, constructs the i-th program Pi in a finite time. Agen

can work as follows (Fig. 4.21). It generates texts over the keyboard
alphabet one after the other in the order described at the begin-
ning of this chapter. For each text generated, Agen uses a compiler
in order to check whether the text is a program representation or
not. Moreover, Agen counts the number of positive compiler an-
swers. After Agen gets i positive answers, it knows that the last
text generated is the i-th program Pi. The structure (flowchart)
of the algorithm Agen is outlined in Fig. 4.21.

Exercise 4.17 Show that (N, M(DIAG)) ≤Alg HALT is true by a reduction from
(N, M(DIAG)) to HALT.

Exercise 4.18 Let M(DIAG) be the set of all natural numbers i, such that Pi

accepts i. Hence, M(DIAG) contains exactly those natural numbers that do not
belong to M(DIAG). Show by a reduction that

(N, M(DIAG)) ≤Alg (N, M(DIAG)) and (N, M(DIAG)) ≤Alg (N, M(DIAG)).

We showed that the decision problem (N, M(DIAG)), the universal
problem UNIV, and the halting problem HALT are not algorithmi-
cally solvable. The problems UNIV and HALT are very important
for testing of programs and so are of large interest in software
engineering. Unfortunately, the reality is that all important tasks
related to program testing are algorithmically unsolvable. How
bad this is can be imagined by considering the unsolvability of the
following simple task.

Let f0 be a function from natural numbers to natural numbers
that is equal to 0 for every input i ∈ N. Such functions are called
constant functions because the result 0 is completely independent
of the input (of the argument). The following program

0 Output ← ‘‘0’’

1 End,



154 4 Limits of Computability

Fig. 4.21

computes f0(i) for each i, and we see that it does not need to read
the input value i because i does not influence the output. Despite
the simplicity of this task, there is no algorithm that is able to
decide for a given program P whether P computes f0 or not (i.e.,
whether P is a correct program for computing f0). To understand
it properly, note that input instances of this problem may also be
very long complex programs doing additionally a lot of pointless
work. The question is only whether at the end the correct result
“0” is computed or not.



4.5 Summary 155

Exercise 4.19 (challenge) Let M0 be the set of all programs with M(P ) = ∅.
In other words, M0 contains all programs that, for each input, either output NO
or execute an infinite computation. Prove that it is not algorithmically decidable
whether a given program P belongs to M0 (whether P does not accept any input)
or not.

In this chapter, we learned something very important. All syn-
tactic questions and problems such as “Is a given text a program
representation” are algorithmically decidable. We are even able to
construct the i-th program Pi for any given i. All the semantic
questions and problems about the meaning and the correctness of
programs are not algorithmically solvable.

4.5 Summary of the Most Important
Discoveries

We destroyed the dream from the early 20th century about au-
tomating everything. We discovered the existence of tasks that
cannot be automatically solved by means of computers controlled by
algorithms. This claim is true independently of current and future
computer technologies.

Among the algorithmically unsolvable problems, one can find
many tasks of interest such as

• Is a program correct? Does it fit the aim for which it was de-
veloped?

• Does a program avoid infinite computations (endless repetitions
of a loop)?

In computer science, there are several huge research communities
focusing on testing programs.7 Unfortunately, even such simple
questions as whether a given program computes a constant func-
tion are not algorithmically solvable. The scientists in this area are
satisfied if they are able to develop algorithms for testing some
kinds of partial correctness of programs. For instance, they try to

7 This witnesses the importance of program testing in practice.



156 4 Limits of Computability

develop automatic testing of programs in some very special rep-
resentation or at least to find some typical errors without any
guarantee that all errors have been found.

For computing tasks related to program testing, one distinguishes
between syntactic and semantic problems. Syntactic tasks are
usually related to the correct representation of a program in the
formalism of a given programming language, and these problem
settings are algorithmically solvable. Semantic questions are re-
lated to the meaning of programs. For instance:

• What does a given program compute? Which problem does the
program solve?

• Does the program developed solve the given problem?

• Does a given program halt on a given input or does a program
always (for all inputs) halt?

• Does a given program accept a given input?

All nontrivial semantic tasks about programs are not algorithmi-
cally solvable.

To discover the above presented facts, we learned two proof tech-
niques that can also be viewed as research methods. The first tech-
nique was the diagonalization method that we already applied in
the study of infinities in Chapter 3. Using it, we were able to show
that the number of problems is a larger infinity than the number
of programs. Consequently, there exist algorithmically unsolvable
problems. The first algorithmically unsolvable problem we discov-
ered was the decision problem (N, M(DIAG)). To extend its al-
gorithmic unsolvability to other problems of practical interest, we
used the reduction method. This method was used for a long time
in mathematics in order to transform algorithmic solvability from
problem to problem (i.e., for broadcasting positive messages about
automatic solvability). The idea of the reduction method is to say
that

P1 is not harder than P2, P1 ≤Alg P2,



4.5 Summary 157

if, assuming the existence of an algorithm for P2, one can build an
algorithm solving P1. If this is true, we say that P1 is reducible to
P2.

The positive interpretation of the fact P1 ≤Alg P2 is that algo-
rithmic solvability of P2 implies the algorithmic solvability of P1.
The negative meaning of P1 ≤Alg P2 we used is that the algorith-
mic unsolvability of P2 follows from the algorithmic unsolvability
of P1. We applied the reduction method in order to derive the
algorithmic unsolvability of the halting problem and of the uni-
versal problem from the algorithmic unsolvability of the diagonal
problem.

Solutions to Some Exercises

Exercise 4.3 The number of real numbers with a finite representation is exactly
|N|. We know that 2 · |N| = |N| and even that |N| · |N| = |N|. Since |R| > |N|, we
obtain

|R| > |N| · |N| .
Therefore, we see that the number of real numbers with a finite representation is an
infinitely small fraction of the set of all real numbers.

Exercise 4.6 One can see the first 17 positions of the binary representation of
QUAD in the following table:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

QUAD 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0

You can easily extend this table for arbitrarily many positions.

Exercise 4.7 The first 10 positions of DIAG for the hypothetical table in Fig. 4.7
are

DIAG = 0101000011.

Exercise 4.9 We aim to show that the set

M(2-DIAG) = the set of all even positive integers 2i, such that 2i is not in
M(Pi)

is not decidable. The idea is again based on diagonalization as presented in Fig. 4.3.
We create 2-DIAG in such a way that M(2-DIAG) differs from each row of the table.
The only difference to constructing DIAG is that 2-DIAG differs from the i-th row
of the table in position 2i (instead of i in the case of DIAG). The following table in
Fig. 4.22 provides a transparent explanation of the idea presented above.



158 4 Limits of Computability

0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
M(P0) 0 0 1 1 0 1 1 0 1 1 1 1 0

M(P1) 1 0 1 1 0 0 0 0 1 0 1 1 0

M(P2) 1 1 1 1 1 1 1 1 0 0 0 1 0

M(P3) 0 1 0 1 0 0 0 0 1 1 1 0 0

M(P4) 1 0 1 0 1 0 1 0 1 0 1 0 1

M(P5) 0 1 0 1 1 0 0 1 0 1 0 1 1

M(P6) 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
...

...
. . .

Fig. 4.22

The positions in boxes correspond to the intersections of the i-th row with the 2i-th
column. The set 2-DIAG differs from the rows of the table at least in the values
written on these positions. Hence, the first 13 positions of 2-DIAG with respect to
the hypothetical table in Fig. 4.22 are

2-DIAG = 1000001000101 . . .

We see that we took 0 for each odd position of 2-DIAG, and we note that the values
of these positions do not have any influence on the undecidability of 2-DIAG. The
underlined binary values starting with the 0-th position are related to the values
in the boxes in the table in Fig. 2.2. In this way, the underlined bit 1 on the 0-th
position of 2-DIAG guaranteed that 2-DIAG is different from the 0-th row of the
table. The underlined bit 0 on the second position guarantees that 2-DIAG does
not lie in the second row, etc. Bit 1 on the 12-th position of 2-DIAG ensures that
2-DIAG differs from the 6-th row.

Exercise 4.17 We aim to show that having an algorithm AHALT solving HALT,
one can algorithmically recognize the set M(DIAG). We start in a similar way as in
Fig. 4.20, where the reduction (|N| , M(DIAG)) ≤Alg UNIV was outlined. Our task
is to decide for a given i whether i belongs to M(DIAG) (i.e., whether Pi does not
accept i) or not. We again use Agen in order to generate the i-th program Pi and
ask the algorithm AHALT whether Pi halts on i or not (Fig. 4.23).

If Pi does not halt on i, then i does not belong to M(Pi) and one knows with
certainty that i /∈ M(Pi) (Pi does not accept i), and so that the correct an-
swer is YES (“i ∈ M(DIAG)”). If Pi halts on i, then we continue similarly
as in the reduction presented in Fig. 4.18. We simulate the work of Pi on i
in a finite time and convert the result of the simulation. If Pi does not ac-
cept i, then we accept i. If Pi accepts i, then we do not accept the number i
(Fig. 4.23).



4.5 Summary 159

Fig. 4.23



There is no greater loss than time which has been wasted

Michelangelo Buonarroti

Chapter 5

Complexity Theory or What to
Do When the Energy of the
Universe Doesn’t Suffice for
Performing a Computation?

5.1 Introduction to Complexity Theory

In Chapter 4, we recognized that there exist interesting comput-
ing tasks that cannot be solved by means of algorithms. Moreover,
we learned how to show that some problems are not algorithmi-
cally solvable. Until the early 1960s, the classification of comput-
ing problems into algorithmically solvable and algorithmically un-
solvable dominated the research on fundamentals. The situation
changed when more and more computers were used for civil pur-
poses. Computers started to be frequently used for scheduling and
optimization of working processes in industry and also to simu-

J. Hromkovič, Algorithmic Adventures, DOI 10.1007/978-3-540-85986-4 5,
c© Springer-Verlag Berlin Heidelberg 2009

161

http://dx.doi.org/10.1007/978-3-540-85986-4_5


162 5 Complexity Theory

late expensive research experiments. Trying to write programs for
such purposes, the algorithm designers and programers recognized
that many of the tasks to be solved by programmed computers
are real challenges. Algorithms were designed, programs were im-
plemented, computers ran and ran them, and all were covered in
sweat in the computer room because the cooling of the proces-
sors was a serious problem at that time. The only problem was
that the expected results of the computer work were not in view.
At that time, the computers had to be frequently maintained,
and so the computing time was restricted to the interval between
two services. This interval did not suffice to successfully finish the
computations. Computer scientists were not able to solve several
problems in spite of the fact that these problems were algorith-
mically solvable. They were able to design algorithms for given
problems and implement them, but not to use them in order to
solve the problems. One saw the necessity of predicting the working
time of algorithms designed. Therefore, the fundamental processes
of building paradigmatic notions were activated once again. The
notions of computational complexity of algorithms and, to some
extent, of algorithmic problems were introduced. Soon, computer
scientists started to imagine what the meaning of efficient com-
putations really is. Many algorithms were not applicable not only
because they were not able to finish their computations in a few
days, but because the age of the Universe was too short for per-
forming them. Hence, such algorithms were not useful. One could
say, “OK, let us look for more efficient algorithms for the problems
considered.” The trouble was that there were several hundreds of
problems (computing tasks) for which, in spite of a big effort,
nobody was able to find an efficient algorithm. Again, principal
question were posed:

Are we unable to find an efficient way for solving some prob-
lems because our knowledge in algorithmics is too poor?

Or do there exist algorithmically solvable problems that do
not admit any efficient algorithm to solve (i.e., do there
exist problems that are not practically solvable in spite of
the fact they are algorithmically solvable)?



5.2 How to Measure Computational Complexity? 163

These questions led to the development of complexity theory, the
aim of which is to measure the amount of computer resources
needed for solving concrete problems, and so to classify algorith-
mic tasks with respect to their computational hardness. The main
goal of complexity theory is to partition algorithmic problems into
the class of practically solvable (tractable) problems and the class
of intractable (practically unsolvable) problems. Complexity the-
ory showed that there exist such computing problems that the
whole energy of the Universe does not suffice for computing their
solutions. Thus, we learned the following:

Algorithmically solvable does not mean tractable (practically
solvable).

To recognize which problems are tractable and to develop efficient
algorithms for tractable problems is, up to now, one of the hardest
research topics in computer science.

The proofs and arguments in complexity theory are typically so
involved and deep that all we have mastered up to now looks like
a children’s game in comparison with the considerations related to
the existence of efficient algorithms. Therefore, we do not go into
technical detail in this chapter. Fortunately, we do not need to
present any involved technicalities in order to imagine the miracles
we aim to introduce. The only thing we need is to understand some
of the concepts and discoveries of complexity theory, this is the aim
of this chapter.

5.2 How to Measure Computational
Complexity?

The notion of complexity in the sense of the amount of computer
work is central to computer science and the most important notion
of computer science after the notions of algorithm and program. If
one works in a precise mathematical way, one has to first agree on a
mathematical model of algorithms and then to measure complexity



164 5 Complexity Theory

as the number of computer model instructions performed. Fortu-
nately, this precise measurement is necessary only for deriving the
quantitative laws of information processing; their presentation is
omitted here because of their high degree of technicality. For the
usual work with algorithms, devoted to their design and implemen-
tation, the following simple approach for complexity measurement
provides sufficiently trustable statements.

How can one measure the complexity of an algorithm in a simple
way? Let A be an algorithm that solves a problem U . First we
have to say what the complexity of A on a problem instance I is.
The simplest kind of measurement defines the complexity of A
on I as

the number of computer instructions performed in the com-
putation of A on I.

Because one assumes that the computer instructions are executed
one after each other, one speaks about the time complexity of A
on I. Since the time complexity is the most important measure
for judging the efficiency of algorithms, we often use the term
complexity instead of time complexity in what follows. The second
most important complexity for us is the space complexity of A
on I, which is

the number of variables and so the number of registers
(memory units) used in the computation of A on I.

For instance, consider the task of computing the value of a
quadratic polynomial

a · x2 + b · x + c

for given integers

a = 3, b = 4, c = 5, and x = 7 .

A naive algorithm can work as follows:

L ← b · x

{Multiply b by x and save the result in the variable (register
named by) L}



5.2 How to Measure Computational Complexity? 165

X ← x · x

Y ← a · X

{After that the value of ax2 is saved in Y }

D ← L + c

{After that the value b · x + c is saved in D}

R ← Y + D

{After that the result ax2 + bx + c is saved in R}

We immediately see that, for given numbers a, b, c, and x, the
following 5 instructions (arithmetic operations) are executed:

b · x → L , x · x → X , a · X → Y , L + c → D , Y + D → R

4 · 7 = 28 , 7 · 7 = 49 , 3 · 49 = 147 , 28 + 5 = 33 , 147 + 33 = 180

Hence, the time complexity of A on I = (a = 3, b = 4, c = 5, x = 7)
is exactly 5. If one uses different registers for saving the values of
a, b, c, x, L, X, Y, D, and R, then the space complexity of A on I is
exactly 9. We observe that the values of a, b, c, and x do not have
any influence on the complexity of A. Because of that we say that
the time complexity of A is equal to 5 for any problem instance
(for any quadratic polynomial).

Exercise 5.1 Transform the algorithm A into a program in the programming lan-
guage of Chapter 2 that allows simple machine instructions only and forces us also
to think about reading the values of a, b, c, and x.

(a) What is the time complexity of A in your implementation in this simple pro-
gramming language?

(b) Can you rewrite the program in such a way that it uses fewer than 9 registers?

The procedure of the algorithm A can be made transparent by
using the following representation of the polynomial:

a · x · x + b · x + c .

Here, one immediately sees the three multiplications and two ad-
ditions that have to be performed. Next, we try to improve the
algorithm. Applying the well-known distributive law, we obtain



166 5 Complexity Theory

a · x · x + b · x = (a · x + b) · x ,

and so the following representation of any quadratic polynomial:

ax2 + bx + c = (ax + b) · x + c .

This new representation contains only two multiplications and two
additions, and so the complexity of the corresponding algorithm
is 4.

Exercise 5.2 Consider a polynomial of degree four:

f(x) = a4 · x4 + a3 · x3 + a2 · x2 + a1 · x + a0 .

Explain how one can compute the value of the polynomial for given a4, a3, a2, a1, a0,
and x by 4 multiplications and 4 additions only.

Exercise 5.3 (challenge) Design an algorithm that can compute the value of each
polynomial of degree n

an · xn + an−1 · xn−1 + . . . + a2 · x2 + a1 · x + a0

for given values of a0, a1, . . . , an, and x by n multiplications and n additions only.

We saw that the amount of computer work depends on our skill
in the process of the algorithm design. Computing x16 provides
a still more impressive example than the polynomial evaluation.
One can write x16 by definition as

x · x · x · x · x · x · x · x · x · x · x · x · x · x · x · x ,

and we see that 15 multiplications have to be executed in order to
compute x16. The following representation

x16 = (((x2)2)2)2

of x16 provides us with the following method

x2 = x · x , x4 = x2 · x2 , x8 = x4 · x4 , x16 = x8 · x8

L ← x · x , L ← L · L , L ← L · L , L ← L · L

for computing x16. Applying this method, only 4 multiplications
suffice to compute x16.



5.2 How to Measure Computational Complexity? 167

Exercise 5.4 Show how to compute

(a) x6 using 3 multiplications,
(b) x64 using 6 multiplications,
(c) x18 using 5 multiplications,
(d) x45 using 8 multiplications.

Is it possible to compute x45 by fewer than 8 multiplications?

The situation when one has the same complexity for computing
any instance of a problem such as the evaluation of a quadratic
polynomial is not typical. For the evaluation of quadratic polyno-
mials we got the same complexity for each instance because the
problem is simple and our measurement was rough. Our complex-
ity measurement is correct, assuming all concrete input values for
a, b, c, and x are numbers that can be saved each in one register of
a considered size of 16 or 32 bits. But what happens if the num-
bers are so large that their representation is several hundreds of
bits long? Is it allowed to count the same amount of computer
work for an operation over such large numbers as for computing
an arithmetic operation over 16-bit integers for which the com-
puter hardware was developed? If in some applications it really
happens that one has to compute an arithmetic operation over big
numbers, then one is required to write a program that computes
this operation by means of the available operations over numbers
of a regular size. But we do not want to burden you with this
additional technical problem, and therefore, we assume that all
forthcoming numbers do not exceed a reasonable size. Because
of this assumption, we may measure the time complexity as the
number of arithmetic operations, number comparisons, and simi-
lar fundamental instructions of a computer or of a programming
language.

Using the assumption about restricted sizes of numbers in our com-
putations does not change the fact that it is not typical to have
the same amount of computer work for each problem instance. If
one has to create a telephone directory by sorting the names for
a village with 3000 inhabitants and for a city with two million
inhabitants, then, certainly, the amount of work necessary is es-
sentially higher in the second case than in the first case. This is not



168 5 Complexity Theory

surprising but this is the kernel of the story. We expect that the
complexity of computing a solution has something to do with the
size of the input (with the amount of input data). For instance,
in the case of sorting, one can view the input size as the number
of given objects to be sorted (3000 or two million inhabitants).
For the problem of computing values of arbitrary polynomials on
given arguments, one can take the degree of the polynomial (i.e.,
the number of coefficients minus one) as the input size. In this
case, for the polynomial

anxn + an−1x
n−1 + . . . + a2x

2 + a1x + a0

the input is represented by the following n + 2 numbers

(an, an−1, an−2, . . . , a2, a1, a0, x) ,

and we order the size n to this problem instance. A naive algorithm
A computes the value of a polynomial of degree n as follows:

x · x = x2

| {z }

1st multiplication

x · x2 = x3

| {z }

2nd multiplication

· · · x · xn−1 = xn

| {z }

(n−1)th multiplication

a1 · x
| {z }

nth multiplication

a2 · x2

| {z }

(n+1)th multiplication

· · · an · xn

| {z }

(2n+1)th multiplication

and then summing

a0 + a1x + a2x
2 + . . . + anxn

by using n additions we get the value of the polynomial for the
argument value x.

a0 + a1x + · · · + anxn

↑ ↑ ↑
1st addition 2nd addition nth addition

Hence, the time complexity of the algorithm A is the function

TimeA(n) = 2n + 1︸ ︷︷ ︸
multiplications

+ n︸︷︷︸
additions

= 3n + 1 .



5.3 Why Is the Complexity Measurement Useful? 169

Thus, we imagine that the time complexity TimeA of an al-
gorithm A is

a function of the input size that measures the number
TimeA(n) of operations that is sufficient and necessary to
solve any problem instance of size n using the algorithm A.

It may happen that different input instances of the same size force
different amounts of computer work to be solved. In such a case,
TimeA(n) is considered to be the time complexity of A on the
hardest input instance of the size n, i.e., the maximum over the
time complexities of the computations of A on all problem in-
stances of size n. As a result of this definition of TimeA, we are
on the secure side. In this way one has the guarantee that the
algorithm A successfully solves any problem instance of size n by
executing at most TimeA(n) instructions and that there exists a
problem instance of size n on which A executes exactly TimeA(n)
instructions.

5.3 Why Is the Complexity Measurement
Useful?

As in other scientific disciplines, the discovered knowledge serves
to predict the development of various situations and processes of
interest. If one was able to determine the time complexity of an
algorithm,1 then one can reliably predict the running time of the
algorithm on given problem instances without executing the corre-
sponding computations. Additionally, one can compare the grades
(efficiency) of two or more algorithms for the same task by visu-
alizing their complexity functions.

In Fig. 5.1, the curves of two functions, namely 3n − 2 and n2,
are depicted. The x-axis is used for the input size, and the y-axis
corresponds to the time complexity analyzed. We immediately see
that the algorithm with time complexity 3n − 2 is better (more

1 using the so-called algorithm analysis



170 5 Complexity Theory

Fig. 5.1

efficient) than the algorithm with complexity n2 for input sizes
greater than 2. One can easily check this by showing that

3n − 2 < n2

for all natural numbers greater than 2.

Let us consider another example. Let A and B be two algorithms
for a problem U with

TimeA(n) = 2n2 and TimeB(n) = 40n + 7000 .

Since linear functions such as TimeB(n) increase more slowly than
quadratic functions, such as TimeA(n), the question is, up to what
value of the input size is the algorithm B more favorable than the
algorithm A? For these special complexity functions we calculate
this value here. The question is, for which positive integers does
the inequality

2n2 > 40n + 7000

hold? This question is equivalent to the following question (we
reduce both sides of the inequality by 40n + 7000): When does

2n2 − 40n − 7000 > 0

hold? Dividing both sides of the inequality by 2, we obtain



5.3 Why Is the Complexity Measurement Useful? 171

n2 − 20n − 3500 > 0 . (5.1)

Applying the well-known method for solving quadratic equations,
we can calculate the solutions of the equation n2−20n−3500 = 0,
or simply observe that

(n + 50) · (n − 70) = n2 − 20n − 3500 .

Using any of these solution methods we get exactly two solutions
−50 and 70 and we see that the inequality 5.1 is true for n < −50
and n > 70. Because we are interested only in positive integers,
we make the following conclusions:

• B is more favorable than A for problem instances of size greater
than 70.

• A and B are equally suitable for the input size n = 70.

• A is more favorable than B for input sizes between 1 and 69.

Exercise 5.5 Consider three algorithms A, B, and C that solve the same computing
problem. Let TimeA(n) = n3/2 + 1, TimeB(n) = n2 + 7, and TimeC(n) = 5n + 140
be their corresponding complexities. Try to estimate by calculation and by drawing
the function curves which of the three algorithms is the best one for which interval
of input sizes.

Another kind of question posed is the following one. A user knows
exactly how much time one is allowed to wait for the outcome of
the work of an algorithm.

Many interactive applications have a waiting limit below 10 sec-
onds or even much smaller (fractions of a second). If one has a
computer executing 109 computer instructions per second, then
one can perform in 10 seconds computations that consists of at
most 10 · 109 = 1010 instructions. Assume we propose to users an
algorithm with time complexity 5 · n3. They can calculate:

5n3 < 1010 | : 5

n3 < 2 · 109 | 3
√

for both sides

n ≤ 1250 .



172 5 Complexity Theory

Following these calculations, users know that they can apply the
algorithm for input instances of size 1250 and they will successfully
obtain the results in time. Usually, users know exactly the typical
sizes of forthcoming input instances, and so they can immediately
decide whether they want to use this algorithm or they ask for a
faster one.

Assume we have an optimization problem that has a huge number
of solutions, and our task is to find the best one with respect to a
well-defined criterion. This task is very important because it is re-
lated to a big investment such as extending the traffic (railway or
highway) network in a country or finding a placement of senders
and receivers for a wireless network. Because the differences in
costs between distinct solutions may be of the order of many mil-
lions, there is a strong willingness to take enough time to find a
really good solution and to invest money to pay for expensive fast
computer systems and professional algorithmicists searching for
good solutions. Assume the project management operates at the
limits of physically doable and poses the time limit by accepting
computations executing up to 1016 operations. We can visualize
this limit as a line y = 1016 parallel to the x-axis as depicted in
Fig. 5.2. One can see the limit on applying an algorithm A by
looking at the intersection of the line y = 1016 and the curve of
the function TimeA(n). The x coordinate nA of this intersection is
the upper bound on the size of input instances for which one can
guarantee a successful computation in time. Hence, we can look
at our specific large problem instance (better to say at its size)
and we see immediately whether the algorithm is suitable for us
or not.

To realize the importance of efficiency, let us analyze this situation
for a few time complexities. Let TimeA(n) = 3n − 2. Then we
calculate

3n − 2 ≤ 1016 | + 2 to both sides

3n ≤ 1016 + 2 | divide both sides by 3

n ≤ 1
3
(1016 + 2) = nA .



5.3 Why Is the Complexity Measurement Useful? 173

Fig. 5.2

We see that such a huge input size will never be considered, and
so the algorithm A is always applicable. For an algorithm B with
TimeB(n) = n4 we obtain

n4 ≤ 1016 | 4
√

of both sides

n ≤ (1016)1/4 = 104 = 10, 000 .

Hence, the algorithm B is up to nB = 10000 practicable. Because
most typical applications consider essentially smaller input sizes,
one still has to view B as a good, efficient algorithm.

Assume now that TimeC(n) = 10n. Then, the analysis looks as
follows:

10n ≤ 1016 | log10 of both sides

n ≤ 16 .

Hence, the situation is not good. In spite of a huge time limit
of 1016 instructions, we are able to solve small problem instances
only. If one considers the exponential function f(n) = 2n, then one
observes that

2n+1 = 2 · 2n ,



174 5 Complexity Theory

i.e., that +1 in the input size doubles the amount of computer
work. Hence, one can conclude that algorithms with an exponential
time complexity have very restricted applicability.

Exercise 5.6 Assume a computer scientist improves an algorithm C with complex-
ity TimeC(n) = 10n to an algorithm D with TimeD(n) = 4 · (1.2)n. How much does
the situation improve in this way? How large problem instances can be solved in the
limit of 1016 operations using the new algorithm D?

Exercise 5.7 Assume one has a computer, executing 109 instructions per second.
The age of the Universe is smaller than 1018 seconds. We are willing to wait for 1018

seconds. Problem instances of which size can be solved using an algorithm A if its
time complexity is

(i) TimeA(n) = 10 · n2 ?
(ii) TimeA(n) = 50 · n3 ?
(iii) TimeA(n) = 2n ?
(iv)* TimeA(n) = n! = n · n(n − 1) · (n − 2) · . . . · 2 · 1 ? (challenge)

5.4 Limits of Tractability

Above, we saw that the time complexity of an algorithm decides
its applicability. But our aim is more demanding than analyzing
the complexity of designed algorithms. We want to measure the
hardness of algorithmic problems in order to be able to decide if
they are tractable (practically solvable) or not. At first glance,
the way from the measurement of complexity of algorithms to
the measurement of the complexity of problems looks simple. One
could propose the following definition:

The complexity of a problem U is the complexity of the best
(time-optimal) algorithm for U .

Though this specification of problem hardness seems to be rea-
sonable, one cannot use it in general for any problem. Scientists
showed that there are problems that do not possess any algorithm
that could be called the best one for them. For such a special task
U one can essentially2 improve each algorithm solving U . In this
way, improving algorithms for U is a never-ending story.

2 for infinitely many input sizes



5.4 Limits of Tractability 175

Since we cannot in general identify the complexity of any problem
U with one of the best algorithms solving U , we speak about lower
and upper bounds on the complexity of a problem.

Definition 5.1 Let U be a problem and let A be an algorithm
that solves U . Then we say that the time complexity TimeA(n) of
the algorithm A is an upper bound of the time complexity
of U . For a function f , we say that f(n) is a lower bound of
the time complexity of U if there does not exist any algorithm
B for U with

TimeB(n) ≤ f(n)

for almost all3 n.

This definition of problem hardness is sufficient for discovering
several important facts. For instance, there exist arbitrary hard
algorithmically solvable problems. To say it more precisely, for
any quickly growing function such as 2n, n! or 22n

, one can find
problems that are solvable within this complexity but unsolv-
able within any smaller complexity. Most such hard (intractable)
problems were constructed using a more elaborate version of
the diagonalization method and so they are more or less artifi-
cial.

Estimating the complexity of concrete, real problems occurring
in practice is more complex. We know a few thousand problems
with an exponential upper bound about 2n on their complexity
(because the fastest algorithms designed for those problems require
such a huge amount of computer work), for which we miss a lower
bound growing faster than the linear functions. This means that
we are unable even to prove small lower bounds as n · logn or n2

for problems whose complexity is probably exponential. In other
words, we have many problems with a huge gap between linear
lower bounds c · n and exponential upper bounds such as 2n, and
we are unable to estimate the complexity of these problems more
precisely. The 40 years of unsuccessful attempts can be explained
by the hardness of proving lower bounds on the complexity of
concrete problems.

3 for all but finitely many



176 5 Complexity Theory

Currently, one considers proving lower bounds on complexity and
so proving nonexistence of efficient algorithms for concrete prob-
lems as the hardest core of computer science. There even exist
proofs showing that current mathematical methods are not suf-
ficient for proving the aimed lower bounds on the complexity of
concrete problems. This means that some development of proof
methods in mathematics (i.e., of mathematical arguments) is nec-
essary in order to be able to derive higher lower bounds on the
complexity of concrete algorithmic tasks.

Investigation of the complexity of algorithms and problems posed
a new question that became the key question of algorithmics:

Which algorithmically solvable problems are practically solv-
able (tractable)?
Where is the limit of practical solvability (tractability)?

Following our investigation of complexity functions in Section 5.3
and the content of Table 5.1, we see that algorithms with an expo-
nential complexity cannot be viewed as useful in practice. In Table
5.1 one presents the number of instructions to be executed for 5
complexity functions 10n, 2n2, n3, 2n, and 2n and for four input
sizes 10, 50, 100, and 200.

n 10 50 100 300

f(n)

10n 100 500 1000 3000

2n2 200 5,000 20,000 180,000

n3 1000 125,000 1,000,000 27,000,000

2n 1024 16 digits 31 digits 91 digits

n! ≈ 3.6 · 106 65 digits 158 digits 615 digits

Table 5.1

If the number of operations is too large, we present the number
of its digits instead of the number itself. We immediately see that
algorithms with exponential complexity functions such as 2n and
n! are not applicable already for problem instances of a size above
50.



5.4 Limits of Tractability 177

After some years of discussions, computer scientists agreed on the
following definition of the tractability of computing tasks:

An algorithm A with TimeA(n) ≤ c·nd for some constants c
and d (for concrete numbers c and d) is called a polynomial
algorithm.
Each problem that can be solved by a polynomial algorithm
is called tractable (practically tractable). P denotes
the class of all tractable decision problems.

It was not so easy to accept this definition of tractability. Today,
we do not consider the limits of tractability given by this definition
as sharp limits between tractable problems and intractable ones,
but as a first attempt to approximate the limits of algorithmically
doable. There were two reasons for accepting this definition of
tractability as a working base for classifying algorithmic problems
into practically solvable and practically unsolvable.

1. Practical Reason

The main reason is based on experience with algorithm design.
The fact that algorithms with exponential complexity are not
practical was obvious to everybody. Analysis and experience
proved the applicability of algorithms with time complexity up
to n3, and in some applications even up to n6. But a polyno-
mial algorithm with complexity about n100 is for realistic sizes
of input data even less applicable than algorithms with com-
plexity about 2n, because n100 > 2n for most reasonable input
sizes n. Nevertheless, experience has proved the reasonability of
considering polynomial-time computations to be tractable. In
almost all cases, once a polynomial algorithm has been found
for an algorithmic problem that formerly appeared to be hard,
some key insight into the problem has been gained. With this
new knowledge, new polynomial-time algorithms with a lower
degree than the former ones were designed. Currently, there are
only a few known exceptions of nontrivial problems for which
the best polynomial-time algorithm is not of practical utility.
Therefore, from a practical point of view, one does not consider



178 5 Complexity Theory

the class P to be too large, and typically the problems from P
are viewed as tractable.

2. Theoretical Reason

Any definition of an important problem class has to be robust
in the sense that the defined class is invariant with respect to
all reasonable models of computation. We cannot allow that a
problem is tractable for one programming language (e.g., Java)
but not for another computing model or for another program-
ming language. Such a situation would arise if one defines the
set of problems solvable within time complexity c · n6 as the
class of practically solvable problems.4 The crucial fact is that
the class P is robust with respect to all reasonable computing
models. The class of problems solvable in polynomial time is
the same for all reasonable models of computation. The conse-
quence is that proving the membership or the non-membership
of a problem into the class P has general validity and can be
reliably used for classifying problems into practically solvable
and practically unsolvable.

5.5 How Do We Recognize a Hard Problem?

The main task of complexity theory is to classify concrete com-
puting problems with respect to their degree of hardness measured
by computational complexity. Designing algorithms, one obtains
upper bounds on the complexity of problems. The trouble is that
we are unable to derive lower bounds on the complexity of con-
crete problems. How can we then classify them? In fact, we cannot.
Therefore, we do what scientists and also non-scientists with well-
developed human intellect in such situations usually do. Instead
of performing countless attempts at running headfirst against a
wall in order to exactly estimate the complexity of a problem, we

4 For instance, some theoretical computer models require a quadratic increase of
time complexity in order to be able to simulate programs written in some pro-
gramming languages.



5.5 How Do We Recognize a Hard Problem? 179

are satisfied with plausible complexity estimations, whose absolute
reliability we are unable to prove.

What does it mean to argue “plausibly” (but not reliably) that
there is no polynomial algorithm for a problem? Currently, we
know more than 4000 interesting computing tasks for which, in
spite of huge effort, no efficient algorithm has been found. But
this negative experience does not suffice for claiming that all
these problems are computationally hard. This is not the way
out. For problems such as primality testing and linear program-
ming, mathematicians and computer scientists tried to find poly-
nomial algorithms for many years5 without any success. And
then we celebrated the discoveries providing polynomial algo-
rithms for these problems. In spite of the fact most of us be-
lieved in the existence of efficient algorithms for these problems,
this experience unmistakably shows the danger of making a mis-
take by claiming a problem is hard (not practically solvable)
only because we were not successful in solving it in an efficient
way.

S.A. Cook and L.A. Levin developed an idea for how to join all
these negative experiences into a plausible assumption. They pro-
posed the following definition of problem hardness:

A problem U is hard (not in P or not practically solvable),
if the existence of a polynomial algorithm for U implies also
the existence of polynomial algorithms for several thousand
other problems that are considered to be hard (i.e., for which
one is unable to find efficient algorithms).

We describe this idea transparently in Fig. 5.3. The class P is on
the left side of the picture in Fig. 5.3. On the right side, there
is a class of several thousand problems, for which nobody was
able to design any efficient algorithm. Now assume one could find
an efficient algorithm for a problem U from this class, and the
existence of a polynomial algorithm for U implies the existence of
efficient algorithms for all these many problems in the class of the
right side.

5 In the case of primality testing, even more than 2000 years.



180 5 Complexity Theory

Fig. 5.3

Then the hardness of U seems to be more plausible. Currently,
almost nobody believes that all these problems can be efficiently
solved, in spite of the fact we were unable to solve any of them
efficiently. We are unable to consider ourselves to be so foolish
that after numerous unsuccessful attempts to solve a large variety
of different problems all these problems admit efficient algorithms
solving them.

Problems where efficient solvability directly implies efficient solv-
ability of many other problems that are currently viewed as being
hard are called NP-hard problems. The main question is now the
following one:

How to show that a problem is NP-hard?

Once again, the method of reduction helps us solve this problem.
We applied the reduction method in order to show that algorithmic
solvability of a problem implies algorithmic solvability of another
problem. Now one needs to exchange the predicate “algorithmic”
with the predicate “efficiently”. One can do this using the frame-
work of efficient reductions. As depicted in Fig. 5.4, one efficiently
reduces a problem U1 to a problem U2 by designing an efficient al-
gorithm R that transforms any instance I of U1 into an equivalent
instance R(I) of U2.



5.5 How Do We Recognize a Hard Problem? 181

Fig. 5.4

The term “equivalent” means that the solutions for the instance
I of the problem U1 and the solution for the instance R(I) of the
problem U2 are the same. In this way, the output B(R(I)) of the
computation of the algorithm B on R(I) can be directly taken
as the output (solution) for I. In fact, we presented an efficient
reduction in Fig. 4.8 in Chapter 4. There we designed an efficient
reduction of the problem of solving general quadratic equations
to the problem of solving quadratic equations in the p, q-form.
The consequence is that efficient solvability of quadratic equa-
tions in p, q-form implies efficient solvability of general quadratic
equations.

We say that the algorithm R in Fig. 5.4 is a polynomial reduc-
tion from U1 to U2 if R is a polynomial algorithm with the
property:

The solution for the instance I of U1 is identical to the
solution for the instance R(I) of U2 for all instances of the
problem U1.

If U1 and U2 are decision problems, this means that either “YES” is
the right answer for both I and R(I) or “NO” is the correct output



182 5 Complexity Theory

for both I and R(I). In such a case we say that the instance R(I)
of U2 is equivalent to the instance I of U1.

If there exists a polynomial reduction R from U1 to U2, then we
say that

U1 is polynomial-time reducible to U2,

and write
U1 ≤pol U2.

Similarly to the case of the general reduction, U1 ≤pol U2 means
that U2 is not easier than U1 with respect to polynomial-time (effi-
cient) solvability, i.e., that either U1 and U2 are equally hard (both
are efficiently solvable or neither of them is efficiently solvable), or
U1 is efficiently solvable but U2 is not. The only excluded situation
is that U2 is efficiently solvable and U1 is not.

Exercise 5.8 Show that the problem of calculating the height of an isosceles tri-
angle with known side lengths is polynomial-time reducible to the problem of com-
puting an unknown length of a side of a right-angled triangle.

Exercise 5.9 Let U2 be the problem of solving linear equations of the form a +
bx = 0. Let U1 be the problem of solving linear equations of the general form
a + bx = c + dx. Prove that U1 ≤pol U2.

The notion of polynomial reducibility very fast became a success-
ful instrument for the classification of problems with respect to
tractability. Currently we know a few thousand problems that are
polynomial-time reducible to each other. And U1 ≤pol U2 together
with U2 ≤pol U1 means that U1 and U2 are equally hard in the
sense that either both are solvable in polynomial-time or neither
of them is efficiently solvable. Therefore, we know a few thousand
problems that are either all efficiently solvable or none of them is
tractable. These problems are called NP-hard.6

The reduction examples presented so far do not really show the ap-
plicability of the reduction method in complexity theory because
all problems considered there are simply solvable tasks. Therefore,

6 We do not give the formal definition of NP-hardness because it works with concepts
we did not introduce here.



5.5 How Do We Recognize a Hard Problem? 183

our next step is to show a reduction between two NP-hard prob-
lems.

As our first problem U1, we consider the supervision problem that
is called the vertex cover problem and is denotated by VC in algo-
rithmics. Any problem instance is described as a network of roads
(streets) with n crossroads (called vertices in the computer science
terminology) and s roads between the crossroads for some natu-
ral numbers r and s (Fig. 5.5). The end of the cul-de-sac is also
considered a vertex (crossroad).

Fig. 5.5

The crossroads are depicted as small black points in Fig. 5.5 and
are denoted by K1, K2, K3, K4, K5, and K6. The lines between the
points correspond to the streets. In Fig. 5.5 we have 7 streets. One
can also name all the streets. We call the street between K1 and K3

simply Str(K1, K3). Since we do not consider any direction for the
streets, the denotations Str(K1, K3) and Str(K3, K1) represent
the same street. One is allowed to post a supervisor at any cross-
road. One assumes that the supervisor can supervise all the streets
outgoing from his crossroad over the whole length up to the neigh-
boring crossroads. In this way, a supervisor at crossroad K3 can
observe the streets Str(K3, K1), Str(K3, K2), and Str(K3, K6). In
Fig. 5.6 we see all the streets supervised from crossroad K3 as
dashed lines.



184 5 Complexity Theory

Fig. 5.6

A further part of the problem instance is a natural number m. The
question is whether m supervisors suffice to supervise all streets. In
other words, is it possible to assign m supervisors to m crossroads
in such a way that each street is supervised by at least one supervi-
sor? For the network of roads in Fig. 5.5 and m = 2, there is a solu-
tion. If one supervisor is at K4, then he supervises the four streets
Str(K4, K1), Str(K4, K2), Str(K4, K5), and Str(K4, K6). The sec-
ond supervisor at K3 can supervise the other streets.

Exercise 5.10 Assume that we are not allowed to position any supervisor at the
crossroad K4 in the street network in Fig. 5.5. How many supervisors do we need
in this case?

Exercise 5.11 Consider the road network in Fig. 5.7. Do three supervisors suffice
for supervising all streets?

Exercise 5.12 Draw a new street Str(K1, K2) between K1 and K2 in Fig. 5.7.
How many supervisors are necessary in order to be able to supervise all streets of
this road network?

Fig. 5.7



5.5 How Do We Recognize a Hard Problem? 185

Exercise 5.13 Add two new streets Str(K5, K6) and Str(K2, K5) to the road net-
work in Fig. 5.5. Do three supervisors suffice in order to supervise the network?

As the second problem U2 we consider the problem LIN(0,1),
where one has to estimate whether a system of linear inequalities
has a Boolean solution. For instance,

x1 + 2x2 − 3x3 + 7x4 ≥ 3

is a linear inequality with 4 unknowns x1, x2, x3, and x4. We say
that this inequality is over Boolean variables (unknowns) if one
allows only Boolean values 0 and 1 for the unknowns x1, x2, x3,
and x4. An instance of LIN(0,1) is the following system of linear
inequalities:

x1 + 2x2 + x3 + x4 ≥ 3

x1 + x4 ≥ 0

2x1 + x2 − x3 ≥ 1.

This is a system of three linear inequalities and four unknowns.
The task is to decide whether one can choose values 0 and 1 for
the unknowns in such a way that all inequalities are at once valid.
For instance, we can take the value 1 for x1 and x2 (x1 = x2 = 1)
and the value 0 for x3 and x4 (x3 = x4 = 0). We see that

x1 + 2x2 + x3 + x4 = 1 + 2 · 1 + 0 + 0 = 3 ≥ 3,

x1 + x4 = 1 + 0 = 1 ≥ 0,

2x1 + x2 − x3 = 2 · 1 + 1 − 0 = 3 ≥ 1,

and so all inequalities are satisfied.

Exercise 5.14 Find other Boolean values for the unknowns x1, x2, x3, and x4 of
the considered system of linear inequalities that also satisfy all three inequalities.

Exercise 5.15 Does the following system of linear inequalities have a Boolean so-
lution?

x1 + x2 − 3x3 ≥ 2

x1 − 2x2 − x4 ≥ 0

x1 + x3 + x4 ≥ 2



186 5 Complexity Theory

We show now that

VC ≤pol LIN(0, 1)

i.e., that the supervision problem VC is polynomial-time reducible
to the problem of linear inequalities with Boolean variables.

To do this, we have to efficiently construct an equivalent instance
of LIN(0,1) to any instance of VC. We explain the idea of the re-
duction by creating an instance of LIN(0,1) to the road network
N in Fig. 5.5. Let (N, 3) be the problem instance of VC. To solve
it, one has to decide whether 3 supervisors are sufficient for su-
pervising the network N . To pose this question in terms of linear
programming, we take 6 Boolean variables x1, x2, x3, x4, x5, and x6.
The variable xi is assigned to the crossroad Ki, and its meaning
is the following one:

xi = 1, a supervisor is placed in Ki,
xi = 0, no supervisor is in Ki.

For instance, the value assignment x1 = 1, x2 = 0, x3 = 1, x4 =
0, x5 = 1, and x6 = 0 describes the situation where one has 3
supervisors placed at the crossroads K1, K3, and K5, and there is
no supervisor at K2, K4, and K6.

First, we use the linear inequality

x1 + x2 + x3 + x4 + x5 + x6 ≤ 3

to express the constraint that at most 3 supervisors can be used. To
supervise the network N , each street of N has to be supervised by
a supervisor. This means that, for each street Str(Ki, Kj) between
the crossroads Ki and Kj, at least one supervisor has to be placed
at one of the crossroads Ki and Kj. For the street Str(K1, K4),
at least one supervisor must be at K1 or K4. To express this con-
straint, we use the linear inequality

x1 + x4 ≥ 1 .

This inequality is satisfied if x1 = 1 or x4 = 1, and this is ex-
actly what we need. If one takes all 7 streets (K1, K3), (K1, K4),



5.5 How Do We Recognize a Hard Problem? 187

(K2, K3), (K2, K4), (K3, K6), (K4, K5), and (K4, K6) of the net-
work N into account, then one gets the following system L1 of 8
linear inequalities:

x1 + x2 + x3 + x4 + x5 + x6 ≤ 3 {at most 3 supervisors}
x1 + x3 ≥ 1 {Str(K1, K3) is supervised}
x1 + x4 ≥ 1 {Str(K1, K4) is supervised}
x2 + x3 ≥ 1 {Str(K2, K3) is supervised}
x2 + x4 ≥ 1 {Str(K2, K4) is supervised}
x3 + x6 ≥ 1 {Str(K3, K6) is supervised}
x4 + x5 ≥ 1 {Str(K4, K5) is supervised}
x4 + x6 ≥ 1 {Str(K4, K6) is supervised}

Now, the following is true. The system L1 has a solution if and only
if the instance (N, 3) of VC has a solution (i.e., if and only if three
supervisors can supervise N). The claim can even be formulated in
a stronger way. Each solution of L1 provides a solution for (N, 3).
For instance,

x1 = 0, x2 = 1, x3 = 1, x4 = 1, x5 = 0, x6 = 0

is a solution for L1. We have only three supervisors in K2, K3, and
K4 and so the first inequality is satisfied. The value assignment
x2 = 1 ensures that the fourth inequality and the fifth inequality
are satisfied. The inequalities 2, 4, and 6 are satisfied due to x3 = 1.
The assignment x4 = 1 guarantees the fulfilment of inequalities
3, 5, 7, and 8. Hence, all 8 inequalities are satisfied. We immediately
see that three supervisors in K2, K3, and K4 supervise the network
N .

Exercise 5.16

(a) Find all solutions for the system L1 (i.e., all assignments of values 0 and 1 to
the variables x1, x2, . . . , x6 that satisfy all inequalities of L1) and estimate the
corresponding solutions for (N, 3).

(b) Does there exist a solution for L1 with x4 = 0 (i.e., if no supervisor is placed in
K4)? Argue for the correctness of your answer.

(c) Extend the road network N by the street Str(K3, K4) to a network N ′. Does
(N ′, 2) have a solution?



188 5 Complexity Theory

Fig. 5.8

A general description of the polynomial reduction of VC to LIN(0,1)
is given in Fig. 5.8.

We see that the reduction R can be easily performed by a program.
The efficiency of R ensures that the existence of an efficient algo-
rithm B for LIN(0,1) implies the existence of an efficient algorithm
for VC.

Exercise 5.17 Consider the instance (N, 3) of VC for the network N in Fig. 5.7. Use
the description of the reduction in Fig. 5.8 to construct the corresponding system of
linear inequalities. Find all solutions of the constructed system of linear inequalities
and the corresponding solutions for (N, 3).

Exercise 5.18 Extend the network N in Fig. 5.7 to a network N ′ by adding two
new streets Str(K2, K3) and Str(K5, K6). What about the system of linear inequal-
ities for (N ′, 4)? Does it have a solution?

We proved the relation VC ≤pol LIN(0, 1). One can show also
LIN(0, 1) ≤pol VC. But this reduction is too technical, and there-
fore we omit its presentation here.

Hence, the problems VC and Lin(0,1) are equally hard in the sense
that the existence of a polynomial algorithm for one of the prob-
lems directly implies the existence of an algorithm for the other
problem. Currently, we know more than 4000 equally hard prob-



5.5 How Do We Recognize a Hard Problem? 189

lems, and for none of them do we have an efficient algorithm.
Therefore, we believe that these problems are really hard, and so
we use the polynomial reduction to classify problems into easy
ones solvable in polynomial-time and hard ones that are proba-
bly not solvable in polynomial-time. For a new problem U , it is
sufficient to show

U ′ ≤pol U

for a problem U ′ from this class of hard problems and we are al-
lowed to view U as a hard problem. The fact U ′ ≤pol U directly
implies that the existence of an efficient algorithm for U provides
the existence of efficient algorithms for thousands of problems con-
sidered to be hard.

Computer scientists developed this approach for arguing for the
hardness of concrete algorithmic tasks because they did not mas-
ter the development of techniques for proving lower bounds on
complexity. One cannot exclude the possibility that someone may
devise a brilliant idea providing efficient algorithms for all NP-hard
problems. Are we allowed to believe in the hardness of NP-hard
problems only because the experience of researchers in algorith-
mics supports this opinion? One can give a pragmatic answer to
this question. Even if NP-hard problems are efficiently solvable,
currently they are not efficiently solvable, and this state is not
going to change up to the moment one discovers an efficient algo-
rithm for an NP-hard problem. What are we trying to say? Inde-
pendently of whether there exist efficient algorithms for NP-hard
problems or not, currently we do not know any efficient way for
solving NP-hard problems, and so the NP-hard problems have to
be considered to be hard for us. Researchers working in complex-
ity theory have additional serious reasons to believe in the real
hardness of NP-hard problems. They proved that a consequence
of efficient solvability of NP-hard problems would mean that, for
a large class of claims, to find proofs of the truthfulness of these
claims is algorithmically as hard as verifying the correctness of
given proofs. Nobody wants to believe that creating proofs (which
is one of the hardest intellectual jobs of mathematicians) is not
harder than checking the correctness of already created proofs.



190 5 Complexity Theory

Now, the reader may pose the following question. If computer sci-
entists are convinced of the fact that there are no polynomial algo-
rithms for NP-hard tasks, why do they not postulate this fact as a
new axiom of computer science? The answer is: “They are not al-
lowed.” One may postulate only those assertions and definitions as
axioms that are not provable. As we explained in Chapter 1, there
is no way to prove the correctness of axioms. If they are wrong,
there is only a way to disprove them. If one develops successful
methods for proving lower bounds on the complexity of concrete
problems, one could be able to prove the hardness of the NP-hard
problems. Therefore, we did not blindly believe the real hardness
of the NP-hard problems and invest a lot of effort in justifying
it. This goal is not only one of the key research problems of com-
puter science, mathematicians consider this question to be one of
the most challenging problems of mathematics.

5.6 Help, I Have a Hard Problem . . .

One is not allowed to underestimate this call for help. The fastest
algorithms for NP-hard problems require for realistic input sizes
more work than one can perform in the Universe. Is it not a suf-
ficient reason for a call for help? Especially if the solutions to
given problems are related to security or to a big investment.
Another question about the reasonability is the following one. Is
there somebody who can help? The answer is “Yes”. Specialists
in algorithmics can help. They are real artists and magicians in
searching for solutions to problems. If they study a hard problem,
they apply a strategy based on the fact that many hard prob-
lems are very sensitive (unstable) in the following sense: A small
change in the problem specification or in the constraints describ-
ing feasible solutions can cause a huge change in the amount of
computer work sufficient and necessary for calculating solutions.
Usually, weakening of one of the constraints on feasible solutions
can save a lot of computer work. Often this constraint reduction
is acceptable for the application considered, and it reduces a bil-
lion years of computer work to a matter of a few seconds on a



5.6 Help, I Have a Hard Problem . . . 191

common PC. Similar effects are possible if one forces the algo-
rithm to find a near-optimal solution instead of an optimal one.
For instance, “near-optimal” could mean that a measurable solu-
tion quality of the solution computed differs at most by 1% from
the quality of the optimal solutions. Algorithms computing near-
optimal solutions are called approximation algorithms. Another
approach is provided by randomized algorithms, which randomly
choose a strategy for searching for a solution. If the randomly cho-
sen strategy is good for the input instance, then the algorithm
efficiently computes the correct solution. If the randomly chosen
strategy is not suitable for the given problem instance, then the
computation of results may be very long or the computed result
may even be wrong. In many applications we are satisfied with
randomized algorithms if they efficiently compute the right solu-
tion with high probability. To understand this properly, one saves
a lot of computer work due to the reduction of the requirement to
always compute the correct result to the requirement to compute
the correct result with high probability. There are also other ap-
proaches for attacking hard problems, and one can combine them.
To discover the weak points of hard problems is the art mastered
by algorithm designers. The job of algorithm designers is to pay
for a jump from an intractable amount of computer work to a
realistic amount of work with the minimum possible reduction
in our requirements. In some cases, it is possible to pay so little
for a large quantitative jump in the amount of computer work
that one speaks about miracles. An almost unbelievable miracle
of this kind is presented in the next chapter about randomized
algorithms.

Here, we present a simple example of saving computer work by
computing a relatively “good” solution instead of an optimal one.
In Section 5.5 we introduced the problem VC as a decision prob-
lem. Its optimization version MIN-VC asks us to find a solution
with the minimal number of supervisors sufficient for supervising
a given network of roads. For the network in Fig. 5.5, two super-
visors can supervise the network and one cannot, i.e., the number
2 is the cost of the optimal solution.



192 5 Complexity Theory

Exercise 5.19 What is the minimal number of supervisors for the roads network
in Fig. 5.7? Argue for the correctness of your answer!

To keep our material accessible to non-specialists, we omit pre-
senting spectacular results that are connected with too complex,
technical arguments. Rather, we transparently outline the power of
the approximation concept by designing an efficient algorithm for
computing solutions for the VC problem, whose number of super-
visors is at most twice as large as the optimal number. Although
this approximation may look too weak, it is far from being trivial
for problem instances with 10,000 crossroads. For large networks,
we are unable to provide ad hoc solutions with a better quality
guarantee.

The idea of searching for a solution with at most double the num-
ber of observers is based on the fact that each street Str(K1, K2)
between two crossroads K1 and K2 can be supervised only from
K1 or from K2. Hence, a supervisor must be placed in at least
one of the two crossroads K1 and K2. Following this idea one can
develop the following algorithm that surely finds a feasible7 solu-
tion.

Algorithm: App-VC

Input: A network N

Procedure:

1. Choose an arbitrary street Str(K1, K2). Place two supervisors
at both crossroads K1 and K2. Reduce the given network N to
a network N ′ by removing all streets that are supervised from
the crossroads K1 and K2 (in this way, one deletes all streets
outgoing from K1 and K2, and so the street Str(K1, K2) too).

2. Use the procedure described in 1 for the network N ′.

3. Apply this procedure until all streets are removed (i.e., until all
streets are supervised).

7 A solution is called feasible if it ensures the supervision of all roads of the given
network.



5.6 Help, I Have a Hard Problem . . . 193

Let us execute the work of algorithm App-VC on the networks in
Fig. 5.9(a) with 8 crossroads a, b, c, d, e, f, g, and h.

Fig. 5.9

Assume that App-VC chooses the street Str(b, c). This choice is
visualized by the double line in Fig. 5.9(b). Now, two supervisors
are placed at b and c, and all streets outgoing from b and c are
deleted from the network. The deleted streets, except Str(b, c),
are marked by the dashed lines in Fig. 5.9(b). Assume the next
choice of App-VC is the street Str(e, f) (Fig. 5.9(c)). The proce-
dure is depicted in Fig. 5.9(c). Two observers are positioned at
the crossroads e and f , and the streets Str(e, f), Str(e, d) and
Str(f, d) are marked as supervised. After this, only three streets,
Str(d, g), Str(d, h) and Str(h, g), remained unsupervised in the
network. If App-VC chooses street Str(d, g), two new supervisors
are placed at the crossroads d and g and the remaining three streets
are supervised. This application of App-VC leads to a solution with
6 observers placed at the crossroads b, c, e, f, d, and g.

We observe that the results computed by App-VC may differ and
what result is computed depends on the random choice of still
unsupervised streets in the first step of the procedure.

Exercise 5.20 How many supervisors does one need in order to supervise the road
network in Fig. 5.9(a)? Find such an unfortunate choice of edges by App-VC that



194 5 Complexity Theory

at the end the supervisors are placed at all 8 crossroads of the network. Does there
exist a random choice of unsupervised edges that results in fewer than 6 supervisors?

Exercise 5.21 Apply the algorithm App-VC in order to place supervisors in net-
works in Fig. 5.5 and Fig. 5.7.

Finally, we argue why the solutions produced by App-VC cannot
place more supervisors than twice the optimum. Let us consider
the chosen streets that are marked by double lines in Fig. 5.9.
None of these streets meet at a crossroad. This is the consequence
of the fact that, after taking the street Str(K1, K2), all streets
outgoing from K1 and K2 were deleted for all remaining choices.
Hence, no street chosen later can go to K1 and K2. If one takes a
global look at a network with marked chosen streets (Fig. 5.10),
one sees that these are isolated in the sense that no pair of them
meets at a crossroad.

Fig. 5.10

A feasible solution of our VC problem requires that all streets are
supervised. Consequently, all chosen (isolated) streets as a special
subset of all streets have to be supervised, too. Since the chosen
streets are isolated, one supervisor at a crossroad can supervise at
most one of these streets. Therefore, any feasible solution has at
least as many supervisors as the number of isolated streets. The
solution of App-VC places supervisors at all end points (cross-
roads) of the isolated streets. In this way, the number of observers
in the solution computed by App-VC is exactly twice the number
of chosen edges. We see that App-VC cannot compute any solu-
tion that would require more than double the optimal number of
supervisors.



5.7 Summary 195

Certainly, the guaranteed quality of App-VC is not impressive.
But there are several complex examples of efficient algorithms for
NP-hard problems which compute solutions whose quality does
not differ from the quality of optimal solutions by more than 1�.
Providing the guarantee for such high-quality solutions can be
viewed as a miracle of algorithmics.

5.7 Summary

After the notions of algorithms and programs, the notion of com-
plexity provides the most fundamental concept of computer sci-
ence, and its impact is growing even in scientific disciplines be-
yond computer science. Time complexity is the most important
measure of computational complexity. It measures the number of
computer instructions performed (the amount of computer work).
Time complexity is usually represented by a function of the input
size.

The main goal of complexity theory is classifying algorithmic prob-
lems with respect to the amount of work (to the computational
complexity) that is sufficient and necessary for computing their
correct solutions. The final global aim is to define the border be-
tween practical solvability and intractability, and so to classify al-
gorithmically solvable problems into practically solvable and prac-
tically unsolvable. The first approximation of the limit of practical
solvability proposes that we consider those problems practically
solvable that can be solved in polynomial-time with respect to the
input length. A problem for whose solution no polynomial-time
algorithm exists is considered to be hard (practically unsolvable).
Complexity theory teaches us that there exist problems of an arbi-
trarily large complexity. For instance, there exist computing prob-
lems that can be solved only by algorithms having time complexity
at least 22n

.

To prove the nonexistence of efficient algorithms for solving con-
crete computing problems is the hardest research problem in the
investigation of the laws of information processing. We are not



196 5 Complexity Theory

able to solve this fundamental problem of computer science be-
cause we lack sufficiently powerful mathematical methods for this
purpose. Therefore, one currently uses incomplete arguments for
arguing about the hardness of some problems. One again uses the
reduction method in order to define a large class of equally hard
problems in the sense that each problem of this class can be effi-
ciently reduced to any other problem of this class. The consequence
is that either all problems of this class are efficiently solvable or
none of them is efficiently solvable. The problems in this class are
called NP-hard problems. For none of the NP-hard problems does
one know an efficient polynomial algorithm, and all algorithms
discovered for NP-hard problems are of exponential complexity.
Because the existence of an efficient algorithm for any of the NP-
hard problems would mean the efficient solvability of all NP-hard
problems, and one does not believe in efficient solvability of all
these problems, we consider NP-hardness as a reliable argument
for the computational hardness of a problem.

The art of algorithm design lies in searching for solutions to hard
problems. The most important discovery is that many hard prob-
lems are very unstable with respect to the amount of work nec-
essary to solve them (to their hardness). A small (almost negligi-
ble8) change of the problem formulation or a small reduction of
the constraints on feasible solutions may cause an unbelievably
huge jump from a physically unexecutable amount of computer
work to a matter of a few seconds on a common PC. To discover
and use this sensitivity of hard problems is at the heart of current
algorithmics [Hro04a], which has the goal of making the solution
of hard problems affordable for industry and, in the end, for the
development of an information society.

Solutions to Some Exercises

Exercise 5.2 Applying the distributive law three times, one can rewrite a polyno-
mial of degree 4 as follows:

8 from the practical point of view



5.7 Summary 197

a4 · x4 + a3 · x3 + a2 · x2 + a1 · x + a0

= [a4 · x3 + a3 · x2 + a2 · x1 + a1] · x + a0

= [(a4 · x2 + a3 · x + a2) · x + a1] · x + a0

= [((a4 · x + a3) · x + a2) · x + a1] · x + a0 .

If one applies the resulting formula for computing the value of the polynomial for
given values of a4, a3, a2, a1, a0, and x, then only 4 multiplications and 4 additions
are performed.

Exercise 5.4

(a) The value of x6 can be computed by 3 multiplications using the following strat-
egy:

I ← x · x , J ← I · I , Z ← J · I.

We see the idea starting with computing x2 = x ·x using one multiplication and
continuing by computing x6 = x2 · x2 · x2 using two multiplications.

(b) The value of x64 can be computed using 6 multiplications as follows:

x64 = (((((x2)2)2)2)2)2

This strategy can be implemented as follows:

I ← x · x , I ← I · I , I ← I · I ,

I ← I · I , I ← I · I , I ← I · I .

(c) One can propose the following strategy for computing the value of x18.

x18 = (((x2)2)2)2 · x2 .

It can be implemented as follows:

I ← x · x , J ← I · I , J ← J · J ,

J ← J · J , Z ← I · J .

(d) The value of x32 can be computed in the following way:

x45 = x32 · x8 · x4 · x
= ((((x2)2)2)2)2 · ((x2)2)2 · (x2)2 · x

using the following implementation:

I2 ← x · x , I4 ← I2 · I2 , I8 ← I4 · I4 ,

I16 ← I8 · I8 , I32 ← I16 · I16 , Z ← I32 · I8 ,

Z ← Z · I4 , Z ← Z · x

We see that 8 multiplications are sufficient.

One can even compute the value x45 with 7 multiplications only by using the
following strategy:
x2 = x · x, x3 = x2 · x, x6 = x3 · x3, x9 = x6 · x3,

x18 = x9 · x9, x36 = x18 · x18, x45 = x36 · x9



198 5 Complexity Theory

Exercise 5.9 If a mathematician has to solve the linear equation a + bx = c + dx,
she or he can simplify the equality in the following way:

a + bx = c + dx | − c

a − c + bx = dx | − dx

(a − c) + bx − dx = 0

(a − c) + (b − d) · x = 0 {following the distributive law}

Now, the linear equation has the simplified form, for which we already have an
algorithm. In Fig. 5.11 we present the graphic representation of the corresponding
efficient reduction.

Fig. 5.11

The reduction R is efficient because two subtractions satisfy in order to transform
a general linear equation into the form a′ + b′x = 0. Since a′ + b′x = 0 is only a
conversion (another representation) of the equation a + bx = c + dx, both equations
have the same solution. Therefore, the output of the program B is also the output
of the algorithm A for solving general linear equations.

Exercise 5.10 If there is no supervisor at the crossroad K4, there must be 4 super-
visors at the other ends of the 4 streets leading from K4 in order to guarantee control
over these four streets. We see that these 4 supervisors supervise the complete road
network (Fig. 5.5).

Exercise 5.17 For the 7 crossroads and at most 3 supervisors one gets first the
following linear inequation:

x1 + x2 + x3 + x4 + x5 + x6 + x7 ≤ 3 .



5.7 Summary 199

For 8 streets one gets the following 8 inequalities:

x1 + x5 ≥ 1 , x1 + x6 ≥ 1 , x2 + x5 ≥ 1 , x2 + x6 ≥ 1 ,

x3 + x6 ≥ 1 , x3 + x7 ≥ 1 , x4 + x6 ≥ 1 , x4 + x7 ≥ 1 .

Because of the first inequality, we are allowed to assign the value 1 to at most 3
unknowns. The choices x5 = x6 = x7 = 1 and x1 = x2 = x3 = x4 = 0 ensures that
all 8 “street inequations” are satisfied.



Chance favours only those whose spirit has been prepared
already, those unprepared cannot see the hand stretched
out to them by fortune.

Louis Pasteur

Chapter 6

Randomness in Nature and as a
Source of Efficiency in
Algorithmics

6.1 Aims

In this chapter we aim to introduce one of the miracles of com-
puter science. This marvel is based on a successful application
of randomness in the design of efficient algorithms for apparently
intractable problems.

To perform and to understand this magic one has to deal with
the meaning of the notion of “randomness” first. Hence, we fol-
low the history of science which is full of controversial discussions
about the existence of true randomness in order to get a feeling for
what can be viewed as true randomness and what is only apparent
randomness.

J. Hromkovič, Algorithmic Adventures, DOI 10.1007/978-3-540-85986-4 6,
c© Springer-Verlag Berlin Heidelberg 2009

201

http://dx.doi.org/10.1007/978-3-540-85986-4_6


202 6 Randomness in Nature

Taking that generated view about randomness we directly move
to algorithmics in order to apply it for solving computationally
hard problems. Here we see a miracle. Can you imagine, at first
glance, that systems with a randomized control can achieve their
goals billions of times faster than any deterministic system can? Do
you believe that one has to pay for this huge speed-up by risking
making an error with probability1 smaller than 1/1019 only? Is this
really a serious risk? If one had started such a randomized system
every second since the Big Bang (i.e. between 1018 to 1019 times),
then one may have expected none of these many runs to make
an error. In another words the probability of making at least one
error in these more than 1018 experimental runs of this randomized
system is smaller than the probability of reaching the correct goal
in all these attempts.

Here we call attention to the fact that in practice randomized algo-
rithms (algorithms with a random control) with very small error
probability can be even more reliable than their best determin-
istic counterparts. What do we mean by this? Theoretically all
deterministic algorithms may not err. But the nature of the story
is that deterministic programs are not absolutely reliable because
during their runs on a computer a hardware error may occur and
then they may produce wrong results. Clearly, the probability of
the occurrence of a hardware error grows proportionally with the
running time of the program. Therefore a fast randomized algo-
rithm can be more reliable than a slow deterministic algorithm. For
instance, if a randomized algorithm computes a result in 10 sec-
onds with an error probability 1/1030, then it is more reliable than
a deterministic algorithm that computes the result in one week.
Hence, moving from common (deterministic) algorithms and sys-
tems to randomized ones is not necessarily related to decreasing
reliability. And losing an apparently absolute reliability may not
hurt too much. Randomization, here we mean building controlling
systems by using a clever combination of deterministic strategies
with random decisions, became a new paradigm of algorithmics.
Efficient randomized algorithms making one mistake in billions of

1 The risk of computing a wrong result is called the error probability.



6.2 Does True Randomness Exist? 203

applications on average are very practical and enable us to solve
problems considered intractable for deterministic computations.

After presenting a magical example to convince ourselves about
the power and the usefulness of randomness we do not leave the
reader in her or his amazement. We will try to give the reader at
least a feel for why such unbelievably elegant and wonderful ways
for solving problems exist. We get a deeper view into the nature of
the success of randomized systems and recognize some paradigms
for the design of randomized algorithms. And, maybe, at the very
end we can even encourage you to use the obtained knowledge in
your everyday life and so to become a magician.

6.2 What Is Randomness and Does There Exist
True Randomness?

In the first chapter we realized that the creation of notions is fun-
damental for the foundation and the development of scientific dis-
ciplines. The notion of randomness is one of the few most funda-
mental and most discussed notions of science. Philosophers, math-
ematicians, physicists, biologists and chemists discussed the exis-
tence of randomness and its possible role for thousands of years.
Mathematicians created probability theory as an instrument for
investigating random events. Computer scientists study why and
when it is profitable to use randomness and design randomized
algorithms. Engineers apply the obtained knowledge to build effi-
cient advantageous randomized systems.

The notion of randomness is strongly related to another two fun-
damental notions: determinism and nondeterminism. The de-
terministic view of the world is based on the paradigm of causal-
ity. Every event has a cause, i.e., every event is a consequence
of a cause. Every cause has its effect (result) and this result is a
cause of further effects, etc. Following the principle of causality, if
one knows the correct state of the Universe and all natural laws,
one can completely predict the future. The whole development is



204 6 Randomness in Nature

viewed as a chain of causes and their effects. By contrast, nondeter-
minism means that a cause can have several different consequences
(effects) and there is no law determining which one must occur.
In another words you can learn all possible results of a cause but
only one of these results may occur and there is no possibility to
predict which one.

The notion of randomness is strongly related to nondeterminism.
Following the definitions used in dictionaries

an event is considered to be random

if

it happens unpredictably.

Similarly,

an object is called random

if

it is created without any pattern and any plan.

Clearly, the existence of random events (i.e., of the occurrence of
randomness) contradicts the causality principle. Hence, the follow-
ing question

“Does there exist a true (objective) randomness or does
one use this term only to model and describe events with
unknown lawfulness?”

is fundamental for science. Philosophers and scientists have dis-
puted the answer to this question since ancient times. Democritos
believed that

randomness is the unknown,
and that Nature is determined in its fundamentals.

Thus, Democritos asserted that order conquers the world and this
order is governed by unambiguous laws. Following Democritos’s
opinion, one uses the notion of “randomness” only in the subjec-
tive sense in order to veil one’s inability to truly understand the



6.2 Does True Randomness Exist? 205

nature of events and things. Hence the existence of the notion of
randomness is only a consequence of the incompleteness of our
knowledge. To present his opinion transparently, Democritos liked
to use the following example. Two men agreed to send their slaves
to bring water at the same time in order to cause the slaves to
meet. The slaves really met at the source and said, “Oh, this is
randomness that we have met.”

In contrast to Democritos, Epicurus claimed that

randomness is objective,
it is the proper nature of events.

Thus, Epicurus claimed that there exists a true randomness that is
completely independent of our knowledge. Epicurus’s opinion was
that there exist processes whose development is ambiguous rather
than unambiguous, and an unpredictable choice from the existing
possibilities is what we call randomness.

One could simply say, Epicurus was right because there are games
of chance, such as rolling dice or roulette, that can have differ-
ent outcomes, and the results are determined by chance. Unfor-
tunately, the story is not so simple, and discussing gambling one
gets support for the opinion of Democritos rather than for Epicu-
rus’ view on the nature of events. Rolling dice is a very complex
activity, but if one knows the direction, the speed and the sur-
face on which a die is tossed, then it may be possible to compute
and predict the result. Obviously, the movement of the hand con-
trolled by the human brain is too complex to allow us to estimate
the values of all important parameters. But we may not consider
the process of rolling a die as an objectively random process only
because it is too complex for us to predict the outcome. The same
is true of roulette and other games of chance. Physics also often
uses random models to describe and analyze physical processes
that are not inherently or necessarily random (and are sometimes
clearly deterministic), but which are too complex to have a real-
istic possibility of modelling them in a fully deterministic way. It
is interesting to note that based on this observation even Albert
Einstein accepted the notion of randomness only in relation to an



206 6 Randomness in Nature

incomplete knowledge, and strongly believed in the existence of
clear, deterministic laws for all processes in Nature2.

Before the 20th century, the world view of people was based on
causality and determinism. The reasons for that were, first, reli-
gion, which did not accept the existence of randomness in a world
created by God3, and, later, the optimism created by the success
of natural sciences and mechanical engineering in the 19th century,
which gave people hope that everything could be discovered, and
everything discovered could be explained by deterministic causal-
ities of cause and resulting effect4.

This belief in determinism also had emotional roots, because peo-
ple connected randomness (and even identified it) with chaos,
uncertainty, and unpredictability, which were always related to
fear; and so the possibility of random events was rejected. To
express the strongly negative connotation of randomness in the
past, one can consider the following quotation of Marcus Aure-
lius:

There are only two possibilities,
either a big chaos conquers the world,
or order and law.

Because randomness was undesirable, it may be not surprising
that philosophers and researchers performed their investigations
without allowing for the existence of random events in their con-
cepts or even tried to prove the nonexistence of randomness by
focusing on deterministic causalities. Randomness was in a sim-
ilarly poor situation with Galileo Galilei, who claimed that the
Earth is not a fixed center of the whole Universe. Though he was
able to prove his claim using experimental observations, he had no
chance to convince people about it because they were very afraid

2 “God does not roll dice” is a famous quotation of Albert Einstein. The equally
famous reply of Niels Bohr is, “The true God does not allow anybody to prescribe
what He has to do.”

3 Today we know that this strong interpretation is wrong and that the existence of
true randomness does not contradict the existence of God.

4 Take away the cause, and the effect must cease.



6.2 Does True Randomness Exist? 207

of such a reality. Life in the medieval world was very hard, and
so people clung desperately to the very few assurances they had.
And the central position of the Earth in the Universe supported
the belief that poor Man is at the center of God’s attention. The
terrible fear of losing this assurance was the main reason for the
situation, with nobody willing to verify the observations of Galileo
Galilei. And “poor” randomness had the same trouble gaining ac-
ceptance5.

Finally, scientific discoveries in the 20th century (especially in
physics and biology) returned the world to Epicurus’ view on ran-
domness. The mathematical models of evolutionary biology show
that random mutations of DNA have to be considered a crucial
instrument of evolution. But, the essential reason for accepting the
existence of randomness was one of the deepest discoveries in the
history of science: the theory of quantum mechanics. The mathe-
matical model of the behavior of particles is related to ambiguity,
which can be described in terms of random events. All important
predictions of this theory were proved experimentally, and so some
events in the world of particles are considered to be truly random
events. To accept randomness (or random events) it is very im-
portant to overcome the restrictive interpretation of randomness,
identifying it with chaos and uncertainty. A very elegant, mod-
ern view on randomness is given by the Hungarian mathematician
Alfréd Rényi:

Randomness and order do not contradict each other;
more or less both may be true at once.
Randomness controls the world
and due to this in the world there are order and law,
which can be expressed in measures of random events
that follow the laws of probability theory.

For us, as computer scientists, it is important to realize that there
is also another reason to deal with randomness beyond the “mere”

5 One does not like to speak about emotions in the so-called exact (hard) sciences,
but this is a denial of the fact that the emotions of researchers (the subjects in
the research) are aggregates of development and progress.



208 6 Randomness in Nature

modelling of natural processes. Surprisingly, this reason was for-
mulated over 200 years ago by the great German poet Johann
Wolfgang von Goethe as follows:

The tissue of the world
is built from necessities and randomness;
the intellect of men places itself between both
and can control them;
it considers the necessity
as the reason for its existence;
it knows how randomness can be
managed, controlled, and used...

In this context we may say that Johann Wolfgang von Goethe
was the first “computer scientist” who recognized randomness as
a useful source for performing certain activities. The use of ran-
domness as a resource of an unbelievable, phenomenal efficiency is
the topic of this chapter. We aim to convince the reader that it can
be very profitable to design and implement randomized algorithms
and systems instead of completely deterministic ones. This real-
ization is nothing other than the acceptance of Nature as teacher.
It seems to be the case that Nature always uses the most efficient
and simplest way to achieve its goal, and that randomization of
a part of the control is an essential element of Nature’s strategy.
Computer science practice confirms this point of view. In many
everyday applications, simple randomized systems and algorithms
do their work efficiently with a high degree of reliability, and we
do not know any deterministic algorithms that would do the same
with a comparable efficiency. We even know of examples where the
design and use of deterministic counterparts of some randomized
algorithms is beyond physical limits. This is also the reason why
currently one does not relate tractability (practical solvability)
with the efficiency of deterministic algorithms, but with efficient
randomized algorithms.

To convince the reader of the enormous usefulness of randomiza-
tion, the next section presents a randomized protocol that solves
a concrete communication task within communication complex-



6.2 Does True Randomness Exist? 209

ity that is substantially smaller than the complexity of the best
possible deterministic protocol.

We close this section by calling attention to the fact that we did
not give a final answer to the question of whether or not true
randomness exists, and it is very improbable that science will be
able to answer this question in the near future. The reason for this
pessimism is that the question about the existence of randomness
lies in the very fundamentals of science, i.e., at the level of ax-
ioms, and not at the level of results. And, at the level of axioms
(basic assumptions), even the exact sciences like mathematics and
physics do not have any generally valid assertions, but only as-
sumptions expressed in the form of axioms. The only reason to
believe in axioms is that they fully correspond to our experience
and knowledge. As mentioned already in Chapter 1, an example
of an axiom of mathematics (viewed as a formal language of sci-
ence) is assuming that our way of thinking is correct, and so all
our formal arguments are reliable. Starting with the axioms, one
constructs the building of science very carefully, in such a way that
all results achieved are true provided the axioms are valid. If an
axiom is shown to be not generally valid, one has to revise the
entire theory built upon it6.

Here, we allow ourselves to believe in the existence of random-
ness, and not only because the experience and knowledge of
physics and evolutionary theory support this belief. For us as
computer scientists, the main reason to believe in randomness
is that randomness can be a source of efficiency. Randomness
enables us to reach aims incomparably faster, and it would be
very surprising for us if Nature left this great possibility unno-
ticed.
6 Disproving the general validity of an axiom should not be considered a “tragedy.”

Such events are part of the development of science and they are often responsible
for the greatest discoveries. The results built upon the old, disproved axiom usually
need not be rejected; it is sufficient to relativize their validity, because they are
true in frameworks where the old axiom is valid.



210 6 Randomness in Nature

6.3 The Abundance of Witnesses Is Support in
Shortage or Why Randomness Can Be Useful

The aim of this section is to present a task that can be solved
efficiently by applying randomness despite the known fact that
this task cannot be solved efficiently in any deterministic way. Here
we design a randomized system for solving the mentioned task in
such a simple way that anybody can use it in order to get a first
convincing experience of the extraordinary power of randomized
control.

What is the exact meaning of a randomized system or random-
ized algorithm (program)? In fact one allows two different ba-
sic transparent descriptions. Each deterministic program executes
on a given input an unambiguously given sequence of computing
steps. We say that the program together with its input unambigu-
ously determines a unique computation. A randomized program
(system) can have many different computations on the same in-
put, and which one is going to be executed is decided at random.
In what follows we present two possibilities for the performance of
the random choice from possible computations.

1. The program works in the deterministic way except for a few
special places, in which it may flip a coin. Depending on the
result of coin flipping (head or tail), the program takes one of
the possible two ways to continue in the work on the input.

To insert this possibility of random choice into our program-
ming language TRANSPARENT, it is sufficient to add the fol-
lowing instruction:

Flip a coin. If ‘‘head’’, goto i else goto j.

In this way the program continues to work in the i-th row if
“head” was the result of flipping coin and it continues in the
j-th row if “tail” was the result of flipping coin.

2. The randomized algorithm has at the beginning a choice of sev-
eral deterministic strategies. The program randomly chooses
one of these strategies and applies it on the given input. The



6.3 Abundant Witnesses Are Useful 211

rest of the computation is completely deterministic. The ran-
dom choice is reduced to the first step of computation. For each
new problem instance the algorithm chooses a new strategy at
random.

Since the second way of modelling randomized systems is simpler
and more transparent than the first one, we use it for the presen-
tation of our exemplary application of the power of randomness.

Let us consider the following scenario.

We have two computers RI and RII (Fig. 6.1) that are very far
apart. The task is to manage the same database on the computers.
At the beginning both have a database with the same content. In
the meantime the contents of these databases dynamically develop
in such a way that one tries to perform all changes simultaneously
on both databases with the aim of getting the same database, with
complete information about the database subject (for instance,
genome sequences), in both locations. After some time, one wants
to check whether this process is successful, i.e., whether RI and
RII contain the same data.

We idealize this verification task in the sense of a mathematical
abstraction. We consider the contents of the databases of RI and
RII as sequences of bits. Hence, we assume that the computer RI

has a sequence
x = x1x2x3 . . . xn−1xn

of n bits and the computer RII has the n-bits sequence

y = y1y2y3 . . . yn−1yn.

The task is to use a communication channel (network) between RI

and RII in order to verify whether x = y (Fig. 6.1).

To solve this task one has to design a communication strategy,
called a communication protocol in what follows. The com-
plexity of communication and so the complexity of solving the
verification problem is measured in the number of bits exchanged
between RI and RII through the communication channel.



212 6 Randomness in Nature

Fig. 6.1

Unfortunately, the provable fact is that any communication pro-
tocol for solving this task cannot do better for most possible
inputs x and y than to exchange n bits. This means that the
naive protocol based on sending all n bits (the whole x) of RI

to RII and asking RII to perform the comparison of x and y bit
by bit is optimal. No multiple message exchange and no clever
computation of RI and RII can help to decrease the commu-
nication complexity. If n is very large, for instance n = 1016

(this corresponds to the memory size of 250000 DVDs), then
the communication cost is too high. Moreover to reliably trans-
fer 1016 bits without flipping or losing any particular bit using
current Internet technologies is an almost unrealistic undertak-
ing.

In what follows we design a randomized communication protocol
that solves our “equality problem” within

4 · �log2(n)�

communication bits7. We see that one can save an exponential
complexity in this way. For instance, for n = 1016 one needs to
send only 256 bits instead of 1016 bits!

For the presentation of the randomized communication strategy it
is more transparent to speak about a comparison of two numbers
instead of the comparison of two bit sequences. Therefore we con-
sider the sequences x = x1 . . . xn and y = y1 . . . yn of bits as binary
representations of the integers.

7 For a real number a, �a� is the next larger integer. For instance, for a = 4.15,
�a� = 5.



6.3 Abundant Witnesses Are Useful 213

Number(x) =
n∑

i=1

2n−i · xi

and

Number(y) =
n∑

i=1

2n−i · yi

If these formulas do not mean anything to you anymore, and you
have forgotten this secondary-school subject, you do not need to
worry about this. The only important thing is to know that

Number(x) is a natural number represented by x, and that

0 ≤ Number(x) ≤ 2n − 1.

Analogously,

0 ≤ Number(y) ≤ 2n − 1.

For n = 1016, these numbers can be really huge. Already for n =
106 = 1000000, the numbers can be around

21000000

and consist of about 300000 decimal digits.

Clearly, x and y are identical if and only if Number(x) = Number(y).
Hence, we may focus on comparing Number(x) with Number(y)
in our randomized protocol.

Exercise 6.1 For those who want to understand everything in detail. The sequence
10110 represents the integer

Number(10110) = 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20

= 1 · 16 + 0 · 8 + 1 · 4 + 1 · 2 + 0 · 1
= 16 + 4 + 2 = 22.

What number is represented by the bit sequence 101001? What is the binary repre-
sentation of the integer 133?



214 6 Randomness in Nature

The randomized communication protocol for inputs x1 . . . xn and
y1 . . . yn corresponds to a random choice of a collection of determin-
istic communication strategies. The size of this collection equals
the number of primes smaller than n2.

In what follows, for each positive integer m ≥ 2, we denote by

PRIM(m) = {p is a prime | p ≤ m}

the set of all primes in the interval from 1 to m and by

Prim(m) = |PRIM(m)|

the number of primes in PRIM(m).

In what follows we denote by

r = a mod b

the residue of the division a : b. For instance 2 = 14 mod 3, be-
cause 14 : 3 = 4 and the remainder is r = 14 − 3 · 4 = 2.

If one considers the division a : b in the framework of integers
only, and the result is c and the remainder is r < b, then one can
write

a = b · c + r .

In our example for a = 14 and b = 3, the result of the di-
vision is c = 4 and the remainder is r = 2. Hence, one can
write

14 = 3 · 4 + 2,

where r = 2 < 3 = b.

Now, we are ready to present a randomized communication pro-
tocol for the comparison of x and y (better to say for comparing
Number(x) with Number (y)).



6.3 Abundant Witnesses Are Useful 215

Randomized communication protocol WITNESS for iden-
tity verification.

Initial situation: The computer RI has n bits x =
x1x2 . . . xn (i.e., an integer Number(x), 0 ≤
Number(x) ≤ 2n − 1).
The computer RII has n bits y =
y1y2 . . . yn (i.e., an integer Number(y), 0 ≤
Number(y) ≤ 2n − 1).

Phase 1: RI chooses a prime p from PRIM(n2) at random. Ev-
ery prime from PRIM(n2) has the same probability
1/Prim(n2) to be chosen.

Phase 2: RI computes the integer

s = Number(x) mod p

(i.e., the remainder of the division Number(x) : p)
and sends the binary representations of

s and p

to RII .

Phase 3: After reading s and p, RII computes the number

q = Number(y) mod p.

If q �= s, then RII outputs “unequal”.
If q = s, then RII outputs “equal”.

Before analyzing the communication complexity and the reliabil-
ity of WITNESS, let us illustrate the work of the protocol for a
concrete input.

Example 6.1 Let x = 01111 and y = 10110.
Hence,

Number(x) = 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = 8 + 4 + 2 + 1 = 15,

Number(y) = 1 · 24 + 1 · 22 + 1 · 21 = 16 + 4 + 2 = 22



216 6 Randomness in Nature

and

n = 5.

Consequently n2 = 25 and

PRIM(n2) = {2, 3, 5, 7, 11, 13, 17, 19, 23}.

In Phase 1 the communication protocol WITNESS has the random
choice from the collection of 9 primes of PRIM(25) and in this way
it chooses one of 9 possible deterministic protocols.

Assume that RI chooses the prime 5. In Phase 2 computer RII

computes

s = 15 mod 5 = 0

and sends the integers p = 5 and s = 0 to RII . Then RII computes

q = 22 mod 5 = 2.

Since 2 = q �= s = 0, the computer RII gives the correct answer

“x and y are unequal”.

Assume now that RI chooses the prime 7 from PRIM(25) at ran-
dom. Then the computer RI computes

s = 15 mod 7 = 1

and sends the integers p = 7 and s = 1 to RII . Then RII computes

q = 22 mod 7 = 1.

Since q = s, the computer RII gives the wrong answer

“x and y are equal”.

We immediately observe that WITNESS may err because some of
the random choices of primes can lead to a wrong answer. �
Exercise 6.2 Does there exist a prime in PRIM(23) different from 7, whose choice
results in a wrong answer of WITNESS for x = 01111 and y = 10110?

Exercise 6.3 Let x = y = 100110 be the inputs. Does there exist a choice of a
prime from PRIM(62) such that WITNESS provides the wrong answer “x �= y”?



6.3 Abundant Witnesses Are Useful 217

Exercise 6.4 Consider x = 10011011 and y = 01010101 as inputs. Estimate for
how many primes from PRIM(82) WITNESS computes the wrong answer “x = y”.
What is the number of primes from PRIM(64) for which WITNESS provides the
right answer “x �= y”?

First, we analyze the communication complexity of WITNESS.
The natural numbers Number(x) and Number(y) have the length
of their binary representations bounded by n and so they are from
the interval from 0 to 2n−1. To save communication bits the com-
munication of WITNESS consists of sending two integers smaller
than n2, namely p and the remainder of the division Number(x) : p.
A natural number smaller than n2 can be binary represented by

⌈
log2 n2

⌉
≤ 2 · �log2 n�

bits. The symbols � and � are used to denote the rounding to
the next larger integer. For instance, �2.3� = 3, �7.001� = 8 and
�9� = 9.

Since in WITNESS two numbers p and s are communicated, RI

can use exactly8 2�log2 n� bits for the representation of each one.
In this way the number of communication bits for inputs of length
n is always exactly

4 · �log2 n� .

Let us see what that means for n = 1016. As already mentioned,
the best deterministic protocol cannot avoid the necessity of com-
municating at least

1016 bits

for some inputs. Our protocol WITNESS always works within

4 ·
⌈
log2(1016)

⌉
≤ 4 · 16 · �log2 10� = 256 communication bits.

The gap between communicating 1016 bits and 256 bits is huge.
Even if it is possible to communicate 1016 bits in a reliable way the
costs of sending 256 bits and of sending 1016 bits are incomparable.
For this unbelievably large saving of communication costs we pay

8 If the binary representation of p or s is shorter than 2�log2 n� one can add a few
0’s at the beginning of the representation in order to get exactly this length.



218 6 Randomness in Nature

by losing the certainty of always getting the correct result. The
question of our main interest now is:

How large is the degree of unreliability we have used to pay
for the huge reduction of the communication complexity?

The degree of uncertainty of computing the correct result is called
the error probability in algorithmics. More precisely, the error
probability for two input strings x and y is the probability

ErrorWITNESS(x, y)

that WITNESS computes a wrong answer on inputs x and y. For
different input pairs (x, y) (i.e., for different initial situations) the
error probabilities may differ. Our aim is to show that the error
probability is very small for all9 possible inputs x and y.

“What is the error probability for a given x and y and how
can one estimate it?”

The protocol WITNESS chooses a prime for PRIM(n2) for in-
put strings x and y of length n at random. These choices decide
whether the protocol provides the correct answer or not. There-
fore we partition the set PRIM(n2) into two parts. All primes that
provide the correct answer for the input instance (x, y) we call

good for (x, y) .

The prime 5 is good for (01111, 10110) as we have seen in Example
6.1.

The other primes whose choices result in the wrong answer for the
problem instance (x, y) we call

bad for (x, y) .

The prime 7 is bad for (01111, 10110) as was shown in Example
6.1.
9 In computer science we have very high requirements on the reliability of random-

ized algorithms and systems. We force a high probability of getting the correct
result for every particular problem instance. This is in contrast to the so-called
stochastic procedures, for which one only requires that they work correctly with
high probability on a statistically significant subset of problem instances.



6.3 Abundant Witnesses Are Useful 219

Since each of the Prim(n2) many PRIM(n2) has the same proba-
bility of being chosen, we have

ErrorWITNESS(x, y) =
the number of bad primes for (x, y)

Prim(n2)
,

i.e., the error probability is the ratio between the number of
bad primes for (x, y) in the urn (in PRIM(n2)) and the number
Prim(n2) of all primes in the urn. This is a simple consideration
and we can convince the reader about it in a transparent way.
Assume an urn with 15 balls. Assume that exactly 3 of these 15
balls are white. Then the probability of choosing a white ball at
random is exactly 3

15
= 1

5
, if each ball has the same probability of

being chosen. In another words, 20% of the balls in the urn are
white and so one can expect that in a long sequence of repeated
random experiments (choosing a ball at random and putting it
back) a white ball is the result of the random choice in 20% of
cases. Similarly, flipping a fair coin many times you may expect the
number of flipped heads is approximately the same as the number
of flipped tails. Analogously, if WITNESS chooses a prime from
the 15 primes in PRIM(72) for a given (x, y) at random and there
are two bad primes for (x, y) among these 15 primes, the error
probability for (x, y) is 2/15.

The situation is depicted in Fig. 6.2. Our task is to show, for any
instance (x, y) of our identity problem, that the set of bad primes
for (x, y) is very small with respect to the size of PRIM(n2).

Fig. 6.2



220 6 Randomness in Nature

How large is PRIM(m) for a positive integer m? One of the deep-
est and most important discoveries of mathematics10 is the prime
number theorem saying that

Prim(m) is approximately
m

ln m
,

where ln m is the natural logarithm of m. The prime number the-
orem says that the primes are closely distributed among natu-
ral numbers, because one can find a prime approximately at each
(ln m)-th position. For our calculation we need only the known
assertion

Prim(m) >
m

ln m
for all integers m > 67. Hence, we have

Prim(n2) >
n2

2 ln n

for all n ≥ 9. Our next objective is to show that

for every problem instance (x,y), the number of bad primes
for (x,y) is at most n − 1,

which is essentially smaller than n2/2 ln n.

Investigating the error probability of WITNESS, we distinguish
two cases with respect to the relation between x and y.

Case 1 x = y and so the right answer is “equal”.

If x = y, then Number(x) =Number(y). For all primes p the equal-
ity

s = Number(x) mod p = Number(y) mod p = q

holds. Hence, it does not matter which p from PRIM(n2) is chosen,
s = q must hold. In other words, if one divides two equal numbers
by the same prime p, the residues of these two divisions must
be the same. Hence, the protocol WITNESS computes the right
answer “equal” for all primes in PRIM(n2). Therefore

ErrorWITNESS(x, y) = 0

10more precisely, of number theory



6.3 Abundant Witnesses Are Useful 221

for all strings x = y (for all problem instances (x, y)).

From the analysis of Case 1 we learned that a wrong answer can
occur only for problem instances (x, y) with x �= y.

Case 2 x �= y and so the right answer is “unequal”. As we have
already fixed for (01111, 10110) in Example 6.1, the error prob-
ability can be different from 0 for problem instances (x, y) with
x �= y. The random choice of p = 7 results in the wrong answer
“equal” for x = 01111 and y = 10110.

In what follows we investigate the properties of bad primes for a
given (x, y) in order to prove a general upper bound n − 1 on the
number of bad primes for every problem instance (x, y) with x �= y
and |x| = |y| = n.

A prime p is bad for (x, y) if the residues of the divisions Number(x) :
p and Number(y) : p equal each other, i.e., if

s = Number(x) mod p = Number(y) mod p.

The equality
s = Number(x) mod p

means nothing other than

Number(x) = hx · p + s,

where hx is the result of the division Number(x) : p and s < p is
the remainder.

Analogously one can also write

Number(y) = hy · p + s,

where p is involved hy times in Number(y) and s < p is the re-
mainder11.

Assume Number(x) ≥Number(y) (in the opposite case when
Number(y) >Number(x) the analysis can be finished in an anal-
ogous way). We compute the integer Number(x)−Number(y) as
follows:
11For instance, for x = 10110 we have Number(x) = 22. For p = 5, Number(x) =

22 = 4 · 5 + 2, where hx = 4 and s = 2 is the remainder.



222 6 Randomness in Nature

Number(x)

−Number(y)

Dif(x, y)

hx · p + s

−hy · p − s

hx · p − hy · p
In this way we obtain:

Dif(x, y) = Number(x)− Number(y) = hx ·p−hy ·p = (hx−hy)·p.

The final conclusion is that the prime p divides the number

Dif(x, y) = Number(x) − Number(y).

What did we learn from this calculation?

A prime p is bad for (x, y) if and only if p divides Dif(x, y).

Why is this knowledge helpful? First of all, we have found a fast
way of recognizing bad primes.

Example 6.2 Assume RI has the string x = 1001001 and RII has
the string y = 0101011, both strings of length n = 7. The task is
to estimate the bad primes for (x, y) = (1001001, 0101011).

First we estimate

PRIM(n2) = PRIM(49)

= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}
as the set of primes from which WITNESS chooses a prime
at random. Following our new observation, the bad primes for
(1001001, 0101011) are exactly those primes that divide the differ-
ence

Dif(1001001, 0101011) = Number(1001001) − Number(0101011)

= 73 − 43 = 30.

We immediately see that 2, 3, and 5 are the only primes in
PRIM(49) that divide 30, and so 2, 3, and 5 are the only bad
primes for (1001001, 0101011). In this way we obtain



6.3 Abundant Witnesses Are Useful 223

ErrorWITNESS(1001001, 0101011) =
3

Prim(49)
=

3

15
=

1

5
.

�
Exercise 6.5 Find all bad primes for the following problem instances.

(i) (01010, 11101)
(ii) (110110, 010101)
(iii) (11010010, 01101001).

Now, the remaining question is the following one:

“How to use the knowledge that bad primes for (x, y) di-
vides Dif(x, y) to bound their number?”

Since both numbers Number(x) and Number(y) are smaller than
2n, we have

Dif(x, y) = Number(x) − Number(y) < 2n.

We show that a number smaller than 2n cannot be divisible by
more than n − 1 primes12. To do so we apply another famous
theorem of mathematics, the so-called fundamental theorem of
arithmetics. This theorem says that

each positive integer larger than 1 can be unambiguously
expressed as a product of primes.

For instance,

5940 = 2 · 2 · 3 · 3 · 3 · 5 · 11 = 22 · 33 · 5 · 11

and so 2, 3, 5, and 11 are the so-called prime factors of 5940. In
other words, the number 5940 is divisible by exactly 4 primes
2, 3, 5, and 11.

Let p1, p2, p3, . . . , pk be all prime factors of our number Dif(x, y)
and let p1 < p2 < p3 < . . . < pk. In general, we see that pi > i for
each i. Hence, we have

12Mathematicians would say a number smaller than 2n can have at most n−1 prime
factors.



224 6 Randomness in Nature

Dif(x, y) = pi1
1 · pi2

2 · pi3
3 · . . . · pik

k

for ij ≥ 1 for all j from 1 to k, and we can write

Dif(x, y) ≥ p1 · p2 · p3 · . . . · pk

> 1 · 2 · 3 · . . . · k
= k!

Since Dif(x, y) < 2n and Dif(x, y) > k!, we obtain

2n > k! .

Since n! > 2n for n ≥ 4, k must be smaller than n and in this way
we have obtained the stated aim that

k ≤ n − 1,

i.e., that the number of prime factors of Dif(x, y) is at most n− 1
and so the number of bad primes for (x, y) is at most n − 1.

Using this result we can upperbound the error probability of WIT-
NESS on (x, y) for x �= y as follows. For every problem instance
(x, y) of length n ≥ 9,

ErrorWITNESS(x, y) =
the number of bad primes for (x, y)

Prim(n2)

≤ n − 1

n2/ ln n2

≤ 2 ln n

n
.

Hence, the error probability of WITNESS for problem instances
(x, y) with x �= y is at most 2 ln /n, which is for n = 1016 at most

0.36841

1014
.

In Example 6.2 we saw that the error probability can be relatively
high, 1/5. This is because the analyzed error probability decreases



6.3 Abundant Witnesses Are Useful 225

with growing n. Therefore, for small problem instances of a few
thousand bits, one recommends to compare x and y in a deter-
ministic way, since the costs for such a comparison are anyway
small. Only for larger problem instances is it profitable to apply
the randomized protocol WITNESS.

Exercise 6.6 What are the upper bounds on the error probability of WITNESS
for input sizes n = 103 and n = 104? Up to which problem instance size would you
recommend using the protocol WITNESS?

Exercise 6.7 Estimate the exact error probabilities of WITNESS for the following
problem instances (x, y):

(i) (00011011, 10101101)
(ii) (011000111, 000111111)
(iii) (0011101101, 0011110101).

Recently, we have seen a real miracle. A randomized system can
efficiently and reliably perform tasks that are not tractable for
deterministic systems. We know many hard problems that can-
not be practically solved because the fastest known algorithms for
them require an exponential complexity. Several such problems
have to be solved daily and we are able to perform them only due
to randomized algorithms. The whole area of e-commerce includes
implementations of randomized algorithms in the software used.
In fact, bad news for people searching for absolute reliability! But,
for those who know the risk and can calculate it and reduce it,
randomized systems provide what they are looking for.

Now it is time to at least partially reveal the nature behind the
magic of randomization. We want to understand why randomiza-
tion can cause such magnificent effects, and thus examine applica-
tions of randomization in algorithmics as a natural phenomenon.

We start our considerations by expressing doubts about the success
of randomization presented above. We saw that the randomized
protocol WITNESS works efficiently and with a high reliability.
But is it really true that the best deterministic protocol for the
identity problem cannot avoid sending almost n bits for most prob-
lem instances, and that for some problem instances the exchange
of n bits is necessary? We did not prove it here. Why may one have



226 6 Randomness in Nature

doubts with respect to these claims? Intuitively, these assertions
look suspicious.

Let us go into detail and look at Fig. 6.2. We rename the good
primes for (x, y) to witnesses of the difference between x and
y (for short).We say that a prime p is a witness of “x �= y” or
a witness for (x, y) if

Number(x) mod p �= Number(y) mod p.

A prime q is a non-witness of “x �= y” if

Number(x) mod p = Number(y) mod p.

Thus, the good primes for (x, y) are witnesses for (x, y) and the bad
primes are non-witnesses for (x, y). Using these new terms one can
view the work of the protocol WITNESS as searching for a witness
of “x �= y”. If WITNESS chooses a witness of “x �= y” at random,
then WITNESS proves the fact “x �= y” and reliably provides the
correct answer “unequal”. If the protocol chooses a non-witness
for (x, y) with x �= y at random, one cannot avoid the wrong
answer “equal”. The protocol WITNESS works correctly with high
probability, because almost all candidates for witnessing in
PRIM(n2) are witnesses. The group of non-witnesses is so small
relative to Prim(n2) that the probability of choosing a non-witness
at random is very small. And now one can present the following
doubt.

If almost all elements of the set of the candidates for wit-
nessing are witnesses for (x, y), why is it not possible to find
a witness among them in an efficient, deterministic way and
then to solve the task within a short communication? To fix
a witness for (x, y) in a deterministic way means to ex-
change the randomness for a deterministic control and so
to design an efficient deterministic communication protocol
for the comparison of x and y.

How to explain that this at first glance plausible idea does not
work? Clearly, we can present a formal mathematical proof that
there is no efficient deterministic communication protocol for this



6.3 Abundant Witnesses Are Useful 227

task. But that is connected with two problems. First, despite the
fact that this proof is not too hard for mathematicians and com-
puter scientists, it requires knowledge that cannot be presupposed
by a general audience. Secondly, understanding of the arguments
of the proof does not necessarily help us to realize why the pro-
posed idea does not work. You would only know that designing
an efficient deterministic protocol for this task is impossible, but
the main reason for that would remain hidden. Because of that we
prefer to present only an idea in a way that increases our under-
standing of randomized control.

There is no efficient13 deterministic algorithm for finding a witness
for a given (x, y), because from the point of view of the computers
RI and RII

the witnesses are “randomly” distributed among the candi-
dates for witnessing.

What does this mean? If you know x but only very little about
y, you cannot compute a witness for (x, y), even when several
attempts are allowed. This is the consequence of the fact that the
witnesses are completely differently distributed in the candidate
set PRIM(n2) for distinct inputs of length n. There is no rule for
computing a witness for a partially unknown input. Hence, from
the point of view of RI and RII the soup in the pot containing
all candidates (Fig. 6.3) looks as a chaos (a really chaotic mix of
witnesses and non-witnesses) And this is the kernel of the success
of randomness.

For several tasks one can solve the problem efficiently if a witness
is available. In a real application, nobody provides a witness for
us for free. But if one can build a set of candidates for witnessing
in such a way that this set contains many witnesses, it is natural
to search for witnesses at random. The chaotic distribution of wit-
nesses is no obstacle for a random choice. But if the distribution of
witnesses among candidates is really random, there does not exist
any efficient deterministic procedure for finding a witness in this
set.
13with respect to communication complexity



228 6 Randomness in Nature

Fig. 6.3: A chaotic mix of witnesses and non-witnesses

Searching for efficient randomized algorithms one often applies the
idea presented above. We try to find a kind of witness that fulfills
the following requirements:

(i) If one has a witness for an input instance, then one can compute
the correct result efficiently in a deterministic way.

(ii) If one has a candidate for witnessing, one can, for a given input,
efficiently verify whether it is a witness or not.

(iii) There is an abundance of witnesses in the set of candidates.

Based on requirement (iii) this method for the design of random-
ized algorithms is called the method of the abundance of wit-
nesses. Hence, to have many witnesses may be very useful. How
one can even increase the abundance of witnesses is the topic of
the next section.

6.4 What to Do When a Customer Requires a
Very High Reliability?

The whole history of Man is strongly related to the search for
certainty. Who are we? What are we looking for? What to do in
order to get a guarantee for a “nice” or at least any future? Life
and science educate us that the search for an absolute certainty is
a nonsense that can even be dangerous. Striving for a non-existing



6.4 High Reliabilities 229

absolute certainty means to do without many things and activities
and often means to run up a blind alley. Frustration and depression
are typical consequences of such meaningless effort. But if one ac-
cepts uncertainty and with it also randomness as an inevitable part
of life and learn to live with this, instead of frustration one discov-
ers new possibilities as a reward for giving up non-existing ideals.
The blind alleys are not blind anymore and the future is open for
a variety of possibilities. That was exactly the case in the example
presented in the previous section. The situation looked hopeless,
because each protocol solving the task has communication costs
that are too large. Exchanging the hypothetical absolute reliability
of deterministic protocols for a practical reliability of randomized
protocols, we found a good solution for our communication task.
In several similar situations one is unable to find witnesses that
have as high abundance as in our example. Sometimes only a frac-
tion of the candidates for witnessing are witnesses. In such cases
the error probability can grow to an extent that is not acceptable
in the applications. The aim of this section is to show how one can
master such situations.

Let us start with our example of the randomized communication
protocol for the equality of two strings. For n = 1016, the error
probability is at most 0.37 · 10−14. Assume we have a customer for
whom the reliability of the protocol is extremely important and
so he is asking for a still higher degree of guarantee for the correct
answer. For instance, the customer is saying:

“I require the reduction of the error probability to such a
small value, that if one applies the protocol t times for t
equal to the product of the age of the Universe in seconds
and the number of protons in the Universe, then the proba-
bility of getting at least one wrong answer in one of these t
applications is smaller than one in a million.”

For sure, that is a very strange requirement. Can we satisfy this
exaggerated request of the customer without any huge increase
in communication complexity? The answer is “YES”, and in or-
der to show how to do it we present a simple consideration from
probability theory.



230 6 Randomness in Nature

Assume we have a fair die. Rolling a die is considered a random
experiment with 6 possible outcomes 1, 2, 3, 4, 5, and 6, in which
the probability of each concrete outcome is the same, i.e. 1/6.

Assume that the only “bad” result for us is “1” and all other out-
comes of the experiment are welcome. Hence, the probability of
getting an undesirable outcome is 1/6. Next, we change the exper-
iment and the definition of an undesirable outcome. We consider
rolling the die five times and the only undesirable outcome of this
new experiment is to get “1” in all five rolls. In other words, we
are satisfied if in at least one of these five simple experiments of
rolling a die the outcome is different from “1”. What is the prob-
ability of getting the undesirable outcome? To get the answer,
we have to estimate the probability of rolling “1” five times, one
behind another. Because all five die rolls are considered as inde-
pendent14 experiments, one calculates as follows. One “1” is rolled
with probability 1/6. Two “1” are rolled one behind another with
probability

1

6
· 1

6
=

1

36
.

The probability of rolling five “1” one behind each other is exactly

1

6
· 1

6
· 1

6
· 1

6
· 1

6
=

1

65
=

1

7776
.

What does this consideration have in common with the error prob-
ability of randomized communication protocols? A lot. One appli-
cation of the randomized protocol can be viewed as a random
experiment, in which the undesirable outcome corresponds to the
random choice of a non-witness for a given input. Our analysis of
the error probability of the randomized protocol shows the proba-
bility of getting this undesirable outcome, and so the wrong answer
is at most

2 ln n

n
.

Now, we adapt the idea with the repeated die rolls. If one chooses
10 primes at random, then the only undesirable outcome is that all

14The exact meaning of the term independent is presented in [Hro04b].



6.4 High Reliabilities 231

10 primes are non-witnesses for the given input (x, y). If at least
one prime is a witness for (x, y), one gets the correct answer with
certainty. This consideration results in the following randomized
communication protocol.

WITNESS (10)
Initial situation: Computer RI has n bits x = x1 . . . xn and

computer RII has n bits y = y1 . . . yn.

Phase 1: RI chooses 10 primes

p1, p2 . . . p10 from PRIM(n2) at random.

Phase 2: For each i from 1 to 10 RI computes

si = Number(x) mod pi

and sends the binary representations of

p1, p2 . . . p10, s1, s2 . . . s10

to RII .

Phase 3: After reaching the 20 numbers

p1, p2 . . . p10, s1, s2 . . . s10,

the computer RII computes

qi = Number(y) mod pi

for all i = 1, 2 . . . 10.
If there exists at least one i from 1, 2, . . . , 10 such that
qi �= si, then RII knows with certainty that x �= y and
outputs “unequal”.
If qi = sj for all 10 j from 1, 2, . . . , 10, then either
x = y or x �= y and none of the 10 primes chosen is a
witness of “x �= y”. In this case the protocol outputs
“x = y”.



232 6 Randomness in Nature

What do we observe? If x = y then WITNESS(10) outputs the
correct result “equal” with certainty, exactly as WITNESS did too.
If x �= y, then WITNESS(10) can provide the wrong output only
if none of the 10 primes chosen is a witness for (x, y). It suffices
that at least one of these 10 primes is a witness for (x, y), say p4,
and RII knows that x �= y because s4 �= p4 and so p4 witnesses
the difference between x and y. If the probability of choosing a
non-witness for (x, y) in one attempt is at most 2 ln /n, then the
probability of choosing 10 non-witnesses at random one behind
the other is at most

(
2 ln n

n

)10

=
210 · (ln n)10

n10
.

For n = 1016 this probability is at most

0.4714

10141
.

The product of the age of the Universe in seconds and the number
of protons in the Universe is smaller than

1099.

We omit presenting a mathematical calculation that shows that
getting a wrong output in 1099 applications of WITNESS(10) is
smaller than 1 in 1030.

In this way we have reduced the error probability strongly below
any reasonable limits and so we fulfill all reliability requirements
that have ever been formulated in practice. And we paid very little
for this wonderful gain. Computing with 10 primes instead of with
one increases the communication costs by the multiplicative factor
10. Hence, the communication complexity of WITNESS(10) is

40 · �log2n� .

These communication costs are negligible. For instance, for n =
1016, WITNESS(10) communicates



6.4 High Reliabilities 233

2560 bits

only.

Since WITNESS(10) can be viewed as 10 repetitions of WITNESS,
we say in the formal terms of algorithmics that

the complexity grows linearly with the number of repetitions
(attempts to find a witness), while the error probability is
reduced with an exponential speed-up in the number of rep-
etitions.

In fact, this situation belongs among the most favorable situations
that one can have when searching for a solution to an algorithmic
task.

Our randomized protocol WITNESS(10) is in fact more reliable
than anything we could associate with the notion of reliability.
There are two main reasons for that. First, already the proto-
col WITNESS provides a high degree of reliability. Secondly, the
method of “repeated experiment” (of repeated random search for
a witness) can essentially reduce the error probability even in cases
when the probability of choosing a witness at random is small. The
following exercises provide the reader with the possibility of ap-
plying the ideas presented above and so deepen one’s imagination
of the power of randomized computation.

Exercise 6.8 Let A be an algorithmic task for which every known algorithm has
complexity at least 2n. Let A be a decision problem for which only answers YES
and NO are possible and so the task is to decide whether a problem instance x has
a special property or not. Assume one has a kind of witness for x of size n with the
following properties:

(i) If z is a witness for x, then one can verify in 10 · n2 operations that x has the
desired property. If z is not a witness for x, then the algorithm is unable to
recognize whether x has the desired property or not. The fact that z is not a
witness for x is recognized by the algorithm in time 10 · n2, too.

(ii) At least half of the witness candidates are witnesses, i.e. the probability of
choosing a witness at random is at least 1/2.

The tasks are as follows:

1. Assume a randomized algorithm that performs 10 choices from the set of witness
candidates at random in order to get a witness for the given input. Bound the
error probability of this algorithm and analyze its computational complexity.



234 6 Randomness in Nature

2. A customer is asking for an algorithm that solves the decision problem with error
probability at most 1 in 109. How many repetitions of the original algorithm
are necessary to reduce the error probability below this limit? What is the
complexity of the resulting algorithm?

Exercise 6.9 Solve Exercise 6.8 if the assumption (i) is satisfied, and instead of
(ii) we have the following assumptions:

(i) The portion of witnesses in the set of candidates is exactly 1/6.
(ii) The portion of witnesses in the set of candidates is only 1 in n, where n is the

size of the problem instance (input).

6.5 What Are Our Main Discoveries Here?

If, for some tasks, one strongly requires to compute the correct
results with absolute certainty, one can walk up a dead-end street.
All algorithms that assume a theoretically absolute reliability de-
mand so much computer work that they are intractable (not prac-
ticable). We know several computing tasks for which the best
known algorithms need more time than the age of the Universe
and more energy than the energy of the whole known Universe.
To solve such problems is beyond the limits of physically doable.
And then we discover that there is a magic way to solve these hard
tasks. We do without the absolute reliability that does not exist
anyway in practice and force a high probability of computing the
correct result for each problem instance instead. We are allowed to
require such a small error probability that one can speak about ex-
changing a hypothetical absolute reliability for practical certainty
of getting the right result. Due to this fictitious reduction of our
reliability requirements, we can save a huge amount of computer
work. There exist problems for which a clever use of randomness
causes a big jump from a physically undoable amount of work to
a few seconds work on a common PC.

We learned two important paradigms for the design of randomized
systems. The method of abundance of witnesses touches upon the
deepest roots of the computational power of randomness. A wit-
ness for a problem instance is a piece of additional information



6.5 What Are Our Main Discoveries Here? 235

that helps us to efficiently solve the problem instance that cannot
be solved efficiently without it. The method promises successful
applications if one can find a kind of witness, such that there is
an abundance of witnesses in the set of candidates for witnessing.
The idea is then to use repeated random sampling (choice) from
the set of candidates in order to get a witness efficiently with high
probability, although one does not know any efficient way of com-
puting a witness using deterministic algorithms. The question of
whether there are problems that can be solved efficiently by ap-
plying randomization, but which cannot be solved efficiently in a
deterministic way, can be expressed as follows:

If all kinds of sets of candidates for witnessing for a hard
problem have the witnesses randomly distributed in the can-
didate set then the problem is efficiently solvable using a
randomized algorithm, but not efficiently solvable using de-
terministic algorithms.

The second approach we applied for the design of randomized al-
gorithms is the paradigm of increasing success probability (of a fast
reduction of error probability) by repeating several random compu-
tations on the same problem instance. This paradigm is often called
the paradigm of amplification (of the success probability). Repeat-
ing WITNESS 10 times results in the protocol WITNESS(10),
whose error probability tends to 0 with an exponential speed in
the number of repetitions, but whose complexity grows only lin-
early in the number of repetitions. The situation is not always
so favorable, but usually we are able to satisfy the reliability re-
quirements of customers without paying too much with additional
computer work.

The textbook “The Design and Analysis of Randomized Algo-
rithms” [Hro04b, Hro05] provides a transparent introduction to
methods for designing efficient randomized systems. On one side it
builds the intuition for the subject in small steps, and on the other
side it consistently uses the rigorous language of mathematics in
order to provide complete argumentation for all claims related to
the quality of designed algorithms in terms of efficiency and error



236 6 Randomness in Nature

probability. The most exhaustive presentation of this topic is avail-
able in Motwani and Raghavan [MR95]. But this book is written
for specialists and so it is not easily read by beginners. A delicacy
for gourmets is the story about designing algorithms for primal-
ity testing by Dietzfelbinger [Die04], where the method of abun-
dance of witnesses is applied several times. Further applications
for designing randomized communication protocols are available
in [KN97, Hro97]. Here, the mathematically provable advantages
of randomness over determinism are presented. Unfortunately, be-
cause many highly nontrivial mathematical arguments are consid-
ered, these books are not accessible to a broad audience.

Solutions to Some Exercises

Exercise 6.2 The prime 7 is the only prime in PRIM(25) whose choice in the first
step of WITNESS results in a wrong output “equal” for the input x = 01111 and
y = 10010.

Exercise 6.5 (i) Let x = 01010 and y = 11101. Hence, n = 5 and we consider
primes from PRIM(52). The integers represented by x and y are:

Number(01010) = 23 + 21 = 8 + 2 = 10

Number(11101) = 24 + 23 + 22 + 20 = 16 + 8 + 4 + 1 = 29.

To find the bad primes from PRIM(25) for x and y, we do not need to test all primes
from PRIM(25). We know that every bad prime for x and y divides the difference

Number(11101) − Number(01010) = 29 − 10 = 19

The number 19 is a prime and so 19 is the only prime in PRIM(25) that 19 divides.
Hence, 19 is the only bad prime for 01010 and 11101.

Exercise 6.7 (i) To calculate the error probability of WITNESS for x = 00011011
and y = 10101101, we need to estimate the cardinality of PRIM(82).

PRIM(64) = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61}

and so |PRIM(64)| = 18. The integers represented by x and y are:

Number(x) = 24 + 23 + 21 + 20 = 16 + 8 + 2 + 1 = 27

Number(y) = 27 + 25 + 23 + 22 + 20 = 128 + 32 + 8 + 4 + 1 = 173.

Hence, Number(y)−Number(x) = 173− 27 = 146. The factorization of the number
146 is:

146 = 2 · 73 .

Thus, the integers 2 and 73 are the only primes that divide the difference



6.5 What Are Our Main Discoveries Here? 237

Number(y) − Number(x) .

The prime 73 does not belong to PRIM(64) and so the prime 2 is the only bad prime
for (x, y) in PRIM(64). Hence, the error probability of the protocol WITNESS for
(01010, 11101) is exactly 1/18.

Exercise 6.8 The algorithm halts when it finds a witness for x. In the worst case, the
algorithm performs 10 attempts and each attempt costs at most 10·n2 operations for
checking whether the chosen candidate is a witness for x. Therefore the worst-case
complexity of the randomized algorithm is 20·10·n2. If the input x does not have the
property we are searching for, the algorithm provides the right answer “NO” with
certainty. If x has the property, then the algorithm can output the wrong answer
“NO” only when it chooses 20 times a non-witness for x. We assume (assumption
(ii) of the exercise) that the probability of choosing a non-witness at random in an
attempt is at most 1/2. Hence, the probability of choosing no witness in 20 attempts
is at most

„

1

2

«20

=
1

220
=

1

1048576
≤ 0.000001 .

In this way we determined that the error probability is smaller than 1 in one million.

How many attempts are sufficient in order to reduce the error probability below
1/109? We know that 210 = 1024 > 1000. Hence,

230 = (210)3 > 10003 = 109 .

Thus, 30 attempts suffices for getting an error probability below 1 in one million.



From a genius idea all words can be removed.

Stanis�law Jerzy Lec

Chapter 7

Cryptography, or How to
Transform Drawbacks into
Advantages

7.1 A Magical Science of the Present Time

In the 20th century physics was probably the most fascinating
science. It brought discoveries that have essentially changed our
view on the world. Many interpretations and applications of the
theory of relativity or of quantum mechanics look like miracles.
Things and events considered to be impossible became fundamen-
tal for building physical theories. We consider cryptography to be
a magical science of the present time that transfers knowledge into
magic. Do you believe that

• one can convince everybody about having a secret without re-
vealing any small fraction of the secret?

J. Hromkovič, Algorithmic Adventures, DOI 10.1007/978-3-540-85986-4 7,
c© Springer-Verlag Berlin Heidelberg 2009

239

http://dx.doi.org/10.1007/978-3-540-85986-4_7


240 7 Cryptography

• one can send a message in cipher to several receivers in such a
way that they can read it only if all receivers cooperate (i.e.,
they put their secrets together)?

• one can sign a document electronically in such a way that ev-
erybody is convinced about the authenticity of the signature
but nobody can fake (emulate) it?

• one can agree on a common secret with another person in a
public talk in such a way that no listener gets any information
about the secret?

That and still much more is possible. Pure magic.

Communication is the generic term of the current era. It does not
matter whether one uses mobile phones, SMS, e-mail or classical
fax, phones or letters. Communication is present at every time
and everywhere. A large amount of data is permanently flowing
via the Internet. With the amount of data submitted, the difficulty
of ensuring the privacy of all parties involved in communication
increases. This is not only the problem of ensuring that only the
proper receiver is able to read a message submitted to him. In the
case of online banking, e-commerce or e-voting, the requirements
on the degree of security grow enormously.

Cryptology is the science of secret writing and is almost as old as
writing itself. In cryptology, we distinguish between cryptogra-
phy and cryptanalysis. Cryptography is devoted to the design of
cryptosystems (secret codes), while cryptanalysis is devoted to the
art of attacking cryptosystems (illegally intercepting messages). At
the beginning, when writing was discovered, very few people were
able to read or to write. Hence, at that time writing was considered
to be secret in the sense that the ability to read was a common
secret of a small group of insiders. The need for special secret
writing grew with the growing number of people who were able
to read. Here we start with providing some impressions about the
time when secret writing was an art. One developed a secret code
and used it until somebody deciphered it and so made its use inse-
cure. In that time, cryptology was a game between two intellects,



7.2 Prehistory of Cryptography 241

namely the secret code designer and a secret code hacker. First,
we will have a look at encryptions used by Caesar and Richelieu.
In this way, we get the first impression of what cryptosystems are
and what the security of cryptosystems means.

Our next aim is to show that, due to computer science, especially
due to algorithmics and complexity theory, the art of designing
cryptosystems has become a science called cryptography. Cryptog-
raphy owes a debt to algorithmics for the definition of the notion of
the security of cryptosystems. The algorithmic concept of security
became the axiomatic base for scientific investigation. Using it, one
developed modern cryptography, which is based on the mystery of
so-called public-key cryptosystems. Here, we explain the idea be-
hind this mystery that transfers our drawbacks and inability to
solve some problems into advantages. The existence of efficiently
unsolvable algorithmic problems (which was discussed in Chapter
5) is used to make algorithmic cracking of designed cryptosystems
impossible. Finally, we present some miracles that can be viewed as
“magic” applications of the concept of public-key cryptosystems.

7.2 The Concept of Cryptosystems or a Few
Impressions from the Prehistory of
Cryptography

First, we fix our terminology. As already mentioned above, we
consider cryptology as teachings of secret writing. We distinguish
between cryptography and cryptanalysis. Cryptography is the sci-
ence of designing secret cryptosystems. Cryptanalysis is devoted
to attacking them. Here, we deal with cryptography only. The sce-
nario we consider is presented in Fig. 7.1.

A person, called the sender, aims to send a secret message to
another person, called the receiver. The secret message can be
represented as a text, called a plaintext. The plaintext can be
written in a natural language, and therefore it is readable for ev-
erybody. There is no other possibility besides communicating the



242 7 Cryptography

Fig. 7.1

secret through a publicly accessible network, where one cannot
exclude the possibility that other persons can “listen” to the com-
munication messages transported in the network. To exclude the
possibility that an unauthorized person listening to the message
learns about the secret, one sends the message in an encrypted
form using a secret writing. The kind of encryption and of de-
cryption is a common secret of the sender and of the receiver, and
the encryption is performed using the so-called key. The encrypted
text is called the cryptotext. The cryptotext is sent via the pub-
lic network. Upon receiving the cryptotext, the receiver decrypts
the cryptotext and obtains the original plaintext. A description of
the processes of encrypting and decrypting the messages provides
full information sufficient for using the cryptosystem.

To illustrate it using a transparent example, we present the cryp-
tosystem CAESAR that was really used by Caesar. The plaintext
were texts over the Latin alphabets. The special symbols such as
blank, comma, period, and question mark were omitted. In this
way the text

VENIVIDIVICI

can be viewed as a plaintext. Caesar encoded each letter unam-
biguously by another letter. The keys are the integers

0, 1, 2, 3, 4, 5, . . ., 23, 24, 25.

To apply a key i means that every symbol of the plaintext is re-
placed by the letter that is k steps (positions) to the right in the
alphabetical order. If the end of the alphabet is reached, one con-
tinues cyclically from the beginning.



7.2 Prehistory of Cryptography 243

Figure 7.2 shows the encoding using the key i = 3. This means
that A in the plaintext is represented by D in the cryptotext,
because A is at the first position of the Latin alphabet and, shifting
by 3 positions, one reaches the fourth position occupied by D.
Analogously, the letter B at the second position is replaced by the
letter E at the fifth position, etc. In this way, the letter W at the
23rd position is replaced by the letter Z at the 26th position. How
to encode the last three letters X, Y, and Z at the positions 24, 25,
and 26, respectively? One still did not use the letters A, B, and C
in the cryptotext. We simply write the letters A, B, and C at the
positions 27, 28, and 29 behind our alphabet, as depicted in Fig.
7.2. In this way, our problem of replacing X, Y, and Z is solved.
The letter X is replaced by A; Y is replaced by B; Z is replaced
by C. Another transparent way of describing the cryptosystem
CAESAR is to write the Latin alphabet on a tape and then stick
the ends of the tape together (Fig. 7.3). Now, rotating the tape
by 3 positions, one gets the codes of the letters. Applying the key
i = 3 for the plaintext VENIVIDIVICI, one gets the cryptotext

YHQLYLGLYLFL .

Fig. 7.2

Fig. 7.3



244 7 Cryptography

Exercise 7.1 (a) Encode the plaintext VENIVIDIVICI using the key i = 5 and
then using the key i = 17 using the cryptosystem CAESAR.
(b) Encode the plaintext “Roma aeterna docet” using the key i = 7, and the plain-
text “Homines sumus, non dei!” using the key i = 13.

How does the receiver decode the cryptotext? She or he simply re-
places each letter of the cryptotext by the letter that is 3 positions
before this letter in the alphabet. It corresponds to twisting the
tape in Fig. 7.3 three positions to the left. In this way, for instance,
the letter S of the cryptotext is replaced by P, U is replaced for R,
and L is replaced by I. Hence, one decrypts the cryptotext

SULPXPQHQRFHDV

encrypted using the key i = 3 and obtains the original plaintext

PRIMUMNENOCEAS .

Exercise 7.2 Decrypt the cryptotext WYPTBTBAWYVMPJLHZ encrypted using
the key i = 7.

To be more precise, Caesar tried to decrease the risk that some-
body could look through his cryptosystems and therefore he made
it more complicated. After shifting the letters, he replaced the let-
ters of the Latin alphabet one by one using the letters of the Greek
alphabet. Hence, the receiver had to replace the Greek letters for
the Latin ones first, and then to shift positions back inside of the
Latin alphabet.

Jules Verne discussed in his novels a cryptosystem generalizing
that of Caesar. Any integer was allowed to be a key. For an integer
of m digits

A = a1a2 . . . am

he partitioned the plaintext into blocks of length m and replaced
the jth letter of each block by the letter that was aj positions after
the letter in an alphabetical order. For instance, for a = 316 one
gets for the plaintext

C R Y P T O G R A P H Y

3 1 6 3 1 6 3 1 6 3 1 6

the cryptotext

FSESUUJSGSIE .



7.2 Prehistory of Cryptography 245

Fig. 7.4

In contrast to the factual cryptosystem CAESAR, Richelieu culti-
vated in his cryptosystem a real literary art. The following example
is due to Arto Salomaa [Sal96]. The cryptotext is a well-structured
letter on a sheet. Each letter has an exact position on the sheet.
For instance, H lies at the intersection of the second row and of
the third column in Fig. 7.4(b). The key is the matrix in Fig.
7.4(a) that covers some fields of the sheet (the grey ones in Fig.
7.4(b)) and leaves some fields open for reading. The uncovered
letters build the plaintext (Fig. 7.4(c)). For the friendly looking
cryptotext in Fig. 7.4(a), the plaintext is

YOUKILLATONCE .



246 7 Cryptography

7.3 When Is a Cryptosystem Secure?

People have always strived for security and certainty. The unknown
and uncertainty are often the main reasons for fear. In spite of this,
science, and especially physics, teaches us that absolute certainty
does not exist. To strive for it can even result in an illness. It is
better to learn to live with uncertainty. Anyway, it may be rea-
sonable to strive for an achievable degree of security. When is one
allowed to consider a cryptosystem to be secure? Always when an
adversary of an unauthorized person is unable to get the plaintext
from the cryptotext sent. This requirement allows two different
interpretations. Does one require it to be hard or even impossible
to decrypt a cryptotext if nothing about the used cryptosystem is
known or if the cryptosystem (the kind of encryption) is known
and only the key is secret? The first option with the whole cryp-
tosystem as a secret is called “security by obscurity”, and one does
not consider it to be a reasonable base for defining the security of
cryptosystems. This is because experience shows that revealing
the kind of encryption of a new cryptosystem is only a question of
time.

Therefore, already in the 19th century Auguste Kerckhoffs pre-
sented the following requirement on the security of cryptosystems,
known as Kerckhoffs’ principle:

A cryptosystem is secure, if one, knowing the art of the
functioning of the cryptosystem but not knowing the key
used, is not able to derive the original plaintext from the
given cryptotext.

We immediately see that under this definition of security the cryp-
tosystem CAESAR is not secure. If one knows the principle of
CAESAR, it suffices to try out all 26 keys in order to decrypt any
cryptotext.

A direct consequence is that secure systems have to have a huge
number of keys. By “huge” we mean that even the fastest com-
puters are unable to try out all of them. The next question is,
whether a large number of possible keys guarantees the security of



7.3 When Is a Cryptosystem Secure? 247

a cryptosystem. Consider an improvement of CAESAR by allow-
ing arbitrary pairs of letters. Then keys are defined by the so-called
permutations of 26 letters that can be viewed as 26-tuples of in-
tegers between 1 and 26. In any 26-tuple, each integer from the
interval 1 to 26 occurs exactly once. For instance, the key

(26, 5, 1, 2, 3, 4, 25, 24, 23, 8, 9, 22, 21, 20, 7, 6, 10, 11, 18,
17, 12, 13, 19, 14, 16, 15)

corresponds to the following encryption. The first letter A is re-
placed by the 26th letter Z, the second letter B is replaced by the
fifth letter E, the third letter C is replaced by the first letter A,
etc. The complete description of the resulting pairing of letters is
given in Fig. 7.5.

Fig. 7.5

Applying this key, one gets the cryptotext

QXCKCWRTBYKCZQCKBZUZYCQXZTQXCQWUCVGRQ

for the plaintext

THEREISNOGREATERDAMAGETHANTHETIMELOST.

Exercise 7.3 Decrypt the following cryptotexts that were encrypted using the key
described in Fig. 7.5.

(a) AKPFQGYKZFXP
(b) RCALKC

How many keys are possible in this cryptosystem? To code A one
has the choice from 26 letters of the Latin alphabet. After choosing
a letter decoding A, one has 25 possibilities to choose a letter cod-



248 7 Cryptography

ing B. For C, one has still 24 possibilities, etc. Hence, the number
of all keys is

26! = 26 · 25 · 24 · 23 · . . . · 3 · 2 · 1.

In the language of combinations, one says that 26! is the number
of all permutations of 26 elements. This number is huge, approxi-
mately equal to 4.03 · 1026. No computer is fast enough to be able
to try out so many keys.

Does it mean that this system is secure? Unfortunately, “No” is
the unambiguous answer. To discover the key applied, one does not
need to try out all possibilities. A clever idea (that did not occur to
the cryptosystem designer) suffices to crack this cryptosystem. In
the case of our cryptosystem based on permutations of letters, it is
sufficient to know which natural language is used for the plaintext.
For each natural language, one knows the statistical frequency of
the occurrence of particular letters, and these frequencies can differ
a lot from letter to letter. Additionally, some letter combinations
such as TH in English and SCH in German are very frequent. An
experienced cryptanalyst can use this knowledge to estimate the
key (the letter permutation) and so to decrypt the cryptotext in
a few minutes.

This example shows the enormous difficulty of measuring the de-
gree of security (reliability) of a given cryptosystem. What does
it mean that it is impossible or hard to crack a cryptosystem?
The problem with the definition of security by Kerckhoffs is that
one more dimension is involved there. Besides the cryptosystem it-
self, there is an adversary in the game. What is impossible for one
adversary does not need to be hard for another, genius one. An ex-
cellent idea may reduce the decryption problem to an easy game.
What is one allowed to assume about the facilities of an adversary,
or how to get all cryptanalysts under one uniform description?

Computer science solved this long-standing open problem of mak-
ing the definition of secure cryptosystems clear enough. It covered
all simple as well as in ingenious strategies of cryptanalysts using
the notion of an algorithm.



7.4 Symmetric Cryptosystems 249

A cryptosystem is secure if there does not exist any efficient
(randomized polynomial) algorithm that decrypts cryptotext
without knowing the secret key used, but knowing the way
in which the cryptosystem works.

Clearly, this definition of secure cryptosystems could not be dis-
covered before the notion of algorithm and the concept of compu-
tational complexity were introduced. Due to them, one was able
to exactly formulate the first two fundamental requirements on
a “good” cryptosystem in the scientific terminology provided by
complexity theory.

(i) Encryption and decryption can be efficiently performed by al-
gorithms when the key is known.

(ii) Decryption without knowledge of the secret key used in en-
crypting the plaintext corresponds to a hard (practically un-
solvable) problem.

7.4 Symmetric Cryptosystems

The cryptosystems presented until now are called symmetric.
The term symmetric points to the fact that the sender and the
receiver are equal in the sense that the same key as a common
secret is used to encrypt as well as to decrypt the messages. In
fact, the sender and the receiver can exchange their rules anytime,
and so the communication can be viewed as gossiping or as an
information exchange.

In what follows, we show a secure symmetric communication sys-
tem. For this cryptosystem we assume that the plaintexts are sim-
ply sequences of zeros and ones. This is not a restriction because
each letter of an alphabet as well as each symbol of the keyboard
has an ASCII code that is the binary representation of the cor-
responding letter used in computers. In this way, one can first
transform any text into a sequence of zeros and ones.

One also uses as keys sequences of zeros and ones. These sequences
have to be long, for instance a few hundred bits, in order to get



250 7 Cryptography

many keys. They have to be generated at random in order to make
their computation impossible for each unauthorized person.

To describe encryption and decryption (i.e., to define the cryp-
tosystem), we have first to introduce a special operation on bits
(binary numbers). This operation is called “exclusive or” or “XOR”
and is denoted by ⊕. It is defined as follows:

0 ⊕ 0 = 0 1 ⊕ 1 = 0 0 ⊕ 1 = 1 1 ⊕ 0 = 1

Following the notation from Chapter 6, one can write a ⊕ b =
a + b mod 2. If a and b are equal, the result is 0. If a and b are
different, the result is 1.

Assume that the key is 01001011. The length of the key is 8 and
the key can be applied to encrypt plaintexts of length 8. The ith
bit of the key is used to encode the ith bit of the plaintext. One
can see the encryption transparently if one writes the key below
the plaintext as follows:

plaintext 00001111

⊕ key 01001011

= cryptotext 01000100

The ith bit of the cryptotext is the XOR-sum of the ith bit of the
plaintext and the ith bit of the key. Interestingly, one can use the
same procedure for decryption:

cryptotext 01000100

⊕ key 01001011

= plaintext 00001111

We see that it works and that the original plaintext was decrypted.
The success of this procedure is based on the fact that

a ⊕ a = 0, and so b ⊕ a ⊕ a = b.

Hence, two applications of the same key result in the original text.
In another words, the second application of the key deletes the
first application. Moreover,



7.4 Symmetric Cryptosystems 251

a ⊕ b = b ⊕ a

holds, and therefore we call this cryptosystem commutative.

Exercise 7.4 Encode and decrypt the plaintext 0001110011 using the key 0101101001.

Exercise 7.5 Build a similar cryptosystem that is based on the operation ⊥ defined
as follows:

0 ⊥ 0 = 1 1 ⊥ 0 = 0 1 ⊥ 1 = 1 0 ⊥ 1 = 0

The second bit b in a ⊥ b is called a mask. If b = 1, then the first bit a is copied. If
b = 0, then the first bit a flips to ā (i.e., 1 flips to 1̄ = 0 and 0 flips to 0̄ = 1).

(a) Apply the operation ⊥ instead of ⊕ in order to encrypt and then decrypt the
plaintext 00110011 using the key 00101101.

(b) Explain why the cryptosystem based on ⊥ also works and has the same prop-
erties as the cryptosystem based on ⊕.

(c) What have the operations ⊥ and ⊕ in common? Does there exist a strong
relationship between them?

If the key is generated together by the sender and the receiver1

at random and then applied in order to mask, one can prove us-
ing mathematical instruments that the cryptotext is viewed as
a random sequence of bits to any third party. In this case, no
cryptoanalyst has a chance to decrypt the message because no al-
gorithm, even ones with exponential complexity, can help. For a
single application, this system is considered to be absolutely se-
cure.

If one has a long plaintext and a key of a fixed length n, the usual
way of encrypting the text is based on partitioning the text into a
sequence of slices of length n and then applying the key separately
to each slice. For instance, one can use the key 0101 to encrypt
the plaintext

1111001100001101

as follows. One cuts the plaintext into four slices 1111, 0011, 0000,
and 1101 and applies the key 0101 to each slice separately. After
concatenating the resulting slices, one gets the cryptotext

1010011001011000
1 That is, the key does not need to be communicated by a public link.



252 7 Cryptography

that is sent to the receiver. This is the typical way in which cryp-
tosystems based on a fixed key work for arbitrarily long mes-
sages.

In the case of an XOR-cryptosystem, one does not recommend this
extension for messages of any arbitrary length, because multiple
applications of the same key on several slices can help to calculate
the key. Moreover, the fact

plaintext ⊕ cryptotext = key (7.1)

holds. Let us check this property for the key 01001011 used in our
example above:

plaintext 00001111

⊕ cryptotext 01000100

= key 01001011

Why is this true?

plaintext ⊕ key = cryptotext (7.2)

is our encryption method. Now, we add the plaintext to both sides
of Equality (7.2) from the left and obtain the following equality:

plaintext ⊕ plaintext ⊕ key = plaintext ⊕ cryptotext (7.3)

Since a ⊕ a = 0 for each bit a,

plaintext ⊕ plaintext = 00 . . . 00 .

Since 0 ⊕ b = b for each bit b, the left side of Equality (7.3) is the
key, and hence we obtain Equality (7.1).

The validity of Equality (7.1) can be very dangerous for the secu-
rity of a cryptosystem. If by a multiple use of a key the adversary
obtains only one pair (plaintext, cryptotext) in some way, then by
applying (7.1) she or he can immediately calculate the key and so
decrypt all other cryptotexts. Therefore, the XOR-cryptosystem
is secure for a single application only.



7.5 How to Agree on a Secret in Public Gossip? 253

Exercise 7.6 (challenge) Try to design a secure cryptosystem for the following
application. A person A encrypts a plaintext (a confidential message) using a secret
key that nobody else knows. The confidential message is sent as the cryptotext to
two persons B and C. Now, A wants to distribute the secret key to B and C in such
a way that neither B nor C alone is able to decrypt any single bit of the message,
but B and C cooperating together can calculate the plaintext without any problem.

There are symmetric cryptosystems that are considered to be se-
cure, and one is allowed to use the same key many times without
worry. The famous and most frequently used symmetric cryptosys-
tem is DES (Data Encryption Standard) developed in a cooper-
ation between IBM and NSA (National Security Agency). DES
also uses the XOR-operation several times, but this cryptosystem
is too complex to be described here.

In spite of the high reliability of some symmetric cryptosystems,
we are still not finished with trip devoted to searching for a secure
cryptosystem. The main drawback of symmetric cryptosystems is
that they can be successfully applied only if the sender and the
receiver agree on a common secret key before the cryptosystem is
applied. But how can they do this without any personal meeting?
How can they agree on a secret key without any secure cryptosys-
tem when they are restricted to communication via a public, in-
secure channel? How to solve this problem is the topic of the next
chapter.

7.5 How to Agree on a Secret in Public Gossip?

Two persons, Alice and Bob, want to create a common cryptosys-
tem. The encryption and the decryption procedures are known to
both, and they only need to agree on a common secret key. They
do not have the opportunity to meet each other and are forced to
agree on (to generate) a common secret using a public, insecure
channel without applying any cryptosystem. Is this possible?

The answer is “Yes”, and the elegant solution is a real surprise.
First, we introduce the idea of using a chest with two locks and an
untrustworthy messenger. Alice has a private lock with a unique



254 7 Cryptography

key and so nobody else can close and unlock her lock. Similarly,
Bob has his private lock with a unique key. They do not have
any common key. Alice and Bob agree publicly that Alice is going
to send Bob a future common key in the chest. They proceed as
follows:

1. Alice puts the common key into the chest and locks the chest
with her private key. Nobody but Alice can unlock the chest
because nobody else has a key that fits. Then, she sends the
chest to Bob. The messenger cannot unlock the chest.

2. The messenger brings the chest to Bob. Certainly, Bob cannot
open it either. Instead of trying to unlock it, Bob locks the chest
with his private lock. The chest locked by two independent
locks is now sent back to Alice (Fig. 7.6).

3. Alice receives the chest with two locks. She unlocks her lock
and removes it. Now, the chest is locked by the private lock
of Bob only. Anyway, the messenger as well as nobody except
Bob can open it. Alice sends the chest once again to Bob.

4. Now, Bob receives the chest locked by his private key only. He
opens the chest and takes the common secret key sent by Alice.

Figure 7.6 taken from [Sal96] shows an amusing graphic outline of
the above procedure.

Fig. 7.6



7.5 How to Agree on a Secret in Public Gossip? 255

Exercise 7.7 (challenge) Alice aims to send the same common secret key to three
other persons using an unreliable messenger in a secure way. One possibility is to
repeat the above procedure three times. Doing it, the messenger has to run 3 · 3 = 9
times between two persons (always between Alice and another person). Is there a
possibility to save a run of the messenger?

Can one perform this procedure in an electronic way? First, let us
try to do it using the XOR-operation. In this way, one can get a
very simple implementation of sending a chest with two locks. As
we will see later, this implementation does not fulfill all security
requirements. The procedure for an electronic communication is
outlined in Fig. 7.7.

Fig. 7.7



256 7 Cryptography

The sender (called Alice) aims to send a common key 101011 to
the receiver (Bob). The common key is viewed as the plaintext in
Fig. 7.7. Note, the common key Alice and Bob want to agree on
as well as their private keys are bit sequences of the same length.
As we know, the procedure consists of three communication steps
and such procedures are called communication protocols in
cryptography.

The protocol works as follows:

1. The sender (Alice) with her private key, A-key, calculates

plaintext ⊕ A-key = crypto 1

and sends crypto 1 to the receiver (Bob).

2. The receiver (Bob) with his private key, B-key, calculates

crypto 1 ⊕ B-key = crypto 2

and sends crypto 2 to the sender.

3. The sender calculates

crypto 2 ⊕ A-key = crypto 3

[We observe that

crypto 3 = crypto 2 ⊕ A-key

= crypto 1 ⊕ B-key ⊕ A-key

{because crypto 2 = crypto 1 ⊕ B-key}
= plaintext ⊕ A-key ⊕ B-key ⊕ A-key

{because crypto 1 = plaintext ⊕ A-key}
= plaintext ⊕ A-key ⊕ A-key ⊕ B-key

{because of the commutativity of ⊕ one can

exchange the order of the arguments}
= plaintext ⊕ B-key

{since a ⊕ a = 0 and b ⊕ 0 = b}

holds.]

4. The receiver calculates



7.5 How to Agree on a Secret in Public Gossip? 257

crypto 3 ⊕ B-key = plaintext ⊕ B-key ⊕ B-key

{since, as shown above,

crypto 3 = plaintext ⊕ B-key}
= plaintext

Exercise 7.8 Execute the run of the communication protocol for the key submis-
sion for the following data. The plaintext as a future common key is 01001101. The
private A-key of Alice is 01010101, and the private B-key of Bob is 10101010.

We explained directly in the description of the communication
protocol why the receiver learns the plaintext at the end. The
main idea is that applying a key for the second time automatically
removes (rubs) the first application of the key, even if there were
other actions on the text between these two applications. One can
express this idea as

text ⊕ key ⊕ actions ⊕ key = text ⊕ actions ⊕ key ⊕ key︸ ︷︷ ︸
no action

= text ⊕ actions

Exercise 7.9 The communication protocol above works because the operation ⊕
has the nice properties a ⊕ a = 0, a ⊕ b = b ⊕ a, and b ⊕ 0 = b. Investigate whether
one can also use the operation ⊥ to implement this communication protocol.

Is this electronic communication protocol secure? Is its degree of
reliability comparable with that of sending the chest? Unfortu-
nately, the answer is no. If a cryptanalyst gets only a particular
cryptotext and does not know the rules of this protocol, the com-
munication looks like a sequence of random bits, and the protocol
is secure in this sense. Following Kerckhoffs’ principle, one has to
count on the fact that the adversary knows the rules of our com-
munication protocol. The private keys of Alice and Bob are the
only secret for the cryptanalyst. If the adversary reads all three
cryptotexts (Fig. 7.7), then he can calculate as follows:

B-key = crypto 1 ⊕ crypto 2

A-key = crypto 2 ⊕ crypto 3

in order to compute the private keys of Alice and Bob.



258 7 Cryptography

Exercise 7.10 Use the properties of ⊕ to verify the validity of the above equations
for calculating A-key and B-key.

After that, the plaintext (the new common secret) is not protected
any more, and the adversary can calculate it in any of the following
two ways:

plaintext = A-key ⊕ crypto 1

plaintext = B-key ⊕ crypto 3

Hence, this electronic protocol is not considered to be secure. Can
one digitize the procedure with the chest and two private locks
without losing the degree of security of its “physical” implemen-
tation? In 1976, Whitfield Diffie and Martin Hellman [DH76] gave
the positive answer to this question. They used the calculator mod-
ulo primes introduced in Chapter 6 in a clever way. Without reveal-
ing any detailed mathematical argumentation for the correctness
of their digital protocol implementation, we describe their proce-
dure in a schema similar to that in Fig. 7.7. Readers who do not
like mathematical calculations may omit the following description
of the protocol.

The Diffie and Hellman Protocol

Starting point: The sender and the receiver publically agree on
two large positive integers c and p, where p is a prime and c < p
holds.

The sender (Alice) generates an integer aA at random. The number
aA is her private key (secret).

The receiver (Bob) generates an integer aB at random, and this
integer is his private key.

The task for Alice and Bob is to calculate a secret in a public
communication. This secret is going to be the common key for a
symmetric cryptosystem.

Procedure

1. Alice calculates



7.5 How to Agree on a Secret in Public Gossip? 259

crypto 1 = caA mod p

and sends crypto 1 to Bob.

2. Bob calculates

crypto 2 = caB mod p

and sends crypto 2 to Alice

3. Alice calculates

SA = (crypto 2)aA mod p

and considers SA to be the common secret of herself and Bob.

4. Bob calculates

SB = (crypto 1)aB mod p

and considers SB to be the common secret of himself and Alice.

The kernel of this procedure is that SA = SB. We omit a math-
ematical proof of it. But we see that SA is nothing other than c
locked by the key aB and then by the key aA. The key SB is also
the encryption of c by the key aA and then by the key aB. Hence,
both SA and SB can be viewed as locking c by aA and aB. The
only difference between SA and SB is that they are locked in dif-
ferent orders. It is the same as locking the chest first by the left
lock and then by the right lock, and in the other case first by the
right lock and then by the left one. Clearly, for the chest it does
not matter in which order the locks were locked. The function ca

mod p was chosen here because the order of applying aA and aB

does not matter either.

If the private keys of Alice and Bob remain secret, then following
the correct state of knowledge2 this digital protocol is secure. But
one has to take care when speaking about the security of com-
munication protocols. We clearly defined the meaning of security

2 We do not know any efficient algorithm that can compute SA = SB from c, p,
crypto 1, and crypto 2 without knowing any of the secret private keys of Alice and
Bob.



260 7 Cryptography

for symmetric cryptosystems such as CAESAR or DES. This ap-
proach is not sufficient for defining the security of communication
protocols exchanging several messages, and so we are required to
think once more about it.

The adversary (cryptanalyst) considered until now is called pas-
sive. He is allowed to eavesdrop and so to learn the cryptotext
and then to try to decrypt it. Diffie–Hellman’s protocol is secure
against a passive adversary. The situation changes if one considers
an active adversary, who is allowed to take part in the commu-
nication by exchanging messages running in the communication
network for other messages calculated by him. Consider the fol-
lowing scenario. The active adversary persuades the messenger to
give him the chest, or he removes crypto 1 from the interconnec-
tion network. Then, the adversary locks the chest or crypto 1 with
his private key and sends it back to Alice. Alice does not foresee
that she does not communicate with Bob, but with an adversary.
Therefore, following the protocol, she unlocks her lock and sends
the chest to Bob. If the messenger once again brings the chest to
the adversary, then the adversary can open it and get the secret.
Alice is not aware that the secret was revealed.

We see that our protocol is not perfect, and so there is a need to
improve it. Whether one can be successful in playing against an
active adversary is the topic of the next section.

7.6 Public-Key Cryptosystems

First, let us list the drawbacks of symmetric cryptosystems:

(i) Symmetric cryptosystems are based on a common secret of the
sender and the receiver. Therefore, the sender and the receiver
have to agree on a fixed key (secret) before using the cryptosys-
tem, hence before having any secure channel for exchanging this
secret.

(ii) In reality, one has often a network of agents and a head office
accumulating information from all of them. If all agents use



7.6 Public-Key Cryptosystems 261

the same key, one traitor is sufficient to break the security of
the entire secret communication exchange. If each agent has a
different key, the center has to manage all the keys, and each
agent must reveal his or her identity before sending a message
to the head office.

(iii) There is a variety of communication tasks that can be per-
formed using symmetric cryptosystems. In the case of electronic
voting (e-voting) one wants, on one side, to convince the sys-
tem about her or his right to vote, and, on the other hand,
to give one’s voice anonymously. One needs protocols enabling
an authorized person to convince a system about her or his
authorization (about possession of a secret or of a password)
without revealing any single bit of her or his secret.

These and several other reasons motivated further intensive re-
search in cryptography. When searching for practical solutions
again algorithmics and complexity theory provided helpful con-
cepts and instruments. They transformed our drawback concerning
the inability to solve hard problems into the strength of cryptosys-
tems. This revolutionary idea is based on the existence of so-called
one-way functions. A one-way function is a function having the
following properties:

(i) The function f is efficiently computable, and so it can be used
for an efficient encryption of plaintexts.

(ii) The inverse function f−1 that computes the plaintext (argu-
ment) x from the cryptotext (value) f(x) (i.e., f−1(f(x)) = x)
is not efficiently computable. More precisely, there is no ef-
ficient randomized algorithm that, for a given cryptotext =
f(plaintext), computes the argument = plaintext of f . Hence,
nobody can decrypt f(x), and, following our concept of secu-
rity, the cryptosystem with the encryption function f is secure.

(iii) We must not forget, the authorized receiver needs the possibil-
ity of efficiently computing the plaintext from a given crypto-
text f(plaintext). There has to exist a secret3 of f . This secret

3 called a trapdoor in computer science terminology



262 7 Cryptography

is something similar to a witness in the concept of randomized
algorithms and, knowing it, one can efficiently calculate x from
f(x).

What are the advantages of cryptosystems based on a one-way
function? The receiver does not need to share the secret with any-
body, not even with the sender (Fig. 7.8). The receiver is the only
person who possesses the secret, and so the existence of a traitor
is excluded. The encryption function f can be publicized, and
in this way everybody becomes a potential sender. Therefore, we
call cryptosystems based on one-way functions public-key cryp-
tosytems (cryptosystems with a public key). Clearly, there is no
need for a secure agreement on a common secret before the sys-
tem starts. In this way, one overcomes the drawbacks (i) and (ii)
of symmetric cryptosytems. Moreover, public-key cryptosystems
meet the expectation formulated in (iii). But to explain this is
beyond the mathematics used in this book.

So far we see that the existence of one-way functions guarantees
success in building secure cryptosystems. The main question is:
“Do there exist one-way functions?” Are the requirements on a
one-way function natural, and do (i) and (ii) not contradict each
other? Presenting the following example, we would like to convince
you that the concept of a one-way function is not peculiar.

Fig. 7.8



7.6 Public-Key Cryptosystems 263

Consider the following encryption. Each letter is separately coded
by a sequence of 14 digits. For each letter of the plaintext, one
nondeterministically chooses a name from a telephone book that
begins with this letter and takes the corresponding telephone num-
ber as the encryption. If the number is shorter than 14 digits, one
adds the appropriate number of 0’s in front of this number. In
this way, one can encrypt the word CRYPTOGRAPHY as fol-
lows:

name telephone number

C Cook 00128143752946

R Rivest 00173411020745

Y Yao 00127345912233

P Papadimitriou 00372453008122

T Thomas 00492417738429

O Ogden 00012739226541

G Good 00015402316555

R Rabin 00048327450028

A Adleman 00173555248001

P Papert 00016172531555

H Hopcroft 00013782442358

Y Yao 00127345912233

Despite the fact that the encryption procedure is nondetermin-
istic and many different cryptotexts may be assigned to a given
plaintext, each cryptotext unambiguously determines the original
plaintext. The secret (trapdoor) of the receiver is a special tele-
phone dictionary that is sorted with respect to the telephone num-
bers, and hence the receiver can efficiently execute the decryption.
Without knowing this secret (i.e., without possessing the special
telephone dictionary sorted with respect to numbers), the work of
to decrypt one letter corresponds to the exhaustive search in an
unsorted list. This may result in looking at almost all telephone
numbers in the dictionary to decrypt one symbol only. Another
idea listeners often proposed is to simply try to have a call with
all owners of the telephone numbers of the cryptotext. The execu-
tion of this idea may result in high costs. Additionally, you have



264 7 Cryptography

no assurance of learning the name of the telephone owner when
calling her or him. If you do not believe it, try this.

Since this encryption method can be published, one can view this
cryptosystem as a game on a public-key cryptosystem. We say a
“game” because current computers can efficiently sort any tele-
phone book with respect to the telephone numbers, and so create
the secret for the decryption. Hence, in reality, one needs other
encryption functions.

What are the candidates for one-way functions used in practice?
We present three functions that satisfy the requirements (i) and
(iii) on one-way functions; we believe the condition (ii) is also
satisfied4.

1. Multiplication
To multiply two primes p and q to compute f(p, q) = p · q can
be simply performed by everybody. To calculate the primes p
and q from the given value f(p, q) is considered to be a hard
problem. The inverse function f−1 is related to the factorization
problem (to computing prime factors of a given integer), and
one knows only exponential algorithms for this problem. For
integers the size 500 digits, the fastest computers do not have
any chance of finding at least one prime factor.

2. Modular squaring
One can efficiently compute fn(x) = x2 mod n for any positive
public integer n. One simply squares x to x2 and then divides
x2 by n in order to compute the remainder x2 mod n. If n is not
a prime (if n is a composite number), one does not know any
efficient algorithm that calculates x from the public integer n
and a given value fn(x).

3. Modular raising to a higher power
For public positive integers e and n and a plaintext c in an

4 To prove that f−1 is not efficiently computable is a serious problem, because, as we
already mentioned, one lacks mathematical techniques for proving lower bounds
on the amount of computer work necessary for computing concrete functions.
Researchers have tried to develop such proof methods since the 1960s without any
success.



7.6 Public-Key Cryptosystems 265

integer representation, one can efficiently compute the value
fe,n(c) = ce mod n. To show how to do it is a little bit technical
and so we do not present it here. If n is not a prime, one does
not know any way to compute the plaintext c from the values
of e, n, and fe,n(c).

To show what the trapdoors of the above one-way functions are
and why the corresponding public-key cryptosystems work re-
quires some knowledge of number theory that is not assumed here.
Therefore, we explain only the way to creat a simple public-key
cryptosystem based on modular squaring. This system was discov-
ered by Michael O. Rabin, and so it is called RABIN.

Building the cryptosystem RABIN: The receiver generates
two large primes p and q at random. The sizes of p and q are
about 500 digits. These two primes are the secret (trapdoor) of
the receiver. Then, the receiver computes the integer

n = p · q
and makes n as well as the function fn(x) = x2 mod n public.

Now, each sender can encrypt her or his plaintext x by computing

fn(x) = x2 mod n

and send the cryptotext fn(x) to the receiver.

Functionality of the cryptosystem RABIN: The senders send
their messages fn(x) = x2 mod n to the receiver. For unknown p
and q, no efficient algorithm for computing the plaintext x from
given fn(x) and n is known. But the receiver can efficiently com-
pute x due to her or his secret p and q. The rough idea is the
following one. One can efficiently compute x as a modular root of
fp(x) if p is a prime. Number theory allows the receiver to effi-
ciently compute the roots of fn(x) modulo p and modulo q and
then to calculate the plaintext x as a root of fn(x) modulo n = p·q
from these two roots.

Example 7.1 Since we do not want to work with integers of size
several hundred digits, we take small primes p = 107 and q = 73
for the illustration of RABIN. The receiver computes



266 7 Cryptography

n = p · q = 107 · 73 = 7811

and publicizes

the integer n = 7811 and the encryption function f(x) = x2

mod 7811.

Now, everybody can encrypt integers smaller than 7811 and send
the resulting cryptotext to the receiver.

Assume Alice wants to send the plaintext x = 6204. She calculates

x2 mod n = (6204)2 mod 7811

= 38489616 mod 7811

= 4819

{since 38489616 = 7811 · 4927 + 4819 }
Hence, the cryptotext is 4819. Since one calculates modulo n, the
cryptotext is always an integer smaller than n.

To decrypt the cryptotext, one has to answer the following ques-
tion. Which numbers from {1, 2, . . . , 7811} squared modulo n =
7811 are equal to the cryptotext 4819? Without knowing the fac-
torization 107 · 73 of 7811, one does not know any better method
than to try almost all 7811 candidates from {1, 2, . . . , 7811}. For
our small n = 7811 this is possible. But for big n’s such as 101000

it is not physically doable. Knowing the factors of n, one can effi-
ciently estimate all integers y, such that

y2 mod n = cryptotext.

At most four such y’s may exist. Which of them is the original
plaintext can be decided on the basis of the semantics of the text.
Another possibility is to ask Alice for an additional bit containing
special number theoretic information. �
Exercise 7.11 Build the cryptosystem RABIN for the primes 13 and 17. Then,
encrypt the plaintext 100. Try to find all y’s from {1, 2, 3, . . . , 13 · 17} with the
property

y2 mod 13 · 17 = cryptotext

Since we do not consider going deeper into the number theory
here, we omit to explain how the receiver applies his secret (the



7.6 Public-Key Cryptosystems 267

factorization of n) in order to efficiently compute the plaintext.
We call attention to the fact that we do not have any mathemat-
ical proofs that assure that the presented candidates are really
one-way functions. As mentioned above, the trouble is the conse-
quence of the lack of methods for proving the computational hard-
ness of concrete computing problems. Concerning the hardness of
the inverse function f−1, the security of all used public-key cryp-
tosystems is only based on the experience that nobody was able
to design efficient algorithms for computing f−1. For instance, one
knows that cracking RABIN is exactly as hard as factorization of
a given integer. More precisely, an efficient algorithm for the de-
cryption of cryptotexts encrypted by RABIN provides an efficient
algorithm for factorizing integers, and, vice versa, the existence
of an efficient algorithm for factorization implies the existence of
an efficient decryption. The size of the randomly chosen primes
p and q in RABIN is given by current practice in the sense that
the best algorithms for factorization running on the fastest current
computers are unable to calculate p and q from a given n = p · q
in several billion years. Therefore, the sizes increase with time as
algorithms improve and computers become faster.

What are the advantages of public-key cryptosystems?

(i) There is only one secret known to the receiver, and the receiver
does not need to share it with anybody else. This secret can be
generated by the receiver.

(ii) The procedure of the encryption is publicized. This is the only
communication before starting to use public-key cryptosystems
and this communication is public, i.e., it does not need any
encryption. Everybody can use the public encryption procedure
to send encrypted messages to the receiver.

Additionally, public-key cryptosystems can be used for various
communication tasks, for which symmetric cryptosystems do not
work. To show a simple application, we present a communication
protocol for digital signatures. From the judicial point of view,
handwritten signature is a form of authenticity guarantee. Obvi-
ously, one cannot provide handwritten signatures using electronic



268 7 Cryptography

communication. Moreover, we would like to have digital signatures
that are harder to forge than the handwritten ones.

What do we expect in detail from a communication protocol for
a digital signature? Consider the following scenario. A customer
K wants to sign an electronic document for her or his bank B.
For instance, K has to give the bank B an identity authentication
for a money transfer from her or his account. We have the fol-
lowing requirements on communication protocols for such digital
signatures:

(i) B must have a possibility of verifying the correctness of the
digital signature of K, i.e., to unambiguously authenticate K
as the owner of the digital signature. This means that both K
and B should be protected against attacks by a third party
(a falsifier) F who pretends to be K in a communication
with B.

(ii) K must be protected against messages forged by B, who claims
to have received them properly assigned from K. Particu-
larly, it means that B cannot be able to forge the signature
of K.

(iii) If K signed a document, B has to have a possibility of convinc-
ing everybody that the document was signed by K.

Requirement (i) can be achieved also using a symmetric cryptosys-
tem. But no symmetric cryptosystem can satisfy at once the two
requirements (i) and (ii).

Exercise 7.12 Design a communication protocol for digital signatures that is based
on symmetric cryptosystems and satisfies condition (i).

Satisfying both requirements (i) and (ii) seems to be harder than
satisfying the requirement (i) alone, because (i) and (ii) are seem-
ingly contradictory.

On the one hand, condition (i) requires that B has some
nontrivial knowledge about K’s signature for verification
purposes. On the other hand, condition (ii) requires that



7.6 Public-Key Cryptosystems 269

B should not know enough about K’s signature (or, better
to say, about the signature procedure) to be able to forge it.

Surprisingly, using public-key cryptosystems, we can design the
following communication protocol that fulfills all three require-
ments (i), (ii), and (iii).

Construction of the protocol
The customer K has a public-key cryptosystem with a public
encryption function EK and a secret decryption function DK .
The public-key cryptosystem of K is commutative in the sense
that

EK(VK(plaintext)) = plaintext = VK(EK(plaintext))

holds for each plaintext.

What is the profit of this property? Usually, we encrypt a plaintext
by computing EK(plaintext) and then we decrypt the cryptotext
using

DK(EK(plaintext)) = plaintext .

One assumes that the bank knows the public encryption function
EK .

Communication protocol

Input: A document, doc, that has to be signed by K.

Procedure:

1. The customer K computes DK(doc) and sends the pair

(doc, DK(doc))

to the bank B.

2. B computes EK(DK(doc)) by applying the public encryption
function EK on the submitted DK(doc), and checks in this way
whether

doc = EK(DK(doc))

holds, and so checks the authenticity of the signature.



270 7 Cryptography

Correctness: We call attention to the fact that this electronic
signature changes the entire text of the document doc, i.e., the
signature is not only an additional text on the end of the document.

Now, we argue that all three requirements are satisfied.

(i) Nobody other than K is able to compute DK(doc) because only
K can do it efficiently. The message DK(doc) is the only text
with the property

EK(DK(doc)) = doc

and so B is convinced that the message (doc, DK(doc)) was
sent by K.

(ii) The knowledge of (doc, DK(doc)) cannot help B to falsify an-
other document w by generating DK(w) because B cannot ef-
ficiently compute the decryption function DK .

(iii) Since the encryption function EK is public, the bank B can
show the pair (doc, DK(doc)) to everybody interested in it
and so everybody can verify the authenticity of K’s signature
by computing

EK(DK(doc)) = doc .

This elegant solution to the problem of digital signatures can be
viewed as a miracle. But it is only an introduction into the design
of several “magic” communication protocols that solve different
communication tasks in a surprising way. To understand them,
one needs a deeper knowledge of algebra, number theory, and al-
gorithmics, and therefore we refrain from presenting them.

Exercise 7.13 The protocol designed above does not try to handle the document
doc as a secret. We see that the customer key makes it public by sending the pair
(doc, DK(doc)). Everybody who is listening can learn doc. Now we exchange the
requirement (iii) for the following requirement.

(iii′) Nobody listening to the communication between the customer K and the bank
B may learn the content of the document doc signed in the protocol.

Design a communication protocol satisfying the conditions (i), (ii) and (iii′).



7.6 Public-Key Cryptosystems 271

Exercise 7.14 (challenge) We consider the so-called authentication problem.
Here, one does not need to sign any document, but one has to convince somebody
about her or his identity. The requirements on a communication protocol for the
authentication are as follows:

(i′) the same as (i) in the sense that B is convinced about the identity of K, and
(ii′) K should be protected against the activities of B, where B attempts to convince

a third party that she or he is K.

The above-presented communication protocol is not satisfactory for authentication
because B learns the signature (doc, DK(doc)) in this protocol and can use it to
convince a third party that she or he is K.

Design a communication protocol that satisfies (i′) and (ii′).

We finish this section about public-key cryptosystems with a few
important remarks. If one considers that public-key cryptosystems
are only useful as one-way communication systems from many
senders to one receiver, then one does not see all the possibilities
opened by the public-key concept. Everybody can communicate
with everybody. Everybody who wants to communicate, gener-
ates one’s private secret (for instance, p and q) and publicizes the
corresponding encryption function (for instance, n = p · q) in a
public telephone directory. Now, anybody can write to her or him
in a secret way by using the published encryption procedure for
encrypting the plaintext.

Public-key cryptosystems have many advantages compared with
symmetric cryptosystems. As already mentioned, the main ad-
vantage is that they are a basis for creating various commu-
nication protocols that cannot be built using symmetric cryp-
tosystems. On the other hand, classical symmetric cryptosys-
tems also have an important advantage over public-key ones.
Due to possible hardware implementation, symmetric cryptosys-
tems are often hundreds of times faster than public-key ones.
Thus, it is common to use a public-key cryptosystem only for ex-
changing the key of a symmetric cryptosystem. The rest of the
communication5 is then performed using a symmetric cryptosys-
tem.
5 that is, the main part of the communication



272 7 Cryptography

7.7 Milestones of Our Expedition in the
Wonderland of Cryptography

Cryptography is devoted to the design of cryptosystems that al-
low a secure exchange of secret data using public communication
channels. At the beginning, cryptography was viewed as the art
of creating secret writing. The parties in the communication were
the sender, the receiver, and their adversary (the cryptanalyst),
and they played an intellectual game. The communicating parties
came up with some clever secret codes, and their adversary tried
to find tricky ideas enabling her or him to crack the cryptosystem.
One was originally unable to define the notion of security in this
intellectual game.

Auguste Kerckhoffs formulated the first requirement on the secu-
rity of a cryptosystem. He insisted that the reliability of a cryp-
tosystem has to be based on the secrecy of the key only and not
on the secrecy of the kind of encryption. First, this leads to the
idea that a huge number of possible keys is necessary and could
be sufficient for building secure cryptosystems. The need for many
keys is obvious, but it was quickly recognized that even a huge
number of keys does not provide any guarantee for the security of
a cryptosystem.

One had to wait for a scientific definition of security, which came
when computer science introduced the concepts of algorithms and
computational complexity. Using the concept of practical solvabil-
ity, computer science defined the security of a cryptosystem. A
cryptosystem is secure if there is no efficient algorithm transform-
ing a given cryptotext into the corresponding plaintext without
knowledge of the key. With this definition, the history of modern
cryptography began. Cryptography became a scientific discipline
on the border between computer science, mathematics, and, more
and more, also of physics.6

6 because of quantum effects used in cryptography. More about this topic will be
presented in Chapter 9.



7.7 Milestones of Cryptography 273

The common property of classical cryptosystems is that one key
determines the encryption as well as the decryption, and so the
key is a common secret of the sender and of the receiver. The
main problem of these cryptosystems is to agree on a secret key
before starting the use of the system. We saw that one can de-
sign a communication protocol for creating a common secret key.
Unfortunately, this communication protocol is secure only against
a passive adversary. If the adversary actively takes part in the
communication and passes himself off as the receiver in the com-
munication with the sender, then the sender does not detect it and
reveals the secret.

One found the way out by designing public-key cryptosystems.
Based on the ideas of complexity theory, the concept of so-called
one-way functions was proposed. A one-way function can be ef-
ficiently computed but its inverse function cannot. The inverse
function can be efficiently computed only if one has a special se-
cret called the trapdoor of the inverse function. There is some
similarity between the role of the secret for a one-way function
and the role of witnesses in the design of randomized algorithms.
The one-way function is publicized and used for the encryption of
plaintexts. The trapdoor is the receiver’s secret and she or he does
not need to share it with anybody. Using this secret, the receiver
can efficiently decrypt each cryptotext sent to her or him.

Because it is a hard, unsolved problem to develop mathematical
methods for proving lower bounds on the amount of computer
resources necessary for computing concrete functions, one is un-
able to provide mathematical evidence that a function is a one-
way function. Based on our experience in algorithms, we consider
some functions to be one-way functions and use them in practice.
Multiplication with factorization as its inverse is a well-accepted
candidate for a one-way function. Another candidate for a one-way
function is modular squaring, whose inverse function corresponds
to computing modular roots of a given integer.

Current applications in e-commerce and in online banking are un-
thinkable without public-key cryptosystems. Electronic voting is



274 7 Cryptography

another crucial application area of the concept of public-key cryp-
tosystems.

The idea of public keys was originally proposed by Diffie and Hell-
man [DH76] in 1976. The most common cryptosystem is the fa-
mous RSA cryptosystem designed by Ron Rivest, Adi Shamir, and
Leonard Adleman [RSA78] in 1978. Similarly as for other funda-
mental discoveries, it took 20 years for it to become common in
commercial applications.

We recommend the textbooks of Salomaa [Sal96], and Delfs and
Knebl [DK07], as involved introduction to cryptography. Solutions
to some exercises as well as an extended introduction to this topic
can be found in [Hro04b].

Solutions to Some Exercises

Exercise 7.5

(a) We obtain:

00110011

⊥ 00101101

11100001

⊥ 00101101

00110011
(b) This procedure works because

(a ⊥ c) ⊥ c = a .

Hence, a double application of a key on a plaintext results in the original plain-
text.

(c) The result of applying the operation ⊥ is always the opposite of the result of
applying ⊕. More precisely, if a ⊕ b = 1 holds, then a ⊥ b = 0, and if a ⊕ b = 0
holds, then a ⊥ b = 1.

Exercise 7.6 Person A generates a sequence a1a2 . . . an of n bits at random. Then
A encrypts the plaintext k1k2 . . . kn by computing

k1k2 . . . kn ⊕ a1a2 . . . an = d1d2 . . . dn .

After that A generates again n bits b1b2 . . . bn at random and calculates

a1a2 . . . an

⊕ b1b2 . . . bn

c1c2 . . . cn



7.7 Milestones of Cryptography 275

Finally, A sends the key b1b2 . . . bn and the cryptotext d1d2 . . . dn to B, and the key
c1c2 . . . cn and the cryptotext d1d2 . . . dn to person C. Since b1b2 . . . bn was chosen at
random, neither B nor C can estimate the key a1a2 . . . an. Without knowing the key
a1a2 . . . an, there is no possibility to decrypt d1d2 . . . dn. But if B and C cooperate,
they can together compute the key a1a2 . . . an using

b1b2 . . . bn

⊕ c1c2 . . . cn

a1a2 . . . an

Having the original key a1a2 . . . an, one can immediately compute the plaintext
k1k2 . . . kn = d1d2 . . . dn ⊕ a1a2 . . . an.



Scientific discoveries are made in the following way.
Everybody knows that something cannot be done.
But then someone comes who does not know about it
and he makes the discovery.

Albert Einstein

Chapter 8

Computing with DNA
Molecules, or Biological
Computer Technology on the
Horizon

8.1 The Story So Far

Many science fiction stories start with a mixture of biological and
electronic remainders or connect some parts of the human brain
with some computer parts. The final result is then an intelligent
robot. The topic of this chapter is removed from such utopian
ideas and from the unrealistic promises of some members of the
artificial intelligence community in the 1960s. Here we introduce

J. Hromkovič, Algorithmic Adventures, DOI 10.1007/978-3-540-85986-4 8,
c© Springer-Verlag Berlin Heidelberg 2009

277

http://dx.doi.org/10.1007/978-3-540-85986-4_8


278 8 Computing with DNA Molecules

an existing and non-hypothetical biological information-processing
technology. Whether this technology will cause a breakthrough in
automatic problem-solving depends on a conceivable progress in
the development of biochemical methods for the investigation of
DNA sequences.

What is the principle of biocomputers? How did one discover this
biological computer technology? Our experience with computer
developments in the last 50 years shows that in each period of a
few years computers halved in size and doubled in speed an expo-
nential improvement with time. This cannot work forever. Soon,
the electronic technology will reach the limits of miniaturization,
ending the exponential performance growth of computers. Since
the physical limits of the performance of electronic computers were
calculated many years ago, the famous physicist Richard Feynman
[Fey61] posed already in 1959 the following question: “What is the
future of information-processing technologies? Can one miniatur-
ize by performing computations using molecules and particles?”.
The consequences of these thoughts are the DNA computer and the
quantum computer, which will be introduced in the next chapter.

Fig. 8.1

We see that the demand for computer miniaturization and perfor-
mance growth led to the idea of computing by means of molecules



8.1 The Story So Far 279

Fig. 8.2

and particles. Is this desire practicable? Is this idea natural? Do
we need to force molecules to do work they are probably not built
for? To answer these questions, let us first discuss what is natu-
ral and what is not natural. We use symbols to calculate in our
artificial world of mathematical models. All numbers and all data
are represented as texts, i.e., as sequences of symbols. We learned
that, in general, the work of a computer can be viewed as a trans-
formation of input texts (input data) into output texts (output
data).

What about DNA sequences? We know that they are carriers of
biological information and that all processes of living organisms
are controlled by the information stored in DNA molecules. Cur-
rently, we understand only very little about this control, but there
is no doubt about the fact that the biological processes can be
viewed as information processing. Unfortunately, because of our
restricted knowledge, we are still unable to use this natural in-
formation processing to perform calculations of interest. The idea
of current DNA computing is much simpler. The DNA sequences
can be represented as texts consisting of the symbols A, C, G, and T.
These symbols represent the four bases adenine (A), cytosine (C),
guanine (G), and thymine (T). Typically, a DNA molecule appears
as a double-stranded molecule (Fig. 8.1 and Fig. 8.2). Linkage can
be established only between A and T, and G and C. These chemical
linkages A · · · T and G · · · C are essentially weaker than the other
linkages in the string (Z–P in Fig. 8.1). An important fact is that



280 8 Computing with DNA Molecules

one can build arbitrary DNA sequences, although their stability
may vary from molecule to molecule. Hence, we can represent data
as texts over the symbols A, C, G, and T, and then DNA sequences
can be built as a physical representation of data. After that, one
can perform chemical operations with the molecules representing
our data and create new DNA sequences. Finally, one can inter-
pret the resulting DNA sequences as the representation of the
output.

Surprisingly, one can prove by mathematical means that such a
DNA computer can do exactly the same work as classical electronic
computers. The consequence is that the notion of algorithmic solv-
ability is not attacked by taking DNA computers into account. All
problems algorithmically solvable by an electronic computer can
be solved by DNA algorithms, and vice versa.

What is the gain of using a DNA computer instead of an elec-
tronic one? A drop of water consists of 1019 molecules. If one has
1021 DNA molecules in a tube, then a chemical operation with
the content of the tube performs in parallel 1021 operations on the
particular molecules. It is impossible to perform at once one op-
eration over 1021 data representations using a classical computer.
As a result of this huge parallelism, one can essentially speed up
the computer work.

Maybe we are witnessing a new era of a productive concurrency
between two different computing technologies. This idea is nicely
presented by the pictures (Fig. 8.3, Fig. 8.4, and Fig. 8.5) from the
book DNA Computing by Pǎun, Rozenberg, and Salomaa. In Fig.
8.3 one sees the currently standard technology of a classical, elec-
tronic computer. In Fig. 8.4 we observe DNA computing performed
by chemical operations over the content of tubes in a chemical lab.
What can result from this concurrency? Maybe a mixture of elec-
tronics and biomass. Instead of performing all chemical operations
by hand, one can build an electronic robot performing this task
(Fig. 8.5).

In this chapter we first present a list of performable chemical op-
erations with DNA molecules that are sufficient for performing ar-



8.1 The Story So Far 281

Fig. 8.3

Fig. 8.4

bitrary computations. After that we present Leonard Adleman’s1

famous experiment. He was the first person to build a DNA com-
puter by solving an instance of the traveling salesman problem
in a chemical lab. Finally, we summarize our new knowledge and
discuss the drawbacks and the advantages of DNA computing tech-
nology. We try to determine the development of biochemical tech-
nologies that could ensure a successful future for DNA comput-
ing.

1 Note that Adleman is the same person who was involved in the discovery of the
famous RSA cryptosystem.



282 8 Computing with DNA Molecules

Fig. 8.5

8.2 How to Transform a Chemical Lab into a
DNA Computer

Cooking using recipes and modeling computers in Chapter 2 we
saw that to define the notions of “computer” and of “algorithm”
one has to fix a list of executable operations and the representation
and storage of data. For our model of a DNA computer, data is
physically represented and stored by DNA sequences in the form
of double-stranded DNA molecules. DNA molecules can be saved
in tubes. There are finitely many tubes available.

To perform operations with the contents of tubes, one is allowed
to use distinct instruments and devices. We do not aim to explain
in detail why one is able to successfully perform the chemical op-
erations considered, because we do not assume that the reader is
familiar with the fundamentals of molecular biology. On the other
hand, we try to give at least an impression for why some operations
are executable. Therefore, we start by giving a short overview of
some fundamentals of biochemistry.2

2 An exhaustive introduction for nonspecialists can be found in [BB07, PRS05].



8.2 How to Transform a Chemical Lab into a DNA Computer 283

In 1953 James D. Watson and Francis H.C. Crick discovered the
double-helix structure (Fig. 8.2) of DNA molecules. The Nobel
Prize they got is only a small confirmation of the fact that their
discovery counts among the most important scientific contribu-
tions of the 20th century. The fact that one can pair only G with
C and A with T is called Watson–Crick complementarity. A
simplified representation3 of a DNA molecule shown in Fig. 8.1 is
the double strand in Fig. 8.6.

Fig. 8.6

Exercise 8.1 Draw or complete the picture of DNA molecules whose upper strand
is AACGTAT, GCCACTA and AACG.

The linkages in the chain

TTCGGATG

are approximately ten times stronger than the chemical linkages
(base pairing) A · · · T and G · · · C between the bases. The two chains

TTCGGATG

and
AAGCCTAC

of the double-stranded molecule in Fig. 8.6 are directed. The upper
one goes from left to right and the lower one goes from right to
left. The direction is given by the numbering of the carbon atoms
of the molecule of the sugar (Fig. 8.7) that connects the phosphate
(denoted by P in Fig. 8.1) and the base (A, T, C, or G in Fig. 8.1).
There are exactly five carbons in the sugar of a nucleotide4, as
roughly outlined in Fig. 8.7.

3 DNA molecules have a complex three-dimensional structure that is essential for
their functionality.

4 A nucleotide consists of the phosphate, sugar, and one of the four bases A, T, C,
and G.



284 8 Computing with DNA Molecules

Fig. 8.7

In Fig. 8.7 the molecule of sugar (denoted by Z in Fig. 8.1) is
drawn. The 5 carbons C are numbered by 1′, 2′, 3′, 4′, and 5′. The
carbon 1′ is responsible for the connection to the base. The carbon
3′ is responsible for the connection to the phosphate on the right
side in the chain and the carbon 5′ connects the sugar with the
phosphate on the left side. In this way, biologists get the direction
denoted by 5′ → 3′.

Here, it is important to know that by increasing the energy of the
DNA molecules (for instance, by heating) one can disconnect the
base pairs because the linkages between the pairs A · · · T and C · · · G
are essentially weaker than the connections inside the strands. In
this way, one can split a double-stranded DNA molecule into two
single-stranded DNA molecules. Under “suitable” circumstances,
two single-stranded DNA molecules may again build together a
double-stranded DNA molecule, but only if the base sequences are
complementary.

Another important property of DNA molecules is that they are
negatively charged. If one measures the length of a double-stranded
molecule in the number of base pairs, then one can claim that the
size of the charge of a molecule is proportional to its length.



8.2 How to Transform a Chemical Lab into a DNA Computer 285

Now, we are ready to introduce some basic chemical operations
on the contents of the tubes. Using these operations one can
build DNA programs. In what follows, we denote the tubes by
R1, R2, R3, etc.5

(i) Union(Ri, Rj, Rk)
The contents of the tubes Ri and Rj are moved to

the tube Rk.

(ii) Amplify(Ri)
The number of DNA strands in Ri is amplified.

This operation is based on the Watson–Crick complementar-
ity and is called the polymerase chain reaction. This method
revolutionized molecular biology. It was discovered by Kary
Mullis in 1985, and for this he was awarded the Nobel prize.
First, one heats DNA molecules until the base pairs are dis-
connected. This allows us to separate the two strands of the
double-stranded DNA molecule without breaking the single
strands. This phase is called denaturation. After that6, par-
ticular nucleotides bind to the single strands in the resulting
DNA soup. Since each single-stranded molecule develops to a
double-stranded molecule in this way, double-stranded DNA
molecules identical to the original ones are created, and the
number of DNA molecules in the tube is doubled. This cycle is
then repeated several times, and the DNA strands are ampli-
fied.

(iii) Empty?(Ri)
One verifies whether there is at least one DNA

molecule in Ri or whether Ri is empty.

(iv) Length-Separate(Ri, l) for an l ∈ N.
This operation removes all DNA strands from Ri that

do not have length l.

To execute this operation, one uses the method called gel elec-
trophoresis, which enables us to measure the length of DNA

5 We use the same notation as for registers of the memory of a computer model.
6 This is a simplification of the next phases “priming” and “extension” of the poly-

merase chain reaction. For more details we recommend [PRS05].



286 8 Computing with DNA Molecules

molecules. Since DNA molecules are negatively charged, they
move (migrate) towards the positive electrode in an electrical
field. The size (length) of the molecule slows down (i.e., the
force to move the molecule is proportional to its length) its
movement, and the size of its negative charge increases the
speed of its movement toward the positive electrode. Since the
length of the molecule is proportional to its negative charge,
the force of slowing down and the force of speeding up cancel
each other. Therefore, the size of the molecule does not matter.
Consequently all molecules move to the positive electrode with
the same speed. The way out is to put a gel into the electric
field that additionally slows down the movement of molecules
with respect to their sizes. The consequence is that the small
molecules move faster than the larger ones (Fig. 8.8). The speed
of movement of the molecules toward the positive electrode can
be calculated with respect to their length. If the first molecule
reaches the positive electrode, one deactivates the field, which
stops the movement of the molecules. Now, one can measure
the distances traveled by particular molecules and use them
together with the known time of their movement to estimate
their lengths. Since the DNA molecules are colorless, one has
to mark them. This can be done using a fluorescing substance
that intercalates into the double-stranded DNA.

(v) Concatenate(Ri)
The DNA strands in the tube Ri can be randomly

concatenated.7 In this way some DNA strands longer

than the original ones are created.

(vi) Separate(Ri, w) for a tube Ri and a DNA strand w.
This operation removes all DNA molecules from Ri

that do not contain w as a substring.

For instance, w = ATTC is a substring of x = AATTCGATC be-
cause w occurs in x as an incoherent part of x. To execute
this operation requires a little bit more effort than the previ-
ous ones. One possibility is to heat the molecules first in or-

7 More details about the execution of this operation are given in Section 8.3.



8.2 How to Transform a Chemical Lab into a DNA Computer 287

Fig. 8.8

der to split all double-stranded molecules into single-stranded
molecules. After that, one puts many strings complementary
to w into the tube and cools it down. For instance, for the
string w = ATTC, the complementary DNA string is TAAG.
These strings complementary to w will bind themselves on the
DNA single-stranded strings containing the substring w. All
other strings remain single-stranded. After that one uses a fil-
ter that passes only single-stranded molecules through. What
remains are strings such as

that are neither single stranded nor completely double-stranded.
Adding particular nucleotides, one can reproduce complete
double-stranded molecules.

(vii) Separate-Prefix(Ri, w) for a tube Ri and a DNA strand w.
All those DNA molecules are removed that do not

begin with the string w.



288 8 Computing with DNA Molecules

(viii) Separate-Suffix(Ri, u) for a tube Ri and a DNA strand u.
All those DNA molecules are removed that do not end

with the string u.

Exercise 8.2 Let ATTGCCATGCC, ATATCAGCT, TTGCACGG, AACT, AGCATGCT be the con-
tent of a tube R.

Which DNA strands remain in the tube after executing the following operations?

(a) Length-Separate (R, 7)
(b) Separate (R, TTGC)
(c) Separate-Prefix (R, TTGC)
(d) Separate-Suffix (R, GCT)

Exercise 8.3 You aim to execute the operation Separate(R, AACT). Which DNA
strands have to be put into the tube R after heating in order to be able to select
the appropriate ones?

Using this list of eight operations, one can build a DNA computer
that is, with respect to computability, exactly as powerful as an
electronic computer. How one can solve concrete computing tasks
is the topic of the next section.

8.3 Adleman’s Experiment, or a Biosearch for
a Path

In Section 8.2 we claimed that the chemical operations introduced
are powerful enough to simulate the computations of classical com-
puters. We do not aim to provide the evidence of this claim using
a mathematical proof. But we do want to give at least an im-
pression of how DNA algorithms can solve classical computing
problems. We consider the Hamiltonian Path Problem (HPP) in
directed graphs and explain how Adleman solved an instance of
this problem in a chemical lab. Adleman’s experiment initialized
a new interdisciplinary research stream. Recently several leading
universities initiated research projects devoted to exploring the
possibility of DNA computing technology for solving hard algo-
rithmic problems.



8.3 Adleman’s Experiment 289

An instance of the HPP is given by a network of roads or air
routes. The places (towns) or the road crossings are represented
by graph vertices, and the connections between them (Fig. 8.9) are
represented by arrows (directed lines). We do not assign any rep-
resentation to the visual crossing of two lines outside any vertex.
Similarly to air routes, there is no possibility to switch between
two lines at such crossing points. The directed lines (arrows) are
one-way streets. Hence, if one uses the line Lin(s1, s2), then after
starting at s1, one must inevitably reach s2. Another part of the
problem instance are the names of two different places si and sj.
The task is a decision problem: One has to decide whether it is
possible to start at si, visit all places of the network exactly once,
and finally end at place sj. A path with the above properties is
called a Hamiltonian path from si to sj.

Fig. 8.9

We illustrate this problem using a specific instance. Consider the
network depicted in Fig. 8.9 with the starting place s1 and the
goal s5. Then

s1 → s2 → s3 → s4 → s5

is a solution (i.e., a Hamiltonian path from s1 to s5), because each
place is visited exactly once on this path. To go along this path one
needs the lines Lin(s1, s2), Lin(s2, s3), Lin(s3, s4), and Lin(s4, s5).
All these four lines are available in the network. Hence, the correct
answer to the problem instance in Fig. 8.9 is “YES”.



290 8 Computing with DNA Molecules

For the network in Fig. 8.9, the starting point s2 and the goal s1,
there is no Hamiltonian path from s2 to s1, and, hence, the correct
answer for this instance is “NO”. We see that the destination s1

can be directly reached only from s2 by the line Lin(s2, s1). But
one is required to start AT s2 and visit all other places before
moving to s1. When one wants to travel to s1 after visiting all
other places, then one is required to go via s2 to be able to reach
s1. But this is not allowed because one is not allowed to visit s2

twice.

Exercise 8.4 Consider the network in Fig. 8.10. Does there exist a Hamiltonian
path

(a) from s1 to s7?
(b) from s7 to s1?
(c) from s4 to s3?
(d) from s5 to s1?

Fig. 8.10

Exercise 8.5 For which pairs of places are there Hamiltonian paths in the network

(a) in Fig. 8.9 ?
(b) in Fig. 8.10 ?
(c) in Fig. 8.11 ?

In what follows we call each sequence of vertices s1, s2, . . . , sn a
path from s1 to sn if the directed lines

Lin(s1, s2), Lin(s2, s3), . . . , Lin(sn−1, sn)

are available in the network. We use the shorter notation ei→j

instead of Lin(si, sj) in what follows. Note that the sequences of



8.3 Adleman’s Experiment 291

vertices s1, s7, s1, s7, s1 or s7, s1, s2, s5, s2, s5, s6, s1, s7 are also paths
because each vertex is allowed to occur several times in a path.

Adleman considered the problem instance depicted in Fig. 8.11
with the starting place s0 and the destination s6. His strategy was
the following one:

Code the name of the places (the vertices) of the network
by DNA strands. Then, find a way that enables us to con-
catenate exactly those place names that are connected by
a directed line. Start with as many DNA strings for each
place name that by a random concatenation of DNA strings
one gets all possible paths of the networks. The code of a
path is the corresponding concatenation of the names of the
places visited by the path. After that, apply some chemical
operations in order to remove all codes of paths that do not
correspond to any Hamiltonian path from s0 to s6.

Fig. 8.11

To implement this strategy using chemical operations on DNA
strands, he searched for suitable names for the places of the net-
work as sequences of symbols A, C, G, T.

For instance, he chose the following single-stranded DNA molecules
for representing s2, s3, and s4:



292 8 Computing with DNA Molecules

s2 = TATCGGATCGGTATATCCGA

s3 = GCTATTCGAGCTTAAAGCTA

s4 = GGCTAGGTACCAGCATGCTT

The idea is now to represent directed lines of the network as single-
stranded DNA molecules in such a way that using the operation
Concatenate(R) only codes of the paths existing in the network
can be created.

We can use the property of DNA molecules that only the pairs of
bases A, T and G, C can be bound. For each road ei→j from si to sj

we do the following:

• We split the codes of the representations of si and sj in the
middle into two equally long strings.

• We create a new string w by concatenating the second part of
si with the first part of sj. Then we build the complementary
string to w by exchanging A for T, T for A, C for G, and G for C.

Observe that one takes care of the direction of the lines in this way.
For our example we get the following codes for the lines e2→3, e3→2,
and e3→4:

e2→3 = CATATAGGCT CGATAAGCTC;

e3→2 = GAATTTCGAT ATAGCCTAGC;

e3→4 = GAATTTCGAT CCGATCCATG.

Figure 8.12 shows how the strings s2 and s3 can be concatenated
by the line e2→3.

Fig. 8.12



8.3 Adleman’s Experiment 293

Exercise 8.6 Draw the concatenation of s3 and s4 by the line e3→4 in the same
way as done in Fig. 8.12 for the concatenation of s2 and s3.

Exercise 8.7 Assume one builds a new line e2→4 in the network in Fig. 8.11. Which
single-stranded DNA molecule does one have to use to code e2→4? Outline the
corresponding concatenation of s2 and s4.

If one puts single-stranded DNA molecules coding places and links
into a tube, then under suitable circumstances the concatenation
of place names (codes) as depicted in Fig. 8.12 and Fig. 8.13 can
be performed.

Fig. 8.13

Each created double-stranded DNA string codes a path in the
network. To be sure that the process runs exactly in this way, one
has to carefully choose the codes of places. The names have to
essentially differ each from each other; in particular all halves of
the place codes must each differ from each other.

After coding the names of places and streets in the way described
above, one can apply the strategy of Adleman, which can be imple-
mented by the following DNA algorithm searching for Hamiltonian
paths in a given network of n towns s0, s1, . . . , sn−1:

1. Put DNA codes of all places and all roads as single-stranded
molecules in a tube T . Add the DNA string of length8 10 that is

8 The length 10 corresponds to our network in Fig. 8.11. Different lengths are pos-
sible for the codes of places in other networks.



294 8 Computing with DNA Molecules

complementary to the first half of s0 and a DNA string of length
10 that is complementary to the second half of the destination
sn−1.

2. Repeat (2n · log2 n) times the operation Amplify(T ) in order
to get at least n2n copies of each of these single-stranded DNA
molecules.

3. Apply Concatenate(T ) in order to create double-stranded DNA
molecules that code paths in the network of different lengths.
The execution of this operation is performed at random. The
huge number of DNA codes of the names of places and of links
ensures that each possible path of length at most n is generated
with high probability.9

4. Apply the operation Length-Separate(T, l), where l is n times
the length of the code of a place. After executing this operation,
tube T contains only DNA codes that represent paths of length
n (paths corresponding to sequences of n places).

5. Apply Separate-Prefix(T, s0). After the execution of this oper-
ation, tube T contains only DNA molecules that code paths
starting with the code of s0.

6. Apply Separate-Suffix(T, sn−1) in order to remove all DNA
molecules that do not end with the code of sn−1. After that,
tube T contains only DNA molecules that code paths of length
n that begin with the starting place s0 and end with the des-
tination sn−1.

7. Apply the sequence of n − 2 operations

Separate(T, s1), Separate(T, s2) . . . , Separate(T, sn−2) .

After the execution of this operations sequence, tube T contains
only codes of paths that visit at least once each place from
{s0, s1, . . . , sn−1, sn}. Since the execution of step 4 ensures that
all codes correspond to paths of exactly n places, the DNA
molecules in T code paths that contain each place exactly once.

9 In fact, the expectation is that each path is created many times and that paths
even longer than n are created.



8.3 Adleman’s Experiment 295

8. Apply Empty?(T ) in order to recognize whether there remained
at least one DNA molecule in T . If T is not empty, one gives
the answer “YES”, else one gives the answer “NO”.

The execution of the algorithm for the network in Fig. 8.11 with
the starting point s0 and the destination s6 results in tube T con-
taining only double-stranded DNA molecules that code the Hamil-
tonian tour

s0 → s1 → s2 → s3 → s4 → s5 → s6 .

In this way, one gets the right answer “YES”.

Exercise 8.8 Estimate at least three different paths in the network in Fig. 8.11 that
remain in the tube after the execution of the fifth operation of Adleman’s algorithm.
What remains in the tube after the execution of the sixth operation?

Exercise 8.9 Consider the network in Fig. 8.14:

Fig. 8.14

(a) Design codes for the cities in this network as DNA molecules. The codes have
to be as short as possible and they have to fulfill the following constraints:
1. Each code differs in at least four positions from the code of any other city.
2. The first half of the code of every city differs from the first half of the code

of every other city. The second half of the code of each city differs from the
code of each other city.

(b) Estimate the codes of the streets of the network in such a way that they corre-
spond to your city codes.



296 8 Computing with DNA Molecules

Exercise 8.10 Describe the application of Adleman’s algorithm for the problem
instance from Exercise 8.9 in such a way that you estimate the values of the param-
eters such as DNA strings and their lengths.

Exercise 8.11 Is constraint (a) of Exercise 8.9 sufficient to ensure that each path
created in the tube corresponds to an existing path of the network? Argue for your
answer.

We see that Adleman’s algorithm follows a very simple strategy
from the algorithmic point of view. It uses the enormous paral-
lelism of DNA computing and creates all possible paths of the
network up to some length. All these paths represented by DNA
molecules are candidates for a Hamiltonian path. Then, the al-
gorithm deletes all candidates that do not have the properties
of a Hamiltonian path from the starting city to the destina-
tion.

Since the early 1990s, many DNA algorithms for NP-hard prob-
lems were designed and experimentally executed in labs for small
problem instances. The current research on this topic deals, on
one hand, with increasing the execution time and the reliability
of particular chemical operations, and on the other hand with the
design of more clever DNA algorithms than those based on the
brute force search of all possibilities.

8.4 The Future of DNA Computing

The strength of DNA computing technology lies in the enormous
miniaturization that is accompanied by a heavy use of parallelism
in data processing. In spite of the fact that the execution of some
chemical operations can take several hours or even days, DNA
computing can be much faster than classical computing. Due to
the high number of DNA molecules in a tube, one could perform
computations in a few days that require years to be computed by
an electronic computer.

Currently, DNA computers are still no competition for electronic
ones, because DNA technology is still in the very beginning of



8.4 The Future of DNA Computing 297

its development. The execution of the operations takes hours and
days, and the results are not reliable. We read DNA strands with
error rates of 3%, and the majority of the operations may result
in creating wrong or unexpected DNA strands. For instance, gaps
in the process of getting double-stranded molecules may occur, or
wrong strands may be concatenated. Our chemical technologies
are simply not able to guarantee correct execution of operations
used for DNA computing. To avoid this problem or to decrease
the error rate, one uses the concept of redundancy. The idea is to
essentially increase the number of copies of the DNA strands as
data representations in future and so to increase the probability
of getting a correct execution of the operations at least on some
strings. The probability of errors grows with the number of exe-
cuted chemical operations. To compensate for the increase of the
error probability, one has to increase the degree of redundancy.
The consequence is that for real applications one needs to work
with a biomass of the size of the Earth in order to get reliable
DNA computations. Hence, skeptics may say, “Let it be, this is
only a waste of time. Do something reasonable, something with a
foreseeable gain.” I would reply that this kind of thinking is the
most dangerous type for research management. If one focused in
science only on fully foreseeable aims with calculable profit, one
would never discover anything essential and we would probably
still be climbing trees and know nothing about fire. Let us consider
computer technology 40–50 years ago. To place a computer, one
needed a large room, and one was required to maintain it daily.
We were fighting with cooling systems of permanently warming
machines, and we often recognized that something was wrong and
consequently all computations of that day had to be repeated. To
communicate a designed program to the computer, one used so-
called punchcards. Each punchcard was a binary coding (punch
or no punch) of one instruction. If somebody tipped over the box
containing a long program, it was almost impossible or very awk-
ward to sort the punchcards in the right order. Who believed at
that time that computers would become so common that almost
everybody uses them? But the development did not take care of
the skeptics. Who is able to predict the future of DNA technologies



298 8 Computing with DNA Molecules

today? Current DNA algorithms would need 18 years to crack the
standard cryptosystem DES. If the reliability of the execution of
the chemical operations increases, a few hours would be enough.

The future of DNA computing mainly depends on the results of
research in molecular biology and chemistry. The degree of preci-
sion achievable and the reliability of lab methods are crucial for
the competitiveness of DNA computation with respect to classical
computation. The possibility of essential improvements cannot be
excluded. The duty of scientists is to try to discover the limits of
this technology. I believe that several fascinating “miracles” are
waiting for us in these research areas.

Adleman’s vision about using DNA molecules goes beyond the
horizon we see today. Information processing cannot be reduced
to the activities of a computer or of our brains. Information pro-
cessing is running in biological systems and physical systems as
a natural phenomenon. DNA molecules contain information for
controlling processes for the production of some proteins and even
for controlling mechanisms for the choice of the appropriate DNA
program. Does this mean that a particular molecule can behave
as a programmable computer? If one understands the programs
represented by DNA substrings and the corresponding biological
mechanisms, then one can open up the possibility of programming
a molecule as a universal computer. In this case, nobody will need
tons of biomass for getting reliable information processing. Our
algorithms would be programmable as parts of one molecule.

For non-biologists interested in the fundamentals of the manipu-
lation of DNA molecules we recommend the book by Böckenhauer
and Bongartz [BB07]. The textbook by Drlica [Drl92] is an excel-
lent introduction to molecular biology. An exhaustive and enthu-
siastic introduction to DNA computing is presented in [PRS05]. A
short description of this concept is also given in [Hro04a].



If you do not expect the unexpected,
you will never find jewels,
which are so difficult to seek.

Heraclitus

Chapter 9

Quantum Computers, or
Computing in the Wonderland
of Particles

9.1 Prehistory

Physics is a wonderful science. If I had had a good physics teacher
in high school, then I would probably have become a physicist.
But I do not regret that I became a computer scientist. If one
reaches the true depth of a particular scientific discipline, then
one unavoidably touches also other areas of basic research. In this
way, one gains insight into the fundamentals that are common
for all sciences, and so sees many things clearer and finds them
more exciting than people looking at everything from the specific

J. Hromkovič, Algorithmic Adventures, DOI 10.1007/978-3-540-85986-4 9,
c© Springer-Verlag Berlin Heidelberg 2009

299

http://dx.doi.org/10.1007/978-3-540-85986-4_9


300 9 Quantum Computers

angle of their own scientific discipline.1 Physics provides simulta-
neously a deep and a wide view on the world. Particularly in the
nineteenth century and in the first half of the twentieth century
no other science shaped our world view more than physics. Ex-
citing discoveries, unexpected turns, and spectacular results were
everyday occurrences in physics. For me, quantum mechanics is
one of the greatest achievements of human creativity. Understand-
ing and believing in quantum physics was no less difficult than
relinquishing the belief in the Middle Ages that the Earth oc-
cupied the central position in the Universe. Why did quantum
mechanics have similar troubles with acceptance as did the work
of Galileo Galilei? The laws of quantum mechanics provide the
rules for the behavior of particles and these rules are in contra-
diction with our experience about the behavior of objects in our
macro world. In what follows, we list the most important princi-
ples of quantum mechanics that broke the world view of classical
physics:

• An object is located at any moment2 in one place. This does not
hold for particles. For instance, an electron can be in several
places at the same time.

• The principle of causality says that each action has unam-
biguous consequences, or that any cause has an unambigu-
ously determined effect. This is not true for particles. In some
scenarios chance conquers. One cannot predict the effects of
some actions. There exist several possibilities for the further
development of the current situation, and one of these pos-
sibilities is chosen at random. There is no possibility to cal-
culate and so to predict which of the possibilities will be ex-
ecuted. One can only calculate the probability of the execu-
tion of the particular possibilities. Because of this, physicists
speak about true random events in the corresponding scenar-
ios.

1 Too strong a specialization and the resulting narrow point of view are the sources of
the main difficulties of current science, that, on the one hand protect researchers
from real success, and on the other hand give rise to intolerance and disdain
between scientists from different areas of science.

2 According to the theory of relativity, time is also a subjective (relative) notion.



9.1 Prehistory 301

• The principle of locality says that effects are always local. In
the wonderland of particles, two particles may be so strongly
connected to each other that, independently of their distance
from each other (maybe even billions of light years), a change in
the state of one of the particles simultaneously causes a change
in the state of the other particle.

• Classical physics says that if an event is possible (i.e., if an
event has a positive probability of occurrence), then it will oc-
cur with the corresponding frequency. This is not necessarily
true in the wonderland of particles. Two events that may occur
with positive probability can completely cancel each other out,
as waves can. The consequence is that none of these events can
occur.

It is a surprise that physicists were able to discover such strange
laws and even make them plausible. How did they do it? They
did it in the common way that physicists used since the existence
of their science. Researchers developed ingenious ideas by exper-
iments, observations, and related discussions, and were able to
express their concepts using the language of mathematics. Using
mathematical models, physicists were able to make predictions. If
all calculated predictions were confirmed by experiments, one had
good reason to believe in the trustworthiness of the models. The
experimental confirmation of the theory of quantum mechanics
took many years, because an essential development in experimen-
tal physics was necessary to reach this purpose. Moreover, the
development of experimental equipment was often very costly.

What are we trying to tell you here? Reading a few books is not
sufficient to get a good understanding of quantum mechanics. The
related mathematics is not simple and the degree of hardness ad-
ditionally increases when one tries to design quantum algorithms
for solving tasks. Therefore, we are satisfied with presenting some-
what fuzzy ideas on how particles behave and how to use this
behavior for algorithmic information processing.

In the next section, we first visit the wonderland of particles, ob-
serve their behavior in some experiments, and try to explain it.



302 9 Quantum Computers

In Section 9.3 we show how one can store bits in quantum sys-
tems and how to calculate with them. We also discuss concepts
and problems related to building a quantum computer. Section
9.4 closes this chapter by discussing the perspectives of quantum
computing for solving hard computing problems and for the de-
velopment of secure cryptosystems.

9.2 A Short Walk in the Wonderland of
Quantum Mechanics

Alice was in Wonderland only in her dreams. Physicists had it
harder than Alice. Doing their job, they were in the wonderland
of particles every day and were not allowed to wake up and run
away. They were forced to do their best in order to explain at least
partially the astonishing behavior of particles. The hardest point
was that they were additionally required to update the recent view
on the functioning of our world. To say goodbye to one’s ideas and
viewpoints is not simple and this process takes some time. A still
harder job is to convince other scientists that the old theories
are not completely true and that the theories have to be revised
by using strange concepts that contradict our experience to date.
Physicists have to feel lucky that the validity of physical theories is
not a subject for a referendum. How to proceed in order to achieve
at least a partial acceptance and understanding by the people
living in the macro world of the anomalous world of particles?
Let us start by investigating some experiments.

First, we consider the famous double-slit experiment (Figs. 9.1,
9.2, 9.3). We have a source of light used to shoot photons in all
possible directions. In front of this light source there is a solid
plate (Fig. 9.1) that has two small slits. One can open or close the
slits like windows. One or both of the slits may be open. Behind
the solid plate, there is a photographic plate (the bold line in Fig.
9.1) that registers the photon’s hit. In Fig. 9.1 we observe the
situation in which the left slit is open and the right slit is closed.
The horizontally drawn curve in Fig. 9.1 shows the frequency of



9.2 The Wonderland of Quantum Mechanics 303

Fig. 9.1

photons coming to the corresponding part of the photographic
plate. This curve corresponds to our expectation. Most particles
reach the area in front of the slit, and the frequency of incoming
particles decreases with the distance from the position in front of
the slot. As expected, we get the same picture in Fig. 9.2, when
the left slit is closed and the right slit is open. The frequency and
so the probability of reaching a concrete place on the photographic
plate increases as we approach the place in the front of the right
slit.

Fig. 9.2



304 9 Quantum Computers

Fig. 9.3

If both slits are open, then one could expect the resulting frequency
to be the sum of the frequencies obtained by one open slit and
one closed slit in Fig. 9.1 and Fig. 9.2. The expected curve is
drawn in Fig. 9.3. Surprisingly, the observed frequency of photons
approaching the photographic plate in the experiment of two open
slits is completely different, as one can see in Fig. 9.4.

The frequency curve drawn in Fig. 9.4 is very far from the expected
curve in Fig. 9.3. Nevertheless, physicists do not view the curve
in Fig. 9.4 as an unknown one, or even as a chaotic one. They
immediately see that it corresponds to wave interference. If one
starts two waves in the slits, the waves will mutually erase each
other at some places, and strengthen at other places. In this con-
text, one speaks about wave interference. The result of erasing and
strengthening waves corresponds exactly to the frequency curve in
Fig. 9.4. How can we explain this? The photons (or other parti-
cles) are shot sequentially one after the other, and so two different
photons cannot interfere one with the other. The only explanation
is that each photon passes simultaneously through both slits and
interferes with itself. The kernel of this experiments provides a ba-
sic idea of quantum computing. A particle is to some extent in the
left slit and partially also in the second slit. If the occurrence of the
photon in the left slit represents the bit value 0 and the occurrence
of the photon in the right slit represents 1, then the resulting value
is something in between 0 and 1. Not a number between 0 and 1:



9.2 The Wonderland of Quantum Mechanics 305

Fig. 9.4

The bit value is partially 0 and partially 1. This is something that
cannot happen in the macro world. The mathematical model of
quantum mechanics is based on this idea that a particle is allowed
to be at several places at one time, and so is able to interfere with
itself. The predictions calculated by this model completely agree
with the result of verifying experiments (Fig. 9.4).

This is not the end of the story. The experimenter can decide to
carefully follow the behavior of the photon. She or he uses another
light source on the side in order to detect which of the two slits is
used by particular photons. Surprisingly, she or he observes that
each photon uses exactly one of the slits to cross the metal plate,
and no photon uses both at once. But the frequency curve changes
to the expected curve in Fig. 9.3.

The particles are really clever specimens. They behave as goody-
goody persons in a village. If one observes them, they do ex-
actly what one expects from them. If nobody looks, then they
do incredible things. One can switch between observing and not



306 9 Quantum Computers

observing the results beyond the slits as many times as one
likes, the frequency curves change corresponding to Fig. 9.3 and
Fig. 9.4. If one reduces the power of the observer light in such
a way that only a part of the photons can be observed, then
the resulting frequency curve is a mix of the curves in Fig. 9.3
and Fig. 9.4. The more light, the more similarity to the curve
in Fig. 9.3. The more darkness, the greater the resemblance
to the curve in Fig. 9.4. How to explain this behavior of pho-
tons?

Quantum mechanics provides an answer. First, one has to imagine
the following general law:

It is impossible to make an observation or a measurement
of a physical object without influencing the state of the ob-
served object and consequently the values of the measure-
ment.

Exactly that happens in our experiment. The additional light
source of the observer influences the result of the experiment by
fixing the observed photon in one of the slits. Each observation
of a quantum system results in the collapse of the system into a
so-called classical state. A classical state corresponds to our clas-
sical world. A particle is here or there, but never at several places
at once. Whether our observation of the double-slit experiment
fixes the photon in the left slit or in the right one cannot be calcu-
lated and we cannot influence it. It happens randomly according
to the probabilistic laws of quantum mechanics. In the next sec-
tion, we will see that this fact is crucial for the development of
quantum algorithms.

If you are uncomfortable due to the above presentation of the
double-slit experiment, do not take it too seriously. Physicists
needed several years to learn to live with the concept of quan-
tum mechanics. More precisely, a generational change was neces-
sary to accept quantum phenomena. Since I hope that the reader
who survived reading the book up till now is strong enough for
further surprises, I allow myself to present one more physical ex-
periment.



9.2 The Wonderland of Quantum Mechanics 307

The following experiment shows the enormous power and impor-
tance of interference. Consider the following holiday idyll. The sun
is shining, there are no clouds in the sky, there is no wind, and we
see the blue sea. A friendly fish is swimming a few meters below
starting from the sun. The fish is disturbed in its heavenly peace
only by a beam of light that reaches one of its eyes. Which of
the possible ways does the light beam take to come from the sun
to the eye of the fish? Following physical laws, we know that the
light takes the time-shortest path from the sun to the fish eye (Fig.
9.5), and that this path does not correspond to the shortest path
between the sun and the eye (the broken line in Fig. 9.5). Since
light is faster in the air than in water, the light rays take a longer
path in the air into account in order to shorten the path in the
water below the sea surface. Therefore, the light beam changes its
direction when reaching the sea surface (the solid line in Fig. 9.5).

Fig. 9.5

If one wishes, one can calculate the corresponding angle. Now, one
can think that the light ray is always refracted by a fixed angle. But



308 9 Quantum Computers

take care, let us consider another fish that swims 100 m below the
sea surface (Fig. 9.6). In this case, the path of the light ray in the
water is shortened more than in the previous case. Therefore, the
time-shortest path reaches the sea surface to the right of the place
the light coming to the first fish reaches the surface, and refracts
by a larger angle (Fig. 9.6) than the first light ray in Fig. 9.5.

Fig. 9.6

Following Fig. 9.5 and Fig. 9.6, we see that the angles the light
rays refract are different. Is it possible? How can the light ray
starting from the sun know which of the two fishes it wants to
go to and then change its direction correspondingly? How can



9.3 How to Compute in the World of Particles? 309

a photon starting from the sun decide which fish it wants to
reach and calculate the time-shortest path to the object cho-
sen? Photons seem to be very clever. Classical physics can ob-
serve that the light always takes the time-shortest path from
the source to the goal, but it cannot explain how this is per-
formed. However, quantum mechanics can. Obviously, the light
beams cannot calculate and plan their trajectory. The photons
simply run (radiate) in all directions and try to reach the fish
in all possible ways. But all the possibilities that do not cor-
respond to the time-shortest path interact as waves and erase
each other. Only the photon taking the time-shortest path sur-
vives. What can one learn from this experiment? There is a cal-
culation. But no photon performs the calculation itself. The cal-
culation is done by the interference of the photons and follows
the laws of quantum mechanics. These and similar calculations
are permanently performed in nature. We cannot observe them.
We can only see their results. How we can use such calculations
for solving algorithmic problems is the topic of the next sec-
tion.

9.3 How to Compute in the World of Particles?

In Chapter 2 we saw the basic concept for building a com-
puter. Roughly speaking, we have a memory for storing data and
the ability to process (change) the data using some operations.
The use of a classical computer assumes storing data as bit se-
quences and using arithmetic operations to work with data. In
the case of cooking, the memory consists of different containers,
and the hardware for executing operations are devices of differ-
ent kinds such as a microwave, cooker, mixer, etc. A DNA com-
puter saves data as DNA sequences in tubes and executes chem-
ical operations over the DNA sequences in a tube. How can we
build a quantum computer? We see that we first need to fix
the way in which data are represented and stored, and then we
have to describe operations over the data representation cho-
sen.



310 9 Quantum Computers

To build a quantum computer, we use bits to represent data in
the same way as in the classical computer. We also work with
registers that are called quantum registers here. A quantum
register can store one quantum bit. To distinguish quantum bits
from classical ones, 0 and 1, one uses the notation

|0〉 and |1〉 .

There are several ways to build physical quantum registers. The
next three short paragraphs are devoted to readers interested in
physics. It is possible to skip this part without losing the ability
to read the rest of this chapter.

One possibility for building quantum bits is based on nuclear mag-
netic resonance. Figure 9.7 shows how four of the six atoms of
a molecule can be used as quantum registers. If the molecule
is in a magnetic field, the spin of the nucleus becomes directed
parallel to the field. One can interpret this parallel direction
of spins as |0〉. The direction vertical to the field direction is
then associated with the quantum bit |1〉 (Fig. 9.7). One can
use oscillating fields to execute operations on these quantum
bits.

Fig. 9.7



9.3 How to Compute in the World of Particles? 311

Another possibility is the use of ionic traps. Ions are electrically
charged molecules or atoms. In Fig. 9.8, the ions are positively
charged, because each one is lacking two electrons. The ions are
held in vacuum at a temperature close to absolute zero and at an
electromagnetic field in an ionic trap.

Fig. 9.8

The quantum value |0〉 is assigned to the basic state of the ion,
and the value |1〉 is represented by an energetically excited state
of the ion. Quantum operations over particular quantum bits can
be performed using laser beams.

How does a quantum computer compute, and what are its advan-
tages? Considering the bit register of a classical computer, then
this register always contains either 0 or 1. This is not the case for
a quantum computer.

A quantum register can simultaneously contain both possible con-
tents, each one to some extent. This is the same situation as in the



312 9 Quantum Computers

double-slit experiment, where a photon passes through both slits
at once; to some extent through the left slit and to some extent
through the right slit. How shall we describe it?

One says that a quantum bit (as the contents of a quantum regis-
ter) can be a superposition (or in a combination) of two classical
bits |0〉 and |1〉. We describe superposition by

α · |0〉 + β · |1〉 ,

where α and β are complex numbers satisfying the properties

|α|2 ≤ 1, |β|2 ≤ 1 and |α|2 + |β|2 = 1 .

The notation |α| represents the norm of α. If you do not know what
complex numbers are, you do not have to be irritated. You can read
the remainder of the chapter without any problem, because we use
only real α and β in what follows. For any real number α, |α| = α,
and so our conditions on α and β are simplified to

α2 ≤ 1, β2 ≤ 1 and α2 + β2 = 1 .

The values α and β are called amplitudes, and they estimate to
which extent the quantum bit is |0〉 and to which extent it is |1〉.

The exact interpretation is as follows:
α2 is the probability that |0〉 is the contents of the quantum

register.
β2 is the probability that |1〉 is the contents of the quantum

register.

The constraint α2 +β2 = 1 is a consequence of this interpretation,
because there is no other possibility for classical states than |0〉
and |1〉, and the sum of all probabilities of a random register is in
the state (superposition)

α · |0〉 + β · |1〉 .

We do not have any possibility to completely learn this superpo-
sition, i.e., there is no possibility to measure both α and β and so



9.3 How to Compute in the World of Particles? 313

to learn their values. If one performs a measurement of a quantum
bit, then one sees one of the classical values |0〉 or |1〉 only. The
measurement definitely destroys the original superposition. This
is the same situation as we have in the double-slit experiment. A
photon goes through both slits, but if one observes the slits, then
the photon goes through one of the slits only.

In our interpretation, α2 is the probability that the result of the
measurement is |0〉. Analogously, the classical bit |1〉 is the out-
come of the measurement with the probability β2.

Example 9.1 The superposition

1√
2
· |0〉 +

1√
2
· |1〉

expresses the fact that the quantum bit has the same probability
of being in the classical state |0〉 as in |1〉.

α2 =

(
1√
2

)2

=
1

(
√

2)2
=

1

2
and β2 =

(
1√
2

)2

=
1

2
.

Because of this when repeating the measurement of this superpo-
sition many times, we see |0〉 as often as |1〉. �
Example 9.2 The superposition

1√
3
· |0〉 +

√
2

3
· |1〉

expresses the fact that after a measurement, one sees the outcome
|0〉 with the probability

α2 =

(
1√
3

)2

=
1

3

and |1〉 with the probability

β2 =

(√
2

3

)2

=
2

3
.

�



314 9 Quantum Computers

Exercise 9.1 Propose a superposition of one quantum bit, such that one measures
|1〉 with probability 1

4
and one measures |0〉 with the probability 3

4
.

How does this work in the general case? If one has n quantum
registers, then one has 2n possible classical contents. A superpo-
sition of n quantum bits means that the register is at once in all
2n possible classical states, in each one with some probability. The
only constraint is that the sum of these 2n probabilities must be
1.

Example 9.3 Consider two quantum registers. All their possible
contents are the following four ones:

00, 01, 10, and 11.

In the case of two quantum registers, the contents of the memory
of the quantum computer is in superposition

α · |00〉 + β · |01〉 + γ · |10〉 + δ · |11〉

with

α2 ≤ 1, β2 ≤ 1, γ2 ≤ 1, δ2 ≤ 1 and α2 + β2 + γ2 + δ2 = 1 .

The concrete superposition

1

2
· |00〉 +

1

2
· |01〉 +

1

2
· |10〉 +

1

2
· |11〉

with α = β = γ = δ = 1
2

describes the situation where all classical
possible contents have the same probability

α2 = β2 = γ2 = δ2 =

(
1

2

)2

=
1

4

of being measured.

Consider the superposition

0 · |00〉 + 0 · |01〉 + 0 · |10〉 + 1 · |11〉 .



9.3 How to Compute in the World of Particles? 315

Since α = β = γ = 0 and δ2 = 12 = 1, every measurement has the
classical outcome

|11〉 .

For the superposition

1√
2
· |00〉 + 0 · |01〉 + 0 · |10〉 +

1√
2
· |11〉

one can measure only the outcomes |00〉 or |11〉, both with the
same probability 1

2
. �

Exercise 9.2 How can we give a general description of the superposition of three
quantum bits?

(a) Give the superposition of three quantum bits such that all possible classical
contents of three registers have the same probability to be the outcome of a
measurement.

(b) Find a superposition of three quantum bits, for which the classical contents
|111〉 is measured with probability 1

2
, the value |000〉 with probability 1

4
, and

all other possible contents with the same probability.

What operations are possible in the world of particles? How to
transform a superposition in a quantum computing step into an-
other superposition? All computation steps are possible that can
be performed by a multiplication of superpositions (represented
by vectors) by a matrix from a special class of matrices. These
matrices have the special property of being able to create a new
superposition from each given superposition.

The rest of this section is devoted only to readers with an interest
in mathematics. All others may jump to Section 9.4.

A superposition

α1 · |00〉 + α2 · |01〉 + α3 · |10〉 + α4 · |11〉

can be represented by the column vector

⎛

⎜
⎜
⎝

α1

α2

α3

α4

⎞

⎟
⎟
⎠ .



316 9 Quantum Computers

If one wants to write a column vector in a row, then one writes
(α1, α2, α3, α4)

tr, where tr stands for transposed. One can multiply
a row vector with a column vector as follows:

(β1, β2, β3, β4) ·

⎛

⎜⎜
⎝

α1

α2

α3

α4

⎞

⎟⎟
⎠ = α1β1 + α2β2 + α3β3 + α4β4 .

The result is a complex number, not a vector. One can view an
n × n-matrix as n row vectors. For instance, the 4 × 4 matrix

M =

⎛

⎜⎜
⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞

⎟⎟
⎠

consists of the following four row vectors:

(a11, a12, a13, a14)

(a21, a22, a23, a24)

(a31, a32, a33, a34)

(a41, a42, a43, a44)

Hence, the multiplication of the matrix M by the column vector
α = (α1, α2, α3, α4)

tr is again a column vector μ = (μ1, μ2, μ3, μ4)
tr.

The i-th position of μ is the product of the i-th row vector of M
and α. More precisely,

M ·

⎛

⎜⎜
⎝

α1

α2

α3

α4

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

μ1

μ2

μ3

μ4

⎞

⎟⎟
⎠ ,

where

μi = (ai,1, ai,2, ai,3, ai,4) ·

⎛

⎜⎜
⎝

α1

α2

α3

α4

⎞

⎟⎟
⎠

= ai,1 · α1 + ai,2 · α2 + ai,3 · α3 + ai,4 · α4 .



9.3 How to Compute in the World of Particles? 317

The application of M on a superposition is considered one compu-
tation step. If for each superposition α (represented as a column
vector), the product M ·α is also a superposition (in our example
it means that μ2

1 + μ2
2 + μ2

3 + μ2
4 = 1), then multiplication by M is

allowed as a computing operation.

In the following example, we show how a quantum computer can
generate random bits.

Example 9.4 We have one quantum register. We start with the
“classical” superposition

|0〉 = 1 · |0〉 + 0 · |1〉 .

We perform one computing step by multiplying this superposition
with the Hadamard matrix:

H2 =

(
1√
2

1√
2

1√
2
− 1√

2

)

.

The result of the multiplication is as follows:

(
1√
2

1√
2

1√
2
− 1√

2

)

·
(

1

0

)
=

(
1 · 1√

2
+ 0 · 1√

2

1 · 1√
2

+ 0 ·
(
− 1√

2

)
)

=

(
1√
2

1√
2

)

.

In this way we get the superposition

1√
2
· |0〉 +

1√
2
· |1〉 .

If one performs a measurement on this superposition, then one has
the same probability of getting the classical bit |0〉 as of getting
|1〉.

If one starts with the “classical” superposition

|1〉 = 0 · |0〉 + 1 · |1〉

and again multiplies our superposition by the matrix H2, one gets



318 9 Quantum Computers

(
1√
2

1√
2

1√
2
− 1√

2

)

·
(

0

1

)
=

(
0 · 1√

2
+ 1 · 1√

2

0 · 1√
2

+ 1 ·
(
− 1√

2

)
)

=

(
1√
2

− 1√
2

)

.

The result is the superposition

1√
2
· |0〉 − 1√

2
· |1〉 .

Since α2 =
(

1√
2

)2

= 1
2

and β2 =
(
− 1√

2

)2

= 1
2
, the outcomes |0〉

and |1〉 of a measurement have the same probability 1
2
. What does

it mean? In both cases, we obtain a random bit, but we are unable
to distinguish which of the two superpositions 1√

2
· |0〉 + 1√

2
· |1〉

and 1√
2
· |0〉 − 1√

2
· |1〉 was measured. �

Exercise 9.3 Give at least two additional different superpositions of a quantum
bit, such that the outcomes |0〉 and |1〉 are measured with the same probability.

Exercise 9.4 (challenge) Prove that H2 has the property that

 

γ

δ

!

:= H2 ·
 

α

β

!

for each superposition α·|0〉+β·|1〉 the resulting column vector (γ, δ)tr also represents
a superposition, i.e., that γ2 + δ2 = 1.

Exercise 9.5 (challenge) All computations of a quantum computer are reversible.
If one does not measure and so does not destroy the achieved superposition, then
it is possible to let the computation run backwards to the starting point using any
feasible computing steps. For Example 9.4 this means that there exists a 2×2 matrix
M , such that

M ·
 

1√
2

1√
2

!

=

 

1

0

!

and M ·
 

1√
2

− 1√
2

!

=

 

0

1

!

.

Find a matrix M with the above property.

Now, we understand at least to some extent how one can compute
in the world of particles. First, one has to cleverly assign the values
0 and 1 to some different basic states of particles (for instance, the
spin direction). After that, one can perform quantum operations
with the superpositions of quantum bits. Mathematically, one ex-
ecutes an operation by multiplying the vector representations of



9.3 How to Compute in the World of Particles? 319

superpositions with a matrix. Only those matrices are allowed that
transform superpositions to superpositions. All operations based
on such matrices can be performed in the quantum world. Here, we
see the advantages of quantum computers. If one computes with
n quantum bits, then one has a superposition of all 2n possible
classical contents of the n quantum bits:

α0 · |00 . . . 0〉 + α1 · |00 . . . 01〉 + . . . + α2n−1 · |11 . . . 1〉 .

The whole superposition is changed in one simple computing step.
To simulate one computing step of a quantum computer using
a classical computer, one cannot do better than to multiply the
2n-dimensional vector (α0, α1, . . . , α2n−1)

tr with a 2n × 2n matrix,
i.e., than to exactly follow the mathematical model of quantum
mechanics. In this way, the effort to simulate one single quantum
computation step is exponential in the number of quantum bits.

Another strength of quantum computing is the already mentioned
interference that enables us to erase existing possibilities and si-
multaneously to increase the possibility of the occurrence of other
possibilities using suitable quantum operations.

Currently, we know several problems for which quantum algo-
rithms are essentially more efficient than the best known classical
algorithms. Unfortunately, the knowledge of mathematics and al-
gorithmics necessary for presenting them is too complex to show
here. Therefore, we only mention, for instance, that there exists an
efficient quantum algorithm for the factorization of natural num-
bers. As we already know we are unable to efficiently factorize
numbers using classical algorithms. This is dangerous for public-
key cryptography that is based on the computational hardness of
factorization. But, do not worry, you may continue to sleep well.
The largest quantum computers built have at most seven quan-
tum bits, and so are only able to work with numbers that can
be represented using seven bits. As we know, in public-key cryp-
tography one works with numbers consisting of several hundred
digits. Hence, the future will decide about the usefulness of quan-
tum computing for real data processing. This is the topic of the
next section.



320 9 Quantum Computers

9.4 The Future of Quantum Computing

Currently, we do not know the future of quantum computing. To
understand the difficulty of developing quantum computing tech-
nology, let us explain where there are serious troubles. Using the
mathematical model of quantum processes, we discovered a tool for
designing quantum algorithms. For some problems, these quantum
algorithms can be unexpectedly efficient. To execute them, one
needs a quantum computer with as many quantum bits as the size
of the data to be processed. We also have an idea of how to phys-
ically represent the states of particles used as quantum registers.
What is missing? A quantum computer is extremely sensitive. It is
more sensitive than everything you know in the classical world. To
tell somebody “you are more sensitive than a quantum computer”
is already a serious insult. The penetration of a single particle
such as an electron into a quantum computer in use can result in
a complete change of the superpositions computed until that point.
We are unable to reconstruct this superposition, and so we must
start the computation over from the very beginning. One particle
penetrating into the quantum computer can have the same conse-
quences as a measurement. Therefore, it is necessary to completely
isolate quantum computers from their surroundings. But this task
is harder than to build a secret treasury bond. Particles are ev-
erywhere, even in the substance one would use for isolation in the
classical world. This is the reason for using vacuums, temperatures
close to absolute zero, etc. One is aware that it is impossible to
isolate a system from its environment forever. The task is only to
isolate the quantum computer for a fraction of one second, because
the quantum computation can be performed very quickly. The ba-
sic idea is not to construct a general quantum PC that could be
used for a variety of different applications. The aim is to build
a quantum computer that can solve only one specific computing
task. This means that for performing one quantum algorithm de-
signed, one has to build a quantum computer that does nothing
other than execute this single algorithm. Hence, we speak about
one-purpose (or special-purpose) computers that can solve only
one specific computing task. For a small number of bits (3 to 7),



9.4 The Future of Quantum Computing 321

physicists have been able to execute some quantum algorithms us-
ing small quantum computers. To some extent, the situation is
similar to DNA computing. Currently, nobody can consider this
technology as a serious competition or addition to classical com-
puters. But when one discovers a better technology for building
quantum computers, the situation will change dramatically. We
will be required to revise the definition of the border between effi-
ciently solvable and efficiently unsolvable. Theoreticians have this
new complexity theory ready in their drawers.

The ability to implement efficient factorization would essentially
change cryptography. The current public-key cryptosystems would
not be secure for an adversary who owns a quantum computer
for factorizing large numbers. Is this really the only possible out-
come of building larger quantum computers? Maybe we could build
quantum computers working with a few hundred bits, but not with
a few thousand bits. Then, we could continue to successfully use
public-key cryptosystems by working with numbers consisting of
a few thousand digits. It does not matter what the future brings,
we do not interpret new discoveries and the resulting progress as
a negative development. One has react it positively even if the
current public-key cryptosystems will become insecure. Each dis-
covery also opens new possibilities. Quantum effects enable us to
build cryptosystems that satisfy very high security requirements.
The idea is based on the possibility of bringing two particles into
the so-called EPR superposition. This superposition has the spe-
cial property that, independently of the distance between these
two particles, if one measures the state of the first particle, then
any later measurement of the second particle gives ultimatively
the same outcome as the outcome of the measurement of the first
particle. In this way, two parties can agree on the same random
bit and use it as a key. One can view an application as follows.
The sender has a particle and the receiver has another particle.
These two particles are in the EPR superposition. Both sender
and receiver perform a measurement on their particle. It does not
matter in which order they measure. The only important fact is
that they get the same outcome, because the first measurement



322 9 Quantum Computers

already results in the collapse of both particles to the same clas-
sical state. Then, the second measurement of the classical state
can provide only this classical state. If the receiver and the sender
generate a common sequence of random bits in this way, they may
use it as a key for a symmetric cryptosystem. This quantum ef-
fect was predicted many years ago. Albert Einstein did not believe
in the experimental confirmation of this prediction. His argument
was that this effect, called teleportation, contradicts the locality
laws of physical effects. The experimental goal was to show that
after the measurement on the first particle the state of the second
particle collapsed into the corresponding classical state before the
light from the location of the first particle reached the location
of the second particle. In this way, one wants to experimentally
express the impossibility of influencing the state of one particle
by “sending” the information about the change of the state of an-
other particle, because the speed of light is considered to be the
upper bound on the speed of everything. To perform such an ex-
periment is very hard, due to the extremely high speed of light the
time measurements must be very fine. In spite of the difficulty of
time measurement, experimental physicists were able to perform
it. This experiment was successfully performed over a distance of
600m across the Danube near Vienna.

The time of pioneers is not over. Science often raises our pulse
rates and we are looking forward to spectacular discoveries and
pure miracles.

Solutions to Some Exercises

Exercise 9.1 One considers the following superposition:

1

2

√
3 · |0〉 − 1

2
· |1〉 .

Clearly,
„

1

2

√
3

«2

=
1

4
· 3 =

3

4
, and

„

−1

2

«2

=
1

4
.

Hence, the classical value |1〉 is measured with the probability 1
4
. We see that the

superposition
„

−
√

3

2

«

· |0〉 +
1

2
· |1〉



9.4 The Future of Quantum Computing 323

satisfies our requirements. One can think about what other superpositions α · |0〉 +
β · |1〉 also satisfy the constraints α2 = 3/4 and β2 = 1/4. We see that we are unable
to recognize (by measurement) the superposition of the measured quantum system.

Exercise 9.2 For three bits, one has 23 = 8 possible different contents

000, 001, 010, 011, 100, 101, 110, and 111 .

Hence, each state of a quantum register with 3 bits is a superposition

α0 · |000〉 + α1 · |001〉 + α2 · |010〉 + α3 · |011〉

+α4 · |100〉 + α5 · |101〉 + α6 · |110〉 + α7 · |111〉
of 8 classical states, where

α2
i ≤ 1 for i = 0, 1, . . . , 7 and

7
X

i=0

α2
i = 1 .

a) If all 8 classical states have the same probability of being measured, then α2
0 =

α2
1 = α2

2 = . . . = α2
7 = 1

8
must hold. Since

1

8
=

2

16
=

 

r

2

16

!2

=

„

√
2

4

«2

,

one obtains

α0 = α1 = α2 = . . . = α7 =

√
2

4
,

as a possibility. Can you propose another possibility?
b) Besides the contents |111〉 and |000〉 of three bits, there are still six further

possible contents. If |000〉 is observed with probability 1
2

and |111〉 is observed
with probability 1

4
, then the common probability of the remaining six events is

1
4

(the sum of all probabilities must be 1). The probability 1
4

has to be equally
distributed on all remaining six contents. Hence, the probability of measuring
each of the remaining contents has to be

1/4

6
=

1

24
=

6

144
.

The following superposition fulfills our requirements on the probabilities of mea-
suring particular classical states:

1

2
· |000〉 +

1

12

√
6 · |001〉 +

1

12

√
6 · |010〉 +

1

12

√
6 · |011〉+

1

12

√
6 · |100〉 +

1

12

√
6 · |101〉 +

1

12

√
6 · |110〉 +

1

2

√
2 · |111〉 .

Exercise 9.4 One multiplies

H2 ·
 

α

β

!

=

 

1√
2

1√
2

1√
2
− 1√

2

!

·
 

α

β

!

=

 

1√
2
· α + 1√

2
· β

1√
2
· α − 1√

2
· β

!

=

 

γ

δ

!



324 9 Quantum Computers

Our goal is to show that
γ · |0〉 + δ · |1〉

is a superposition, i.e., that γ2 + δ2 = 1 holds.

γ2 + δ2 =

„

1√
2
· α +

1√
2
· β
«2

+

„

1√
2
· α − 1√

2
· β
«2

=
α2

2
+ 2 · 1√

2
· 1√

2
· α · β +

β2

2
+

α2

2
− 2 · 1√

2
· 1√

2
· α · β +

β2

2

= α2 + β2 .

Since we assumed that α · |0〉+β|1〉 is a superposition, α2 +β2 = 1 holds. Therefore,
γ2 + δ2 = 1 and the vector (γ, δ)tr represents a superposition of |0〉 and |1〉.



Life can be understood only seen from backward,
but it can be lived only by looking forward.

Søren Kierkegaard

Chapter 10

How to Make Good Decisions
for an Unknown Future or How
to Foil an Adversary

10.1 What Do We Want to Discover Here?

The computing tasks considered until now were of the following
kind: Given a problem instance (or a concrete question), one has to
compute a solution (or a correct answer). This means that one has
from the beginning the full information (the whole input) that one
needs to compute a solution. There are many applications where,
at the beginning, one has only partial information about a problem
instance before the next part of the input is available.

We illustrate this using the following example. Consider a service
center, for instance a hospital with doctors on call. Each doctor

J. Hromkovič, Algorithmic Adventures, DOI 10.1007/978-3-540-85986-4 10,
c© Springer-Verlag Berlin Heidelberg 2009

325

http://dx.doi.org/10.1007/978-3-540-85986-4_10


326 10 How to Foil an Adversary

has an emergency doctor’s car. When called, the center is required
to send a doctor to the accident or to the home of the patient.
The center can try to coordinate the movement of the emergency
doctors’ cars in such a way that some parameters are optimized.
For instance, one can try to

• minimize the average waiting time for a doctor,

• minimize the longest possible waiting time,

• minimize the overall length of all trips driven.

To achieve its goal, the center is free to make some decisions. If
a new call arrives, it can send a new doctor from the hospital to
the accident or send a doctor finishing her or his job at another
accident. If the doctor has finished the work at an incident, the
center may ask her or him to come back or wait where she or he is
for another task, or even take a completely new strategic waiting
position. For classical optimization problems, one knows from the
beginning all accident locations, accident times, and time intervals
sufficient and necessary to treat real patients, and the task is to
make a scheduling for the doctors in such a way that the given pa-
rameters are optimized. Clearly, one cannot have, in reality, such
knowledge about the future. The center does not have a premo-
nition of the place and the time of the next accident. In spite of
this uncertainty, which makes finding an optimal solution impos-
sible, one requires from the center a reasonable decision strategy
that provides solutions that are good with respect to the knowl-
edge available. Such problems are called online problems and the
corresponding solution strategies are called online algorithms.

One can imagine that there are many problems such as the one
presented above. For instance, controlling a taxi center or a police
station is very similar to the previous example. In industry, one
has to assign workers and machines to execute jobs without know-
ing what kinds of contracts will be obtained in the near future,
and how large, how lucrative, and how urgent they will be. Such
optimization problems are called scheduling. This kind of online
problem is usually very hard, because the future can be very mean.



10.2 Quality Measurement of Online Algorithms 327

One calls a doctor back to the hospital, and when the doctor ar-
rives there an emergency call comes from a location neighboring
the location of the previous accident. Finding a good optimization
strategy under these circumstances can be very hard. Often there
does not exist any strategy that would guarantee reasonable so-
lutions independently of future developments. Sometimes, at first
glance, one would mean that there is no chance to play against
an unknown future, and yet there exist online algorithms that are
able to find nearly optimal solutions for each future scenario. Such
algorithms are the miracles of this part of algorithmics. The aim
of this chapter is to show you such a miracle.

The next section starts with modelling of online problems and
introduces the measurement of quality of online algorithms. Here
we present an online problem as an example, one where one cannot
foil the unknown future.

In Section 10.3, we present an online scheduling problem, for which
each deterministic online strategy risks to take a decision that can
be very far from optimal. Then, our trump card, we design a ran-
domized online algorithm that ensures a nearly optimal solution
for each future development with high probability. As usual, we
finish this chapter by giving a summary and solutions to some
exercises.

10.2 Quality Measurement of Online
Algorithms and a Game Against a Mean
Adversary

The problems considered here are so-called optimization prob-
lems. For each problem instance I, there are potentially many
solutions that are called feasible solutions for I. Remember
the travelling salesman problem. For each complete network of n
cities with a direct connection between each pair of cities, there are
(n−1)!/2 Hamiltonian tours1. Each Hamiltonian tour corresponds

1 Remember that a Hamiltonian tour is a tour starting at some point, visiting each
city exactly once, and then returning to the starting point.



328 10 How to Foil an Adversary

to a feasible solution, and so we have a huge number of them. The
task is not only to find a feasible solution but a solution whose cost
is minimal or at least not far from the cost of an optimal solution.
All online problems are optimization problems and the task is to
satisfy all requirements provided step by step and finally calculate
a feasible solution for the whole input (whole set of requirements).
In our example, the emergency center of a hospital is required to
handle all emergencies (assuming the capacity of the hospital is
sufficient for that). If one is able to do that, then one produces a
feasible solution that is described by a sequence of instructions to
the doctors. It does not matter which parameters (waiting times,
costs, etc.) one optimizes, if one knows the future with all acci-
dent locations and accident times one can theoretically2 always
compute an3 optimal solution. Without knowing the future (i.e.,
the requirements formulated later), it may happen that we take de-
cisions and put them into practice, which makes them irreversible.
The consequences of these decisions may hinder us from satisfying
later requirements in an efficient way. The fundamental question
posed is the following one:

How good can an online algorithm (that does not know the
future) be in comparison with an algorithm that knows the
whole problem instance (future) from the beginning?

The answer may vary depending on the problem considered. To
be able to study the quality of online algorithms, one has first to
understand the meaning of

“to be good relative to an algorithm that knows the future.”

To measure the quality of an online algorithm, we use a concept
similar to the idea of approximation algorithms. Let I be an in-
stance of a considered optimization problem U . Assume that U is
a minimization problem. Let

OptU(I)

2 We write “theoretically” because we do not concern ourselves with the computa-
tional complexity. In practice it may happen that we cannot do it because of the
limited computing resources.

3 We write “an” because there may exist several optimal solutions.



10.2 Quality Measurement of Online Algorithms 329

denote the cost of an optimal solution for I. Let A be an online
algorithm for U that, for each problem instance I of U , computes
a feasible solution

SolA(I) .

The cost of this solution is denoted by

cost(SolA(I)) .

We define the competitive ratio compA(I) of A on the instance
I as

compA(I) =
cost(SolA(I))

OptU(I)
.

In this way, compA(I) says by how many times the cost of the
solution SolA(I) of A on I is larger (worse) than the best possible
cost. For instance, if OptU(I) = 100 (i.e., the optimal solutions
for I have cost 100), and cost(SolA(I)) = 130 (i.e., the online
algorithm A computes a solution with the cost 130), then

compA(I) =
130

100
= 1.3

meaning that the computed solution is 1.3 times worse than the
optimal solution. One can also say that SolA(I) costs 30% more
than the optimal solutions.

Now we know how to determine how good an online algorithm is
for a problem instance I. We measure the quality of A with respect
to a guarantee that is provided by A in any4 case. Therefore, we
define the quality of A as follows:

We say that A is a δ-competitive online algorithm for U , if,
for all problem instances I of U ,

compA(I) ≤ δ .

If compA(I) ≤ 1.3 for all problem instances I of U (i.e., if A is
1.3-competitive), then it means that, for any problem instance, we

4 In computer science, one speaks about the “worst case”.



330 10 How to Foil an Adversary

compute a solution whose cost is not larger than 130% of the cost
of an optimal solution. For many input instances it may happen
that our solutions are even essentially closer to the optimal ones.
For several hard problems, one should be reasonably happy with
such a guarantee.

Exercise 10.1 Let OptU (I) = 90 for a problem instance I. Assume our online
algorithm computes a solution SolA(I) with cost(SolA(I)) = 135.

a) Calculate the competitive ratio of A on I.
b) How many percent higher cost than the optimal one has the computed solution

SolA(I)?

Exercise 10.2 For any problem instance I, we introduced the values OptU (I) and
cost(SolA(I)). What does the following number express?

cost(SolA(I)) − OptU (I)

OptU (I)
· 100

Assume one designs an online strategy A for an optimization prob-
lem U and aims to estimate compA(I). Computer scientists say
that they want to analyze the competitive ratio of A. This may
require a lot of hard work. We know cases of problems and de-
signed online algorithms for them where, after an effort of several
years, one is unable to approximate compA. The hardness of this
analysis is related to the fact that one has to estimate the maximal
value of compA(I) over all infinitely many problem instances I.

To analyze compA, the researchers use a helpful game between an
algorithm designer and his adversary. The aim of the algorithm
designer is to design an online algorithm. The adversary tries to
prove that the designed algorithm is not good enough by designing
problem instances for which the algorithm does not work well (Fig.
10.1).

In this game, one can view the algorithm designer as an enthusi-
astic optimist who is happy about the product of her or his work.
The adversary can be viewed as a confirmed skeptic who questions
all products of the algorithm designer and tries to convince every-
body about the weakness of the designed algorithm. Good research
teams need both, optimists and pessimists. In this way, one can



10.2 Quality Measurement of Online Algorithms 331

Fig. 10.1

produce original ideas with considerable enthusiasm, check them
carefully, and finally improve them.

In the analysis of online algorithms, one views the adversary as a
mean person. This is related to the actual situation. The adver-
sary knows the algorithm A and is allowed to design the future in
such a way that A is not successful. Since the adversary knows A,
he knows exactly which partial solutions are produced by A for a
given part (prefix) of the input. Therefore, the game can be viewed
as follows. The adversary shows a part of the future and waits for
the action of A. After that the adversary estimates the next part
of the future. After examining how A acts on that, he builds the
next requirements. Hence, the adversary has a good possibility of
leading A astray. If the adversary succeeds, he has proved that
compA cannot be good.

We use the following example to hit three flies at once. First,
we illustrate the definition of the competitive ratio using a con-
crete scenario. Second, we transparently show how a mean ad-
versary proves the limits of any possible online algorithm for the
problem considered. Finally, we learn that there are computing
tasks that cannot be solved successfully using any online algo-
rithm.

Example 10.1 Paging

Paging is a well-known problem that has to be incessantly solved
in all computers. Each computer has two kinds of memory. One
is small and the other is large. The small memory is called cache
and the computer has random access to it, which means that the
access to the data is extremely fast. The large memory is called



332 10 How to Foil an Adversary

the main memory and it is considerably larger than the cache
(Fig. 10.2).

Fig. 10.2

The access to the data in the main memory is slow. In fact the
computer directly proceeds on data in cache only. If one wants to
work with or see data that is not in cache, one has to transfer
this data to the cache first and then one can read them. This data
transfer is time consuming. Therefore, one strives to have all data
needed in the near future in cache. But one cannot ensure this,
because the computer does not know the future, i.e., it does not
know which data the user wants to access next. The computer
only receives from time to time a requirement to show some data
or to proceed on some data. If these data are not in cache, it
must move them there. Since the cache is usually full, at first,
the computer has to delete or transfer some part of the data in
cache to the main memory. Now one understands the framework
for an online strategy. Which data have to be removed from cache?
Please, remove any except those needed in the next application.

Let us model this situation more precisely. Both memories are par-
titioned into data blocks called pages. Cache can contain at most
k pages for a fixed number k. Usually, cache contains exactly k
pages, i.e., it is full. The main memory contains all data needed
and so the amount of data there may be very large. One can trans-



10.2 Quality Measurement of Online Algorithms 333

fer only whole pages between cache and the main memory. This
is similar to a thick book, in which one can see (open) at most k
pages at any time. If one wants to see a new page, one has to close
one of the open pages. Therefore, one calls this task paging.

A complete instance I of paging can be, for instance,

I = 3, 107, 30, 1201, 73, 107, 30 .

This instance corresponds to the requirement to see the pages
with numbers 3, 107, 30, 1201, 73, 107, 30 one after each other in
the prescribed order. The pages 107 and 30 even have to be visited
twice. Page 107 has to be open in the second time period and in
the sixth time period. This means it would be wrong to remove
page 107 from cache after reading it in the second step, because
one needs it in the sixth time period.

Because one considers paging as a minimization problem, one has
to assign a cost to each feasible solution. Since the time necessary
for transporting a page from the main memory to cache is incom-
parably higher than the time sufficient for accessing data in cache,
one is allowed to measure the cost as follows:

• the cost for a direct access to cache is set to 0, and

• the cost for transferring a page from the main memory to cache
is set to 1.

Consider the following situation. One has a cache of size 3 (i.e.,
k = 3) that contains three pages 5, 30, and 107. The problem
instance given is I = 3, 107, 30, 1201, 73, 107, 30. The following op-
timal solution has cost 3. First, the computer sends page 3 to cache
and sends page 5 from cache to the main memory. We denote this
exchange of pages 3 and 5 between cache and the main memory
by

5 ↔ 3 .

The next pages asked for are pages 107 and 30, which are al-
ready available in cache. After reading them, the computer moves
page 1201 to cache from the main memory by exchanging it with
page 3. Pages 30 and 107 remain in cache because the computer



334 10 How to Foil an Adversary

knows that it will need them soon. In the fifth step, the computer
exchanges page 1201 from cache for page 73. The last two require-
ments, 107 and 30, can be handled by direct access in cache. The
above described plan (solution) can be represented as follows:

5 ↔ 3, •, •, 3 ↔ 1201, 1201 ↔ 73, •, •

The symbol • stands for no action between cache and the main
memory, and the denotation a ↔ b represents the exchange of page
a in cache for page b from the main memory. Table 10.1 shows the
content of cache in the 8 time periods considered.

time 0 1 2 3 4 5 6 7

operation 5 ↔ 3 • • 3 ↔ 1201 1201 ↔ 73 • •

cache

5 3 3 3 1201 73 73 73

30 30 30 30 30 30 30 30

107 107 107 107 107 107 107 107

read 3 107 30 1201 73 107 30

Table 10.1

One is allowed to claim that the above presented solution is op-
timal. At the beginning the required pages 3, 1201, and 73 are
not in cache. Following the requirements given by the instance
I = 3, 107, 30, 1201, 73, 107, 30 it is obvious that these three pages
have to be transferred to cache and so any solution must have a
cost of at least 3.

Exercise 10.3 Find optimal solutions for the following instances of paging:

(a) k = 3, cache contains 1, 2, 3 and I = 7, 9, 3, 2, 14, 8, 7
(b) k = 5, cache contains 1, 101, 1001, 1002, 9 and I = 1002, 7, 5, 1001, 101, 3, 8,

1, 1002

Note that if one is forced to bring a new page to cache, one has
k possibilities for choosing the page that has to be exchanged for
the new one. Hence, after a few steps, the number of different
possibilities grows very quickly and so searching for an optimal
solution may become confusing. Nevertheless, an optimal solution
can always be calculated, and everything is only a question of the



10.2 Quality Measurement of Online Algorithms 335

amount of work. Considering paging as an online problem, the
situation changes dramatically. The requirements to read a page
come separately one after another. Only after fulfilling a require-
ment through a possible exchange of pages between cache and the
main memory, will the next requirement become public. The ad-
versary can be really mean. He forces reading of exactly the page
that was moved to the main memory in the last step. It does not
matter what online strategy for the exchange of pages is used, the
adversary always forces us to read exactly the last removed page.
In this way, for each particular requirement of the instance con-
structed by the adversary, a communication between cache and
the main memory takes place. Hence, the cost of the solution is
the length of the instance I, and so the cost is the maximum pos-
sible.

Let us play the game with the adversary for a concrete example.
Let k = 3 and cache contains pages 1, 2, and 3. At the begin-
ning, the adversary forces us to read page 4. To bring page 4
to cache, one has to remove the pages in cache. Assume page 2
is removed. Then, in the next step, the adversary asks for page
2. Page 2 is not in cache anymore and must be transferred to
cache. Assume our online strategy acts through 4 ↔ 2. Then, the
adversary asks for page 4 in the next step. If the online strat-
egy had decided to perform 1 ↔ 4, and did it, the adversary
would ask for page 1. In this way, the adversary creates the in-
stance

4, 2, 4, 1,

and forces the online strategy to determine the feasible solu-
tion

2 ↔ 4, 4 ↔ 2, 1 ↔ 4, 4 ↔ 1 .

This solution has the maximal possible cost 4. The optimal solu-
tion for the instance 4, 2, 4, 1 is

3 ↔ 4, •, •, •

of cost 1. But one can calculate it only if the instance 4, 2, 4, 1 of
paging is known from the beginning.



336 10 How to Foil an Adversary

Exercise 10.4 Consider the following online strategy. One always removes the page
with the smallest number. Consider k = 4 and let cache contain pages 1, 3, 5, and
7 at the beginning. Play the role of the adversary and design a problem instance of
10 requirements (i.e., of length 10), such that the solution of the online strategy has
the maximal possible cost 10.

Exercise 10.5 Consider the online algorithms that always remove one of those
pages from cache that were read (asked for) the fewest number of times until now.
If several such pages are in cache, the online strategy removes the one with the
largest number. Play the adversary for this strategy and use the following starting
situations and goals:

(a) k = 4, cache contains pages 1, 2, 3, and 4, the instance I constructed has to be
of length 4, and Optpaging(I) = 1.

(b) k = 5, cache contains 1, 7, 103, 5, 9, and Optpaging(I) = 2 for the designed in-
stance I of paging.

We generalize our experience and show that each online algorithm
for cache of k pages fulfills

compA ≥ k .

Hence, there is no good online strategy that can work satisfactorily
for all instances of paging.

Assume without loss of generality that pages 1, 2, 3, 4, . . . , k are
in cache of size k. Let A be an arbitrary online algorithm for
paging. The adversary starts to construct an instance by asking
for page k + 1. Since page k + 1 is not in cache, A has to ex-
change one of its pages for page k + 1. Assume A performs the
action

s1 ↔ k + 1

where s1 is from {1, 2, . . . , k} . Now cache contains pages

1, 2, . . . , s1 − 1, s1 + 1, . . . , k, k + 1 .

The designer continues to build the hard instance of paging for A
by asking for page s1. Since page s1 is not in cache A is forced
to exchange one of the pages in cache for s1. Assume A per-
forms

s2 ↔ s1



10.2 Quality Measurement of Online Algorithms 337

for a page s2 from {1, 2, . . . , k, k + 1} − {s1}. After this exchange,
cache contains pages 1, 2, . . . , s2−1, s2 +1, . . . , k+1, i.e., all pages
with a number i from {1, 2, . . . , k + 1} − {s2}. As expected, the
adversary asks for page s2, which was removed from cache in
the last step. In this way the adversary can proceed until an in-
stance

IA = k + 1, s1, s2, . . . , sk−1

of length k is created and

cost(SolA(IA)) = k

holds. Observe that, for different strategies, different instances can
be constructed. Now we claim that

Optpaging(IA) = 1 .

Let us argue for that. If one knows the whole instance IA from the
beginning, one can proceed as follows. The numbers s1, s2, . . . , sk−1

are all from {1, 2, . . . , k +1} and they are k− 1 in number. Hence,
there is a number j in {1, 2, . . . , k} that is not among the numbers
s1, s2, . . . , sk−1. If one takes the action

j ↔ k + 1

at the beginning when page k + 1 is required, then one does
not need any communication between cache and the main mem-
ory later, since all pages s1, s2, . . . , sk−1 asked for in the next
k − 1 steps are in cache. One never misses page j. In this
way

j ↔ k + 1, •, •, . . . , •
is the optimal solution for IA. For instance, if k = 4 and IA =
5, 3, 1, 4, then j = 2 and

2 ↔ 5, •, •, •

is the optimal solution. Since Optpaging(IA) = 1, one obtains

compA(IA) =
cost(SolA(IA))

Optpaging(IA)
=

k

1
= k



338 10 How to Foil an Adversary

for each online algorithm A. Hence, there does not exist any δ-
competitive online algorithm for paging with cache of size k and
δ < k.

What to do with paging in practice? The answer is too compli-
cated to be explained here in detail. The idea is to design online
algorithms that behave well for at least the typical (frequently oc-
curring) instances and so achieve a good competitive ratio on av-
erage. Using extensive experiments, one recognized that the prob-
ability of asking for pages read recently is higher than asking for
pages used only a few times up to now. One can use this fact and
randomization in order to design practical online algorithms for
paging. �

10.3 A Randomized Online Strategy

In this section, we want to show that one can find good online
strategies in cases that seem hopeless at first glance. There exist
online computing tasks for which one can unexpectedly take de-
cisions that are almost as good as those made by somebody who
knows the future.

To remain transparent, so without using too much mathematics,
we consider a very simple version of scheduling. Assume one has
a factory with n different work stations. Each work station con-
sist of a machine or a collection of machines that can perform
specific tasks. The factory receives tasks from its customers. Each
task specifies which stations are required and in which order for
performing the required processing. In this simplified version one
assumes that each task requires all n stations and the processing
takes the same time unit on each of the stations. The only free
parameter of customer choice is the order in which the stations
have to be used. For instance, a factory can have n = 5 stations
S1, S2, S3, S4, and S5. A task

A = (1, 3, 5, 4, 2)

means that the customer needs to use the stations in the order



10.3 A Randomized Online Strategy 339

S1, S3, S5, S4 and S2 .

The aim of the factory is to perform each task as soon as possi-
ble. If the task A is the only one the factory receives, the fac-
tory can perform it in the minimal time of 5 time units5. In
the first time unit S1 is active, in the second time unit station
S3 works, in the third time unit S5 is used, in the fourth time
unit S4 is applied, and finally in the fifth time unit station S2

is used. The problem is that several customers can be concur-
rent. If several customers ask for the same station in the same
time unit, only one can be satisfied and the others have to wait.
Here we investigate the simplest version of the problem with only
two customers. The goal of the company is to minimize the over-
all time for the complete processing of both tasks given by the
customers. For instance, consider n = 4 and the following two
tasks:

A1 = (1, 2, 3, 4)

A2 = (3, 2, 1, 4) .

The factory can proceed as follows. In the first time unit, both
tasks can be performed in parallel. Simply station S1 performs
the first job of the first task A1, and station S3 performs the
first job of A2. After the first time unit, both first jobs of A1

and A2 are finished and both tasks require station S2 for their
second job. But this cannot be done simultaneously (in paral-
lel), since each station can perform at most one job in a time
unit. Hence, the factory has to decide which job will be performed
and which task has to wait without any progress in its process-
ing. Assume the company decides to assign S2 to the second job
of A1 and lets A2 wait. Since the jobs of A2 must be processed
in the prescribed order, there is no work on A2 in this time pe-
riod and we say that A2 got a delay of size one time unit. Af-
ter the second time unit, the first two jobs of A1 and the first
job of A2 are ready (Table 10.2). Now, A1 requires S3 and A2

requires S2 again. Now the factory can satisfy both wishes at

5 one unit for each station



340 10 How to Foil an Adversary

once, and so it decides to proceed with A1 on station S3 and
with A2 on station S2 in parallel. After the third time unit, A1

asks for S4 and A2 asks for S1. The factory can satisfy them in
parallel. Hence, after the fourth time unit, the work on A1 is fin-
ished and it remains to finish the work on A2 by using station
S4 in the fifth time unit. Hence, after 5 time units, the work
of A1 and A2 is over. The solution used is an optimal one, be-
cause there is no solution for processing A1 and A2 in four time
units.

There does not exist any solution of time less than 5 time units,
because each of A1 and A2 requires 4 time units to be performed
and this would be possible only if in each time unit both tasks
were processed in parallel. Hence, at the beginning A1 must be
processed on S1 and A2 on S3, and so the collision of the same
requirement for S2 in the second time unit cannot be avoided.
Therefore, one of A1 and A2 is forced to wait in the second time
unit and so cannot be finished faster than in 5 time units.

Table 10.2 transparently presents the processing of tasks A1 and
A2 as described above. Each column corresponds to a time unit
and shows which stations are active in this time unit. Viewing the
rows, one can observe the progress in processing A1 and A2 step
by step.

time units 1 2 3 4 5

A1 S1 S2 S3 S4

A2 S3 S2 S1 S4

Table 10.2

Exercise 10.6 Assume that in the first time unit the company decides to work on
A1 only and lets A2 wait in spite of the fact that the required station S3 for A2

is free. Is it possible to finish both tasks in altogether 5 time units? Describe your
solution for scheduling of the stations in a way similar to Table 10.2.

Exercise 10.7 Assume the factory has n = 6 solutions and has to work on two tasks
A1 = (1, 2, 3, 4, 5, 6) and A2 = (1, 3, 2, 6, 5, 4). How many time units are sufficient
and necessary to perform both tasks? Depict your solution in a way similar to Table
10.2.



10.3 A Randomized Online Strategy 341

There is a graphic representation of this problem that makes
searching for a solution transparent. For a factory with n sta-
tions, one draws an n × n-field. The jobs of task A1 are assigned
to the columns in the given order, and the jobs of task A2 are
assigned to the rows. Figure 10.3 shows the 4 × 4-field for the
tasks

A1 = (1, 2, 3, 4) and A2 = (3, 2, 1, 4) .

Fig. 10.3

The small fields (squares) in which the two same requirements
meet are called obstacles and are hatched in Fig. 10.3. For in-
stance, an obstacle is the intersection of the first row and the
third column because A2 asks for station S3 at the beginning and
A1 asks that S3 processes its third job. Analogously, an obstacle
is in the intersection of the second row and the second column
because both A1 and A2 ask that the same station S2 processes
their second jobs. Note that the number of obstacles is exactly n
because, for each station Si, there is exactly one row and exactly
one column labelled by i (asking for Si). Therefore, we see in Fig.
10.3 exactly 4 obstacles. For all free squares without obstacles (for
all squares with different requirements) we draw a line between
the upper-left corner of the square and the bottom-right corner of
the square, and call this line a diagonal edge (Fig. 10.3). The
points where the lines of the field (grid) meet are called vertices
(Fig. 10.4).



342 10 How to Foil an Adversary

Fig. 10.4

The lines connecting two neighboring vertices of the grid are
called edges (Fig. 10.4). The edges that are part of the horizon-
tal lines6 of the field are called horizontal edges. Analogously,
the edges running in the vertical direction7 are called vertical edges
(Fig. 10.3). Searching for a solution for a problem instance (A1, A2)
corresponds to searching for a path (route) from the upper-left
corner of the whole field (denoted by START in Fig. 10.3) to the
bottom-right corner of the field (denoted by DESTINATION in
Fig. 10.3). The path goes step by step from a vertex to a vertex.

Fig. 10.5

If the path takes a diagonal edge of a square in the intersection of
the row labelled by Si and the column labelled by Sj (Fig. 10.5(a)),
then both tasks A1 and A2 are processed in parallel on the re-
quired stations Si and Sj. To take a horizontal edge (Fig. 10.5(b))
corresponds to processing A1 on station Sj. Here, task A2 is not

6 that separate two neighboring rows
7 as part of the vertical lines separating two neighboring columns



10.3 A Randomized Online Strategy 343

Fig. 10.6

processed and gets delayed in this way. To take a vertical edge
(Fig. 10.5(c)) corresponds to processing A2 on Si and waiting for
A1. Figure 10.6 depicts the solution described in Table 10.2 for the
problem instance (A1, A2) from Fig. 10.3. We see that one uses di-
agonal edges wherever possible. Only when one has to bypass the
obstacle in the square (2, 2) does one use the horizontal edge, and
at the end when A1 is ready the vertical edge is used to reach the
destination.

The cost of a solution, the number of time units used for processing
A1 and A2, is exactly the length of the corresponding path from
START to DESTINATION. The length of a path is measured as
the number of edges of the path. In Fig. 10.6 the path consists of
5 edges and the i-th edge of the path corresponds to assignment
of stations in the i-th time unit in Table 10.2. If one knows the
complete tasks A1 and A2 from the beginning, one can use well-
known efficient algorithms for finding the shortest paths between
two vertices of a graph in order to calculate the optimal solution
for the scheduling of the stations.

Exercise 10.8 Consider the tasks A1 = (6, 5, 4, 3, 2, 1) and A2 = (4, 5, 6, 2, 3, 1)
for a factory with 6 stations. Depict the corresponding graphical representation of
this problem instance with 6 obstacles. Find a shortest8 path from the start to the
destination and use this path to derive a solution representation such as that given
in Table 10.2.

We see that this optimization task can be solved easily. But to solve
this problem in the online setting is harder. At the beginning, the

8 there may exist several shortest paths



344 10 How to Foil an Adversary

factory knows only the first jobs of A1 and of A2. For instance
A1 = (3, . . .) and A2 = (5, . . .) and the rest is still unknown.
If the factory performs the first jobs of A1 and A2 on S3 and
S5 in parallel, the next requirements (jobs) of A1 and of A2 are
formulated (become known). The rule is that the factory knows
for each of the tasks A1 and A2 only the next, still unprocessed
job, and all further requirements are still unknown.

Now the game between the algorithm designer and his adversary
can begin. The algorithm designer suggests an online strategy and
the adversary creates a problem instance that is hard for this strat-
egy. The strategy of the adversary is very simple and also general
in the sense that it works for any designed online algorithm. The
idea is to force any designed online algorithm to use a non-diagonal
edge at least in every second step (time unit). This means that in
at least every second step, there is a delay in processing one of the
two tasks A1 and A2. How can the adversary cause that?

Fig. 10.7

Assume, as depicted in Fig. 10.7, that the last step of the online
algorithm used a diagonal edge. If the path in Fig. 10.7 is now in
the vertex X, at the intersection of the horizontal line separating



10.3 A Randomized Online Strategy 345

the i-th row from the (i+1)-th row and the vertical line separating
the j-th column from the (j + 1)-th one, then the first j jobs of
A1 and the first i jobs of A2 have already been executed. Now, the
adversary can choose the (j + 1)-th requirement (job) of A1 and
the (i + 1)-th requirement of A2. The adversary chooses the same
requirement Sr for both. He has only to take care to choose Sr in
such a way that neither A1 nor A2 had this requirement before. In
this way, one gets an obstacle (Fig. 10.7) that must be bypassed
from the vertex X either in the way depicted in Fig. 10.5(b) or in
the way outlined in Fig. 10.5(c).

Fig. 10.8

If the online algorithm reaches the border of the field using a diag-
onal step (Fig. 10.8), then the work of one of the tasks is finished
and no diagonal step is possible anymore. Hence, the adversary
can order the other non-executed jobs of the remaining task arbi-
trarily.

What can be concluded? For each online algorithm A, the adver-
sary can construct an input xA such that A working on xA uses at
least one non-diagonal edge in every second step. This means that
A delays the processing of one of the tasks at least in every second



346 10 How to Foil an Adversary

step. If one has m stations, then the overall number of delays is at
least m/2. These m/2 delays are somehow distributed among the
two tasks A1 and A2. Hence, at least one of the tasks had at least
m/4 delays. We conclude that the overall time for processing xA

using A is at least
m + m/4 ,

since the shortest possible path from START to DESTINATION
consists of m diagonal edges, and one has to add to m the maxi-
mum of the number of delays on A1 or on A2.

Let us observe the strategy of the adversary for a concrete online
algorithm.

Example 10.2 Consider the following online strategy A for the
movement in the field from START to DESTINATION.

1. If a path can be prolonged using a diagonal edge, then one
takes it.

2. If the path meets an obstacle (i.e., there is no possibility to
continue using a diagonal edge), take the vertical or horizontal
edge that reaches a vertex that is closer to the main diagonal9

of the whole field. If both possibilities are equally good, take
the horizontal edge.

3. If the path reaches the right border of the field, take the vertical
edges to reach DESTINATION.

4. If the path reaches the lower border of the field, take the hori-
zontal edges to reach DESTINATION.

For the online algorithm A, the adversary constructs a hard prob-
lem instance xA = (A1, A2) as follows. The adversary starts with
A1 = 1, . . . and A2 = 1, . . .. Hence, one has an obstacle at the be-
ginning (Fig. 10.9). Following rule 2, A takes the horizontal edge,
because all possibilities of bypassing the obstacles have the same
distance to the main diagonal of the field.

9 the line connecting START and DESTINATION



10.3 A Randomized Online Strategy 347

Fig. 10.9

After that, the adversary is asked to pose the second requirement
of A1. Observe that there is exactly one obstacle in each row and in
each column. Hence, the adversary cannot lay down an obstacle in
this situation, i.e., independently of his choice, the next diagonal
edge can be used. Assume the adversary takes S2 as the second
job of A1. Then, following rule 1, the online algorithm uses the
diagonal edge as depicted in Fig. 10.10.

Fig. 10.10

Now, jobs specified up to now are executed, and so the adver-
sary is asked to formulate the next requirements for both A1

and A2. This means that the adversary has again the possi-
bility to lay down an obstacle. The adversary continues as fol-
lows:

A1 = (1, 2,3, . . .) and A2 = (1,3, . . .) .

Hence, A stands in front of an obstacle (Fig. 10.11) and, following
its rule 2, the algorithm A has to take the vertical edge to bypass
the obstacle (Fig. 10.11).

Fig. 10.11



348 10 How to Foil an Adversary

Again, one reaches a situation (Fig. 10.11) where there is no pos-
sibility to lay down an obstacle for the path built until now. The
adversary specifies A2 = (1, 3,2, . . .). Following rule 1, the online
algorithm A takes the diagonal edge (Fig. 10.12), and the path
reaches a new row and a new column simultaneously in this way.
Hence, the adversary can lay down an obstacle and he does so by
using the following specification

A1 = (1, 2, 3,4, . . .) and A2 = (1, 3, 2,4, . . .) .

Following rule 2, the algorithm A bypasses the obstacle by taking
the horizontal edge (Fig. 10.12). If the factory has 4 stations, the
construction of the whole input xa = (A1, A2) is finished. To reach
the destination, one still has to take the vertical edge. In this way,
the constructed path contains 6 edges, and only two of them are
diagonal edges. One starts with a horizontal edge, and at most
every second edge is a diagonal one.

Fig. 10.12

�
Exercise 10.9 Assume the factory has 7 stations. Complete the construction of
xA from Example 10.2. For this case (starting from the situation in Fig. 10.12) by
taking on the role of the adversary.

Exercise 10.10 Draw the optimal solution for the problem instance A1 = (1, 2, 3, 4)
and A2 = (1, 3, 2, 4) in Fig. 10.12.



10.3 A Randomized Online Strategy 349

Exercise 10.11 One changes the online strategy A from Example 10.2 by forcing
a bypassing of all obstacles using the corresponding horizontal edge. Play the ad-
versary for the new online strategy A′ and construct a hard problem instance for
A′.

Exercise 10.12 Consider an online strategy B that, independently of the input,
takes 3 vertical edges at the beginning (i.e., let A1 wait for three time units), and
then continues following the strategy of A. Play the adversary for B and construct
a hard problem instance for B.

We showed that, for each online algorithm A, one can construct a
problem instance xA such that A needs at least

m + m/4

time units to process xA.

Is this good news or bad news? To answer this question, one has
to investigate how good solutions can be calculated, if one knows
the future (i.e., if one knows the whole input instance from the
beginning). We will recognize that each problem instance (A1, A2)
for m stations can be solved in

m +
√

m

time units. Therefore, for each online algorithm A,

compA(I) ≥ m + 0.25 · m
m +

√
m

holds. For large numbers m it means that the solutions performed
in the online manner can be almost 25% more expensive than
optimal solutions.

To show that each problem instance can be performed in m+
√

m
time units, we present an argument that is probably unknown for
most readers. We consider several algorithms for each instance and
recognize that the solutions calculated using these algorithms need
m +

√
m time units on average. If the solutions use m +

√
m time

units on average, then there must be at least one solution among
them10 that needs at most m +

√
m time units.

10If all solutions require more than m+
√

m for processing the tasks, then the average
must be greater than m +

√
m.



350 10 How to Foil an Adversary

Fig. 10.13

For simplicity, we set m = k2, and so
√

m = k is an integer.
We take 2k + 1 so-called diagonal strategies into account. By
D0 one denotes the main diagonal of the field (Fig. 10.13) that
leads from START to DESTINATION. Di denotes the diagonal
of the whole field that lies i squares (horizontal edges) above D0.
Analogously, D−j denotes the diagonal that lies j squares (vertical
edges) below D0. In Fig. 10.12, one sees the diagonals D0, D2, and
D−3.

For each diagonal Dl, one considers a strategy SDl that strives
to visit all vertices lying on the diagonal Dl. For each i ≥ 0,
the strategy SDi first takes i horizontal edges in order to reach
the upper-left vertex of the diagonal Di. After that, SDi tries to
use the diagonal edges of Di. If this is impossible because of an
obstacle, then SDi takes first the corresponding horizontal edge
and then the following vertical edge in order to bypass the obstacle
and to reach the next vertex of the diagonal Di (Fig. 10.14). If SDi

reaches the bottom vertex of Di, it uses the i vertical edges on the
border to reach the destination.

The strategy SD−i starts with taking the i vertical edges on the
border in order to reach the upper vertex of D−i. After that SD−i

runs analogously to SDi by trying to use the diagonal edges of Di.
Finally, the i horizontal edges on the border of the field are used
to reach the destination.



10.3 A Randomized Online Strategy 351

Fig. 10.14

Figure 10.14 shows the solution provided by SD0 and SD−3 for
the problem instance

A1 = (1, 2, 3, 4, 5, 6, 7, 8, 9) and A2 = (3, 2, 1, 7, 5, 9, 4, 8, 6) .

Exercise 10.13 Estimate the solutions derived by the strategies SD1, SD2, and
SD−2 for the problem instance in Fig. 10.14.

Exercise 10.14 Consider the problem instance A1 = (9, 8, 7, 6, 5, 4, 3, 2, 1) and
A2 = (9, 7, 8, 4, 5, 6, 2, 3, 1). Draw the solutions calculated by the strategies SD3, SD0,
SD−1, and SD−3.

Assume one uses, for each problem instance with m stations, the
2k + 1 = 2 ·

√
m + 1 diagonal strategies

SD−k, SD−k+1, . . . , SD0, SD1, . . . , SDk

and gets 2k + 1 different solutions in this way. To calculate the
average cost of these solutions, one first sums all their costs and
then one divides the resulting sum by 2k + 1. The cost of the
solution provided by SDi or by SD−i is exactly

m + i + the number of obstacles on Di(D−i) ,

for the following reasons:



352 10 How to Foil an Adversary

(i) SDi (SD−i) uses exactly i vertical and i horizontal edges on
the border in order to reach the diagonal Di (D−i) from the
start and to reach the destination from the end of the diagonal.
In this way, each of the tasks A1 and A2 is delayed exactly by
i time units.

(ii) To bypass an obstacle, SDi (SD−i) uses exactly one horizontal
and one vertical edge. This delays processing of A1 and A2 by
exactly one time unit.

Let SUM denote the sum of all delays of the 2k +1 solutions. The
reader who does not like mathematical calculations can abstain
from reading the next few lines.

SUM =
k∑

i=−k

(|i| + the number of obstacles on Di)

=
k∑

i=−k

|i| +
k∑

i=−k

the number of obstacles on Di

≤ 2 ·
k∑

i=1

i + m

{This was the most important step of the calculation. Since
the overall number of obstacles is m, the overall number of
obstacles lying on the 2k + 1 diagonals considered is at most
m. Hence, the second sum is upperbounded by m.}

= 2 · k·(k+1)
2

+ m

{This comes from the observation of the young Gauss that the
sum of the first k positive integers is exactly k · (k + 1)/2.}

= k · (k + 1) + m = k2 + k + m = (
√

m)2 +
√

m + m

= 2m +
√

m.

Dividing the sum of all delays by the number of solutions, one
obtains the average delay

2m +
√

m

2 ·
√

m + 1
≤

√
m +

1

2
= k +

1

2
.



10.3 A Randomized Online Strategy 353

Hence, there is at least one solution that is delayed by at most k
time units11. Therefore, the tasks of the problem instance can be
executed in at most

m +
√

m

time units.

Exercise 10.15 (Challenge) We used exactly 2 ·
√

m + 1 diagonals for our calcu-
lations. What happens if one takes 4 ·

√
m + 1 or

√
m + 1 diagonal strategies into

account?

Exercise 10.16 Estimate the average delay of the 7 diagonal strategies

SD−3, SD−2, . . . , SD0, . . . , SD3

for the problem instance in Fig. 10.14.

We proved that each problem instance of two tasks on m stations
can be solved with at most

√
m delays. We learnt that online al-

gorithms cannot avoid causing an overall delay of m/4 = 0.25m
time units. For large numbers m, m/4 can be essentially larger
than

√
m. To achieve our result, we applied a simple combinato-

rial argument. In spite of its simplicity, this argument is a very
powerful and successful tool of mathematics. This combinatorial
method can be formulated as follows:

If one has m objects, each object has an assigned value, and
d is the average of these values, there then exists an object
with a value smaller than or equal to d, and there exists an
object with a value of at least d.

To foil the adversary (who was the winner in this game until now),
we apply randomization and design a successful randomized on-
line algorithm for this problem. First we observe that all SDi’s are
online algorithms. Each diagonal strategy follows its diagonal and
bypasses the obstacles in the same way, independent of their distri-
bution. For decisions based on diagonal strategies, only knowledge
about the upcoming jobs is necessary. Why is this observation
helpful? We take a randomized algorithm D that

11If all solutions are delayed by at least k + 1 time units, then k + 1/2 cannot be
the average delay.



354 10 How to Foil an Adversary

for any problem instance with m stations, chooses one of
the 2

√
m + 1 diagonal strategies SDi at random and then

applies only this strategy for calculating the solution.

Since the average delay of all s
√

m+1 diagonal strategies is
√

m+
1/2, one can expect a good solution from D. Certainly, it can
happen that a bad strategy for a given input instance is chosen
at random. For instance, if the online algorithm D chooses the
diagonal strategy SD0 for the problem instance

A1 = (1, 2, 3, . . . , m) = A2 = (1, 2, 3, . . . , m)

at random, all m obstacles lie on the main diagonal D0. The re-
sulting overall delay is the worst possible, namely m. But this bad
choice happens only with probability

1

2
√

m + 1
.

Since all other diagonals do not contain any obstacle, the choice
of any diagonal different from D0 may be viewed as convenient.
For each i, the overall delay of SDi is exactly i in this case.

Exercise 10.17 Let m = 8. Find a problem instance such that all squares of the
diagonal D3 contain an obstacle. Estimate the delays of each one of the diagonal
strategies for this problem instance.

How to convince somebody using a mathematical argument that
the randomized online algorithm D is practical? Is it not possible
that the resulting solutions are frequently (with high probability)
bad? To argue for the high quality of the designed randomized
algorithm D, we apply an elegant combinatorial idea.

Consider n objects, each has assigned a positive value. In our case,
the objects are particular solutions of the diagonal strategies and
the values are their delays. The claim used is:

At least half of the objects have a value at most twice the
average.



10.3 A Randomized Online Strategy 355

Fig. 10.15

How to argue for that? Let d be the average. If more than half
of the objects have a value greater than 2d, then d cannot be the
average even if all other values are 0 (Fig. 10.15).

One can prove it also using a calculation. Let g be the number
of objects with values larger than 2d, and let h be the number of
objects with values at most 2d. Certainly, g + h is the number of
objects. Hence, the sum of all values of the g +h objects is greater
than

g · 2d + h · 0 = 2dg .

Consequently, the average d is at least

2dg

g + h
.

From d ≥ 2dg/(g + h), one obtains

d · (g + h) ≥ 2dg | · 1

d
g + h ≥ 2g | − g

h ≥ g .

We conclude that the number g of objects with values larger than
2d (twice the average) cannot be greater than the number h of ob-
jects with values at most twice the average. The fact h ≥ g ensures



356 10 How to Foil an Adversary

that the probability of randomly choosing a strategy providing a
solution with at most

2 · d = 2 · (
√

m + 1/2)

delays is at least 1/2. If one is not satisfied with this guarantee,
one can apply the following theorem:

The number of objects with values larger than c times the
average is at most the c-th portion of the objects.

If c = 2, one obtains the claim we presented above. The number c
can be chosen to be any real number greater than 1.

Exercise 10.18 (Challenge) Argue for the validity of the generalized combinato-
rial claim.

Applying this combinatorial claim for c = 4, one ensures that the
probability of finding a solution causing at most 4d delays is at
least 3/4.

Exercise 10.19 What guarantee on the overall delay of a solution computed by
D can one obtain with probability at least 9/10? What is the upper bound on the
number of delays for the 7/8-th solutions with the smallest number of delays?

10.4 Summary or How to Foil an Adversary

Many online problems have to be solved every day. This is the
case especially for service centers that cannot foresee future re-
quests, not even their amount and structure. In spite of that
they have to take decisions with respect to known requests with-
out knowing the next request that may come sooner or later. In
many situations, it is difficult to take a decision, because cur-
rent decisions can unfavorably influence how we process later re-
quests.

The task of an algorithm designer is to recognize for which kinds
of online problems one can take decisions that are as good using



10.4 Summary 357

online strategies as one can take by knowing the future (all fu-
ture requests). To analyze different scenarios, one considers the
game between an algorithm designer and his or her adversary.
The designer tries to design online algorithms and the adversary
searches for problem instances for which the algorithms fail to
offer reasonable solutions. The rule is that the adversary knows
the proposed algorithm A and tries to design the future in such
a way that A fails. Hence, the adversary is very powerful in this
game. Consequently, it is not easy to find successful online strate-
gies.

In this framework, randomization can be very helpful. One can
explain it from the game point of view as follows. If one has a
randomized online algorithm, then the main advantage of the ad-
versary is gone. Though the adversary knows the designed online
strategy, he cannot calculate the actions of the algorithm in ad-
vance, because the decisions of the randomized algorithm are taken
at random during the operation of the algorithm. In our schedul-
ing example the adversary is forced to play against 2 ·

√
m + 1

strategies at once, because he does not have any chance to guess
which one will be applied. As we have learned, it is even impossi-
ble to construct a problem instance that would be hard for most
of the strategies. This reminds us of a football match, in which
one team A follows a fixed strategy, no matter what happens
during the match. If the coach of another team B sees through
this strategy, he or she has a good chance to lead his or her
team to victory. But if the first team A is very flexible, impro-
vises well, and frequently performs unexpected actions, then the
coach of team B searching for a winning strategy has a very hard
job.

From the point of view of randomization, one can be successful by
choosing one of a collection of deterministic strategies at random,
if each of the strategies in this collection behaves well for most
problem instances and fails on only a few of them. If each strategy
fails for another small group of problem instances, then a random
choice of a strategy for a given problem instance can ensure the
calculation of a high-quality solution with high probability.



358 10 How to Foil an Adversary

Solutions to Some Exercises

Exercise 10.2 For each input instance I,

cost(SolA(I)) − OptU (I)

is the absolute difference between the optimal cost and the cost of the solution
computed using the algorithm A. Then the value

cost(SolA(I)) − OptU (I)

OptU (I)
· 100

gives the deviation of the cost of the computed solution from the optimal cost in
percent.

Exercise 10.4 One has pages 1, 3, 5, and 7 in cache and, if forced, one removes
the page with the smallest number. For this strategy, the adversary constructs the
following problem instance:

2, 1, 2, 1, 2, 1, 2, 1, 2, 1 .

The online strategy of removing the page with the smallest number results in the
following solution:

1 ↔ 2 , 2 ↔ 1 , 1 ↔ 2 , 2 ↔ 1 , 1 ↔ 2

2 ↔ 1 , 1 ↔ 2 , 2 ↔ 1 , 1 ↔ 2 , 2 ↔ 1

Clearly,

5 ↔ 1 , • , • , • , • , • , • , • , • , •
is an optimal solution.

Exercise 10.6 For the problem instance A1 = (1, 2, 3, 4) and A2 = (3, 2, 1, 4), the
following scheduling

time units 1 2 3 4 5

A1 S1 S2 S3 S4

A2 S3 S2 S1 S4

is an optimal solution.

Exercise 10.16 All 9 obstacles are placed on the 7 diagonals considered (Fig.
10.14). D0 contains three obstacles and so the overall delay of D0 is d0 = 3. The
diagonals D1 and D−1 do not contain any obstacle and their overall delay is 1 for
each (d1 = 1, d−1 = 1). This delay is caused by reaching or leaving the diagonal.
The diagonals D2 and D−2 contain one obstacle each. Hence, their overall delays
are d2 = d−2 = 3. Two obstacles are placed on D3 as well as on D−3, and so
d3 = d−3 = 3 + 2 = 5. The average delay on these 7 online strategies is

d0 + d1 + d−1 + d2 + d−2 + d3 + d−3

7
=

3 + 1 + 1 + 3 + 3 + 5 + 5

7
= 3 .

Exercise 10.17 The problem instance A1 = (1, 2, 3, 4, 5, 6, 7, 8, 9) and A2 =
(4, 5, 6, 7, 8, 9, 1, 2, 3) has the property that all 6 squares of diagonal D3 contain
an obstacle.



References

[BB07] D. Bongartz and H.-J. Böckenhauer. Algorithmic Aspects of Bioinformat-
ics. Springer, 2007.

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans.
Information Theory, IT-22(6):644–654, 1976.

[Die04] M. Dietzfelbinger. Primality Testing in Polynomial Time, From Random-
ized Algorithms to “PRIMES is in P”, volume 3000 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 2004.

[DK07] H. Delfs and H. Knebl. Introduction to Cryptography. Information Secu-
rity and Cryptography, Principles and applications, 2nd edition. Springer-
Verlag, Berlin, 2007.

[Drl92] K. Drlica. Understanding DNA and Gene Cloning. A Guide for the Curi-
ous. John Wiley and Sons, New York, 1992.

[Fey61] R. P. Feynman. There’s plenty of room at the bottom. In: Miniaturization.
D.H. Gilbert (ed), pages 282–296, 1961.

[Hro97] J. Hromkovič. Communication Complexity and Parallel Computing. Texts
in Theoretical Computer Science. An EATCS Series. Springer-Verlag,
Berlin, 1997.

[Hro04a] J. Hromkovič. Algorithmics for Hard Problems. 2nd edition, Springer Ver-
lag, 2004.

[Hro04b] J. Hromkovič. Theoretical Computer Science. Springer-Verlag, Berlin,
2004.

[Hro05] J. Hromkovič. Design and Analysis of Randomized Algorithms. Introduc-
tion to Design Paradigms. Texts in Theoretical Computer Science. An
EATCS Series. Springer-Verlag, Berlin, 2005.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge Uni-
versity Press, Cambridge, 1997.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, Cambridge, 1995.

[PRS05] G. Pǎun, G. Rozenberg, and A. Salomaa. DNA Computing. New Comput-
ing Paradigms. Springer Verlag, 2005.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Comm. ACM, 21(2):120–126,
1978.

[Sal96] A. Salomaa. Public-Key Cryptography. Texts in Theoretical Computer Sci-
ence. An EATCS Series. Springer-Verlag, Berlin, second edition, 1996.

J. Hromkovič, Algorithmic Adventures, DOI 10.1007/978-3-540-85986-4,
c© Springer-Verlag Berlin Heidelberg 2009

359

http://dx.doi.org/10.1007/978-3-540-85986-4


Index

abundance of witnesses, 228
acceptance, 128
addresses, 48
Adleman’s experiment, 288
Adleman, Leonard, 274
adversary

active, 260
algorithm, 23, 38, 40, 46, 47

cooking, 41
notion of an, 47
randomized, 210

algorithmic solvability, 133
algorithmic unsolvability, 133
algorithmically unsolvable, 127
algorithms

deterministic, 202
randomized, 202

alphabet, 119
amplitudes, 312
argumentation, 10

indirect, 14
axiom, 6

of computer science, 24
axioms, 21

biocomputers, 278

Caesar, 242
causal, 19
causality, 203, 206, 300
central processing unit (CPU), 48
certainty, 228
classical physics, 300

classical state, 306
communication, 240
communication complexity, 215
communication protocol, 212

randomized, 212, 214
compiler, 122
complexity

notion of, 163
space, 164
time, 164

computational complexity, 162
computer, 50

miniaturization, 278
computer science, 3
consequence, 6, 7, 10
Cook, Stephen A., 179
creating notions, 5
cryptanalysis, 240, 241
cryptography, 239–241
cryptology, 240
cryptosystem

CAESAR, 242
RABIN, 265

cryptosystems, 240
public-key, 262
secure, 249
symmetric, 253, 260

cryptotext, 242
cycle, 43

decidable, 127
decision problem, 126
decryption, 242

J. Hromkovič, Algorithmic Adventures, DOI 10.1007/978-3-540-85986-4,
c© Springer-Verlag Berlin Heidelberg 2009

361

http://dx.doi.org/10.1007/978-3-540-85986-4


362 Index

Delfs, Hans, 274
Democritos, 204
demons, 20
DES, 253
determinism, 206
deterministic view

of the world, 203
DIAG, 131
diagonalization method, 111
Dietzfelbinger, Martin, 236
Diffie, Whitfield, 258, 274
Diffie–Hellman protocol, 258
digital signature, 268
direct argument, 12
direct proofs, 10, 12
DNA computer, 280
DNA computing, 288, 296
DNA molecules, 279
DNA sequences, 279
double-helix structure, 283
double-slit experiment, 302

efficiency, 164
Einstein, Albert, 205, 206
encryption, 242
engineering, 3
Epicurus, 205
error probability, 218
evolution, 207
evolving notions, 4

factorization, 321
finite description, 124
finite representation, 124
flowchart, 43

Galilei, Galileo, 206
Gedankenexperiment, 20
gel electrophoresis, 285
Gödel, Kurt, 22
Goethe, Johann Wolfgang von, 208

HALT, 148
halting, 61, 148
halts

algorithm, 61
Hamiltonian Path Problem, 288
hard problem, 190
hardness, 180

Hellman, Martin, 258
Hilbert, David, 20
Hotel Hilbert, 88, 97

ICT, 2
implication, 7, 10
indirect addressing, 68
indirect argumentation

schema of, 16
indirect proof

schema of an, 16
infinite, 88
infinite number, 79
infinity, 73

Cantor’s concept of, 94
potential, 74

instructions, 41, 44, 50
interference, 307
intractable, 163

Kerckhoffs, Auguste, 246, 272
Kerckhoffs’ principle, 246
Knebl, Helmut, 274

Levin, Leonid A., 179

Marcus Aurelius, 206
matching, 82
mathematical theory, 22
mathematics, 21
matrix, 315
memory, 48
method, 21, 38

diagonalization, 133
of reduction, 180
reduction, 135

model
computer, 48

Motwani, Rajeev, 236

non-witnesses, 226
nonexistence, 23
numbering, 109

one-way functions, 261, 264

plaintext, 241
polymerase chain reaction, 285



Index 363

practical solvability
limit of, 176

practically solvable, 174
prime number theorem, 220
principle of locality, 301
problem, 45

decision, 126
halting, 147
universal, 148

problem instance, 45
problems

NP-hard, 180
tractable, 163

program, 47
notion of a, 47

programming, 47
programs

list all, 123
number of, 122
numbering of, 118

protocol, 212

quantum bits, 310
quantum computer, 311, 320
quantum computing, 320
quantum mechanics, 300, 301
quantum registers, 310

Rabin, Michael O., 265
Raghavan, Prabhakar, 236
random, 203, 205
random events, 300
randomization, 208
randomized algorithm, 202
randomness, 201, 203, 205, 206, 208,

209, 229
true, 205, 209

rational numbers, 100
real numbers, 109
recognition, 128
reducibility

polynomial, 182
reduction, 135

polynomial, 182

reductions
efficient, 180

register, 48
reliability, 215

absolute, 229
Rényi, Alfréd, 207
Richelieu, 245
Rivest, Ron L., 274
running time, 169

Salomaa, Arto, 274
school education, 3
science, 2, 23
scientific disciplines, 2, 4
secure, 248
semantic, 156
set, 78
Shamir, Adi, 274
solvable

practically, 163
superposition, 312
syntactic, 156

tests, 42, 44
text, 119
texts

number of, 122
theory, 22
time complexity, 169
tractability, 177
tractable, 163
truth, 6
truth table, 8
Turing, Alan, 23

undecidable, 127
UNIV, 148
untruthfulness, 6

vector, 315
Verne, Jules, 244

Watson–Crick complementarity, 283
witness, 233
witnesses, 226


	front-matter_2
	Preface
	Contents

	fulltext
	A Short Story About the Development of Computer Science or Why Computer Science Is Not a Computer Driving Licence
	What Do We Discover Here?
	Does the Building of Science Sit on Unsteady Fundamentals?
	Origin of Computer Science as the End of Euphoria
	The History of Computer Science and the Concept of This Book
	Summary


	fulltext_2
	Algorithmics, or What Have Programming and Baking in Common?
	What Do We Find out Here?
	Algorithmic Cooking
	What About Computer Algorithms?
	How Can the Execution of a Program Unintentionally Become a Never-Ending Story?
	Summary or What We Have Learnt Here


	fulltext_3
	Infinity Is Not Equal to Infinity, or Why Infinity Is Infinitely Important in Computer Science
	Why Do We Need Infinity?
	Cantor's Concept for Comparing the Sizes of Infinite Sets
	There Are Different Infinite Sizes, or Why There Are More Real Numbers than Natural Ones
	The Most Important Ideas Once Again


	fulltext_4
	Limits of Computability or Why Do There Exist Tasks That Cannot Be Solved Automatically by Computers
	Aim
	How Many Programs Exist?
	YES or NO, That Is the Question, or Another Application of Diagonalization
	Reduction Method or How a Successful Method for Solving Problems Can Be Used to Get Negative Results
	Summary of the Most Important Discoveries


	fulltext_5
	Complexity Theory or What to Do When the Energy of the Universe Doesn't Suffice for Performing a Computation?
	Introduction to Complexity Theory
	How to Measure Computational Complexity?
	Why Is the Complexity Measurement Useful?
	Limits of Tractability
	How Do We Recognize a Hard Problem?
	Help, I Have a Hard Problem …
	Summary


	fulltext_6
	Randomness in Nature and as a Source of Efficiency in Algorithmics
	Aims
	What Is Randomness and Does There Exist True Randomness?
	The Abundance of Witnesses Is Support in Shortage or Why Randomness Can Be Useful
	What to Do When a Customer Requires a Very High Reliability?
	What Are Our Main Discoveries Here?


	fulltext_7
	Cryptography, or How to Transform Drawbacks into Advantages
	A Magical Science of the Present Time
	The Concept of Cryptosystems or a Few Impressions from the Prehistory of Cryptography
	When Is a Cryptosystem Secure?
	Symmetric Cryptosystems
	How to Agree on a Secret in Public Gossip?
	Public-Key Cryptosystems
	Milestones of Our Expedition in the Wonderland of Cryptography


	fulltext_8
	Computing with DNA Molecules, or Biological Computer Technology on the Horizon
	The Story So Far
	How to Transform a Chemical Lab into a DNA Computer
	Adleman's Experiment, or a Biosearch for a Path
	The Future of DNA Computing


	fulltext_9
	Quantum Computers, or Computing in the Wonderland of Particles
	Prehistory
	A Short Walk in the Wonderland of Quantum Mechanics
	How to Compute in the World of Particles?
	The Future of Quantum Computing


	fulltext_10
	How to Make Good Decisions for an Unknown Future or How to Foil an Adversary
	What Do We Want to Discover Here?
	Quality Measurement of Online Algorithms and a Game Against a Mean Adversary
	A Randomized Online Strategy
	Summary or How to Foil an Adversary


	back-matter
	References
	Index


