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A simple form of the Boris solver in particle-in-cell (PIC) simulation is proposed. It employs an

exact solution of the Lorentz-force part, and it is equivalent to the Boris solver with a gyrophase

correction. As a favorable property for stable schemes, this form preserves a volume in the phase

space. Numerical tests of the Boris solvers are conducted by test-particle simulations and by PIC

simulations. The proposed form provides better accuracy than the popular form, while it only

requires few additional computation time. Published by AIP Publishing.
https://doi.org/10.1063/1.5051077

I. INTRODUCTION

The particle-in-cell (PIC) method1–4 is one of the most

important techniques in modern plasma simulations. Solving

Lagrangian motions of many charged particles and the tem-

poral evolution of Eulerian electromagnetic fields, it can

simulate various kinetic phenomena, whose length scale is

larger than the grid size.

The particle integrator, an algorithm to advance charged

particles, is a fundamental element of PIC simulation. Since

the particle integrator is used for all the particles, its accu-

racy, stability, and computational cost have a big impact on

those of the entire simulation run. One of the most common

integrators is the Boris solver,5 also known as the

Buneman–Boris solver. It solves the particle motion in a

leap-frog manner, and the acceleration part is split into sev-

eral parts, as will be shown later. Owing to its simplicity and

reliability, the Boris solver has been used for nearly 50 years.

In addition to the Boris solver, various solvers have

been developed. For earlier ones, we refer the readers to clas-

sic textbooks1,2 and references therein. Recently, particle

solvers have been developed much more actively than

before.6–13 Vay6 has developed a solver to carefully deal

with the force balance. By splitting the integrator into the

explicit first half and the implicit second half, his solver bet-

ter deals with the E�B drift at a relativistic speed, and

therefore, it has drawn growing attention in laser physics and

in astrophysics. P�etri7 has proposed a relativistic implicit

solver, which iteratively uses a matrix-form of the Vay

solver for non-staggered timesteps. Qiang8 has presented a

fast Runge–Kutta relativistic integrator, ready for the force

balance problem. Umeda9 has proposed a multi-step exten-

sion of the Boris integrator. His solver effectively deals with

the gyration at a half timestep.

From the theoretical viewpoint, Qin et al.10 have

recently pointed out that the nonrelativistic Boris solver is

stable because it preserves a volume in the phase space every

timestep. This property can be examined by a simple

Jacobian matrix. Presently, the volume preservation is

regarded as a key property for stable solvers. Zhang et al.11

split the scheme into several substeps to discuss the volume

preservation of their solver, which appears to be another

expression of the Boris solver. Higuera and Cary12 have pro-

posed a relativistic volume-preserving solver, which

employs Vay’s characteristic velocity in the Lorentz-force

part of the Boris solver. Ripperda et al.13 extensively com-

pared a selected set of particle solvers.

In this contribution, we propose a simple form of the

Boris solver, based on an exact solution for the Lorentz-

force part. We further examine the volume preservation of

the proposed form of the Boris solver. Then, we will present

numerical tests of the Boris solvers, followed by discussion

and summary.

II. BORIS SOLVER

First, we outline the Boris algorithm.5 It handles the par-

ticle motion in the following discrete forms:

xnþ1
2 � xn�1

2

Dt
¼ un

cn
; (1)

m
unþ1 � un

Dt
¼ q Enþ1

2 þ �vnþ1
2 � Bnþ1

2

� �
; (2)

where the superscripts (n, nþ 1, …) indicate timesteps,

u ¼ cv is the spatial part of a 4-vector, c ¼ ½1� ðv=cÞ2��1=2

¼ ½1þ ðu=cÞ2�1=2
is the Lorentz factor, and �v is an effective

velocity. Other symbols have their standard meanings. The

action part is split into the Coulomb force for the first half

timestep, the Lorentz force for the entire timestep, and the

Coulomb force for the second half

u� ¼ un þ eDt; (3)

uþ � u�

Dt
¼ q

m
�vnþ1

2 � Bnþ1
2

� �
; (4)

unþ1 ¼ uþ þ eDt; (5)

where e ¼ ðq=2mÞEnþ1
2; u� and uþ are two intermediate

states. Hereafter, we denote the field quantities Enþ1
2 and

Bnþ1
2 at n ¼ nþ 1

2
as E and B for brevity. Since Eq. (4) is an

energy-conserving rotation in the momentum space, thea)Email: zenitani@rish.kyoto-u.ac.jp
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Lorentz factor is set to be constant during the operation, c�

¼ cþ. The phase angle in the rotation part is

h ¼ qDt

mc�
B: (6)

The rotation is solved in the following ways:

t ¼ tan
h
2

b; (7a)

t ¼ h
2

b ¼ qDt

2mc�
B; (7b)

u0 ¼ u� þ u� � t; (8)

uþ ¼ u� þ 2

1þ t2
ðu0 � tÞ; (9)

where b ¼ B=jBj is a unit vector. There are two choices in

Eq. (7). One can advance un to unþ1 by using either of the

two equation sets. Boris5 presented a procedure of Eqs. (3),

(6), (7a), (8), (9), and (5) in his original article. The subse-

quent textbooks1,2 described a simplified procedure [Eqs.

(3), (7b), (8), (9), and (5)], by replacing Eq. (7a) with Eq.

(7b). We call the two procedures the Boris-A solver and the

Boris-B solver, respectively.

Although we do not describe in detail, the Boris-A

solver accurately handles the rotation. As a result of the

replacement [Eq. (7a) ! Eq. (7b)], the Boris-B solver

approximates the rotation, as illustrated in gray in Fig. 1.

There is always a delay in the gyrophase angle2

dh ¼ h� 2arctan
h
2
¼ h

1

12
h2 � 1

80
h4 þ � � �

� �
: (10)

Thus, the Boris-B solver is an approximate form of the origi-

nal Boris solver (the Boris-A solver). Despite this, owing to

its simplicity and computational cost, the Boris-B solver is

widely used. Scientists often indicate the Boris-B solver sim-

ply by “the Boris solver.” Equations (7a) and (7b) differ by a

factor of tan h
2

� �.
h
2

� �
. Therefore, the Boris-A solver is

sometimes referred to as the Boris solver with a gyrophase

correction factor.1,2

III. EXACT GYRATION SOLVER

To avoid the phase error in the Boris-B solver, one can

use the Boris-A solver. Here, we propose another expression.

We propose the following rotation procedure based on an

analytic solution:

u�k ¼ ðu� � bÞ b; (11)

uþ ¼ u�k þ ðu� � u�k Þ cos hþ ðu� � bÞ sin h: (12)

This is illustrated in black in Fig. 1. Then, one can advance

the particle by Eqs. (3), (6), (11), (12), and (5) in a time-

reversible manner. We call this the Boris-C solver. In prac-

tice, we use a threshold �b in jBj2 ¼ maxðB2; �bÞ, to avoid

dividing by zero. This does not cause a significant error in

the B! 0 limit.

The Boris-C solver provides second-order accuracy. The

splitting into the Coulomb-force part [Eqs. (3) and (5)] and

the Lorentz-force part [Eqs. (11) and (12)] is equivalent to

an operator splitting, also known as the Strang splitting.14,15

The Strang splitting gives second-order accuracy if each

operator maintains more than second-order accuracy. In this

case, since both of the two parts give exact solutions, the

resulting scheme should have second-order accuracy.

One can also prove the second-order accuracy in a

straightforward manner. In the constant fields, the second-

order expansion of the new state unþ1 is

unþ1 ¼ un þ _unDtþ 1

2
€unDt2 þOðDt3Þ; (13)

where

_u ¼ q

m
ðEþ v� BÞ; (14)

€u ¼ q

m
ð _v � BÞ ¼ q

m

_u

c
� u � _u

c3c2
u

� �
� B

¼
�

q

m

�2
Eþ v� B

c
� u � E

c3c2
u

� �
� B : (15)

Following the Boris procedure, we find

u� ¼ un þ eDt; (16)

uþ ¼ u� þ q

m
ðv� � BÞDt

þ 1

2

�
q

m

�2
v� � B

c�

� �
� B

( )
Dt2 þOðDt3Þ þ � � � ;

(17)

unþ1 ¼ uþ þ eDt: (18)

In Eq. (17), the Lorentz-force part is expanded for u�, simi-

lar to Eqs. (13)–(15) but with E ¼ 0. Although the Boris-C

solver accurately solves the third and higher-order terms in

Eq. (17), we focus on the terms up to second-order.

Importantly, Eqs. (16) and (18) do not contain second or

FIG. 1. Schematic diagram for the Lorentz-force part of the Boris solvers.

Procedures by the Boris-C solver (in black) and by the Boris-B solver (in

gray) are illustrated. There is an error in the phase angle (dh) in the Boris-B

solver.
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higher-order terms, OðDt2Þ, because the solver already gives

an exact solution for the Coulomb-force part. From Eq. (16),

we obtain first-order expansions of the following variables:

v� ¼ 1

c
un þ q

2m
EDt

� ��
1þ qun � E

mc2c2
DtþOðDt2Þ

��1=2

¼ vn þ q

2mc
E� un � E

c2c2
un

� �
DtþOðDt2Þ;

(19)

v�

c�
¼ v

n

c
þ q

2mc
E� 2un � E

c2c2
un

� �
DtþOðDt2Þ: (20)

Substituting Eqs. (19) and (20) into Eqs. (16)–(18), one can

obtain an expanded form of the Boris-C solver, unþ1 ¼ un

þ � � � þ OðDt3Þ. The first and second-order coefficients are

identical to those of the Talyor expansion [Eq. (13)–(15)] for

u ¼ un. This proves that the Boris-C solver has second-order

accuracy.

As a theoretical property, we examine the volume pres-

ervation10 of the Boris-C solver. This discussion holds true

for the Boris-A solver as well because both methods accu-

rately solve the rotation. We consider the temporal evolution

of a phase-space volume by splitting the Boris-C solver to

the following substeps:11 We consider half-adjusted posi-

tions xn and xn þ 1. R stands for a 3-D rotation matrix

1: xnþ1
2 ¼ xn þ Dt

2

un

cn
; un ¼ un; (21)

2: xnþ1
2 ¼ xnþ1

2; u� ¼ un þ eDt; (22)

3: xnþ1
2 ¼ xnþ1

2; uþ ¼ Ru�; (23)

4: xnþ1
2 ¼ xnþ1

2; unþ1 ¼ uþ þ eDt; (24)

5: xnþ1 ¼ xnþ1
2 þ Dt

2

unþ1

cnþ1
; unþ1 ¼ unþ1: (25)

We evaluate the Jacobian Jk for the k-th substep

Jk ¼
���� @ðxnew; unewÞ
@ðxold; uoldÞ

���� ¼ det

@xnew

@xold

@xnew

@uold

@unew

@xold

@unew

@uold

0
BBB@

1
CCCA: (26)

From Eqs. (21)–(25), we obtain

J1 ¼ J5 ¼
I

@xnew

@uold

0 I

������
������ ¼ 1; J2 ¼ J4 ¼

I 0

@unew

@xold
I

������
������ ¼ 1;

(27)

J3 ¼
I 0

@unew

@xold

@unew

@uold

������
������ ¼

@unew

@uold

����
����: (28)

The third step [Eqs. (23) and (28)] corresponds to a

c-dependent rotation, i.e., h / c�1. In this case, we confirm

J3 ¼ j@ðunewÞ=@ðuoldÞj ¼ 1 as shown in Appendix A. Thus,

we obtain Jk¼ 1 for k ¼ 1…5. This indicates that the solver

preserves a volume in the phase space every substep.

Therefore, the Boris-C solver is volume-preserving during

the entire step from ðxn; vnÞ to ðxnþ1;vnþ1Þ.
For comparison, we examine the volume preservation

for the nonrelativistic fourth-order Runge–Kutta method in

Appendix B. The phase-space volume is not preserved in

this case, JRK4 6¼ 1.

IV. NUMERICAL TESTS

In order to see the accuracy, stability, and performance

of the Boris solvers, we have carried out four numerical tests.

First, to check the accuracy, we have carried out test-particle

simulations in a uniform electromagnetic field. Physics

parameters are set to m¼ 1, q¼ 1, c¼ 1, and uðt ¼ 0Þ
¼ ð1; 0; 0Þ. The time interval, the timestep, and the numeri-

cal threshold are set to 0 < t < 12=p; Dt ¼ p=6, and �b
¼ 10–20. We consider five configurations, as shown in

Table I. The first case corresponds to direct acceleration by

the electric field. A weak magnetic field is imposed in the

second case, but the electric field is still dominant. The third

is a special case of E?B and jEj ¼ jBj. The fourth case cor-

responds to the E � B drift. The drift is slightly modulated

by the relativistic effect. The last case corresponds to gyra-

tion about the magnetic field. In each cases, we evaluate an

error in 4-vector to a reference value, du ¼ u� uref . For

cases 1 and 5, we employ analytic solutions as reference

values. For cases 2–4, we refer numerical results with a

small timestep Dt ¼ p/240 because we do not know ana-

lytic solutions as a simple function of t. The numerical ref-

erence values are checked by analytic solutions in other

forms.16,17

Figure 2(a) shows temporal evolution of errors jduj=juj
in our test-particle simulations. The dotted lines represent

the results by the Boris-B solver, whereas the solid lines rep-

resent the results by the Boris-C solver. The results by the

Boris-A solver are not shown because they are essentially

the same as those by the Boris-C solver. In case 1 (in red),

the Boris-B and Boris-C solvers use the same parts [Eqs. (3)

and (5)], and their results are identical. The two solvers give

accurate results because Eqs. (3) and (5) give an exact solu-

tion for the linear acceleration by E. In cases 2 and 3 (in

magenta and in orange), the two solvers give similar results.

The curves drop because jduj does not grow and juj increases

in time. In case 4 of the E� B drift (in green), the Boris-C

solver drastically improves the results. It reduces the error by

two orders-of-magnitude, as indicated by the green arrow.

The error by the Boris-B solver grows in time because the

TABLE I. Field settings for test-particle simulations.

# B E

1 (0,0,0) (1,0,0) Direct acceleration by E

2 (0,0,0.1) (1,0,0) E-dominated

3 (0,0,1) (1,0,0) jEj ¼ jBj
4 (0,0,1) (0.1,0,0) E �B drift

5 (0,0,1) (0,0,0) Gyration about B

112110-3 S. Zenitani and T. Umeda Phys. Plasmas 25, 112110 (2018)



phase error jduj � jujdh ¼ dh accumulates. On the other

hand, the error by the Boris-C solver remains small. The

repeated drop corresponds to the gyroperiod. Since the

Boris-C solver exactly solves the phase, the solid curve

repeatedly shows the same pattern, and it does not grow fur-

ther. In case 5 of gyration (in blue), the error by the Boris-B

solver linearly grows in time (/ t) because of the accumula-

tion of the phase error. In contrast, the Boris-C solver gives

accurate results, as we have expected.

Figure 2(b) presents maximum errors ðjduj=jujÞmax

during 0< t< 12p as a function of the timestep, Dt ¼ p/60,

p/20, p/6, and p/2. The results demonstrate the second-order

accuracy of the solvers. As evident in cases 1–3, the Boris-C

solver is as good as the Boris-B solver when jEj� jBj. As

the electric field dominates, the errors decrease, and then,

they give accurate results in case 1 (red line). When

jBj� jEj, the two solvers give different results. In cases 4

and 5, the Boris-B solver remains moderately good (the

green and blue dotted lines). From Eq. (10) and using

c ¼
ffiffiffi
2
p

, one can estimate the curve in case 5, jduj=juj
� ð12p=DtÞdh ¼ p=

ffiffiffi
8
p� �

Dt2, in agreement with the blue

dotted line. In contrast, the Boris-C solver produces drasti-

cally smaller errors than the Boris-B solver, even though it

maintains the second-order accuracy. As the magnetic field

dominates, the errors decrease, and then, the solver gives

accurate results in case 5 (blue solid line). In the bottom part

in Fig. 2(b), the errors in the two exact cases probably come

from a machine error. For example, for case 5, if an error of

Oð10�15Þ in double precision floating numbers is accumu-

lated every timestep, the total error would be jduj=juj
�10�15 � ð12p=DtÞ � 10�13:5Dt�1, in consistent with the

blue line. The error in case 1 (red line) is even smaller

because of larger juj.
As a second numerical test, we evaluate the long-term

stability of the particle solvers. We have run a code in the

following field, as was done in Ref. 10:

B ¼ ðx2 þ y2Þ1=2ez; / ¼ 0:01ðx2 þ y2Þ�1=2: (29)

The initial conditions are uðt ¼ 0Þ ¼ ð0:1; 0:0Þ, xðt ¼ 0Þ
¼ ð0:9; 0; 0Þ; m ¼ c ¼ 1, and Dt ¼ p=10. Figure 3 shows the

trajectories at (a) an initial stage and at (b) a late stage by

the Boris-C solver (in blue) and by the fourth order

Runge–Kutta solver (in gray). From the beginning, the par-

ticle undergoes a fast small-scale gyration and a slow large-

scale rotation due to the rB drift and the E�B drift. The

large-scale drifts keep the particle in the same domain,

and then, we inspect the evolution of the trajectory. After a

long time (300th turn; t� 2� 105), as evident in Fig. 3(b),

the Runge–Kutta solver dissipates the small-scale motion

and the relevant kinetic energy. This is because the

Runge–Kutta solver is not volume-preserving, at least in

the uniform fields in the nonrelativistic regime (Appendix

B), and quite likely so in generic relativistic cases. In con-

trast, the Boris-C solver is free from the numerical damp-

ing, similar to the Boris-B solver (not shown). This

numerical experiment demonstrates that the Boris-C solver

does preserve the phase-space volume for the small-scale

gyration over a long time.

FIG. 2. (a) Time evolution of numerical errors jduj=juj in test-particle simulations. The dotted lines indicate the results by the Boris-B solver, whereas the solid

lines indicate the results by the Boris-C solver. The timestep is fixed to Dt ¼ p/6. (b) Maximum errors ðjduj=jujÞmax during 0< t< 12p as a function of Dt.

FIG. 3. Particle trajectories by the Boris-C solver during (a) the initial stage

and (b) the late stage. A trajectory by the RK4 solver is overplotted in gray

in (b) the late stage.
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As a third numerical test, to compare computational

costs, we have run case 5 in Table I until t¼ 2� 107 p
(1.2� 108 steps) by only advancing the particle velocity.

Average elapse times are proportional to 1.46:1:1.24 for the

Boris-A, B, and C solvers on our PC (Intel processor) and

1.46:1:1.26 on FX100 computer (SPARC processor) at Japan

Aerospace Exploration Agency (JAXA). While performance

depends on implementation, compilers, and CPU architec-

tures, the Boris-C solver runs faster than the Boris-A solver,

and it runs only 25% slower than the Boris-B solver.

As a final test, we have carried out PIC simulations of a

physics problem on magnetic reconnection. The settings are

documented in Ref. 18, and therefore, we do not repeat them

here. Comparing average elapse times, we have found that

the Boris-C solver is slower than the Boris-B solver by 1.2%

on the XC50 supercomputer (Intel processor) at the National

Astronomical Observatory of Japan and by 3.3% on the

FX100 computer (SPARC processor) at JAXA.

V. DISCUSSION AND SUMMARY

As already discussed, the Boris-C solver is a combina-

tion of the two exact solvers for the Coulomb-force part and

for the Lorentz-force part, while the Boris-B solver is based

on the exact Coulomb-force solver and a second-order solver

for the Lorentz-force part. From the viewpoint of operator-

splitting, in both cases, the combined solver maintains

second-order accuracy because each part has second-order

accuracy. This is evident in Fig. 2(b). Since the Boris-C

solver better deals with the Lorentz-force part, the amplitude

of the second-order error is much smaller than in the Boris-B

solver, in particular in the jBj� jEj cases. The Boris-B solver

gives a second-order error in phase [Eq. (10)]. Other second-

order solvers, such as the Higuera–Cary solver and the

Umeda solver, could suppress the total error by better solv-

ing the phase.9,12,13 In this line, the Boris-C and A solvers

provide the best possible results because they give no phase

error in phase.

We have formally proved that the Boris-C solver pre-

serves a volume in the phase space during the temporal evo-

lution, and then, we have confirmed that it preserves the

small-scale gyration after a long-time computation. The vol-

ume preservation of the popular Boris-B solver has been

extensively studied;10–12 however, it has never been evalu-

ated in the Boris-A or C solvers. Since the Boris-C solver is

simple, the proof is given straightforwardly. This gives fur-

ther confidence to the reliability of the Boris-C and A

solvers.

Many scientists prefer the Boris-B solver to the Boris-A

solver because of the low computation cost. In fact, accord-

ing to the numerical test, the Boris-A solver is 46% more

expensive than the Boris-B solver. Since the Boris-C solver

employs simple expressions, it is more favorable than the

Boris-A solver. The Boris-C solver gives 25% in test-particle

simulations. Obviously, the conventional solvers (the Boris-

A and Boris-B solvers) tried to avoid trigonometric functions

which were expensive at that time. Presently, these functions

are not so expensive as they used to be, and therefore, the

Boris-C solver runs adequately fast. In PIC simulations, the

Boris-C solver runs slower only by 1%–3% in PIC simula-

tions. Typically, the particle integrator and the electric cur-

rent calculator account for most of the computation time,

and they consume an equal amount of time. Then, largely

due to memory-access performance, the particle integrator

does not run at full speed. If we assume that it runs at 50%

efficiency, the particle integrator is responsible for 25% of

the computation time. Then, the 25% slow-down in the parti-

cle integrator should result in 6% slow-down in the entire

run. We have observed 1%–3% in our PIC simulations, prob-

ably because our code runs less efficiently, but the results are

reasonable. The computational cost can be easily compen-

sated by employing a larger Dt.
From the viewpoint of the stability, we usually keep the

timestep small, xmax Dt < 2, where xmax is the maximum

frequency to resolve.2 Nevertheless, in PIC simulation, the

magnitude of the magnetic field may instantly approach or

exceed the qB
cmc Dt ¼ 2 criteria, and so, it is useful to check the

stability for a large Dt limit. The Boris-B solver delays the

gyrophase [Eq. (10)], and then, the angle never exceeds p,

i.e., h < p. The particle eventually moves back-and-forth.19

The Boris-A and Boris-C solvers have no such limitation.

They simply allow particles to gyrate more than p, although

it leads to an opposite gyration. Meanwhile, the Boris-A

solver needs some care for h � p, where Eq. (7a) is unde-

fined or approaches 61. Therefore, the Boris-B and Boris-

C solvers are safer choices among the three.

Finally, we note that there has been continual progress

in developing relativistic symplectic solvers.20–23 In fact, the

symplectic algorithms24–26 are favored in many applications,

owing to their long-term accuracy. However, the symplectic

schemes are often implicit and computationally expensive,

while the number of explicit symplectic solvers for relativis-

tic charged particles in arbitrary electromagnetic fields is

limited.22,23 In addition, it was reported that volume-

preserving solvers are sometimes more accurate than sym-

plectic solvers.27 Considering these issues, it will take some

time before symplectic solvers will be popular in relativistic

PIC simulations. Meantime, it is important to improve the

second-order Boris solvers, which have an advantage in

computational efficiency and which are proven to be

reliable.

In summary, we have proposed a simple form of the

Boris solver, based on the exact solution for the Lorentz-

force part. It is equivalent to the Boris solver with a gyro-

phase correction. It has a favorable property of preserving

the phase-space volume, and therefore, it appears to be sta-

ble. The proposed form gives much more accurate results

than the popular form (the Boris-B solver), while it only

requires few additional computation time. We hope that the

proposed form will be a good alternative to the conventional

Boris solvers.
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APPENDIX A: JACOBIAN FOR RELATIVISTIC
GYRATION

Without losing generality, we consider a gyration about

B ¼ ð0; 0;BÞ. Then, the rotation procedure is expressed as

unew ¼ Ru ¼

ux cos
h0

c
þ uy sin

h0

c

�ux sin
h0

c
þ uy cos

h0

c
uz

0
BBBBB@

1
CCCCCA; (A1)

where h0 ¼ ðqBDtÞ=m. Considering

@

@ux

h0

c

� �
¼ h0

@

@ux
ð1þ ðu=cÞ2Þ�

1
2 ¼ � h0

c3c2
ux; (A2)

we obtain a Jacobian matrix for u! unew

@ðunewÞ
@ðuÞ ¼

cos
h0

c
� f0f1ux sin

h0

c
� f0f1uy �f0f1uz

�sin
h0

c
� f0f2ux cos

h0

c
� f0f2uy �f0f2uz

0 0 1

0
BBBBBB@

1
CCCCCCA
;

(A3)

where

f0 ¼
h0

c3c2
;

f1 ¼ �ux sin
h0

c
þ uy cos

h0

c
;

f2 ¼ �ux cos
h0

c
� uy sin

h0

c
:

8>>>>>>>><
>>>>>>>>:

(A4)

From Eqs. (A3) and (A4), some algebra leads to���� @ðunewÞ
@ðuÞ

���� ¼ 1: (A5)

APPENDIX B: VOLUME PRESERVATION FOR THE
RUNGE–KUTTA METHOD

Here, we focus on a simple case of nonrelativistic particle

motion in a uniform magnetic field. The fourth-order Runge–

Kutta method advances a particle in the following way:

vnþ1 ¼ vn þ
1

6
ðk1 þ 2k2 þ 2k3 þ k4ÞDt; (B1)

k1 ¼ vn � xþ �; (B2)

k2 ¼ vn þ
1

2
k1Dt

� �
� xþ �; (B3)

k3 ¼ vn þ
1

2
k2Dt

� �
� xþ �; (B4)

k4 ¼ ðvn þ k3DtÞ � xþ �; (B5)

where x ¼ qB=m and � ¼ qE=m. We obtain new states

vnþ1 ¼ vn þ ðvn � xþ �ÞDtþ 1

2
ððvn � xþ �Þ � xÞDt2

þ 1

3!
ðððvn � xþ �Þ � xÞ � xÞDt3

þ 1

4!
ððððvn � xþ �Þ � xÞ � xÞ � xÞDt4; (B6)

xnþ1 ¼ xn þ vnDtþ 1

2
ðvn � xþ �ÞDt2

þ 1

3!
ððvn � xþ �Þ � xÞDt3

þ 1

4!
ðððvn � xþ �Þ � xÞ � xÞDt4 : (B7)

In a uniform field, the Jacobian for the Runge–Kutta

method is

JRK4 ¼
���� @ðxnþ1;vnþ1Þ

@ðxn;vnÞ

���� ¼
I

@xnþ1

@vn

0
@vnþ1

@vn

��������

��������
¼
���� @vnþ1

@vn

����: (B8)

Without losing generality, we consider the case of B

¼ ð0; 0;BÞ. Then, the Jacobean JRK4 is given by

1� 1

2
ðxDtÞ2 þ 1

24
ðxDtÞ4 �ðxDtÞ þ 1

6
ðxDtÞ3 0

ðxDtÞ � 1

6
ðxDtÞ3 1� 1

2
ðxDtÞ2 þ 1

24
ðxDtÞ4 0

0 0 1

�����������

�����������
¼ 1� 1

72
ðxDtÞ6 þ 1

576
ðxDtÞ8: (B9)

In the parameter range of our interest, (xDt) < 1, one can

see that the phase-space volume shrinks: JRK4 < 1.
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