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This report presents a brief and simple introduction to the motion of charged particles in 
the  Earth's  magnetosphere.  Separated  into  three  parts,  the  first  portion  goes  over  the 
structure of the magnetosphere, including plasma regions, field morphology and general 
modeling schemes. The second section addresses the simulation of relativistic charged-
particle trajectories such as the governing equations of motion and the available motion 
solvers. Finally, the last component of this article discusses the projects, exploring wave-
particle resonances, undertaken during the UTRIP 2013 summer research program.  

Introduction
Energetic particles trapped in the Earth's magnetosphere affect our daily lives in many ways. Due to 
their  high  energies,  they  are  potentially  damaging  to  space  equipment  such  as  GPS  and 
communication satellites. Fields and currents set up by the motion of these particles are felt on 
ground power lines, causing possible disruptions in power supply. Radiation from such particles 
also pose health hazards to aircraft personnel and passengers. On the other hand, the interactions of 
these energetic particles with the Earth's ionosphere lead to dazzling aurora displays. In addition, 
these particles are also be found in outer space. Results from studies of these particles in the Sun-
Earth system might be applied to explain other astrophysical phenomena. Thus, understanding the 
source and subsequent transportation of such particles is of practical and scientific importance.

Fig. 1. Structure of the Earth's Magnetospherei



1. Earth's magnetosphere  ii  

The  Earth's  magnetosphere  is  subdivided  into 
the magnetosheath, magnetopause, magnetotail, 
plasma sheet, plasmasphere and radiation belts 
as shown in Fig. 1. These divisions are based on 
the magnetic field-lines and plasma such as their 
origins, density and energy level. For example, 
the  magnetopause  separates  the  geomagnetic 
field  and  plasma  of  Earth  origin  from  the 
interplanetary  magnetic  field  and  plasma  of 
Solar origin. Of importance to us in this article 
are the electrons in the radiation belts. They are 
of  close  proximity  to  Earth,  overlap  with  the 
geostationary orbit and energetic radiation. 

A plasma is a gas of free charged particles that 
is  electrically  neutral  due  to  it  having  similar 
numbers of positive and negative charges. In the 
case  of  low particle  densities  or  high  particle 
kinetic energies relative to the potential set up 
by  neighboring  charges,  the  influence  of  each 
particle on each other is minimal and they may 
be considered independently. 

The radiation belt is situated between 2 and 6 
Earth's radius Re (1 Re = 6371 km), with typical 
electron fluxes of 100 to 108 cm-2s-1 and energies 
of 0.1MeV to 5MeV at solar minimum. As can 
be seen from Fig. 1., the Earth's magnetic field 
in that region may be modeled as a dipole with a 
field strength varying between 100 to 1000nT.

Earth's magnetic field 
B(x,y,z) = -BoRe3(x2+y2+z2)-5[3xz, 3yz, 2z2-x2-y2] (1a)

Earth's magnetic field at the equator 
       B(r) = BoRe3r-3 (1b)

Bo  is  the  magnetic  field  strength  at  the  Earth's  surface 
measured at the equator.

Under solar wind conditions, this dipole field is 
compressed  and  in  addition  to  that  is  a 
convection electric field pointing in the dawn-
dusk direction Fig.2.

There are three general schemes to modeling the 
motion of plasma. The simplest  is  to  consider 
the  plasma  as  consisting  of  individual  and 
independent  charge  carriers  interacting  with 
background  electric  and  magnetic  fields. 

 

Fig.  2.  Earth's  Magnetosphere  showing  plasma 
trajectories and dawn-dusk directioniii

This scheme known as “Single particle motion” 
or  “test  particle  approximation”  neglects  the 
effects of other particles and the effects on the 
surrounding  fields  due  to  the  particle  in 
question.  This  is  valid  when the  test  particles 
have negligible energy density and thus do not 
affect  the  background  fields  in  a  significant 
manner. This is a reasonable approximation for 
radiation belt electrons.  

On  the  other  hand,  “Magnetohydrodynamics” 
neglects all single particle aspects and treats the 
plasma  as  a  single  conducting  fluid  with 
macroscopic  parameters  such  as  density, 
velocity and temperature. This schemes assumes 
that the plasma maintains local equilibrium and 
is  thus  used  to  study  low-frequency  wave 
phenomena. An extension to multiple fluids to 
account  for  different  species  of  particles  is 
possible. 

Lastly, the third approach known as “Kinetics” 
analyses  the  development  of  the  distribution 
function  for  a  collection  of  particles  in  phase 
space and is used to model microscopic effects 
not captured by Magnetohydrodynamics. 

2. Relativistic charged-particle motion  iv  

Single particle motion
This report focuses on “Single Particle Motion” 
since  it  is  possible  to  trace  the  trajectories  of 
charged particles in external fields just based on 
the Lorentz equation as given below. The effect 
of the Earth's gravitational field on the motion 
of these charged particles is neglected.



Relativistic Lorentz equation
d(γmv)/dt = qE(r) + qvxB(r) (2a) 
              γ = (1-v2/c2)1/2 (2b)

In addition,  many explicit  integration schemes 
have  been  developed  to  solve  the  Lorentz 
equation.  Examples  are  “Leap-frog”,  “Runge-
Kutta”  and  “Buneman-Boris”.  The  details  of 
these integration schemes will be elaborated in 
the latter half of this section. 

Solving  the  Lorentz  equation  for  charged 
particles  in  the  Earth's  dipole  field  results  in 
three types of typical particle motions: gyration, 
bounce and drift as shown in Fig. 3. 

Fig.  3.  Typical  charged  particle  motion  in  the  Earth's 
dipole magnetic fieldv

These  particle  motions  can  be  explained  both 
graphically and mathematically. 

Fig.  4.  Properties  of  Earth's  dipole  magnetic  field  and 
associated particle motionsvi.

Fig.  4.  Graphically explains the origins of the 
three  particle  motion  for  the  case  where  the 
Earth's magnetic field resemble that of a simple 
dipole. On the other hand, mathematically, three 
motion  parameters  known  as  “adiabatic 
invariants”  associated  with  these  three  typical 
particle motions can be defined. 

The magnetic moment M is associated with the 
gyration  about  magnetic  field  lines,  the 
longitudinal  invariant  J  is  associated  with  the 
bounce  motion  along  field  lines  and  the  drift 
invariant  Φ is associated with the drift motion 
around the Earth. 

Violation of the invariants,  meaning that these 
parameters  no  longer  remain  constant,  occur 
when  the  time  variations  of  the  background 
fields  are  faster  than  the  frequency  of  the 
associated  motions  and/or  when  the  spatial 
variations of background fields are shorter than 
radius of the associated motions. Changes in the 
associated motions, characteristics periods, and 
characteristics  radius  is  synonymous  with 
acceleration and deceleration.

The adiabatic invariants can be obtained via a 
closed line integral of the canonical momentum 
for the particle over one cycle of the associated 
motion. The canonical momentum for a charged 
particle in a magnetic field with vector potential 
A is  γmv + qA. 

Using Stokes' theorem,
∮A∙dl = ∫▽xA∙dS (3)

Adiabatic invariants
       J1 = ∮cyclotron-orbit(γmv + qA)∙dl

= 2πγmρv⊥ – qπρ 2 B
= (πγ2m2v⊥

2)(qB)-1

        M = (γ2mv⊥
2)(2B)-1 (4a)

        J2 = ∮bounce-orbit(γmv + qA)∙dl
= 2∫mirror-points(γmv//)dl
at mirror-point,  M = (γ2mv⊥

2)(2B)-1  = (γ2mv2)(2Bm)-1

solving for v// using v⊥
2

 = v2 - v//
2 

= 2∫mirror-points(γmv)(1-B(l)/Bm)1/2dl
= 2γmvJ (4b)

         J3 = ∮drift-orbit(γmv + qA)∙dl
= ∮drift-orbit(γmvd)dl + q∫drift-orbit(B)∙dS
≈ q∫drift-orbit(B)∙dS = qΦ (4c)

An  approximation  exists  for  particles  that 
conserve the first adiabatic invariant M. In this 
case,  the  particle's  gyro-frequency  is  much 

Gyro-motion around field line
as F = v x B → F ⊥ v, F ⊥ B  

Parallel-motion if v// is non-zero,
Bounce motion as B-field lines
concentrate near poles

Drift-motion due to decreasing
strength of B-field away from Earth



faster and gyro-radius is much smaller than the 
rate  at  which  the  background  fields  are 
changing.  This  is  known  as  the  “Guiding 
Center” approximation which treats the motion 
of  the  particle  as  revolving  around  a  moving 
guiding center as shown in Fig. 5.

Fig. 5. Gyration about the guiding centervii

In  this  case,  position  r of  the  particle  in  the 
Lorentz equation is  replaced by position  R of 
the guiding center and r = R + p. Elimination of 
higher  order  terms  results  in  the  “Guiding 
Center” drift equations.viii 

Non-relativistic Guiding-Center equations
ExB Drift:  vE = E x B / B2 (5a)
Polarization Drift:  vP = (wgB)-1dE⊥/dt (5b)
Gradient Drift:  v▽ = mv⊥

2(2qB3)-1(Bx▽B) (5c)
Curvature Drift:  vR = mv//

2 (qRc
2B2 )-1(RcxB) (5d)

Firstly, particle gyration about a guiding center 
exists so long as a uniform and static magnetic 
field is present. If the electric or magnetic field 
is  non-static  and/or  non-homogeneous,  drifts 
occur  because  the  curvature  of  the  particle 
gyration becomes alternately larger and smaller. 
The  common  drift  categories  are  ExB  drift, 
polarization  E  drift,  gradient  B  drift  and 
curvature B drift. 

If  the  electric  field  is  perpendicular  to  the 
magnetic field and static, ExB drift occurs. The 
properties of this drift does not depend on the 
properties of the particles. If the electric field is 
slowly varying in time, polarization drift occurs. 
If the magnetic field is not uniform, gradient B 
drift occurs; if field lines are curved, curvature 
B drift occurs. If the magnetic field is not static, 
a non-conservative electric field is induced and 
the energy of the particle changes. 

Numerical Integration Schemes

As mentioned earlier, many numerical methods 
have  been  developed  to  solve  the  Lorentz 
equation.  To  name  a  few  are  “Leap-frog”, 
Runge-Kutta” and “Buneman-Boris”.

Linear differential equations
dv/dt = (1/γm)(qE(r) + qvxB(r)) (6a)
dr/dt = v (6b)

Before looking at  the “Leap-frog” method,  let 
us  first  examine  the  most  simple  “Euler” 
method also known as the “Forward Difference” 
scheme.

Forward Difference scheme
vt+dt = (1/γm)(qE(rt) + qvtxB(rt))dt +  vt (7a)
rt+dt = vtdt + rt (7b)

By considering vt+dt = gvt  and rt+dt  = grt, we note 
that there is no solution g such that |g| < 1. As 
such,  the  solution  is  unbounded and unstable. 
This  might  be  improved  by  using  an  average 
velocity to update the position of the particle.

In  “Leap-frog”,  the  update  of  position  and 
velocity are interleaved and separated by half a 
time interval. Although care has to be taken to 
note  the  difference  in  starting  time  when 
specifying  initial  conditions,  it  is  possible  to 
solve for situations where the solution is stable. 
Furthermore, this is a second order integration 
scheme meaning that its global error increases 
as the square of the time interval. As such, its 
error increases slower than the simpler “Euler” 
method which  is  of  first  order.  Similar  to  the 
“Euler” method, if an average velocity was used 
in  the  velocity  update,  this  method  can  be 
further  improved  as  shown in  the  “Buneman-
Boris” scheme later.

Leap-frog method
vt+dt/2 = (1/γm)(qE(rt) + qvt-dt/2xB(rt))dt +  vt-dt/2 (8c)
rt+dt = vt-dt/2dt + rt (8d)

The  simplest  “Runge-Kutta”  method  is  the 
“Euler”  method,  but  it  can  be  extended  into 
higher  orders.  The  idea  behind  it  is  a  simple 
division  of  each  full  time  step  into  sub  time 
steps  and  taking  the  weighted  average  of  the 
update  function  from  each  sub  time  step  to 
perform the overall update at each full time step. 



The  most  common  “Runge-Kutta”  method  is 
fourth order. 

Implementation of Runge-Kutta4 (9)
Let dy/dt be f(t,y)
     k1 = f(t,y)
     k2 = f(t+dt/2, yt+k1dt/2) 
     k3 = f(t+dt/2, yt+k2dt/2)
     k4 = f(t+dt, yt+k3dt)
  yt+dt = yt + (dt/6)(k1+2k2+2k3+k4)
       t = t+dt

Finally, the current standard is the “Buneman-
Boris”  motion  solver.  Requiring  less 
calculations than the fourth order Runge-Kutta, 
it  is  simpler  and faster.  Similar  to  the  “Leap-
frog” method, position and velocity updates are 
interleaved, velocity update is performed using 
an  averaged  velocity.  In  addition,  since  the 
effects  of  the  electric  and  magnetic  field  are 
decoupled  during  the  velocity  update,  the 
energy of the particle is exactly conserved in the 
absence of an electric field. Steps can be taken 
by the experimenter to transform the frame of 
reference such that the electric field vanishes. 

Buneman-Boris methodix (10)

Update xi+1/2 from xi-1/2 and vi

 xi+1/2 = xi-1/2 + vidt

Ei+1/2 and Bi+1/2 become available

Obtain ui+1 from ui and fields Ei+1/2, Bi+1/2

      ui = γivi

First obtain ui+1/2 from  ui

 ui+1/2 = (q/m)(Ei+1/2+(vi x  Bi+1/2))(dt/2)

Second obtain ui+1 from  ui+1/2

     u' = ui+1/2 + (q/m)(Ei+1/2)(dt/2)
     τ = (q/m)(Bi+1/2)(dt/2)
    u* = (1/c)u'τ
     γ' = (1+u'2/c2)1/2

     σ = γi
2 - τ2

   γi+1 = ((1/2)(σ+(σ2+4(τ2+u*2))1/2))1/2

      t = τ/γi+1

      s = (1+t2)-1            

  ui+1 = s(u'+(u'∙t)t+u'xt )
  vi+1 = γi

-1ui

Simulation

Particle  simulations  can  be  coded  using  any 
programming  language  such  as  Fortran,  C++, 
Matlab, Mathematica. In this report, Python was 
used. The Linux commands for installation and 
execution of Python are given as follows. 

Installation: sudo apt-get install python-numpy 
python-scipy python-matplotlib ipython ipython-
notebook python-pandas python-sympy python-nose

Execution: ipython notebook –pylab inline

The execution command conveniently opens up 
an iPython browser as shown in Fig. 6.

Fig. 6. iPython notebook browser

Some  details  to  note  for  the  simulation  of 
particle  motion  are  the  normalization  of 
parameters and plotting of simulation results. 

In many particle simulations,  normalization of 
parameters using the characteristic scales of the 
physical phenomenon was conducted to reduce 
numerical  complexity  and  also  to  ease  the 
visualization  and  understanding  results.  It  is 
important to check that the equations of motion 
remain valid after normalization.



Regarding  simulation  results,  two  categories 
exists:  instantaneous  snapshots  and  time 
histories.  Examples  of  quantities  recorded  for 
snapshots  are  particle  position  and  velocity; 
background  field  and  potential.  Examples  of 
quantities  recorded  for  time  histories  are 
electrostatic, kinetic and total energies. For the 
simulation results to be useful in characterizing 
the physical  phenomena,  much thought  has  to 
be put into selecting descriptive quantities. For 
example,  a  phase-space  plot  would  provide 
much  insight  into  the  type  of  particles  that 
resonantly interact with and are trapped by the 
background  electric  and/  or  magnetic  waves. 
These plots usually trace the contours of some 
conserved quantities which may be obtained via 
solving the equations of motion by hand. As an 
additional step, the plots obtained manually and 
via  simulation  may  be  cross-checked  for 
correspondence. 

3. Summer project

The  objective  of  the  summer  projects  is  to 
explore  various  methods  in  which  energetic 
particles may be accelerated towards the Earth 
where  their  potential  to  cause  damage  greatly 
increases.  Many  observations  suggest  a 
correlation between periods of high solar winds 
and increased particle transport. Although there 
are different theories and models describing the 
method  of  transportation  such  as  pitch  angle 
scattering  and  radial  diffusion,  this  report 
focuses  on the  model  of  resonant  acceleration 
described in the following two papers.

Acceleration of relativistic electrons via resonant 
interaction with toroidal-mode Pc-5 ULF oscillations 
- Elkington, S.R., M.K. Hudson, and A.A. Chan 
1999.x

Numerical Study of the Upstream Wave Excitation 
Mechanism - Hoshino, M., and Terasawa, T. 1985.xi

The  first  paper  describes  the  drift  resonant 
interaction  between  relativistic  equatorial 
electrons and global toroidal-mode oscillations 
which occur as a result of solar activity. Since 
the  resonant  frequency  is  on  the  order  of  the 
drift  frequency,  the  first  and  second  adiabatic 
invariants are likely to be conserved and guiding 
center approximations may be applied. The third 
adiabatic invariant is likely to be violated and 

this  violation  of  the  third  adiabatic  invariant 
may lead  to  energization  of  the  radiation  belt 
electrons.

The discussion of the second paper describes the 
cyclotron resonant interaction between charged 
particles  and  local  circularly-polarized  Alfven 
waves. Since the resonant frequency is on the 
order  of  the  cyclotron  frequency,  the  first 
adiabatic invariant is  likely to be violated and 
acceleration of particles is possible.

Drift resonant interaction
For this simulation, the trajectories of equatorial 
electrons in a simplified field model was solved. 
Since  the  simulation  assumes  the  solar  wind 
scenario, the Earth's magnetic field is that of a 
compressed dipole, the electric field is a wave 
superposed  on  top  of  an  optional  dawn-dusk 
convection  field.  The  electric  wave  is  in  the 
radial  direction,  as  a  result  of  m=2  global 
toroidal mode oscillation of the magnetosphere. 
It is likely that other mode numbers are present 
but m=2 is studied because it displays resonance 
at  ω =  ωd.  The equations and plots describing 
the magnetic and electric fields as seen by the 
particles are given below. 

B(r, φ) = B0(Re3/r3)+ b1(1 + b2cosφ) (11a)
E(r, φ) = E0(r, φ) + dEr2sin(mφ+ωt+pEr2) (11b)

Fig. 7. Magnetic and electric field as seen by an electron 
over  one drift  orbit.  This  shows the  magnitudes  of  the 
fields used and that the electron is always in phase with 
the m=2 global wave.



Since the particle in question is an electron with 
a  small  gyro-radius  and  high  gyro-frequency, 
the  guiding  center  approximations  were 
employed. Fig. 8. provides a rough guide as to 
the  situations  in  which  the  guiding  center 
approximations are appropriate.

Fig.  8.  Lines  of  constant  first  adiabatic  invariant  for 
protons (a) and electrons (b) in the Earth's dipole field. 
The unshaded area indicates regions where the guiding-
center approximations may be used.xii

To  simplify  calculations  even  further,  the 
magnitude  of  polarization  E  drift  is  usually 
several orders smaller than ExB drift and is thus 
safely  neglected.  Curvature  B  drift  may  be 
ignored if considering only equatorial particles 
with no bounce motion. As such, only ExB drift 
and gradient B drift remains to be considered. 
Thus, the equations of motion used to calculate 
the  trajectory  of  the  equatorial  electron  are 
given as follows. Relativistic effects have to be 
considered because of the high energies of the 
electrons.

dr/dt  =  Eφ/B – (M/γrB)δφB (12a)
dφ/dt = -Er/B + (M/γrB)δrB (12b)

The following Fig. 9 show the drift trajectories 
of the electron over one drift period.

Fig. 9. Drift trajectory for a 1.63MeV electron starting at 
noon on the left, counterclockwise. Symmetric dipole on 
the left, compressed dipole on the right. Drift frequency is 
2.86mHz and 2.94mHz respectively. 

As shown in the previous figures, in the case of 
a compressed dipole, the particle has a velocity 
component in the radial direction. Since there is 
also  a  component  of  the  electric  field  in  the 
radial direction, this results in a non-zero Erdr. 
At the resonant frequency of  ω =  ωd = 3mHz, 
the  period  of  the  velocity  oscillation  and  the 
period  of  the  electric  field  as  seen  by  the 
electron matches. As such, the radial velocity is 
always pointing in the opposite direction from 
the electric field.  Consequently,  work done by 
the electric field is non-zero over the entire drift 
period  and  the  kinetic  energy  of  the  electron 
increases. 

The  following  Fig.  10(a,b,c)  shows  the  work 
done  by  the  field,  the  energy  gained  by  the 
electron  and the  phase-space  trajectory  of  the 
same electron over ten drift periods. 

Fig. 10a. Plot showing work done by the electric field 
over the entire ten drift periods. The integrated Erdr over 
the ten drift periods correspond to the same increase in 
kinetic energy as shown in Fig. 10b.

Fig. 10b. Plot showing the increase in kinetic energy of 
the electron over the entire ten drift periods. This kinetic 
energy was calculated using the properties of the first 
adiabatic invariant M = (γ+1)K(2B)-1 . 



Fig. 10c. Plot showing the phase-space trajectory of the 
electron over the entire ten drift periods. The electron 
begins at the bottom right corner and traces the phase-
space trajectory upwards. Fig. 11. explains the oscillation 
in phase for each drift cycle. 

Fig. 11. Plot showing variation in 
azimuthal velocity over one drift 
period. On the right, the phase of 
the wave is shown in blue while 
that of the particle is shown in 
black. As the particle gains 
azimuthal velocity, it advances in 
phase relative to the wave, the 
opposite happens when the 

particle loses azimuthal velocity. This results in the 
oscillation in phase-space for each drift cycle that is seen 
in Fig. 10c.

However,  as the electron gains kinetic  energy, 
its  velocity  and  drift  frequency  increases. 
Consequently,  it  falls  out  of  phase  from  the 
wave  and  the  reverse  resonant  interaction 
occurs, leading to deceleration and a decrease in 
energy as shown in Fig. 12. 

Fig. 12. Plots showing the kinetic energy of the electron 
over one resonant cycle in time and phase-space. Initially, 
the kinetic energy of the electron is increasing as shown 
on the left half of the phase space plot. However, as the 
electron gains energy and thus speed, it is drifting at a 
frequency faster than the global m=2 wave. As such, it 
falls out of phase with the wave and the reverse resonant 
interaction occurs. This traces out an ellipse in the phase 
space plot. Thus, ellipses in phase space plots are 
characteristic of resonant interaction.

The  same  simulations  were  conducted  on 
electrons  with  different  initial  energies  and 
phase  to  show  that  this  is  indeed  a  resonant 
interaction. The results are plotted in  and Fig. 
14.

Fig. 13. Phase-space plot showing resonance center at 
3.14MeV and around 1.05MeV for a 4mHz wave and 
electrons orbiting at 5.0Re. 



Fig. 14. Plots showing difference in kinetic energies for 
electrons starting at dawn (φ = π/2) and dusk (φ = 3π/2). 
The difference in the plots, peaks at dawn and valleys at 
dusk, is related to the stable and unstable resonant centers 
at 3.14MeV and around 1.05MeV.

The resonant condition is ω = (m±1)ωd which 
corresponds to  ωd = ω/(2±1) = ω or  ω/3 for an 
m = 2 global toroidal mode wave. Solving the 
following equations for a symmetric dipole field 
gives  resonant  kinetic  energies  of  around 
3.3MeV  and  1.2MeV.  However,  as  shown  in 
Fig.  9.,  under  an  asymmetric  dipole,  drift 
frequency  for  an  electron  of  the  same kinetic 
energy  is  faster  and  thus  the  resonant  kinetic 
energy is expected to be lower. 

       γ = 1 + Ke/(mc2 )
      B = Bo(Re /r)3

     M = (γ+1)K/B
     ωd = (3M/(γr))/(2πr)

Since Fig. 13. and Fig. 14. shows wave trapping 
and  resonance  only  at  the  expected  resonant 
energies, this provides support for acceleration 
of  electrons  via  resonant  interaction.  As  an 
additional  note,  the  resonant  condition  for  a 
global poloidal mode wave is ω = mωd.

The addition of a dawn-dusk convection electric 
field,  realistic  in solar  wind conditions,  shows 
the  possibilities  of  accelerating  particles  from 
energies and phase outside the resonance centers 
towards the stable resonance center, see Fig. 15.

Fig. 15. From top to bottom, 2.5MeV electron starting at 
two different initial phase condition: dawn and dusk; 
3.5MeV electron starting at dawn and dusk. The electrons 
are shown to have accelerated or decelerated towards the 
closest resonant center at 3.14MeV.

This might lead to an increase in population of 
electrons  of  certain  resonant  energies  during 
strong solar wind conditions. 

In  summary,  this  simulation  shows  the 
possibilities of drift  resonant acceleration with 
global m=2 toroidal mode waves for electrons 
where the 1st adiabatic invariant is conserved.



Cyclotron resonant interaction

Fig.  16.  The  figure  on  the  left  shows  the  relationship 
between V⊥ and V// when only a single wave is present. 
Since  the  particle  traces  out  a  semi-circle  with a  fixed 
radius,  particle  kinetic  energy  remains  constant.  The 
figure on the right shows an increase in particle kinetic 
energy when both waves traveling in the direction parallel 
and anti-parallel to the background field are present.xiii

Apart  from  drift  interactions  with  a  low 
frequency global m=2 toroidal mode wave, it is 
also  possible  for  cyclotron  interactions  with  a 
higher  frequency  local  circularly  polarized 
Alfven wave. In the case of multiple waves Fig. 
16.,  scattering  by  the  waves  may  lead  to 
diffusion  in  energy  and  possible  particle 
acceleration.  The  cyclotron  resonant  condition 
as given in “Particle Scattering and Acceleration 
in  a  Turbulent  Plasma  Around  Comets”  by 
Terasawa, T. 1989 is shown below.

Resonant condition
ω = k//V//+Ωi ; Vr = (ω+Ωi)/k// (13a)
Dispersion relation for Alfven wave
ω = ±kVA (13b)
Resonance occurs when
k//V//+Ωi = ±kVA (13c)

where  V// is  the  component  of  the  particle's  velocity 
parallel  to the background magnetic  field and Ωi is  the 
cyclotron frequency of the particle.

Fig.  17.  Dispersion  relation  of  left  (L)  and  right  (R) 
circularly  polarized  Alfven  waves  traveling  in  the 
direction  parallel  (+)  and  anti-parallel  (-)  to  the 
background  magnetic  field  and  the  points  where  it 
intersects with the resonant condition.

Equations for the phase-space contours tracing 
constants of particle motions were derived from 
the  Lorentz  equation  and  expressions  of 
circularly polarized Alfven waves. 

Right circularly polarized, parallel Alfven wave
ω = Ωi/2; Vw = 1; k = ω/Vw[1,0,0]; Ωw = 0.4 (14)
Bw(x,y,z,t) = [0, Ωwcos(k∙x-ωt), -Ωwsin(k∙x-ωt)] (R+)
Ew(x,y,z,t) = (Bw x k)Vw

Lorentz Equation:
d(v)/dt = (qE(r) + qvxB(r))m-1 (15a) 
d(r)/dt = v

Lorentz Equation modified to record 
v//, v⊥ and φdiff after inserting wave expression:
d(v//)/dt =  Ωwv⊥sin(φdiff) (15b)

d(v⊥)/dt =  -Ωw(v//-ω/k)sin(φdiff)

d(φdiff)/dt =  Ωw(ω-kv//cos(φdiff))/(kv⊥)-k(v//-Vr)

After analytically solving Lorentz equation for 
constant of motion χ
χ = (1/2)(v//-Vr)-2 – Ωwv⊥cos(φdiff) (15c)

Fig. 18. shows the phase-space plots for a right-
handed  Alfven  wave  propagating  in  the  same 
direction  as  the  background  magnetic  field 
sketched using various means. 

The first  plot  is  obtained through numerically 
integrating  the  Lorentz  equation  modified  to 
record  particle  velocity  and  phase  difference 
after  substituting  wave  expression.  The 
definition of phase difference is φdiff = φi – φw 

where φi is tan-1(Vy/Vz) – φw is tan-1(By/Bz).

The second plot is obtained mathematically by 
rearranging for constants of motion – quantities 
where d/dt = 0. 

Since both plots are derivatives of the standard 
Lorentz equation, they should look similar.



Fig. 18a. Phase-space plot derived numerically from 
Lorentz equations modified to record particle velocity and 
phase difference.

Fig. 18b. Phase-space plots derived analytically through 
solving for constants of motion from Lorentz equation. 

Conclusion

In  conclusion,  this  report  presented  a  quick 
introduction  into  the  structure  of  the  Earth's 
magnetosphere,  the  Lorentz  equation  and  the 
resulting three typical particle motions. It then 
provided a  simple definition and derivation of 
the  adiabatic  invariants.  Violation  of  the 
adiabatic invariants is synonymous with particle 
acceleration. Following that, various numerical 
integration  schemes  were  shown  and  briefly 
analyzed. Finally, it focused on reproducing the 
results  of  two  papers  which  discussed  the 
possibilities  of  particle  acceleration  through 
drift resonance with global waves and cyclotron 
resonance with local waves. 
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