
Available online at www.sciencedirect.com
www.elsevier.com/locate/asr

ScienceDirect

Advances in Space Research 67 (2021) 749–761
Simulation study of motion of charged particles trapped in
Earth’s magnetosphere

Pankaj K. Soni ⇑, Bharati Kakad, Amar Kakad

Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai, India

Received 18 July 2020; received in revised form 11 October 2020; accepted 15 October 2020
Available online 30 October 2020
Abstract

This article aims to understand the motion of the charged particles trapped in the Earth’s inner magnetosphere. The emphasis is on
identifying the numerical scheme, which is appropriate to characterize the trajectories of the charged particles of different energies that
enter the Earth’s magnetosphere and get trap along the magnetic field lines. These particles perform three different periodic motions,
namely: gyration, bounce, and azimuthal drift. However, often, the gyration of the particle is ignored, and only the guiding center of
the particle is traced to reduce the computational time. It is because the simulation of all three motions (gyro, bounce, and drift) together
needed a robust numerical scheme, which has less numerical dissipation. We have developed a three-dimensional test particle simulation
model in which the relativistic equation of motion is solved numerically using the fourth and sixth-order Runge-Kutta methods. The
stability of the simulation model is verified by checking the conservation of total kinetic energy and adiabatic invariants linked with each
type of motion. We found that the sixth-order Runge-Kutta method is suitable to trace the complete trajectories of both proton and
electron of a wide energy range, 5 keV to 250 MeV for L = 2–6. We have estimated the bounce and drift periods from the simulations,
and they are found to be in good agreement with the theory. The study implies that a simulation model with sixth-order Runge-Kutta
method can be applied to the time-vary, non-analytical form of magnetic configuration in future studies to understand the dynamics of
charged particles trapped in Earth’s magnetosphere.
� 2020 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The Earth’s magnetic field can be approximated by the
dipolar magnetic field in the inner magnetosphere up to
6Re (Baumjohann and Treumann, 2012). The charged par-
ticles trapped in the Earth’s inner magnetosphere perform
three types of periodic motions. They gyrate around mag-
netic field lines, bounce over magnetic mirror points, and
azimuthally drift around the Earth (Williams, 1971).
Energies of these trapped particles range from � eV to
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� 100 MeV. In the order of low to high energies, they
are prevalent in the plasmasphere (� eV), ring current
(�1–100 keV), and radiation belts (P100 keV) region
(Ebihara and Miyoshi, 2011; Millan and Baker, 2012).
These particles undergo different physical processes, and
their flux and energies are highly variable, even on geomag-
netically quiet periods. This is due to variations in the solar
wind conditions and their interaction with different plasma
waves that are excited through various plasma instabilities
in the Earth’s inner magnetosphere. The presence of higher
energy (keV-MeV) particles in the Earth’s magnetosphere,
especially in the radiation belts, has been reported through
satellite observations (Millan and Baker, 2012; Mozer
et al., 2013; Reeves et al., 2013). The solar wind particles
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enter Earth’s magnetosphere with low energies (�10–
100 eV) (Bittencourt, 2011), and their interaction with
waves can accelerate them to higher energies (� MeV),
which contributes significantly to the dynamics of the radi-
ation belt (Elkington et al., 2003; Engel et al., 2015;
Hudson et al., 2017; Katoh and Omura, 2004; Ozaki
et al., 2019; Tobita and Omura, 2018). Despite different
energies, the motion of these charged particles is governed
by the Earth’s magnetic field. They are trapped in the
Earth’s inner magnetosphere until they fall into the loss
cone and get lost into the upper atmosphere Yugo and
Iyemori (2001).

In the past, several studies have been carried out to
understand the dynamics of these magnetospheric charged
particles. Hones and Edward (1963) conducted a theoret-
ical analysis to investigate the motions of charged parti-
cles trapped in the distorted magnetosphere. They have
calculated drift paths for the particles whose motion is
confined to the magnetic equatorial plane, and mirroring
particles at low altitudes. Delcourt et al. (1990) used
three-dimensional particle code for ions to examine the
motion of near-Earth plasma-sheet particle during sub-
storm. Ukhorskiy and Sitnov (2008) analyzed the radial
transport of electrons due to ULF fluctuations in the
inner magnetosphere using the test particle approach
under the guiding center approximation. Sorathia et al.
(2018) studied the evolution of the outer radiation belt
during the geomagnetic storm using test particle and mag-
netohydrodynamic (MHD) simulations. However, the
guiding center of the particle is traced in most of the mag-
netospheric simulation to reduce the computational time.
It is because the simulation of all three motions (gyro,
bounce, and drift) together needed a robust numerical
scheme, which has less numerical dissipation.

Similarly, Öztürk (2012) performed test particle simula-
tion to investigate particle motion in the dipolar magnetic
field using the fourth-order Runge-Kutta method and
demonstrated gyro, bounce, and drift motion for proton.
However, the fourth-order Runge-Kutta method is limited
to trace the trajectory of proton of energy 10 MeV up to
one drift only. When the simulation is carried out for the
lower energy protons, drift motion results are numerically
unstable. Moreover, the electron is 1836 times less massive
than the proton, making the electron gyro-period three
order smaller than the proton. This suggests the need for
a smaller time step to simulate the electron trajectories,
which ultimately becomes computationally expensive.
Therefore, the fourth-order Runge-Kutta method can not
be used to validate theoretically calculated bounce periods
of electron and drift periods of both electron and proton. It
invokes the need for an efficient numerical scheme capable
of simulating gyro, bounce, and drift motions of the
charged particles in the Earth’s magnetosphere. Thus, in
the present simulation model, we aim to examine the
appropriate numerical scheme applicable to characterize
the trapped particles (both electrons and protons) dynam-
ics and produce physically valid simulation results.
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We have considered a static dipolar configuration for
the Earth’s magnetic field, with no inhomogeneities. The
equation of motion is solved numerically by both fourth
and sixth-order Runge-Kutta methods. In the simulation
model, the particle can perform gyration, bounce, and drift
motions self-consistently. The performance of the simula-
tion model and numerical schemes is tested by verifying
the conservation of total kinetic energy and adiabatic
invariants associated with each type of motion. We found
that the sixth-order Runge-Kutta method is efficient in sim-
ulating both electrons and proton’s trajectories for a wide
range of energy and L-shell. There can be many circum-
stances in the Earth’s magnetosphere where adiabatic
invariants itself are not conserved (Antonova and
Kropotkin, 2003; Birmingham et al., 1967; Mukherjee
and Rajaram, 1981). Such physical processes are not incor-
porated in the present simulation.

This paper is structured as follows. The model equations
and the numerical schemes used in the simulation are given
in Section 2. In Section 3, the numerical stability of the
numerical schemes used in the simulation model is verified.
The application of this model is presented in Section 4. The
results are discussed in Section 5 and concluded in Sec-
tion 6. In Appendix A, B, and C, we have respectively
briefed the Runge-Kutta numerical scheme, derivations
of the theoretical equations of the bounce, and the drift
periods of trapped particles.
2. Model equations and numerical schemes

We have used a test particle approach in which the
plasma is considered as a single particle system, and its
effect on the ambient parameters is neglected. This is a rea-
sonable approximation to understand the dynamics of
trapped particles in the Earth’s inner magnetosphere. The
relativistic equation of motion for a particle of charge q

and mass m, under the action of the Lorentz force due to
magnetic field, B can be written as,

cm0

dv
dt

¼ qv� BðrÞ: ð1Þ

The position of charged particle can be computed from the
velocity using following expression,

v ¼ dr
dt

: ð2Þ

Here, c ¼ ð1� v2=c2Þ�1=2
is the relativistic factor, m ¼ cm0

and v ¼ ½vx; vy ; vz� is the velocity vector. The magnitude of
velocity is estimated from the kinetic energy, Ek using the
following expression,

v ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m0c2

m0c2 þ Ek

� �2
s

: ð3Þ

If the magnetic field is constant, the particle’s acceleration
will be perpendicular to the magnetic field, and it will
gyrate around the magnetic field line. The particles under



P.K. Soni et al. Advances in Space Research 67 (2021) 749–761
such motion will have an instantaneous gyro-frequency,
X ¼ q j B j =cm0 and gyro-radius, q ¼ cm0v?=q j B j,
depending on the perpendicular velocity (v?) and magnetic
field B. In the present study, we have considered the ambi-
ent magnetic field to be dipolar for the Earth’s inner mag-
netosphere, where the magnetic field lines are closed. In this
region, the terrestrial magnetic field BðrÞ can be expressed
in the Cartesian coordinate system as (Griffiths, 2005),

BðrÞ ¼ �B0R3
e

r5
½3xzx̂þ 3yzŷþ ð2z2 � x2 � y2Þẑ�: ð4Þ

Here, horizontal xy-plane is the magnetic equator and z-
axis is the vertical magnetic axis, which is illustrated in
Fig. 1. At the magnetic equator on the surface of Earth,
the magnetic field strength is measured to be

B0 � 3:07� 10�5 T. In the simulation code, Eqs. (1) and
(2) are solved numerically from fourth (RK4) and sixth
(RK6) order Runge-Kutta methods. The expressions for
the RK4 and RK6 schemes (Luther, 1968; Portero et al.,
2012) are respectively given as,

vtþDt
x ¼ vtx þ

Dt
6

k1 þ 2k2 þ 2k3 þ k4½ �; ð5Þ

vtþDt
x ¼ vtx þ

Dt
5

16k1
27

þ 6656k3
2565

þþ 28561k4
11286

� 9k5
10

þ 2k6
11

� �
ð6Þ

After discretizing Eqs. (1) and (2), we get six equations
which gives rate of change of vx; vy ; vz; x; y and z. At the
initial time t ¼ 0, the corresponding values of velocity
and position components are [vsinðaeqÞcosðwÞ;
vsinðaeqÞsinðwÞ; vcosðaeqÞ] and [x; 0; 0]. Here aeq is the equa-
torial pitch angle, the angle between the velocity vector of a
particle and the total magnetic field at the magnetic equa-
tor. The w is gyro-phase, which can vary from 0 to 2p
and decides the particle entry in the horizontal xy-plane.
For all simulation runs, we have taken fixed w ¼ 0� and
aeq ¼ 30�. We took initial position as [x ¼ L, 0, 0] by vary-

ing L between 2 and 6. In Eqs. (5) and (6), vtþDt
x is the

Runge-Kutta approximation of vx at time ½t þ Dt�, which
Fig. 1. Illustration of the magnetic field lines of the Earth, represented as a dip
horizontal xy-plane is the magnetic equatorial plane with z-axis as vertical ma
Earth’s magnetic field to be dipolar.
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is determined by the present value vtx plus the weighted
average of all increments from k1 to k6. The details of these
two numerical schemes are given in Appendix A. The size
of time interval, Dt is taken as � 1=50 times of the gyro-
period. In the same way, one can compute vy ; vz; x; y; z. In
this model, first we compute the velocity components
[vx; vy ; vz], and then utilize these estimates to compute the
position components [x; y; z].

As an example, the trajectory of a proton with energy
Ek = 5 MeV at L = 4 obtained from the simulation code hav-
ing sixth-order Runge-Kutta scheme is shown in Fig. 2 for 120
s. Here, Fig. 2a shows the three-dimensional motion of pro-
ton, whereas the top view of its trajectory, as seen from the
north magnetic pole, is depicted in Fig. 2b. The motion is heli-
cal around the magnetic field lines. The magnetic field’s gradi-
ent and curvature introduce two additional motions: the
bounce and the drift motion. The motion due to the parallel
component of velocity is the bounce motion, which is the peri-
odic north-south oscillation along the magnetic field lines. As
the particle moves towards the stronger magnetic field’s loca-
tion, it reflects from the mirror point due to the mirror force.
The gradient in the magnetic field is responsible for the drift in
the direction perpendicular to both $B and B (Chen, 1984).
The drift motion takes the particle in the azimuthal direction,
perpendicular to the bounce motion and across the magnetic
field lines. The frequency of the bounce motion is smaller than
the gyro-motion and higher than the drift motion. The shown
trajectory of the proton can also be validated from Fig. 2 of
Öztürk (2012) since both the studies have approximated
Earth’s inner magnetosphere as a dipolar configuration. How-
ever, the numerical schemes used to simulate the particle
dynamics are different (RK4 and RK6).

In the similar manner, the trajectory of electron of
energy Ek = 5 MeV, and L = 4 is shown in Fig. 3 for
120 s. It may be noted that unlike proton (see Fig. 2), the
gyro motion of the electron is not distinctly visible in
Fig. 3. The electron has a very small gyro-radius, so it
gyrates very close to the magnetic field lines. The electron
drifts slowly as compared to the proton; hence it shows less
azimuthal coverage in Fig. 3 compared to the proton in
ole magnetic field directed from the magnetic south to north direction. The
gnetic axis. Here, we have used the magnetic coordinate system assuming



Fig. 2. The trajectories of proton of energy 5 MeV at L ¼ 4 with pitch angle of aeq ¼ 30� in Earth’s dipolar magnetic field for 120 s. The dipole moment is
in �ẑ direction. The black arrows show westward motion of proton due to $B� B drift. (a) shows three-dimensional trajectory of proton (b) the top view
of the proton motion in xy plane as seen from the north magnetic pole.

Fig. 3. The trajectories of electron of energy 5 MeV at L ¼ 4 with pitch angle of aeq ¼ 30� in Earth’s dipolar magnetic field for 120 s. The dipole moment is
in �ẑ direction. The black arrows show eastward motion of electron due to $B� B drift. (a) shows three-dimensional trajectory of electron (b) the top
view of the electron motion in xy plane as seen from the north magnetic pole.
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120 s. In this way, the particles in the dipolar magnetic field
are trapped on closed drift shells as long as they are not dis-
turbed by collisions or interactions with plasma waves to
fall into the loss cone and get lost into the upper atmo-
sphere. To estimate the bounce and drift periods, we trans-
formed position [x; y; z] to [r; k;/] using the following
equations.

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
;

k ¼ sin�1ðzrÞ;
/ ¼ cos�1ð x

rsinkÞ:
ð7Þ

The time variation of these transformed spherical coordi-
nates [r; k;/] are depicted in Fig. 4 for proton of energy
Ek ¼ 5 MeV, and L ¼ 4. The simulation employed with
the sixth-order Runge-Kutta method is used to get these
details. Here, r represents the radial distance of particles
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from the center of the Earth. k represents magnetic lati-
tude, which varies between �90� to þ90�. The variation
of k with time can be used to calculate the time taken by
particle to complete one bounce period. / is the azimuthal
angle, which varies from 0� to 360� over one complete drift.
It is used to estimate the drift period of the charged parti-
cle. This way, we have used the simulation model to trace
trajectories of charged particles having different energies,
and L-shells in the Earth’s inner magnetosphere. For the
data shown in Figs. 2–4, we have used the simulation
model having sixth-order Runge-Kutta method. The rea-
son for preferring sixth-order over fourth-order Runge-
Kutta numerical scheme is discussed in the next section.
3. Validation of numerical scheme

In the present simulation study, we have used the fourth
and sixth-order Runge-Kutta methods to solve the



Fig. 4. The spherical coordinates associated with the trajectory of proton
of energy 5 MeV at L = 4, which is trapped in the Earth’s dipolar field. r is
the radial distance of the trapped particle from the center of the Earth in
terms of Earth’s radius. The periodic time variation of k (magnetic
latitude) represents the bounce motion. The maximum and minimum
value of k corresponds to the magnetic mirror points in the northern and
southern hemispheres, respectively. The variation of / represents the
change in azimuthal angle over the drift motion.
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equation of motion. The suitability of these numerical
schemes to trace the charged particle’s complete trajectory
is verified in this section. Using these numerical schemes,
Fig. 5. (a-b) Ratio of kinetic energy of the particle at each time step to its initial
obtained from the simulation model having fourth-order (red) and sixth-order (
the initial energy of proton and electron placed at L = 4 with equatorial pitch an
conservation of kinetic energy and stable mirror point locations due to less n
interpretation of the references to color in this figure legend, the reader is refe
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we have simulated the trajectories of both proton and elec-
tron of energy 5 MeV at L ¼ 4. The time variation of the
particle’s kinetic energy normalized w.r.t. its initial kinetic
energy, Ek=Ek0, and magnetic latitude obtained from the
simulation using sixth-order (blue) and fourth-order (red)
Runge-Kutta methods are shown in Fig. 5 for proton
(Fig. 5a, c) and electron (Fig. 5b, d).

We noticed that the sixth-order Runge-Kutta method
reduces the numerical error considerably so that there is
negligible numerical dissipation. It maintains a constant
Ek=Ek0, which implies that the system’s energy is conserved.
The particle bounces back and forth from the same mag-
netic latitude representing the periodic orbit for an arbi-
trarily long simulation time. On the other hand, when the
fourth-order Runge-Kutta method is used, the ratio
Ek=Ek0 continuously decreases with time, which implies a
faster increase in the numerical error. It may also be noted
that, for this case, the magnetic latitudes of the mirror
points are not the same during the bounce motion of the
particle. If we compare simulation outputs for proton
and electron, i.e., Fig. 5a with 5b, and 5c with 5d, we find
that the numerical error enhances rapidly for electron as
compared to the proton. It suggests that numerical dissipa-
tion in the fourth-order Runge-Kutta method is consider-
ably higher, and it increases within the first few seconds
of the simulation run. It may be noted that the Dt for pro-
ton is 10�4 s, and for electron, it is 10�7 s. Thus, in 300 s
kinetic energy (Ek=Ek0) and (c-d) magnetic latitude (k) as a function of time
blue) Runge-Kutta methods for proton and electron. Here Ek0 ¼ 5 MeV is
gle 30�. The sixth-order Runge-Kutta method shows fairly good long-term
umerical dissipation unlike the fourth-order Runge-Kutta method. (For
rred to the web version of this article.)
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and 50 s of the simulation run, the velocity and position of

proton and electron are computed for 3� 106 and 5� 108

number of time steps, respectively. In each computation
step, the numerical error gets integrated. Hence, in the case
of electron, where the number of computation time steps,
nstep are more, the numerical error increases faster as com-
pared to the proton. Therefore, the fourth-order Runge-
Kutta method can not simulate the electron and proton
drift motion in the Earth’s inner magnetosphere.

Furthermore, we examined the conservation of adia-
batic invariants during proton and electron motions in
the simulation. For the particles in the dipolar magnetic
field, adiabatic invariants (J 1; J 2, and J 3) are associated
with gyration, bounce, and drift motion, respectively
(Kellogg, 1959; Northrop and Teller, 1960; Walt, 2005).
Each invariant can be obtained from the closed line inte-
gral of the particle’s canonical moment over one cycle of
the associated motion. The first adiabatic invariant is asso-
ciated with the gyro-motion and can be written as,

J 1 ¼ hpc
2m2

0v
2
?

q j B j i: ð8Þ

The first adiabatic invariant explains the existence of mir-
ror points. As the particle moves towards the polar region,
where the ambient magnetic field is stronger, its perpendic-
ular velocity increases, and parallel velocity decreases to
Fig. 6. (a) The instantaneous values of non-averaged (red and blue) and aver
proton initially placed at L ¼ 4. The red and blue curves are obtained from the f
adiabatic invariant J 2 as a function of time, calculated from the parallel velocity
the one bounce period over which the averaging is carried out to compute J 2. (F
is referred to the web version of this article.)
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keep J 1 and Ek constant. At a particular point, its parallel
velocity becomes zero, and the particle bounces back. The
first adiabatic invariants estimated from the simulation
using both the numerical schemes are shown in Fig. 6(a)
for the proton of energy 5 MeV at L ¼ 4. In Fig. 6(a),
the blue and red color curves respectively represent the
non-averaged component of the first adiabatic invariant
obtained from the sixth- and fourth-order Runge-Kutta
method. The black line shows their averaged component,
i.e., J 1. Here, non-averaged J 1 oscillates with the local
gyro-period because instantaneous values of v? and B are
used in its computation, and these parameters do vary as
the particle changes its position with time. The oscillations
occur because the magnetic field is not uniform over a gyra-
tion, and the gyro-radius changes as particle move from the
equatorial to the polar region. The average of these oscil-
lating values over the gyro-period gives the first adiabatic
invariant J 1 (shown by the black line), which is found to
be constant with time only for the sixth-order Runge-
Kutta method. From Fig. 6(a), it is evident that when the
fourth-order Runge-Kutta method is used, J 1 is not con-
stant with time. Therefore, the numerical dissipation in
the fourth-order Runge-Kutta method makes this method
inappropriate to study the complete motion of the charged
particles in a static dipolar magnetic field.

The second adiabatic invariant is associated with the
bounce motion between the magnetic mirror points. If
aged J 1 (black) first adiabatic invariant as a function of time for 5 MeV
ourth- and sixth-order Runge-Kutta methods, respectively. (b) The second
of proton and averaged over the bounce period. Here, each dot represents
or interpretation of the references to color in this figure legend, the reader



Fig. 7. (a) The instantaneous values of non-averaged (red and blue) and averaged J 1 (black) first adiabatic invariant as a function of time for 5 MeV
electron initially placed at L ¼ 4. The red and blue curves are obtained from the fourth- and sixth-order Runge-Kutta methods, respectively. (b) The
second adiabatic invariant J 2 as a function of time, calculated from the parallel velocity of electron and averaged over the bounce period. Here, each dot
represents the one bounce period over which the averaging is carried out to compute J 2. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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the azimuthal drift is small during a single bounce, the
action variable associated with the bounce motion would
be expected to be an invariant (Mahjouri, 1997). The
expression for the second adiabatic invariant is given by,

J 2 ¼ 2

Z km2

km1

cm0vkds ¼ 2

Z km2

km1

cm0v2kdt: ð9Þ

Here, km1 and km2 are magnetic latitudes of mirror points.
The second adiabatic invariant is related to the field line’s
length between mirror points, which indicates that the field
line length is constant as the particle drift in the azimuthal
direction. Fig. 6(b) shows the variation of second adiabatic
invariant J 2 as a function of time evaluated by integrating
vk over one bounce period for proton of energy 5 MeV, and
L ¼ 4. The limits of integration are determined by the loca-
tion of mirror points that are estimated from the simula-
tion. It is evident in Fig. 6(b) that the second adiabatic
invariant is also not conserved for the fourth-order
Runge-Kutta method while it is conserved for the case of
the sixth-order Runge-Kutta method.

Similar to Fig. 6, the variation of J 1 and J 2 for the elec-
tron of 5 MeV and L ¼ 4 obtained from the simulation
employing sixth-order and fourth-order Runge-Kutta
methods are shown in Fig. 7. It may be noted that J 1

and J 2 are highly non-conserved for the fourth-order
Runge-Kutta method. The third adiabatic invariant (J 3)
is associated with the azimuthal drift motion of the
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mirror-trapped particles around the Earth. We have not
compared J 3 because the charged particle cannot complete
one drift motion due to higher numerical dissipation asso-
ciated with the fourth-order Runge-Kutta method. How-
ever, J 3 can be computed from the simulation having
employed the sixth-order Runge-Kutta method, and it is
found to be conserved.

Thus, it is clear from Figs. 5–7 that the fourth-order
Runge-Kutta method is not suitable to reproduce physi-
cally reliable trajectories of particles in the static dipolar
magnetic field. The fourth-order Runge-Kutta method is
sufficient to simulate the bounce motion of protons, one
complete drift motion of proton of energy 10 MeV.
However, three order smaller gyro-period of the elec-
trons demands the numerical scheme with higher accu-
racy. Furthermore, the drift period increases for both
lower energetic protons and electrons. In such a scenar-
io, when we perform simulations for a longer time,
numerical errors in the estimates of velocity and position
of particles get integrated and subsequently enhanced.
Therefore, one requires numerical schemes with higher
numerical accuracy. We found that the sixth-order
Runge-Kutta method is considerably stable and suitable
to simulate both electron and proton trajectories of a
wide range of energy and L-shell. For all the further
simulation runs, we have used the sixth-order Runge-
Kutta method.
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4. Applications

We used the simulation model to obtain the trajectories
of proton and electron of energy in the range of 5 keV to
250 MeV and L-shell 2–4. Their bounce and drift periods
are estimated by tracking the variations of k and / associ-
ated with their motions. The energy range for this compar-
ison is chosen in such a way that all three adiabatic
invariants are conserved. These simulated bounce (sb)
and drift (sd) periods are validated by comparing them with
their theoretical estimates which are available in the litera-
ture (Davidson, 1976; Orlova and Shprits, 2011). These
expressions are not the exact form of the solution and
based on the numerical fittings. Therefore, they deviate
slightly (�0.06%–5%) from their exact solution. The com-
plete theoretical derivations of bounce and drift periods
with their deviations are elaborated in Appendix B and
C, respectively. We are using Eqs. (B.5) and (C.5) for the
comparison with simulation results.

As mentioned earlier, the bounce period is calculated by
tracking the variations in magnetic latitude, k with time. In
one bounce, k can vary from �90� to þ90� depending on
the particle’s mirror point latitude, km. We have used
one-dimensional Fast Fourier Transformation (FFT) on
k to get the bounce motion period. The bounce period esti-
mated from the simulation for protons and electrons of dif-
ferent energies placed at L = 2 (blue) and L ¼ 4 (red) with
their respective theoretical estimates (shown by ‘‘+” sym-
Fig. 8. The bounce period of (a) proton and (c) electron are shown as a funct
corresponding percentage difference between simulated and theoretical bounce
The maximum � for proton and electron are � 5% and 1%, respectively, which
color in this figure legend, the reader is referred to the web version of this art
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bol) are shown in Fig. 8a and c, respectively. There is a
good agreement between the bounce periods estimated
from the simulation and theory for both proton and elec-
tron. The bounce period of the charged particle increases
with their distance from the Earth. It is expected because
the length of magnetic field line increases with L-shell,
and hence particle needs to travel more distance along
the field line. Further, we have computed the percentage
difference (�) between the simulated and theoretical esti-
mates of bounce periods for proton and electron, which
is shown in Fig. 8(b), and (d), respectively. The percentage

difference, � is given by jstheoretical�ssimulationj�100
ssimulation

. The percentage

difference between theoretical and simulated bounce peri-
ods is less than 5% and 1% for proton and electron, respec-
tively, which is considerably small.

In the Earth’s magnetosphere, a trapped charged parti-
cle performs drift motion around the Earth due to the gra-
dient of magnetic field lines. Over one complete drift,
azimuthal angle (/) varies from 0� to 360�. In the present
simulation, the drift period is calculated by tracking the
azimuthal angle variation, /for few drifts around the
Earth. The drift period estimated from simulation are plot-
ted as a function of energy for proton (Fig. 9a), and elec-
tron (Fig. 9c) placed at L = 2 (blue) and L = 4 (red) in
Fig. 9. The respective theoretical estimates of drift periods
are shown by the ‘‘+” symbol in Fig. 9a and c. It may be
noted that unlike the bounce period, the drift period
decreases with distance from the Earth. As we move away,
ion of energy for two different L-shells, L ¼ 4 (red) and L ¼ 2 (blue). The
periods (�) are depicted in panel-b for proton and in panel-d for electron.
are shown by horizontal dash lines. (For interpretation of the references to
icle.)



Fig. 9. The drift period of (a) proton and (c) electron are shown as a function of energy for two different L-shells, L ¼ 4 (red) and L ¼ 2 (blue). The
corresponding percentage difference between simulated and theoretical bounce periods (�) are depicted in panel-b for proton and in panel-d for electron.
The maximum � for proton and electron are � 9% and 5%, respectively, which are shown by horizontal dash lines. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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the magnetic flux density decreases, and the number of
gyration in one drift reduces, which results in a faster azi-
muthal drift of the particle. The order of the drift period
for electron and proton of given energy and L-shell are dif-
ferent because their azimuthal motion is a result of $B� B
drift, which is charge and mass-dependent. The corre-
sponding percentage difference between simulated and the-
oretical estimates of the drift period of proton and electron
are shown in Fig. 9b and d, respectively. We noticed a good
agreement between theoretical and simulated drift periods
of proton and electron, and the corresponding percentage
difference is less than 9% and 5%, respectively. Overall, this
comparison implies that bounce and drift period’s simula-
tion results are in good agreement with their associated the-
oretical estimates.
5. Discussion

A magnetospheric trapped charged particle performs
three types of periodic motion in the Earth’s magneto-
sphere: gyration, bounce, and drift. We have developed a
three-dimensional relativistic test particle simulation model
by assuming the Earth’s magnetic field in the dipolar con-
figuration, which is a reasonable approximation for the
inner magnetosphere. Since the particle is treated as a test
particle, its motion does not affect the ambient magnetic
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field. Our primary focus is to check the suitability of the
numerical scheme to trace the complete motion (gyro,
bounce, and drift together) of the charged particle in the
Earth’s magnetic field. In many previous magnetospheric
simulation studies, the particle motion is examined under
guiding center approximation, which ignores the gyration
and traces the trajectory of the only guiding center. Under
this assumption, one can not see the effects of gyration on
particle dynamics. In this simulation, a charged particle is
allowed to gyrate, bounce, and drift in a self-consistent
way. Therefore we can examine the effect of all three peri-
odic motion on the particle dynamics. The simulation of
drift motion of electrons (along with gyro and bounce
motions) is computationally expensive and carried in very
few previous studies using the guiding center approach
(Sorathia et al., 2018). In such simulations, one needs an
efficient numerical scheme so that the numerical dissipation
is negligible, and simulations can be run for a long time to
trace the drift motion of the charged particles. In the pre-
sent simulation study, it is evident that the sixth-order
Runge-Kutta method is appropriate to get the complete
trajectories of both proton and electron.

We have noticed that the bounce and the drift period of
both protons and electrons agree with the theory. The max-
imum deviation for the bounce and drift period of the pro-
ton is � 5% and 9%, and for electron, they are �1%, and
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5%, respectively. It may be noted that for proton, the error
� in the estimates of bounce and drift periods are slightly
higher as compared to that of the electron. The theoretical
expressions of the bounce and drift periods are summarised
in Appendix B and C. These theoretical expressions of
bounce and drift period are derived by averaging the parti-
cle motion over gyration. Since the gyro-radius of the elec-
tron is very small as compared to the proton, the electron
gyrates very close to the magnetic field line, and the guiding
center approximation used in theory is satisfied. However,
in the proton case, the gyro-radius is larger, and the actual
proton motion may deviate from their theoretical as they
are based on the guiding center approximation. Thus, in
the case of protons, the difference in the simulated and the-
oretical drift and bounce periods is higher than the
electrons.

6. Conclusions

In the present paper, we have proposed an appropriate
numerical scheme, which is capable of characterizing the
all three motions (gyration, bounce, and azimuthal drift)
of the charged particles of different energies that enter the
Earth’s magnetosphere and get trap along the magnetic
field lines. The dipolar magnetic field configuration is
assumed for the Earth, and the relativistic equation of
motion for the charged particle is solved numerically to
trace the trajectories of trapped charged particles of energy
and L-shell in the range of 5 keV-250 MeV and L ¼ 2� 6,
respectively. The efficiency of simulation model is tested
using both fourth and sixth-order Runge-Kutta schemes
by verifying the conservation of energy and adiabatic
invariants. As an application of this model, we have simu-
lated bounce and drift periods of protons and electrons of
energy 5 keV to 250 MeV placed at L ¼ 2 and 4 from the
time variation of magnetic latitude (k) and azimuthal angle
(/), respectively. The theoretical expressions used to esti-
mate the bounce and drift periods are elaborated in Appen-
dix B and C. The primary outcomes of the study are as
follows.

� A three-dimensional relativistic test particle simulation
model is developed to examine the trajectories of
charged particles trapped in the Earth’s inner
magnetosphere.

� Fourth-order Runge-Kutta method can simulate the
bounce motion of the protons due to more numerical
dissipation.

� Sixth-order Runge-Kutta method is required to simulate
the motions of the electron and proton of energy 5 keV
to 250 MeV placed at L = 2–6.

� The simulation results presented here are in good agree-
ment with the theoretical estimates of the bounce and
the drift periods.

� Our simulation validate the theoretical estimates of drift
periods of both protons and electrons.
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� Our simulation approach can be applied to the time-
varying and non-analytical form of magnetic field con-
figuration in the Earth’s inner magnetosphere in future
studies.
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Appendix A. Runge-Kutta method

The function with initial condition yðt0Þ ¼ y0 is specified
as follows,

_y ¼ f ðt; yÞ: ðA:1Þ
Here, y is an unknown function of time t, which has to be
solved using Runge-Kutta method. The rate at which this
function changes with time is defined by f ðt; yÞ. Since the
initial condition is known, the value of the unknown func-
tion (y) for next time step can be computed as,

ynþ1 ¼ yn þ h
5

16k1
27

þ 6656k3
2565

þ 28561k4
11286

� 9k5
10

þ 2k6
11

� �
;

tnþ1 ¼ tn þ h:
ðA:2Þ

Here, h is the positive step size and n is the limit up to
which unknown function has to be solved. The coefficients
k1 � k6 are obtained from function f ðt; yÞ using following
expressions,

k1 ¼ f ðtn; ynÞ;
k2 ¼ f ðtn þ h

4
; yn þ hk1

4
Þ;

k3 ¼ f ðtn þ 3h
8
; yn þ 3h

32
ðk1 þ 3k2ÞÞ;

k4 ¼ f ðtn þ 12h
13
; yn þ 12h

2197
ð161k1 � 600k2 þ 608k3ÞÞ;

k5 ¼ f ðtn þ h; yn þ h
4104

ð8341k1 � 32832k2 þ 29440k3 � 845k4ÞÞ;
k6 ¼ f ðtn þ h

2
; yn þ hð� 8

27
k1 þ 2k2 � 3544

2565
k3 þ 1859

4104
k4 þ 11

40
k5ÞÞ:

ðA:3Þ

In our simulation model, [vx; vy; vz] and [x; y; z] are
unknown function of time. The rate from which these func-
tion changes are defined as right hand side of in Eqs. (1)
and (2). The equations are first solved for velocity and then
for position. In similar way, fourth-order Runge-Kutta
method can be employed with ynþ1 as,

ynþ1 ¼ yn þ
h
6
k1 þ 2k2 þ 2k3 þ k4½ �: ðA:4Þ
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k1 ¼ f ðtn; ynÞ;
k2 ¼ f ðtn þ h

2
; yn þ hk1

2
Þ;

k3 ¼ f ðtn þ h
2
; yn þ hk2

2
Þ;

k4 ¼ f ðtn þ h; yn þ hk3Þ:

ðA:5Þ
Appendix B. Bounce period

The bounce period of a charged particle can be calcu-
lated by integrating the ds=vk over the full bounce path
along magnetic field line.

sb ¼ 4

Z p=2

km

ds
vk

¼ 4

Z p=2

km

ds
dk

dk
vk

: ðB:1Þ

Here, ds is arc element along magnetic field line and k is
magnetic latitude. The subscript ‘‘m” denotes ‘‘mirror
point”. After inserting the expression of vk and change of
arc element of field line with magnetic latitude (ds=vk), we
obtained bounce period as,

sb ¼ 4
req
v

Z p=2

km

sinkð1þ 3cos2kÞ1=2

1� sin2aeq
ð1þ3cos2kÞ1=2

sin6k

h i1=2 dk
¼ 4

req
v
T ðyÞ: ðB:2Þ

Here, y 	 sinaeq. The integral has a singularity at the mir-
ror points which do not allow to solve it analytically.
Therefore, the integral has been evaluated numerically to
find the exact expression of the bounce period. The integral
T ðyÞ depends on the equatorial pitch angle(aeq) and solved
over k. In order to find the numerical solution, one has to
solve the integral for different values of km varying from 0
to 90� at a fixed pitch angle. The numerical solution of the
integral T ðyÞ can be treated as an exact solution and can be
approximated with numerical fitting for T ðyÞ as a function
of y.

Different approximations were found empirically three
decades ago (Davidson, 1976; Hamlin et al., 1961).
Recently, Orlova and Shprits (2011) proposed the follow-
ing approximations for the integral T ðyÞ,
T 1ðyÞ � 1:30� 0:56y;

T 2ðyÞ � 1:38� 0:32ðy þ y1=2Þ;
T 3ðyÞ � 1:3802� 0:6397y3=4;

T 4ðyÞ � 1:38þ 0:055y1=3 � 0:32y1=2 � 0:037y2=3

�0:394y þ 0:056y4=3

ðB:3Þ

All these approximations have a deviation from an exact
solution which is measured as an absolute percentage devi-
ation defined as,

d ¼ j sapproxðyÞ � sexactðyÞ j
T exactðyÞ 100%: ðB:4Þ

All approximations T 1ðyÞ; T 2ðyÞ; T 3ðyÞ, and T 4ðyÞ are com-
pared with the exact solution in Fig. B.10. The red line in
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panels (a) to (d) of this figure shows the exact solution of
integral T(y) and blue line is the approximated results.
The absolute percentage deviation (d) for the approxima-
tion T 1ðyÞ; T 2ðyÞ; T 3ðyÞ, and T 4ðyÞ is shown in panels (e)-
(h) of Fig. B.10. The maximum value of deviation (dmax)
shows that the approximation T 1ðyÞ is less accurate. The
parametrization of approximation T 4ðyÞ was formed as lin-
ear combination of the most important terms and is consid-
erably more accurate. Here, we have used the
approximation T 3ðyÞ to estimate the theoretical expression
because its maximum deviation is 0:5% and has only three
terms. Using the approximation T 3ðyÞ, the expression for
bounce period can be written as,

sb ¼ 0:117L
c
v
½1� 0:4635ðsinaeqÞ3=4�: ðB:5Þ

Here, Re is the radius of Earth and L is the distance from
the center of the dipole to the equatorial crossing of the
field line in terms of Re. In order to include relativistic effect
in this expression, the velocity v is calculated from the
energy of particle using relativistic transformation defined
in Eq. (3). It may be noted that when we compute sb from
Eq. (B.1), the gyration of particle is not considered.
Also solving Eq. (B.2) by using approximations forms
given in Eq. (B.3) can introduce some errors in the esti-
mates of sb.
Appendix C. Drift period

Drift period of a charged particle can be calculated by
the rate of change of azimuth angle (/) over a bounce,

<
d/
dt

>¼ D/
sb

¼ 4

sb

Z p=2

km

v?ðkÞ
R0cos3k

ds
dk

dk
vk

: ðC:1Þ

Using the expression of vk; v? and ds=dk, we can get change
in azimuth angle as,

<
d/
dt

> ¼ 4

sb

3m0vR2
0

qB0R
3
e

Z p=2

km

cos3kð1þ 3sin2kÞ½1� y2

2
ð1þ3sin2kÞ1=2

cos6k �Þ
ð1þ 3sin2kÞ3=2½1� y2 ð1þ3sin2kÞ1=2

cos6k �
1=2

dk

¼ 4

sb

3m0vðLReÞ2
qB0R

3
e

EðyÞ: ðC:2Þ

Time taken for a complete rotation of longitude (2p) will
be drift period,

sd ¼ 2p

< d/
dt >

¼ 2pqB0R
2
e

3Lm0v2
T ðyÞ
EðyÞ ¼

2pqB0R
2
e

3Lm0v2
DðyÞ: ðC:3Þ

Again, similar to T ðyÞ, integral EðyÞ is also singular at mir-
ror point and needs to solve numerically with the varying
value of k which will be treated as exact solution. This inte-
gral can also be approximated with numerical fitting for
integral DðyÞ with y. Past approximations for integral
DðyÞ includes Hamlin et al. (1961),

D1ðyÞ � 0:35þ 0:154y;

D2ðyÞ � 1=3ð1� 0:3333ðsinaeqÞ0:62Þ:
ðC:4Þ



Fig. B.10. Comparison of approximation T 1ðyÞ; T 2ðyÞ; T 3ðyÞ, and T 4ðyÞ with the exact solution. Panels (a)-(d) show the exact solution of T ðyÞ (plotted with
red color) and all approximations (plotted with blue) as a function of y. Panels (e)-(f) show the percentage deviation(plotted with blue) of approximations
with exact solution. The maximum percentage deviation(dmax) for each approximation is given in respective subplots. Here, black line represents the
approximation with zero deviation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. C.11. Comparison of approximation D1ðyÞ and D2ðyÞ with exact solution. (a) and (b) shows the exact solution of DðyÞ (plotted with red color) and
approximated (plotted with blue) as a function of y. (c) and (d) shows the percentage deviation (plotted with blue) of approximations with the exact
solution. The maximum percentage deviation (dmax) for each approximation is written. The black line at zero represents the approximation with zero
deviation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The approximations D1ðyÞ and D2ðyÞ as a function of ‘‘y”
are shown Fig. C.11. The red curve of Fig. C.11(a) and
(b) represents the exact solution of integral DðyÞ while blue
represents the approximated D1ðyÞ and D2ðyÞ. The absolute
percentage deviation of these approximations from the
exact solution is shown in Fig. C.11(c) and (d). The maxi-
mum percentage deviation shows that D1ðyÞ is less accu-
rate. Using approximation D2ðyÞ, the expression for drift
period can be written as,

sd ¼ 2pqB0R
3
e

mv2
1

LRe
1� 1

3
ðsinaeqÞ0:62

� �
: ðC:5Þ
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