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On the Boris solver in particle-in-cell simulation
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A simple form of the Boris solver in particle-in-cell (PIC) simulation is proposed. It employs an
exact solution of the Lorentz-force part, and it is equivalent to the Boris solver with a gyrophase
correction. As a favorable property for stable schemes, this form preserves a volume in the phase
space. Numerical tests of the Boris solvers are conducted by test-particle simulations and by PIC
simulations. The proposed form provides better accuracy than the popular form, while it only
requires few additional computation time. Published by AIP Publishing.

https://doi.org/10.1063/1.5051077

I. INTRODUCTION

The particle-in-cell (PIC) method'™ is one of the most
important techniques in modern plasma simulations. Solving
Lagrangian motions of many charged particles and the tem-
poral evolution of Eulerian electromagnetic fields, it can
simulate various kinetic phenomena, whose length scale is
larger than the grid size.

The particle integrator, an algorithm to advance charged
particles, is a fundamental element of PIC simulation. Since
the particle integrator is used for all the particles, its accu-
racy, stability, and computational cost have a big impact on
those of the entire simulation run. One of the most common
integrators is the Boris solver,5 also known as the
Buneman—Boris solver. It solves the particle motion in a
leap-frog manner, and the acceleration part is split into sev-
eral parts, as will be shown later. Owing to its simplicity and
reliability, the Boris solver has been used for nearly 50 years.

In addition to the Boris solver, various solvers have
been developed. For earlier ones, we refer the readers to clas-
sic textbooks'? and references therein. Recently, particle
solvers have been developed much more actively than
before.™"* Vay® has developed a solver to carefully deal
with the force balance. By splitting the integrator into the
explicit first half and the implicit second half, his solver bet-
ter deals with the E x B drift at a relativistic speed, and
therefore, it has drawn growing attention in laser physics and
in astrophysics. Pétri’ has proposed a relativistic implicit
solver, which iteratively uses a matrix-form of the Vay
solver for non-staggered timesteps. Qiang® has presented a
fast Runge—Kutta relativistic integrator, ready for the force
balance problem. Umeda® has proposed a multi-step exten-
sion of the Boris integrator. His solver effectively deals with
the gyration at a half timestep.

From the theoretical viewpoint, Qin et al.'® have
recently pointed out that the nonrelativistic Boris solver is
stable because it preserves a volume in the phase space every
timestep. This property can be examined by a simple
Jacobian matrix. Presently, the volume preservation is
regarded as a key property for stable solvers. Zhang et al."'

“Email: zenitani@rish.kyoto-u.ac.jp
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split the scheme into several substeps to discuss the volume
preservation of their solver, which appears to be another
expression of the Boris solver. Higuera and Cary'* have pro-
posed a relativistic volume-preserving solver, which
employs Vay’s characteristic velocity in the Lorentz-force
part of the Boris solver. Ripperda et al.'* extensively com-
pared a selected set of particle solvers.

In this contribution, we propose a simple form of the
Boris solver, based on an exact solution for the Lorentz-
force part. We further examine the volume preservation of
the proposed form of the Boris solver. Then, we will present
numerical tests of the Boris solvers, followed by discussion
and summary.

Il. BORIS SOLVER

First, we outline the Boris algorithm.” It handles the par-
ticle motion in the following discrete forms:

1 n

anr% —x"2 u

= 1
YR M
n+l __ ..n
m u u _ q(En-t,-% + ’Q_)IH_% « Bﬂ-‘r%)7 )
At
where the superscripts (n, n+1, ...) indicate timesteps,

u = v is the spatial part of a 4-vector, y = [1 — (v/c)?] />
=1+ (u/ c)z]l/ % is the Lorentz factor, and  is an effective
velocity. Other symbols have their standard meanings. The
action part is split into the Coulomb force for the first half
timestep, the Lorentz force for the entire timestep, and the
Coulomb force for the second half

u =u"+¢eAr, 3)

+ o —
u Atu _ % (’l_)n+% « Bn+%)7 4)
wt = ut 4 g, (5)

where € = (¢/2m)E"*3,u~ and u' are two intermediate
states. Hereafter, we denote the field quantities E™? and
B"iatn=n —1—% as E and B for brevity. Since Eq. (4) is an
energy-conserving rotation in the momentum space, the

Published by AIP Publishing.
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Lorentz factor is set to be constant during the operation, y~
= y*. The phase angle in the rotation part is

= p. (6)

The rotation is solved in the following ways:

(=tan )b, (Ta)
(= g b= Z‘IIWA; B, (7b)
U=u +u xt, (8)
u+:u*+1+t2(u’><t), 9)

where b = B/|B| is a unit vector. There are two choices in
Eq. (7). One can advance u" to u"*! by using either of the
two equation sets. Boris® presented a procedure of Egs. (3),
(6), (7a), (8), (9), and (5) in his original article. The subse-
quent textbooks'? described a simplified procedure [Egs.
3), (7b), (8), (9), and (5)], by replacing Eq. (7a) with Eq.
(7b). We call the two procedures the Boris-A solver and the
Boris-B solver, respectively.

Although we do not describe in detail, the Boris-A
solver accurately handles the rotation. As a result of the
replacement [Eq. (7a) — Eq. (7b)], the Boris-B solver
approximates the rotation, as illustrated in gray in Fig. 1.
There is always a delay in the gyrophase angle”

50—0—2arctan§—0<50 —@0 + - > (10)

Thus, the Boris-B solver is an approximate form of the origi-
nal Boris solver (the Boris-A solver). Despite this, owing to
its simplicity and computational cost, the Boris-B solver is

widely used. Scientists often indicate the Boris-B solver sim-
ply by “the Boris solver.” Equations (7a) and (7b) differ by a

factor of tan (g) / (g) Therefore, the Boris-A solver is

FIG. 1. Schematic diagram for the Lorentz-force part of the Boris solvers.
Procedures by the Boris-C solver (in black) and by the Boris-B solver (in
gray) are illustrated. There is an error in the phase angle (60) in the Boris-B
solver.
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sometimes referred to as the Boris solver with a gyrophase
correction factor.'?

lll. EXACT GYRATION SOLVER

To avoid the phase error in the Boris-B solver, one can
use the Boris-A solver. Here, we propose another expression.
We propose the following rotation procedure based on an
analytic solution:

uj = (u" - b)b, (11)

ut =u +(u —wu)cosO+ (u” x b)sin0. (12)
This is illustrated in black in Fig. 1. Then, one can advance
the particle by Egs. (3), (6), (11), (12), and (5) in a time-
reversible manner. We call this the Boris-C solver. In prac-
tice, we use a threshold ¢, in |B|* = max(B?,¢), to avoid
dividing by zero. This does not cause a significant error in
the B — 0 limit.

The Boris-C solver provides second-order accuracy. The
splitting into the Coulomb-force part [Egs. (3) and (5)] and
the Lorentz-force part [Eqgs. (11) and (12)] is equivalent to
an operator splitting, also known as the Strang splitting.m’15
The Strang splitting gives second-order accuracy if each
operator maintains more than second-order accuracy. In this
case, since both of the two parts give exact solutions, the
resulting scheme should have second-order accuracy.

One can also prove the second-order accuracy in a
straightforward manner. In the constant fields, the second-

order expansion of the new state u"*! is
't =" i A+ 2u”At2 + O(AP), (13)
where
_4q
=—(E+v xB), (14)
m
. q q u u-u
= E(v X B) = p <;— y3c2u> x B

2
E B -E
:(1>< tux —”32u)><3. (15)
m y yals
Following the Boris procedure, we find

T =u"+eAt, (16)

=u

Y
m
Ll
2

(v™ x B)At

” XB) xB}Atz+O(Ax3)+~-,

a7
u™l = ut 4 gAr (18)
In Eq. (17), the Lorentz-force part is expanded for u~, simi-

lar to Egs. (13)—(15) but with E = 0. Although the Boris-C
solver accurately solves the third and higher-order terms in
Eq. (17), we focus on the terms up to second-order.
Importantly, Eqgs. (16) and (18) do not contain second or
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higher-order terms, O(A#?), because the solver already gives
an exact solution for the Coulomb-force part. From Eq. (16),
we obtain first-order expansions of the following variables:

1 q qu'-E 0\
v :; <u Jr%EAZ) (1 +WAI+ O(Af ))

71 q un E n
="+ <E— o )At—l—(’)(Atz),

2my
(19)

q 2u" - E 5
= E———u" |At+ O(Ar). 20
: y+2my( - ) LOMR). Q)

Substituting Egs. (19) and (20) into Egs. (16)—(18), one can
obtain an expanded form of the Boris-C solver, utl ="
+ -+ O(A#). The first and second-order coefficients are
identical to those of the Talyor expansion [Eq. (13)—(15)] for
u = u". This proves that the Boris-C solver has second-order
accuracy.

As a theoretical property, we examine the volume pres-
ervation'® of the Boris-C solver. This discussion holds true
for the Boris-A solver as well because both methods accu-
rately solve the rotation. We consider the temporal evolution
of a phase-space volume by splitting the Boris-C solver to
the following substeps:'' We consider half-adjusted posi-
tions x” and x” * '. R stands for a 3-D rotation matrix

At n
I =yt E%’ u'=u", (21)
Y
2 xXr=x" u =u'+ el (22)
3. xn+% — xn+%7 u+ — Ruf, (23)
4 Y=y ot =t A, (24)
1
oot oy A 1l
50 T =x" +7’/"“ , U =u". (25)

We evaluate the Jacobian J, for the k-th substep

axnew 8xnew
new o new yold  Hyold
Jp = [2EF )| | O o
8()&‘01‘1, uald) ou"”  ouw
axold 8uold
From Egs. (21)—(25), we obtain
ox"" I 0
Ji=Js= ould | =1, Jy=Jsg=|0u"" =1,
0 1 Oxold
(27)
1 0
aunew
Js = |owe ower | = S0, (28)
C’)xold auold u

The third step [Eqgs. (23) and (28)] corresponds to a
y-dependent rotation, i.e., 0 oc 7!, In this case, we confirm
J3 = [0(u"")/d(u)| = 1 as shown in Appendix A. Thus,
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we obtain J; =1 for k = 1...5. This indicates that the solver
preserves a volume in the phase space every substep.
Therefore, the Boris-C solver is volume-preserving during
the entire step from (¥, v") to (x"!, v"*1).

For comparison, we examine the volume preservation
for the nonrelativistic fourth-order Runge—Kutta method in
Appendix B. The phase-space volume is not preserved in
this case, Jrgq # 1.

IV. NUMERICAL TESTS

In order to see the accuracy, stability, and performance
of the Boris solvers, we have carried out four numerical tests.
First, to check the accuracy, we have carried out test-particle
simulations in a uniform electromagnetic field. Physics
parameters are set to m=1, g=1, ¢=1, and u(r=0)
= (1,0,0). The time interval, the timestep, and the numeri-
cal threshold are set to 0 <t < 12/n, At =7/6, and ¢,
= 10%°. We consider five configurations, as shown in
Table I. The first case corresponds to direct acceleration by
the electric field. A weak magnetic field is imposed in the
second case, but the electric field is still dominant. The third
is a special case of E L B and |E| = |B|. The fourth case cor-
responds to the E x B drift. The drift is slightly modulated
by the relativistic effect. The last case corresponds to gyra-
tion about the magnetic field. In each cases, we evaluate an
error in 4-vector to a reference value, du = u — u,;. For
cases 1 and 5, we employ analytic solutions as reference
values. For cases 2-4, we refer numerical results with a
small timestep At = 1/240 because we do not know ana-
lytic solutions as a simple function of 7. The numerical ref-
erence values are checked by analytic solutions in other
forms.'®!7

Figure 2(a) shows temporal evolution of errors |ou|/|u|
in our test-particle simulations. The dotted lines represent
the results by the Boris-B solver, whereas the solid lines rep-
resent the results by the Boris-C solver. The results by the
Boris-A solver are not shown because they are essentially
the same as those by the Boris-C solver. In case 1 (in red),
the Boris-B and Boris-C solvers use the same parts [Egs. (3)
and (5)], and their results are identical. The two solvers give
accurate results because Egs. (3) and (5) give an exact solu-
tion for the linear acceleration by E. In cases 2 and 3 (in
magenta and in orange), the two solvers give similar results.
The curves drop because |ou| does not grow and || increases
in time. In case 4 of the Ex B drift (in green), the Boris-C
solver drastically improves the results. It reduces the error by
two orders-of-magnitude, as indicated by the green arrow.
The error by the Boris-B solver grows in time because the

TABLE L. Field settings for test-particle simulations.

# B E

1 (0,0,0) (1,0,0) Direct acceleration by E
2 (0,0,0.1) (1,0,0) E-dominated

3 (0,0,1) (1,0,0) |E| = |B|

4 (0,0,1) (0.1,0,0) E xB drift

5 0,0,1) (0,0,0) Gyration about B
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FIG. 2. (a) Time evolution of numerical errors |0u|/|u| in test-particle simulations. The dotted lines indicate the results by the Boris-B solver, whereas the solid

lines indicate the results by the Boris-C solver. The timestep is fixed to A7 = 7/6. (b) Maximum errors (|ou|/|u|)

phase error |du| =~ |u|60 = 60 accumulates. On the other
hand, the error by the Boris-C solver remains small. The
repeated drop corresponds to the gyroperiod. Since the
Boris-C solver exactly solves the phase, the solid curve
repeatedly shows the same pattern, and it does not grow fur-
ther. In case 5 of gyration (in blue), the error by the Boris-B
solver linearly grows in time (o< #) because of the accumula-
tion of the phase error. In contrast, the Boris-C solver gives
accurate results, as we have expected.

Figure 2(b) presents maximum errors (|ow|/|u]) .y
during 0 <7< 127 as a function of the timestep, Ar = 7/60,
1t/20, ©/6, and 7/2. The results demonstrate the second-order
accuracy of the solvers. As evident in cases 1-3, the Boris-C
solver is as good as the Boris-B solver when |E| = |B|. As
the electric field dominates, the errors decrease, and then,
they give accurate results in case 1 (red line). When
|B| = |E|, the two solvers give different results. In cases 4
and 5, the Boris-B solver remains moderately good (the
green and blue dotted lines). From Eq. (10) and using
7 = /2, one can estimate the curve in case 5, |ou|/|u|
~ (121/A1)00 = (n/v/8) A%, in agreement with the blue
dotted line. In contrast, the Boris-C solver produces drasti-
cally smaller errors than the Boris-B solver, even though it
maintains the second-order accuracy. As the magnetic field
dominates, the errors decrease, and then, the solver gives
accurate results in case 5 (blue solid line). In the bottom part
in Fig. 2(b), the errors in the two exact cases probably come
from a machine error. For example, for case 3, if an error of
O(107'%) in double precision floating numbers is accumu-
lated every timestep, the total error would be |du|/|u|
<1075 x (12n/At) ~ 10733Ar7!, in consistent with the
blue line. The error in case 1 (red line) is even smaller
because of larger |u|.

As a second numerical test, we evaluate the long-term
stability of the particle solvers. We have run a code in the
following field, as was done in Ref. 10:

during 0 < 7 < 127 as a function of Ar.

max

B=(>+y)"e., ¢=001>2+y)"2 (29
The initial conditions are u(r=0) = (0.1,0.0), x(r=0)
= (0.9,0,0), m = ¢ = 1, and At = 7/ 10. Figure 3 shows the
trajectories at (a) an initial stage and at (b) a late stage by
the Boris-C solver (in blue) and by the fourth order
Runge—Kutta solver (in gray). From the beginning, the par-
ticle undergoes a fast small-scale gyration and a slow large-
scale rotation due to the VB drift and the E x B drift. The
large-scale drifts keep the particle in the same domain,
and then, we inspect the evolution of the trajectory. After a
long time (300th turn; t~2 X 105), as evident in Fig. 3(b),
the Runge—Kutta solver dissipates the small-scale motion
and the relevant kinetic energy. This is because the
Runge—Kutta solver is not volume-preserving, at least in
the uniform fields in the nonrelativistic regime (Appendix
B)., and quite likely so in generic relativistic cases. In con-
trast, the Boris-C solver is free from the numerical damp-
ing, similar to the Boris-B solver (not shown). This
numerical experiment demonstrates that the Boris-C solver
does preserve the phase-space volume for the small-scale
gyration over a long time.

1.0

(b) 300th turn

Boris-C _g4 3
T

FIG. 3. Particle trajectories by the Boris-C solver during (a) the initial stage
and (b) the late stage. A trajectory by the RK4 solver is overplotted in gray
in (b) the late stage.
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As a third numerical test, to compare computational
costs, we have run case 5 in Table I until r=2 x 107 =
(1.2 x 10® steps) by only advancing the particle velocity.
Average elapse times are proportional to 1.46:1:1.24 for the
Boris-A, B, and C solvers on our PC (Intel processor) and
1.46:1:1.26 on FX100 computer (SPARC processor) at Japan
Aecrospace Exploration Agency (JAXA). While performance
depends on implementation, compilers, and CPU architec-
tures, the Boris-C solver runs faster than the Boris-A solver,
and it runs only 25% slower than the Boris-B solver.

As a final test, we have carried out PIC simulations of a
physics problem on magnetic reconnection. The settings are
documented in Ref. 18, and therefore, we do not repeat them
here. Comparing average elapse times, we have found that
the Boris-C solver is slower than the Boris-B solver by 1.2%
on the XC50 supercomputer (Intel processor) at the National
Astronomical Observatory of Japan and by 3.3% on the
FX100 computer (SPARC processor) at JAXA.

V. DISCUSSION AND SUMMARY

As already discussed, the Boris-C solver is a combina-
tion of the two exact solvers for the Coulomb-force part and
for the Lorentz-force part, while the Boris-B solver is based
on the exact Coulomb-force solver and a second-order solver
for the Lorentz-force part. From the viewpoint of operator-
splitting, in both cases, the combined solver maintains
second-order accuracy because each part has second-order
accuracy. This is evident in Fig. 2(b). Since the Boris-C
solver better deals with the Lorentz-force part, the amplitude
of the second-order error is much smaller than in the Boris-B
solver, in particular in the |B| = |E| cases. The Boris-B solver
gives a second-order error in phase [Eq. (10)]. Other second-
order solvers, such as the Higuera—Cary solver and the
Umeda solver, could suppress the total error by better solv-
ing the phase.”'*'? In this line, the Boris-C and A solvers
provide the best possible results because they give no phase
error in phase.

We have formally proved that the Boris-C solver pre-
serves a volume in the phase space during the temporal evo-
lution, and then, we have confirmed that it preserves the
small-scale gyration after a long-time computation. The vol-
ume preservation of the popular Boris-B solver has been
extensively studied;'®'? however, it has never been evalu-
ated in the Boris-A or C solvers. Since the Boris-C solver is
simple, the proof is given straightforwardly. This gives fur-
ther confidence to the reliability of the Boris-C and A
solvers.

Many scientists prefer the Boris-B solver to the Boris-A
solver because of the low computation cost. In fact, accord-
ing to the numerical test, the Boris-A solver is 46% more
expensive than the Boris-B solver. Since the Boris-C solver
employs simple expressions, it is more favorable than the
Boris-A solver. The Boris-C solver gives 25% in test-particle
simulations. Obviously, the conventional solvers (the Boris-
A and Boris-B solvers) tried to avoid trigonometric functions
which were expensive at that time. Presently, these functions
are not so expensive as they used to be, and therefore, the
Boris-C solver runs adequately fast. In PIC simulations, the

Phys. Plasmas 25, 112110 (2018)

Boris-C solver runs slower only by 1%-3% in PIC simula-
tions. Typically, the particle integrator and the electric cur-
rent calculator account for most of the computation time,
and they consume an equal amount of time. Then, largely
due to memory-access performance, the particle integrator
does not run at full speed. If we assume that it runs at 50%
efficiency, the particle integrator is responsible for 25% of
the computation time. Then, the 25% slow-down in the parti-
cle integrator should result in 6% slow-down in the entire
run. We have observed 1%—-3% in our PIC simulations, prob-
ably because our code runs less efficiently, but the results are
reasonable. The computational cost can be easily compen-
sated by employing a larger At.

From the viewpoint of the stability, we usually keep the
timestep small, m, At < 2, where @y, is the maximum
frequency to resolve.” Nevertheless, in PIC simulation, the
magnitude of the magnetic field may instantly approach or
exceed the }%At = 2 criteria, and so, it is useful to check the
stability for a large Ar limit. The Boris-B solver delays the
gyrophase [Eq. (10)], and then, the angle never exceeds ,
i.e., 0 < m. The particle eventually moves back-and-forth.'?
The Boris-A and Boris-C solvers have no such limitation.
They simply allow particles to gyrate more than 7, although
it leads to an opposite gyration. Meanwhile, the Boris-A
solver needs some care for § ~ m, where Eq. (7a) is unde-
fined or approaches *=oo. Therefore, the Boris-B and Boris-
C solvers are safer choices among the three.

Finally, we note that there has been continual progress
in developing relativistic symplectic solvers.?*~>* In fact, the
symplectic algorithms®*~2° are favored in many applications,
owing to their long-term accuracy. However, the symplectic
schemes are often implicit and computationally expensive,
while the number of explicit symplectic solvers for relativis-
tic charged particles in arbitrary electromagnetic fields is
limited.”*** In addition, it was reported that volume-
preserving solvers are sometimes more accurate than sym-
plectic solvers.”” Considering these issues, it will take some
time before symplectic solvers will be popular in relativistic
PIC simulations. Meantime, it is important to improve the
second-order Boris solvers, which have an advantage in
computational efficiency and which are proven to be
reliable.

In summary, we have proposed a simple form of the
Boris solver, based on the exact solution for the Lorentz-
force part. It is equivalent to the Boris solver with a gyro-
phase correction. It has a favorable property of preserving
the phase-space volume, and therefore, it appears to be sta-
ble. The proposed form gives much more accurate results
than the popular form (the Boris-B solver), while it only
requires few additional computation time. We hope that the
proposed form will be a good alternative to the conventional
Boris solvers.
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APPENDIX A: JACOBIAN FOR RELATIVISTIC
GYRATION

Without losing generality, we consider a gyration about
B = (0,0, B). Then, the rotation procedure is expressed as

0o . Oy
Uy COS — + Uy SIn —
Y Y

0y |, (AD

unew — Ru — ) 00
—Uy SIN — + Uy, COS —
Y

u;

where 0y = (¢BAt)/m. Considering

8%{ (%) - 908%((1 + (ufe)’)”

0o
-5

ol—

ue, (A2

new

we obtain a Jacobian matrix for u — u

0 0
cos = — fufiuy  sin — —fofitty  —fofiu:
Y Y
8(unew) _ 0 0
Ow) | sin "~ fufae cos 2 fifuy ~fifau
0 0 1
(A3)
where
0o
Jfo= 7}377
.o 0
fi = —uysin — + uy, cos —, (A4)
Y Y
0, 0
> = —u,cos R iy sin 2.
Y b
From Egs. (A3) and (A4), some algebra leads to
8(ul‘l("w’)
—| =1 AS
% A

APPENDIX B: VOLUME PRESERVATION FOR THE
RUNGE-KUTTA METHOD

Here, we focus on a simple case of nonrelativistic particle
motion in a uniform magnetic field. The fourth-order Runge—
Kutta method advances a particle in the following way:

1
oM = Uy + — (k1 + 2ky + 2ks + ka) At (B1)

6
ki =v, X o+ €, (B2)
1
k, = (vn + 2k1At> X o + €, (B3)
1
ky = ('vn + Eszt> X o+ €, (B4)
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k, = ('U,, + k3Al) X o + €, (BS)
where @ = gB/m and € = gE/m. We obtain new states

1
v =, + (v, x a)—|—e)At—|—§((’vn X o+ €) x 0)Af

+%(((vn X &+ €) X ) x @)AL

+%((((vn X o+ €) X 0) X ) X 0)Ar*, (B6)

1
X" = x, v, A+ 3 (vp X @ + €) A

1
+§((vn X o+ €) X 0)AP

+%(((’Un X 0+ €) X ) X o)At (B7)

In a uniform field, the Jacobian for the Runge-—Kutta
method is

axn+1
1
a(xn+17 ,Un+l> 81;” 8’Un+1
Jrk4 = ‘78(#’,'0”) PYRTES Rl e (B8)
ov"

Without losing generality, we consider the case of B
= (0,0, B). Then, the Jacobean Jg4 is given by

1 , 1 . 1 X
1 3 (wAr)” + 7 (wAY) (wAr) + G (wA?) 0

1 ) 1 , 1 .
(wAr) 6(wAt) 1 2(coAt) +24 (wAr)" 0

0 0 1

—1— L wan® & (wAn®
=1 7 (wAr) +576 (wA?)”. (B9)

In the parameter range of our interest, (wAf) < 1, one can
see that the phase-space volume shrinks: Jriy < 1.
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