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The motion of a charged particle in the field of a magnetic dipole is studied by numerically
integrating the equations of motion. The widely believed picture in which a bound particle
corkscrews about a line of magnetic flux, bouncing back along the same line as it nears the
poles, is shown to be a substantial over-simplification. The nature of the trajectory depends
on the energy of the particle, but whatever the energy this picture is not observed. For low
energies the particle will corkscrew towards the poles, while at the same time drifting laterally
with a variable speed in a quasiperiodic fashion. For intermediate energies the motion is found
to be chaotic, and for higher energies it becomes hyperchaotic. In the equatorial plane only
quasiperiodic orbits can occur. If the magnetic dipole moment is slowly varying, the particle
undergoes chaotic motion even in the equatorial plane, but only for high energies.

1. Introduction

In 1896 Poincaré [1896] published a work explain-
ing a phenomenon that was puzzling contemporary
physicists. The experiment involved the effect of a
magnetic field on cathode rays. A long thin mag-
net was placed in front of the screen, parallel to
the oncoming beam. The beam converged, and if
the magnet was suitably placed, was brought to a
sharp focus, causing the glass to melt in some cases.
What also surprised these observers was that the
effect is the same when the polarity of the magnet
is reversed.

Poincaré explained the phenomenon by analyz-
ing the motion of a charged particle in the field of a
magnetic monopole (the far end of the magnet be-
ing, he realized, irrelevant to the problem). Solving
the equations of motion, he found that the particle
followed a geodesic path on a circular cone with its
apex at the monopole. As the particle approaches
the monopole, it spirals around, in a direction that

depends on the sign of the electric charge and the
direction of the monopole field. After reaching a
point of closest approach, it returns along a trajec-
tory that is the mirror image of the incoming one.
If the screen is at (or near) this point, a broad beam
will be brought to a focus. (Incidentally, this is very
easy to demonstrate in the laboratory.)

Poincaré’s result inspired Störmer [1955] to ex-
amine the motion of a charged particle in the field
of a magnetic dipole. This is a much more diffi-
cult problem, and an analytic solution, for arbitrary
initial conditions, is unknown. Since the magnetic
field of the Earth resembles a dipole field, Störmer’s
problem sheds light on the behavior of cosmic rays,
the dynamics of ions in the upper atmosphere, the
structure of radiation belts, and the polar aurora
[Störmer, 1955; Rossi & Olbert, 1970].

If the initial position and velocity of the charge
lie in the equatorial plane, the subsequent motion
will remain in that plane, and we represent the tra-
jectory using the natural coordinates r (the distance
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266 O. F. de A. Bonfim et al.

Fig. 1. The meridian plane and definition of coordinates.
The magnetic dipole m is at the origin.

from the axis) and φ (the azimuthal angle). If the
motion is not confined to the equatorial plane, it
is customary to suppress the φ dependence and de-
scribe the trajectory in terms of r and z (see Fig. 1).
We shall call this “motion in the meridian plane”,
but it is important to remember that the meridian
plane itself rotates as the particle moves, so that
its azimuthal angle matches the particle’s instanta-
neous value.

One of the important results obtained by
Störmer, was that for trajectories confined to the
equatorial plane the radius of curvature at any point
is proportional to the cube of the distance from
the dipole. Recently, Willis and coworkers [Willis
et al., 1997] extended Störmer’s result by de-
riving a general equation for the curvature of
an arbitrary trajectory in any multipole field.
But the complete characterization of particle tra-
jectories in Störmer’s problem remains a sig-
nificant challenge. Many interesting properties
of periodic orbits have been identified [Avrett,
1962; Mavraganis, 1975; Markellos et al., 1978;
Markellos & Klimopoulos, 1977; Markellos &
Halioulias, 1977; Bayrov & Ogorodnikov, 1977;
Willis et al., 1997]. Markellos and coworkers
[Markellos et al., 1978] found a number of fami-
lies of periodic orbits in the meridian plane (some
symmetric and others asymmetric), and proved the
existence of an infinite number of families with
simple-periodic oscillations (i.e. orbits that cross the
equatorial plane twice). Also, a general method has
been developed [Bayrov & Ogorodnikov, 1977] for
determining the boundaries of the forbidden zones
for motion starting in the equatorial plane. A de-
tailed description of bounded and unbounded mo-
tion can be found in [Rossi & Olbert, 1970].

The purpose of this paper is to characterize the
bounded nonperiodic trajectories in Störmer’s prob-
lem. Specifically, we would like to know whether the
nonperiodic motion is chaotic, and for what condi-
tions the chaotic behavior is present in both the
meridian and equatorial planes. We also show that
the familiar picture used for explaning the polar au-
roras, based on the trajectory of a charged particle
in a dipole magnetic field, is incorrect.

2. Motion in the Meridian Plane

Consider a particle of electric charge q and mass M
in the presence of a dipole magnetic field B. The
force on the electric charge, moving with velocity
v, is given by the Lorentz law:

F = q(v ×B) . (1)

The dipole magnetic field can be written as:

B =
µ0

4π|x|3 [3(m · R̂)R̂−m] , (2)

where m = mẑ is the dipole moment (chosen to be
at the origin and pointing in the positive z direc-
tion), and R is the (vector) position of the particle.

There are two constants of the motion. Since
magnetic forces do no work, the particle’s speed
never changes, so the kinetic energy is constant.
And because of the rotational symmetry about the
axis, the z-component of the total angular momen-
tum is constant:

Lz = Mr2
dφ

dt
+
Ar2

R3
, (3)

where R ≡
√
z2 + r2, and A ≡ µ0mq/4π. In

Eq. (3), the first term represents the mechanical
angular momentum of the particle and the second
is the angular momentum of the fields [Rossi &
Olbert, 1970; Griffiths, 1992]. (Conservation of Lz
is easily proved by examining the φ̂ component of
Newton’s second law, using (1) and (2).)

It is convenient to define a characteristic length
r0 ≡ A/Lz; the kinetic energy of the particle is then:

E ≡ 1

2
Mv2 =

1

2
M(ṙ2 + ż2 + r2φ̇2)

=
1

2
M(ṙ2 + ż2) + Ueff , (4)

where the “effective potential” is:

Ueff(r, z) ≡ A2

2M

(
1

rr0
− r

R3

)2

. (5)
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The φ̇ dependence has been eliminated, leaving us
with the two-dimensional problem of finding the
motion of a particle in the meridian plane (r, z),
subject to the effective potential Ueff. The remain-
ing equations of motion are:

d2r

dt2
= − 1

M

∂Ueff

∂r

=
A2

M2

1

r

(
1

rr0
− r

R3

)(
1

rr0
+

r

R3
− 3r3

R5

)
, (6)

d2z

dt2
= − 1

M

∂Ueff

∂z
= −3A2

M2

rz

R5

(
1

rr0
− r

R3

)
. (7)

The motion is limited by boundaries where the
speed in the meridian plane vanishes (ṙ = ż = 0),
so that Ueff = (1/2)Mv2, or

1

rr0
− r

R3
= ±Mv

A
. (8)

At the boundaries the motion is purely azimuthal.
For numerical studies it is convenient to mea-

sure length in units of r0 and time in units of
t0 ≡Mr30/A— or, what amounts to the same thing,
to set r0 and t0 equal to 1. (Both r0 and t0 can in
principle be negative, but we shall restrict our at-
tention to the positive regime.) In this notation,
the equations of motion assume the dimensionless
form

d2r

dt2
=

1

r

(
1

r
− r

R3

)(
1

r
+

r

R3
− 3

r3

R5

)
, (9)

d2z

dt2
= −3

rz

R5

(
1

r
− r

R3

)
, (10)

and the boundary is defined by

1

r
− r

R3
= ±v . (11)

The trajectories were found by numerically in-
tegrating Eqs. (9) and (10), using a fourth-order
Runge–Kutta routine, with step lengths δt rang-
ing from 10−4 to 10−2. For initial conditions
(ri, ṙi, zi, żi) the speed is given by

v2 = ṙ2i + ż2
i +

(
1

ri
− ri

R3
i

)2

. (12)

In the study of the phenomenon of polar auro-
ras, it is often asserted that electrons moving to-
wards the Earth are captured by the Earth’s mag-
netic field and tend to become attached to the field

lines, spiraling about them as they move towards
the poles. These electrons eventually produce the
aurora, by collisions with the molecules of air in
the neigborhood of the poles. However, our numer-
ical calculations revealed a quite different picture.
First, the trajectories of the electrons are strongly
dependent on their energies. Second, the trajecto-
ries of the electrons never track a single field line.
Finally, we argue that only electrons with relatively
high energies are able to produce the auroras.

Let us first consider the situation for low en-
ergies. In Fig. 2 we depict the trajectory of a
particle under the initial conditions (1, v cos(π/6),
0, v sin(π/6)), with v = 0.045. Here the initial
velocity makes a 30◦ angle with the equatorial
plane. The particle does not track a single line
of the magnetic field; instead, it spirals towards
one of the poles while drifting laterally. (Other
mechanisms leading to lateral drift have been
proposed, including gravitational perturbations
[Chandrasekhar, 1960].) The drift velocity of the
particle is not constant, since it depends on its ra-
dial position as prescribed by Eq. (3). In the regime
of low energies, the particle never reaches the poles;
it bounces back and forth in the neighborhood of
the equator. Moreover, most of the particles coming
from the Sun arrive at Earth in a direction nearly
parallel to the equator, with a small velocity per-
pendicular to the equator. Also, from the bound-
ary equations [Eq. (11)], the region for the allowed
bound state trajectories is very small, for low en-
ergy particles, leaving them with small probability
of being captured by the magnetic field. Finally,
the energies of the captured particles may not be
high enough to produce molecular excitation of the
air molecules in the visible region of the spectrum.
Therefore, one might conclude that the low energy
particles are not responsible for the appearance of
the aurora.

In the case of higher energies the picture
is entirely different. Consider the situation
shown in Fig. 3, where the initial conditions are
(1, v cos(π/6), 0, v sin(π/6)), the same as Fig. 2, ex-
cept that now the velocity is five times larger (that
is, v = 0.225). First, the trajectory of the particle
no longer spirals when it moves towards the poles.
In fact, the motion is rather irregular, with the par-
ticle moving about the dipole in an apparently ran-
dom manner. This irregular motion is found to be
insensitive to the direction of the initial velocity. It
turns out that as the energy of the particle increases
we observe a transition from a quasiperiodic to a
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Fig. 2. Actual trajectory of a charged particle moving in
the field of a magnetic dipole. The initial conditions are
(r, ṙ, z, ż) = (1, v cos(π/6), 0, v sin(π/6)), where v = 0.045.
The particle remains in a region around the equator and never
reaches the poles.

Fig. 3. Actual trajectory of a charged particle trapped in
the field of a magnetic dipole. The initial conditions are
(r, ṙ, z, ż) = (1, v cos(π/6), 0, v sin(π/6)), where v = 0.225.
The particle visits the poles in a chaotic manner.

chaotic regime, and as the energy increases further
we encounter a transition from a chaotic to a hy-
perchaotic regime. Particles with high energies are
responsible for the appearance of the polar auro-
ras, since they are easily able to reach the poles,
have greater probability of capture by the Earth’s
magnetic field, and have enough energy to produce
molecular excitation, through collisions, in the vis-
ible region of the spectrum.

(a)

(b)

(c)

Fig. 4. Charged particle trapped in the field of a magnetic
dipole. Typical motion in the meridian plane. The initial
conditions are (r, ṙ, z, ż) = (1, 0, 0, 0.225). (a) Trajectory
in the (r, z)-plane. (b) Poincaré section in the (r, ṙ) plane
for z = 0 and ż > 0. (c) Power spectrum (arbitrary units)
obtained from the time series of z(t).

We now show how the motion is characterized
for the case of very high energies. In Fig. 4(a)
we used initial conditions (1, 0, 0, 0.225) (in this
case v = żi = 0.225). The motion is apparently



Chaotic and Hyperchaotic Motion of a Charged Particle 269

ergodic; that is, the trajectory of the particle even-
tually fills in the bounded region. The particle tends
to get “trapped” in the tips of the crescent, before
it reverses its direction and returns to the oppo-
site pole (these regions are responsible for the po-
lar aurora). The motion can be characterized by
plotting (for example) the intersection of the phase
space trajectory with the plane z = 0, at points
where the z-component of the velocity is positive.
Such a “Poincaré section” is shown in Fig. 4(b).
The scattered distribution of the points suggests
that the motion is chaotic. This is confirmed by
the broad-band power spectrum shown in Fig. 4(c).
The Fourier analysis was done using the time series
for r(t), sampled at equal time intervals ∆t = 0.01.
In fact, using the method described in [Rangarajan
et al., 1998], we find the Lyapunov exponents to
be λ = (0.33, 0.12, −0.10, −0.35). The existence of
two positive Lyapunov exponents indicates that the
motion is hyperchaotic.

The sum of the Lyapunov exponents measures
the fractional rate at which a volume V in phase
space expands or contracts under the action of the
flow [Bergé et al., 1986]:

1

V

dV

dt
=
∑
i

λi .

In conservative systems, such as this one, the vol-
ume remains constant (the divergence of the flow is
zero), so the sum of the Lyapunov exponents must
vanish, as indeed our numerical results confirm.

3. Motion in the Equatorial Plane

For motion in the equatorial plane it is simpler to
use Cartesian coordinates; the equations of motion
are:

d2x

dt2
= − A

M

ẏ

r3
, and

d2y

dt2
=

A

M

ẋ

r3
, (13)

or, in dimensionless form,

d2x

dt2
= − 1

r3
dy

dt
, and

d2y

dt2
=

1

r3
dx

dt
. (14)

where r ≡
√
x2 + y2. In this case conservation of

energy (4) says

1

2
Mv2 =

1

2
Mṙ2 + Ueff , (15)

with the effective potential

Ueff(r) =
A2

2Mr2

(
1

r0
− 1

r

)2

. (16)

The motion is bounded at ṙ = 0, which is to say
(with r0 = t0 = 1)

1

r

(
1− 1

r

)
= ±v . (17)

Evidently the range of r is

1

2v
[
√

1 + 4v − 1] ≤ r ≤ 1

2v
[1−
√

1− 4v] (18)

(there is a second allowed range, r ≥ (1/2v)[1 +√
1− 4v], but this corresponds to unbounded

trajectories).
For initial conditions (xi, ẋi, yi, ẏi), the speed

is (of course) v =
√
ẋ2
i + ẏ2

i . Figure 5(a) shows the

trajectory for initial conditions (0, 0, 1, 0.225); in
this case v = 0.225 and the motion is confined to
the range 0.841 ≤ r ≤ 1.519. The trajectory even-
tually fills in this region, but unlike before there
is an obvious structure to the orbit; the Poincaré
section [Fig. 5(b)] yields points that lie on a dis-
tinct curve, and the power spectrum [Fig. 5(c)] ob-
tained from the time series of x(t) reveals a se-
quence of well-defined peaks, indicating that the
motion is quasiperiodic. Indeed, the motion de-
fined by Eqs. (13) and (14) can never be chaotic.
Although the phase space is four-dimensional, the
existence of two constants of the motion (kinetic
energy and the z-component of angular momen-
tum) effectively reduces the dimensionality to two,
hence the system cannot be chaotic. A dynami-
cal system must be described by at least three au-
tonomous first-order differential equations in order
to support bounded chaotic orbits [Hilborn, 1994;
Drazin, 1993]. However, the introduction of a time-
dependent perturbation in the magnetic dipole mo-
ment can induce chaotic behavior. Specifically, let
m → m(1 + ε cos(ωt)). For low energies, even in
the presence of an oscillating magnetic dipole, the
motion of the particle remains quasiperiodic. How-
ever, as the energy of the particle is increased, we
observe a transition from quasiperiodic to chaotic
behavior. The inclusion of a time-dependent mag-
netic field increases the dimensionality of the flow
by one, thus fulfilling the requirement for a system
to be chaotic. This is a necessary condition, but by
no means implies that the system will behave chaot-
ically in the presence of a time-dependent magnetic
dipole field. In fact the system remains quasiperi-
odic for low energies whether a fluctuating mag-
netic field is present or not. In Fig. 6(a) we show
the trajectory when ε = 0.2 and f = ω/2π = 0.01
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(a)

(b)

(c)

Fig. 5. Charged particle moving in the field of a magnetic
dipole. Typical motion in the equatorial plane. The initial
conditions are (x, ẋ, y, ẏ) = (0, 0, 1, 0.225). (a) Trajectory
in the (x, y)-plane. (b) Poincaré section in the (y, ẏ)-plane
for x = 0 and ẋ > 0. (c) Power spectrum obtained from the
time series of x(t).

(this frequency is about one tenth the smallest nat-
ural frequency of the unperturbed system, so the os-
cillations are relatively slow; the initial conditions
are the same as in Fig. 5). The Poincaré section

(a)

(b)

(c)

Fig. 6. Typical motion in the equatorial plane with an os-
cillatory perturbation in the dipole moment. Same initial
conditions as Fig. 5; ε = 0.2 and f = 0.01. (a) Trajectory
of the particle. (b) Poincaré section in the (y, ẏ)-plane for
x = 0 and ẋ > 0. (c) Power spectrum obtained from the time
series of x(t).

[Fig. 6(b)] is scattered, and the power spectrum
displays strong background noise — both charac-
teristics of chaos. The largest Lyapunov exponent
is now positive: λ = (0.0021, 0, −0.0021). Notice
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that even in the presence of a time-dependent field
the system remains conservative, and hence the sum
of the Lyapunov exponents must be zero (as our nu-
merical results confirm). Incidentally, motion in the
meridian plane remains qualitatively similar to that
in Fig. 4, even in the presence of a sinusoidal pertur-
bation on the dipole moment. However, the bound-
ary of the allowed zone now fluctuates in time.

4. Conclusion

We have studied the motion of a charged particle
in the field of a magnetic dipole. In the famil-
iar naive picture, the motion of a bounded particle
becomes attached to a magnetic line, and spirals
around the line while sliding along it towards one
of the poles, and then bouces back along the same
line as it moves towards the opposite pole. The ac-
tual picture is quite different. For low energies the
motion in the meridian plane is quasiperiodic, with
the particles moving from pole to pole in a spiraling
fashion while at the same time moving laterally. As
the energy increases we observe a transition from
quasiperiodic to chaotic behavior, in which the mo-
tion changes from spiraling with lateral displace-
ment to irregular motion. With further increases in
the energy the motion changes from chaotic (where
the largest Lyapunov exponent is positive) to hyper-
chaotic behavior (where the two largest Lyapunov
exponents are positive). If the motion is confined to
the equatorial plane, the trajectories are quasiperi-
odic. However, a time-dependent perturbation of
the dipole moment can induce chaotic motion in
the equatorial plane. We observe that even in the
presence of an oscillating dipole field, in the low
energy regime, the motion of the particle remains
quasiperiodic, and it becomes chaotic only for high
energies. Qualitatively similar conclusions presum-
ably hold for the motion of a charge in the field of
a higher magnetic multipole, as long as the field is
symmetric about the z axis.

In the relativistic version of Störmer’s problem,
if radiation losses are neglected, the only modifi-
cation is the introduction of a factor γ = (1 −
v2/c2)−1/2 in the equations of motion. Since v is a
constant this is equivalent to a change in the value
of M , and in the units we have used this alters noth-
ing. Therefore, the motion is essentially the same
as the nonrelativistic case.
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