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Abstract

This article aims to understand the motion of the charged particles trapped in

the Earth’s inner magnetosphere. The emphasis is on identifying the numerical

scheme, which is appropriate to characterize the trajectories of the charged

particles of different energies that enter the Earth’s magnetosphere and get trap

along the magnetic field lines. These particles perform three different periodic

motions, namely: gyration, bounce, and azimuthal drift. However, often, the

gyration of the particle is ignored, and only the guiding center of the particle is

traced to reduce the computational time. It is because the simulation of all three

motions (gyro, bounce, and drift) together needed a robust numerical scheme,

which has less numerical dissipation. We have developed a three-dimensional

test particle simulation model in which the relativistic equation of motion is

solved numerically using the fourth and sixth-order Runge-Kutta methods. The

stability of the simulation model is verified by checking the conservation of total

kinetic energy and adiabatic invariants linked with each type of motion. We

found that the sixth-order Runge-Kutta method is suitable to trace the complete

trajectories of both proton and electron of a wide energy range, 5 keV to 250

MeV for L=2 – 6. We have estimated the bounce and drift periods from the

simulations, and they are found to be in good agreement with the theory. The

study implies that a simulation model with sixth-order Runge-Kutta method
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can be applied to the time-vary, non-analytical form of magnetic configuration

in future studies to understand the dynamics of charged particles trapped in

Earth’s magnetosphere.

Key words: Test particle simulation, Trapped particle trajectories, Adiabatic

invariants, Runge-Kutta method, Earth’s inner magnetosphere

1. Introduction
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The Earth’s magnetic field can be approximated by the dipolar magnetic

field in the inner magnetosphere up to 6Re (Baumjohann and Treumann, 2012).

The charged particles trapped in the Earth’s inner magnetosphere perform three

types of periodic motions. They gyrate around magnetic field lines, bounce

over magnetic mirror points, and azimuthally drift around the Earth (Williams,

1971). Energies of these trapped particles range from ∼  eV  to ∼  100  MeV.

In the order of low to high energies, they are prevalent in the plasmasphere (∼

eV), ring current (∼1-100 keV), and radiation belts (≥100 keV) region (Ebihara

and  Miyoshi,  2011;  Millan  and  Baker,  2012).  These  particles  undergo  different

physical processes, and their flux and energies are highly variable, even on geo-

magnetically quiet periods.  This is due to variations in the solar wind conditions

and their interaction with different plasma waves that are excited through vari-

ous  plasma  instabilities  in  the  Earth’s  inner  magnetosphere.  The  presence  of

higher energy (keV-MeV) particles in the Earth’s magnetosphere,  especially in

the radiation belts, has been reported through satellite observations (Millan and

Baker,  2012;  Mozer  et  al.,  2013;  Reeves  et  al.,  2013).  The  solar  wind  particles

enter  Earth’s  magnetosphere  with  low  energies  (∼10  -  100  eV)  (Bittencourt,

2011),  and  their  interaction  with  waves  can  accelerate  them  to  higher  ener-

gies (∼ MeV), which contributes significantly to the dynamics of the radiation

belt (Elkington et al., 2003; Engel et al., 2015; Hudson et al., 2017; Katoh and

Omura,  2004;  Ozaki  et  al.,  2019;  Tobita  and  Omura,  2018).   Despite  different

energies, the motion of these charged particles is governed by the Earth’s mag-

netic field.  They are trapped in the Earth’s inner magnetosphere until they fall



into the loss cone and get lost into the upper atmosphere Yugo and Iyemori

(2001).

In the past, several studies have been carried out to understand the dynamics

of these magnetospheric charged particles. Hones and Edward (1963) conducted

a theoretical analysis to investigate the motions of charged particles trapped in

the distorted magnetosphere. They have calculated drift paths for the particles

whose motion is confined to the magnetic equatorial plane, and mirroring parti-

cles at low altitudes. Delcourt et al. (1990) used three-dimensional particle code

for ions to examine the motion of near-Earth plasma-sheet particle during sub-

storm. Ukhorskiy and Sitnov (2008) analyzed the radial transport of electrons

due to ULF fluctuations in the inner magnetosphere using the test particle ap-

proach under the guiding center approximation. Sorathia et al. (2018) studied

the evolution of the outer radiation belt during the geomagnetic storm using test

particle and magnetohydrodynamic (MHD) simulations. However, the guiding

center of the particle is traced in most of the magnetospheric simulation to re-

duce the computational time. It is because the simulation of all three motions

(gyro, bounce, and drift) together needed a robust numerical scheme, which has

less numerical dissipation.

Similarly, Öztürk (2012) performed test particle simulation to investigate

particle motion in the dipolar magnetic field using the fourth-order Runge-

Kutta method and demonstrated gyro, bounce, and drift motion for proton.

However, the fourth-order Runge-Kutta method is limited to trace the trajectory

of proton of energy 10 MeV up to one drift only. When the simulation is carried

out for the lower energy protons, drift motion results are numerically unstable.

Moreover, the electron is 1836 times less massive than the proton, making the

electron gyro-period three order smaller than the proton. This suggests the need

for a smaller time step to simulate the electron trajectories, which ultimately

becomes computationally expensive. Therefore, the fourth-order Runge-Kutta

method can not be used to validate theoretically calculated bounce periods of

electron and drift periods of both electron and proton. It invokes the need

for an efficient numerical scheme capable of simulating gyro, bounce, and drift
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motions of the charged particles in the Earth’s magnetosphere. Thus, in the

present simulation model, we aim to examine the appropriate numerical scheme

applicable to characterize the trapped particles (both electrons and protons)

dynamics and produce physically valid simulation results.

We have considered a static dipolar configuration for the Earth’s magnetic

field, with no inhomogeneities. The equation of motion is solved numerically by

both fourth and sixth-order Runge-Kutta methods. In the simulation model, the

particle can perform gyration, bounce, and drift motions self-consistently. The

performance of the simulation model and numerical schemes is tested by verify-

ing the conservation of total kinetic energy and adiabatic invariants associated

with each type of motion. We found that the sixth-order Runge-Kutta method

is efficient in simulating both electrons and proton’s trajectories for a wide range

of energy and L-shell. There can be many circumstances in the Earth’s mag-

netosphere where adiabatic invariants itself are not conserved (A.E Antonova

and Kropotkin, 2003; Birmingham et al., 1967; Mukherjee and Rajaram, 1981).

Such physical processes are not incorporated in the present simulation.

This paper is structured as follows. The model equations and the numer-

ical schemes used in the simulation are given in Section 2. In Section 3, the

numerical stability of the numerical schemes used in the simulation model is

verified. The application of this model is presented in Section 4. The results are

discussed in Section 5 and concluded in Section 6. In Appendix A, B, and C, we

have respectively briefed the Runge-Kutta numerical scheme, derivations of the

theoretical equations of the bounce, and the drift periods of trapped particles.

2. Model Equations and Numerical Schemes

We have used a test particle approach in which the plasma is considered as

a single particle system, and its effect on the ambient parameters is neglected.

This is a reasonable approximation to understand the dynamics of trapped

particles in the Earth’s inner magnetosphere. The relativistic equation of motion

for a particle of charge q and mass m, under the action of the Lorentz force due
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to magnetic field, B can be written as,

γm0
dv

dt
= qv ×B(r). (1)

The position of charged particle can be computed from the velocity using fol-

lowing expression,

v =
dr

dt
. (2)

Here, γ = (1−v2/c2)−1/2 is the relativistic factor, m = γm0 and v = [vx, vy, vz]

is the velocity vector. The magnitude of velocity is estimated from the kinetic

energy, Ek using the following expression,

v = c

√
1−

(
m0c2

m0c2 + Ek

)2

. (3)

If the magnetic field is constant, the particle’s acceleration will be perpendicular

to the magnetic field, and it will gyrate around the magnetic field line. The

particles under such motion will have an instantaneous gyro-frequency, Ω =

q|B|/γm0 and gyro-radius, ρ = γm0v⊥/q|B|, depending on the perpendicular

velocity (v⊥) and magnetic field B. In the present study, we have considered the

ambient magnetic field to be dipolar for the Earth’s inner magnetosphere, where

the magnetic field lines are closed. In this region, the terrestrial magnetic field

B(r) can be expressed in the Cartesian coordinate system as (Griffiths, 2005),

B(r) = −B0Re
3

r5
[3xzx̂ + 3yzŷ + (2z2 − x2 − y2)ẑ]. (4)

Here, horizontal xy-plane is the magnetic equator and z-axis is the vertical

magnetic axis, which is illustrated in Fig. 1. At the magnetic equator on the

surface of Earth, the magnetic field strength is measured to be B0 ≈ 3.07×10−5

T. In the simulation code, Eq. (1) and (2) are solved numerically from fourth

(RK4) and sixth (RK6) order Runge-Kutta methods. The expressions for the

RK4 and RK6 schemes (Luther, 1968; Portero et al., 2012) are respectively given

as,

vt+4tx = vtx +
4t
6

[k1 + 2k2 + 2k3 + k4] , (5)
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vt+4tx = vtx +
4t
5

[
16k1
27

+
6656k3
2565

+ +
28561k4
11286

− 9k5
10

+
2k6
11

]
(6)

After discretizing Eq. (1) and Eq. (2), we get six equations which gives rate of

change of vx, vy, vz, x, y and z. At the initial time t = 0, the corresponding val-

ues of velocity and position components are [vsin(αeq)cos(ψ), vsin(αeq)sin(ψ),

vcos(αeq)] and [x, 0, 0]. Here αeq is the equatorial pitch angle, the angle be-

tween the velocity vector of a particle and the total magnetic field at the mag-

netic equator. The ψ is gyro-phase, which can vary from 0 to 2π and decides

the particle entry in the horizontal xy-plane. For all simulation runs, we have

taken fixed ψ = 0o and αeq = 30o. We took initial position as [x = L, 0, 0]

by varying L between 2 – 6. In Eq. (5) and (6), vt+4tx is the Runge-Kutta ap-

proximation of vx at time [t+4t], which is determined by the present value vtx

plus the weighted average of all increments from k1 to k6. The details of these

two numerical schemes are given in Appendix A. The size of time interval, 4t

is taken as ∼ 1/50 times of the gyro-period. In the same way, one can compute

vy, vz, x, y, z. In this model, first we compute the velocity components [vx, vy,

vz], and then utilize these estimates to compute the position components [x, y,

z].

As an example, the trajectory of a proton with energy Ek = 5 MeV at L=4

obtained from the simulation code having sixth-order Runge-Kutta scheme is

shown in Fig. 2 for 120 seconds. Here, Fig. 2a shows the three-dimensional

motion of proton, whereas the top view of its trajectory, as seen from the north

magnetic pole, is depicted in Fig. 2b. The motion is helical around the magnetic

field lines. The magnetic field’s gradient and curvature introduce two additional

motions: the bounce and the drift motion. The motion due to the parallel

component of velocity is the bounce motion, which is the periodic north-south

oscillation along the magnetic field lines. As the particle moves towards the

stronger magnetic field’s location, it reflects from the mirror point due to the

mirror force. The gradient in the magnetic field is responsible for the drift in

the direction perpendicular to both ∇B and B (Chen, 1984). The drift motion

takes the particle in the azimuthal direction, perpendicular to the bounce motion
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and across the magnetic field lines. The frequency of the bounce motion is

smaller than the gyro-motion and higher than the drift motion. The shown

trajectory of the proton can also be validated from figure 2 of Öztürk (2012)

since both the studies have approximated Earth’s inner magnetosphere as a

dipolar configuration. However, the numerical schemes used to simulate the

particle dynamics are different (RK4 and RK6).

In the similar manner, the trajectory of electron of energy Ek = 5 MeV, and

L=4 is shown in Fig. 3 for 120 seconds. It may be noted that unlike proton (see

Fig. 2), the gyro motion of the electron is not distinctly visible in Fig. 3. The

electron has a very small gyro-radius, so it gyrates very close to the magnetic

field lines. The electron drifts slowly as compared to the proton; hence it shows

less azimuthal coverage in Fig. 3 compared to the proton in 120 seconds. In this

way, the particles in the dipolar magnetic field are trapped on closed drift shells

as long as they are not disturbed by collisions or interactions with plasma waves

to fall into the loss cone and get lost into the upper atmosphere. To estimate

the bounce and drift periods, we transformed position [x, y, z] to [r, λ, φ] using

the following equations.

r =
√
x2 + y2 + z2,

λ = sin−1(
z

r
),

φ = cos−1(
x

rsinλ
). (7)

The time variation of these transformed spherical coordinates [r, λ, φ] are de-

picted in Fig. 4 for proton of energy Ek = 5 MeV, and L = 4. The simulation

employed with the sixth-order Runge-Kutta method is used to get these de-

tails. Here, r represents the radial distance of particles from the center of the

Earth. λ represents magnetic latitude, which varies between −90◦ to +90◦. The

variation of λ with time can be used to calculate the time taken by particle to

complete one bounce period. φ is the azimuthal angle, which varies from 0◦

to 360◦ over one complete drift. It is used to estimate the drift period of the

charged particle. This way, we have used the simulation model to trace trajec-

tories of charged particles having different energies, and L-shells in the Earth’s
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inner magnetosphere. For the data shown in Fig. 2 – 4, we have used the simula-

tion model having sixth-order Runge-Kutta method. The reason for preferring

sixth-order over fourth-order Runge-Kutta numerical scheme is discussed in the

next section.

3. Validation of Numerical Scheme

In the present simulation study, we have used the fourth and sixth-order

Runge-Kutta methods to solve the equation of motion. The suitability of these

numerical schemes to trace the charged particle’s complete trajectory is verified

in this section. Using these numerical schemes, we have simulated the trajecto-

ries of both proton and electron of energy 5 MeV at L = 4. The time variation of

the particle’s kinetic energy normalized w.r.t. its initial kinetic energy, Ek/Ek0,

and magnetic latitude obtained from the simulation using sixth-order (blue) and

fourth-order (red) Runge-Kutta methods are shown in Fig. 5 for proton (5a,

5c) and electron (5b, 5d).

We noticed that the sixth-order Runge-Kutta method reduces the numerical

error considerably so that there is negligible numerical dissipation. It maintains

a constant Ek/Ek0, which implies that the system’s energy is conserved. The

particle bounces back and forth from the same magnetic latitude representing

the periodic orbit for an arbitrarily long simulation time. On the other hand,

when the fourth-order Runge-Kutta method is used, the ratio Ek/Ek0 continu-

ously decreases with time, which implies a faster increase in the numerical error.

It may also be noted that, for this case, the magnetic latitudes of the mirror

points are not the same during the bounce motion of the particle. If we compare

simulation outputs for proton and electron, i.e., 5a with 5b, and 5c with 5d, we

find that the numerical error enhances rapidly for electron as compared to the

proton. It suggests that numerical dissipation in the fourth-order Runge-Kutta

method is considerably higher, and it increases within the first few seconds of

the simulation run. It may be noted that the ∆t for proton is 10−4 seconds,

and for electron, it is 10−7 seconds. Thus, in 300 seconds and 50 seconds of the
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simulation run, the velocity and position of proton and electron are computed

for 3 × 106 and 5 × 108 number of time steps, respectively. In each computa-

tion step, the numerical error gets integrated. Hence, in the case of electron,

where the number of computation time steps, nstep are more, the numerical

error increases faster as compared to the proton. Therefore, the fourth-order

Runge-Kutta method can not simulate the electron and proton drift motion in

the Earth’s inner magnetosphere.

Furthermore, we examined the conservation of adiabatic invariants during

proton and electron motions in the simulation. For the particles in the dipolar

magnetic field, adiabatic invariants (J1, J2, and J3) are associated with gyration,

bounce, and drift motion, respectively (Kellogg, 1959; Northrop and Teller,

1960; Walt, 2005). Each invariant can be obtained from the closed line integral

of the particle’s canonical moment over one cycle of the associated motion. The

first adiabatic invariant is associated with the gyro-motion and can be written

as,

J1 = 〈πγ
2m2

0v
2
⊥

q|B|
〉. (8)

The first adiabatic invariant explains the existence of mirror points. As the

particle moves towards the polar region, where the ambient magnetic field is

stronger, its perpendicular velocity increases, and parallel velocity decreases to

keep J1 and Ek constant. At a particular point, its parallel velocity becomes

zero, and the particle bounces back. The first adiabatic invariants estimated

from the simulation using both the numerical schemes are shown in Fig. 6(a)

for the proton of energy 5 MeV at L = 4. In Fig. 6(a), the blue and red color

curves respectively represent the non-averaged component of the first adiabatic

invariant obtained from the sixth- and fourth-order Runge-Kutta method. The

black line shows their averaged component, i.e., J1. Here, non-averaged J1

oscillates with the local gyro-period because instantaneous values of v⊥ and

B are used in its computation, and these parameters do vary as the particle

changes its position with time. The oscillations occur because the magnetic

field is not uniform over a gyration, and the gyro-radius changes as particle

9
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move from the equatorial to the polar region. The average of these oscillating

values over the gyro-period gives the first adiabatic invariant J1 (shown by the

black line), which is found to be constant with time only for the sixth-order

Runge-Kutta method. From Fig. 6(a), it is evident that when the fourth-

order Runge-Kutta method is used, J1 is not constant with time. Therefore,

the numerical dissipation in the fourth-order Runge-Kutta method makes this

method inappropriate to study the complete motion of the charged particles in

a static dipolar magnetic field.

The second adiabatic invariant is associated with the bounce motion be-

tween the magnetic mirror points. If the azimuthal drift is small during a

single bounce, the action variable associated with the bounce motion would be

expected to be an invariant (Mahjouri, 1997). The expression for the second

adiabatic invariant is given by,

J2 = 2

∫ λm2

λm1

γm0v‖ds = 2

∫ λm2

λm1

γm0v
2
‖dt. (9)

Here, λm1 and λm2 are magnetic latitudes of mirror points. The second adia-

batic invariant is related to the field line’s length between mirror points, which

indicates that the field line length is constant as the particle drift in the az-

imuthal direction. Fig. 6(b) shows the variation of second adiabatic invariant

J2 as a function of time evaluated by integrating v‖ over one bounce period for

proton of energy 5 MeV, and L =4. The limits of integration are determined

by the location of mirror points that are estimated from the simulation. It is

evident in Fig. 6(b) that the second adiabatic invariant is also not conserved

for the fourth-order Runge-Kutta method while it is conserved for the case of

the sixth-order Runge-Kutta method.

Similar to Fig. 6, the variation of J1 and J2 for the electron of 5 MeV

and L =4 obtained from the simulation employing sixth-order and fourth-order

Runge-Kutta methods are shown in Fig. 7. It may be noted that J1 and J2

are highly non-conserved for the fourth-order Runge-Kutta method. The third

adiabatic invariant (J3) is associated with the azimuthal drift motion of the

mirror-trapped particles around the Earth. We have not compared J3 because

10
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the charged particle cannot complete one drift motion due to higher numerical

dissipation associated with the fourth-order Runge-Kutta method. However, J3

can be computed from the simulation having employed the sixth-order Runge-

Kutta method, and it is found to be conserved.

Thus, it is clear from Fig. 5 – 7 that the fourth-order Runge-Kutta method

is not suitable to reproduce physically reliable trajectories of particles in the

static dipolar magnetic field. The fourth-order Runge-Kutta method is suffi-

cient to simulate the bounce motion of protons, one complete drift motion of

proton of energy 10 MeV. However, three order smaller gyro-period of the elec-

trons demands the numerical scheme with higher accuracy. Furthermore, the

drift period increases for both lower energetic protons and electrons. In such a

scenario, when we perform simulations for a longer time, numerical errors in the

estimates of velocity and position of particles get integrated and subsequently

enhanced. Therefore, one requires numerical schemes with higher numerical

accuracy. We found that the sixth-order Runge-Kutta method is considerably

stable and suitable to simulate both electron and proton trajectories of a wide

range of energy and L-shell. For all the further simulation runs, we have used

the sixth-order Runge-Kutta method.

4. Applications

We used the simulation model to obtain the trajectories of proton and elec-

tron of energy in the range of 5 keV to 250 MeV and L-shell 2 to 4. Their

bounce and drift periods are estimated by tracking the variations of λ and φ

associated with their motions. The energy range for this comparison is chosen

in such a way that all three adiabatic invariants are conserved. These simu-

lated bounce (τb) and drift (τd) periods are validated by comparing them with

their theoretical estimates which are available in the literature (Davidson, 1976;

Orlova and Shprits, 2011). These expressions are not the exact form of the

solution and based on the numerical fittings. Therefore, they deviate slightly

(≈ 0.06% – 5%) from their exact solution. The complete theoretical derivations
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of bounce and drift periods with their deviations are elaborated in Appendix B

and C, respectively. We are using Eq. (B.5) and (C.5) for the comparison with

simulation results.

As mentioned earlier, the bounce period is calculated by tracking the varia-

tions in magnetic latitude, λ with time. In one bounce, λ can vary from −90o

to +90o depending on the particle’s mirror point latitude, λm. We have used

one-dimensional Fast Fourier Transformation (FFT) on λ to get the bounce

motion period. The bounce period estimated from the simulation for protons

and electrons of different energies placed at L = 2 (blue) and L = 4 (red) with

their respective theoretical estimates (shown by “+” symbol) are shown in Fig.

8a and 8c, respectively. There is a good agreement between the bounce periods

estimated from the simulation and theory for both proton and electron. The

bounce period of the charged particle increases with their distance from the

Earth. It is expected because the length of magnetic field line increases with

L-shell, and hence particle needs to travel more distance along the field line.

Further, we have computed the percentage difference (ε) between the simulated

and theoretical estimates of bounce periods for proton and electron, which is

shown in 8(b), and 8(d), respectively. The percentage difference, ε is given by

|τtheoretical−τsimulation|×100
τsimulation

. The percentage difference between theoretical and

simulated bounce periods is less than 5% and 1% for proton and electron, re-

spectively, which is considerably small.

In the Earth’s magnetosphere, a trapped charged particle performs drift

motion around the Earth due to the gradient of magnetic field lines. Over one

complete drift, azimuthal angle (φ) varies from 0o to 360o. In the present simu-

lation, the drift period is calculated by tracking the azimuthal angle variation,

φ for few drifts around the Earth. The drift period estimated from simulation

are plotted as a function of energy for proton (9a) and electron (9c) placed at

L = 2 (blue) and L = 4 (red) in Fig. 9. The respective theoretical estimates

of drift periods are shown by the “+” symbol in Fig. 9a and 9c. It may be

noted that unlike the bounce period, the drift period decreases with distance

from the Earth. As we move away, the magnetic flux density decreases, and

12
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the number of gyration in one drift reduces, which results in a faster azimuthal

drift of the particle. The order of the drift period for electron and proton of

given energy and L-shell are different because their azimuthal motion is a re-

sult of ∇B ×B drift, which is charge and mass-dependent. The corresponding

percentage difference between simulated and theoretical estimates of the drift

period of proton and electron are shown in Fig. 9b and 9d, respectively. We

noticed a good agreement between theoretical and simulated drift periods of

proton and electron, and the corresponding percentage difference is less than

9% and 5%, respectively. Overall, this comparison implies that bounce and

drift period’s simulation results are in good agreement with their associated

theoretical estimates.

5. Discussion

A magnetospheric trapped charged particle performs three types of peri-

odic motion in the Earth’s magnetosphere: gyration, bounce, and drift. We

have developed a three-dimensional relativistic test particle simulation model

by assuming the Earth’s magnetic field in the dipolar configuration, which is

a reasonable approximation for the inner magnetosphere. Since the particle is

treated as a test particle, its motion does not affect the ambient magnetic field.

Our primary focus is to check the suitability of the numerical scheme to trace

the complete motion (gyro, bounce, and drift together) of the charged particle in

the Earth’s magnetic field. In many previous magnetospheric simulation stud-

ies, the particle motion is examined under guiding center approximation, which

ignores the gyration and traces the trajectory of the only guiding center. Under

this assumption, one can not see the effects of gyration on particle dynamics.

In this simulation, a charged particle is allowed to gyrate, bounce, and drift in

a self-consistent way. Therefore we can examine the effect of all three periodic

motion on the particle dynamics. The simulation of drift motion of electrons

(along with gyro and bounce motions) is computationally expensive and carried

in very few previous studies using the guiding center approach (Sorathia et al.,

13
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2018). In such simulations, one needs an efficient numerical scheme so that the

numerical dissipation is negligible, and simulations can be run for a long time to

trace the drift motion of the charged particles. In the present simulation study,

it is evident that the sixth-order Runge-Kutta method is appropriate to get the

complete trajectories of both proton and electron.

We have noticed that the bounce and the drift period of both protons and

electrons agree with the theory. The maximum deviation for the bounce and

drift period of the proton is ≈ 5% and 9%, and for electron, they are ≈1%, and

5%, respectively. It may be noted that for proton, the error ε in the estimates of

bounce and drift periods are slightly higher as compared to that of the electron.

The theoretical expressions of the bounce and drift periods are summarised in

Appendix B and C. These theoretical expressions of bounce and drift period are

derived by averaging the particle motion over gyration. Since the gyro-radius

of the electron is very small as compared to the proton, the electron gyrates

very close to the magnetic field line, and the guiding center approximation used

in theory is satisfied. However, in the proton case, the gyro-radius is larger,

and the actual proton motion may deviate from their theoretical as they are

based on the guiding center approximation. Thus, in the case of protons, the

difference in the simulated and theoretical drift and bounce periods is higher

than the electrons.

6. Conclusions

In the present paper, we have proposed an appropriate numerical scheme,

which is capable of characterizing the all three motions (gyration, bounce, and

azimuthal drift) of the charged particles of different energies that enter the

Earth’s magnetosphere and get trap along the magnetic field lines. The dipo-

lar magnetic field configuration is assumed for the Earth, and the relativistic

equation of motion for the charged particle is solved numerically to trace the

14
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trajectories of trapped charged particles of energy and L-shell in the range of 5

keV-250 MeV and L = 2− 6, respectively. The efficiency of simulation model is

tested using both fourth and sixth-order Runge-Kutta schemes by verifying the

conservation of energy and adiabatic invariants. As an application of this model,

we have simulated bounce and drift periods of protons and electrons of energy

5 keV to 250 MeV placed at L = 2 and 4 from the time variation of magnetic

latitude (λ) and azimuthal angle (φ), respectively. The theoretical expressions

used to estimate the bounce and drift periods are elaborated in Appendix B

and C. The primary outcomes of the study are as follows.

• A three-dimensional relativistic test particle simulation model is developed

to examine the trajectories of charged particles trapped in the Earth’s

inner magnetosphere.

• Fourth-order Runge-Kutta method can simulate the bounce motion of the

protons due to more numerical dissipation.

• Sixth-order Runge-Kutta method is required to simulate the motions of

the electron and proton of energy 5 keV to 250 MeV placed at L= 2 – 6.

• The simulation results presented here are in good agreement with the

theoretical estimates of the bounce and the drift periods.

• Our simulation validate the theoretical estimates of drift periods of both

protons and electrons.

• Our simulation approach can be applied to the time-varying and non-

analytical form of magnetic field configuration in the Earth’s inner mag-

netosphere in future studies.
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Figure 1: Illustration of the magnetic field lines of the Earth, represented as a dipole magnetic

field directed from the magnetic south to north direction. The horizontal xy-plane is the

magnetic equatorial plane with z-axis as vertical magnetic axis. Here, we have used the

magnetic coordinate system assuming Earth’s magnetic field to be dipolar.
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Figure 2: The trajectories of proton of energy 5 MeV at L = 4 with pitch angle of αeq = 30o

in Earth’s dipolar magnetic field for 120 seconds. The dipole moment is in −ẑ direction.

The black arrows show westward motion of proton due to ∇B × B drift. (a) shows three-

dimensional trajectory of proton (b) the top view of the proton motion in xy plane as seen

from the north magnetic pole.
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Figure 3: The trajectories of electron of energy 5 MeV at L = 4 with pitch angle of αeq = 30o

in Earth’s dipolar magnetic field for 120 seconds. The dipole moment is in −ẑ direction.

The black arrows show eastward motion of electron due to ∇B × B drift. (a) shows three-

dimensional trajectory of electron (b) the top view of the electron motion in xy plane as seen

from the north magnetic pole.
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Figure 4: The spherical coordinates associated with the trajectory of proton of energy 5 MeV

at L=4, which is trapped in the Earth’s dipolar field. r is the radial distance of the trapped

particle from the center of the Earth in terms of Earth’s radius. The periodic time variation

of λ (magnetic latitude) represents the bounce motion. The maximum and minimum value

of λ corresponds to the magnetic mirror points in the northern and southern hemispheres,

respectively. The variation of φ represents the change in azimuthal angle over the drift motion.
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Figure 5: (a-b) Ratio of kinetic energy of the particle at each time step to its initial kinetic

energy (Ek/Ek0) and (c-d) magnetic latitude (λ) as a function of time obtained from the

simulation model having fourth-order (red) and sixth-order (blue) Runge-Kutta methods for

proton and electron. Here Ek0 =5 MeV is the initial energy of proton and electron placed

at L=4 with equatorial pitch angle 30o. The sixth-order Runge-Kutta method shows fairly

good long-term conservation of kinetic energy and stable mirror point locations due to less

numerical dissipation unlike the fourth-order Runge-Kutta method.
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Figure 6: (a) The instantaneous values of non-averaged (red and blue) and averaged J1 (black)

first adiabatic invariant as a function of time for 5 MeV proton initially placed at L = 4. The

red and blue curves are obtained from the fourth- and sixth-order Runge-Kutta methods,

respectively. (b) The second adiabatic invariant J2 as a function of time, calculated from the

parallel velocity of proton and averaged over the bounce period. Here, each dot represents

the one bounce period over which the averaging is carried out to compute J2.
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Figure 7: (a) The instantaneous values of non-averaged (red and blue) and averaged J1 (black)

first adiabatic invariant as a function of time for 5 MeV electron initially placed at L = 4.

The red and blue curves are obtained from the fourth- and sixth-order Runge-Kutta methods,

respectively. (b) The second adiabatic invariant J2 as a function of time, calculated from the

parallel velocity of electron and averaged over the bounce period. Here, each dot represents

the one bounce period over which the averaging is carried out to compute J2.
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Figure 8: The bounce period of (a) proton and (c) electron are shown as a function of energy for

two different L-shells, L =4 (red) and L =2 (blue). The corresponding percentage difference

between simulated and theoretical bounce periods (ε) are depicted in panel-b for proton and in

panel-d for electron. The maximum ε for proton and electron are ≈ 5% and 1%, respectively,

which are shown by horizontal dash lines.
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Figure 9: The drift period of (a) proton and (c) electron are shown as a function of energy for

two different L-shells, L =4 (red) and L =2 (blue). The corresponding percentage difference

between simulated and theoretical bounce periods (ε) are depicted in panel-b for proton and in

panel-d for electron. The maximum ε for proton and electron are ≈ 9% and 5%, respectively,

which are shown by horizontal dash lines.
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Appendix A. Runge - Kutta Method

The function with initial condition y(t0) = y0 is specified as follows,

ẏ = f(t, y). (A.1)

Here, y is an unknown function of time t, which has to be solved using Runge-

Kutta method. The rate at which this function changes with time is defined by

f(t, y). Since the initial condition is known, the value of the unknown function

(y) for next time step can be computed as,

yn+1 = yn +
h

5

[
16k1
27

+
6656k3
2565

+
28561k4
11286

− 9k5
10

+
2k6
11

]
,

tn+1 = tn + h. (A.2)

Here, h is the positive step size and n is the limit up to which unknown function

has to be solved. The coefficients k1 − k6 are obtained from function f(t, y)

using following expressions,

k1 = f(tn, yn),

k2 = f(tn +
h

4
, yn +

hk1
4

),

k3 = f(tn +
3h

8
, yn +

3h

32
(k1 + 3k2)),

k4 = f(tn +
12h

13
, yn +

12h

2197
(161k1 − 600k2 + 608k3)),

k5 = f(tn + h, yn +
h

4104
(8341k1 − 32832k2 + 29440k3 − 845k4)),

k6 = f(tn +
h

2
, yn + h(− 8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 +

11

40
k5)).(A.3)

In our simulation model, [vx, vy, vz] and [x, y, z] are unknown function of

time. The rate from which these function changes are defined as right hand side

of in Eq. (1) and Eq. (2). The equations are first solved for velocity and then

for position. In similar way, fourth-order Runge-Kutta method can be employed

with yn+1 as,

yn+1 = yn +
h

6
[k1 + 2k2 + 2k3 + k4] . (A.4)
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k1 = f(tn, yn),

k2 = f(tn +
h

2
, yn +

hk1
2

),

k3 = f(tn +
h

2
, yn +

hk2
2

),

k4 = f(tn + h, yn + hk3). (A.5)

Appendix B. Bounce Period

The bounce period of a charged particle can be calculated by integrating the

ds/v‖ over the full bounce path along magnetic field line.

τb = 4

∫ π/2

λm

ds

v‖
= 4

∫ π/2

λm

ds

dλ

dλ

v‖
. (B.1)

Here, ds is arc element along magnetic field line and λ is magnetic latitude. The

subscript “m”denotes “mirror point”. After inserting the expression of v‖ and

change of arc element of field line with magnetic latitude (ds/v‖), we obtained

bounce period as,

τb = 4
req
v

∫ π/2

λm

sinλ(1 + 3cos2λ)1/2[
1− sin2αeq (1+3cos2λ)1/2

sin6λ

]1/2 dλ = 4
req
v
T (y). (B.2)

Here, y ≡ sinαeq. The integral has a singularity at the mirror points which

do not allow to solve it analytically. Therefore, the integral has been evaluated

numerically to find the exact expression of the bounce period. The integral

T (y) depends on the equatorial pitch angle(αeq) and solved over λ. In order to

find the numerical solution, one has to solve the integral for different values of

λm varying from 0 to 90o at a fixed pitch angle. The numerical solution of the

integral T (y) can be treated as an exact solution and can be approximated with

numerical fitting for T (y) as a function of y.

Different approximations were found empirically three decades ago (David-

son, 1976; Hamlin et al., 1961). Recently, Orlova and Shprits (2011) proposed
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the following approximations for the integral T (y),

T1(y) ≈ 1.30− 0.56y,

T2(y) ≈ 1.38− 0.32(y + y1/2),

T3(y) ≈ 1.3802− 0.6397y3/4,

T4(y) ≈ 1.38 + 0.055y1/3 − 0.32y1/2 − 0.037y2/3 − 0.394y + 0.056y4/3(B.3)

All these approximations have a deviation from an exact solution which is mea-

sured as an absolute percentage deviation defined as,

δ =
|τapprox(y)− τexact(y)|

Texact(y)
100%. (B.4)

All approximations T1(y), T2(y), T3(y), and T4(y) are compared with the exact

solution in Fig. B.10. The red line in panels (a) to (d) of this figure shows the

exact solution of integral T(y) and blue line is the approximated results. The

absolute percentage deviation (δ) for the approximation T1(y), T2(y), T3(y),

and T4(y) is shown in panels (e)-(h) of Fig. B.10. The maximum value of

deviation (δmax) shows that the approximation T1(y) is less accurate. The

parametrization of approximation T4(y) was formed as linear combination of

the most important terms and is considerably more accurate. Here, we have

used the approximation T3(y) to estimate the theoretical expression because its

maximum deviation is 0.5% and has only three terms. Using the approximation

T3(y), the expression for bounce period can be written as,

τb = 0.117L
c

v
[1− 0.4635(sinαeq)

3/4]. (B.5)

Here, Re is the radius of Earth and L is the distance from the center of the

dipole to the equatorial crossing of the field line in terms of Re. In order to

include relativistic effect in this expression, the velocity v is calculated from the

energy of particle using relativistic transformation defined in Eq. (3). It may

be noted that when we compute τb from Eq. (B.1), the gyration of particle is

not considered. Also solving Eq. (B.2) by using approximations forms given in

Eq. (B.3) can introduce some errors in the estimates of τb.
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Figure B.10: Comparison of approximation T1(y), T2(y), T3(y), and T4(y) with the exact

solution. Panels (a)-(d) show the exact solution of T (y) (plotted with red color) and all

approximations (plotted with blue) as a function of y. Panels (e)-(f) show the percentage

deviation(plotted with blue) of approximations with exact solution. The maximum percentage

deviation(δmax) for each approximation is given in respective subplots. Here, black line

represents the approximation with zero deviation.

Appendix C. Drift period

Drift period of a charged particle can be calculated by the rate of change of

azimuth angle (φ) over a bounce,

<
dφ

dt
>=
4φ
τb

=
4

τb

∫ π/2

λm

v⊥(λ)

R0cos3λ

ds

dλ

dλ

v‖
. (C.1)

Using the expression of v‖, v⊥ and ds/dλ, we can get change in azimuth angle

as,

<
dφ

dt
>=

4

τb

3m0vR
2
0

qB0R3
e

∫ π/2

λm

cos3λ(1 + 3sin2λ)[1− y2

2
(1+3sin2λ)1/2

cos6λ ])

(1 + 3sin2λ)3/2[1− y2 (1+3sin2λ)1/2

cos6λ ]1/2
dλ =

4

τb

3m0v(LRe)
2

qB0R3
e

E(y).

(C.2)

Time taken for a complete rotation of longitude (2π) will be drift period,

τd =
2π

< dφ
dt >

=
2πqB0R

2
e

3Lm0v2
T (y)

E(y)
=

2πqB0R
2
e

3Lm0v2
D(y). (C.3)
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Again, similar to T (y), integral E(y) is also singular at mirror point and needs

to solve numerically with the varying value of λ which will be treated as exact

solution. This integral can also be approximated with numerical fitting for

integral D(y) with y. Past approximations for integral D(y) includes Hamlin

et al. (1961),

D1(y) ≈ 0.35 + 0.154y,

D2(y) ≈ 1/3(1− 0.3333(sinαeq)
0.62). (C.4)

The approximations D1(y) and D2(y) as a function of “y”are shown Fig. C.11.

The red curve of Fig. C.11(a) and C.11(b) represents the exact solution of

integral D(y) while blue represents the approximated D1(y) and D2(y). The

absolute percentage deviation of these approximations from the exact solution is

shown in Fig. C.11(c) and C.11(d). The maximum percentage deviation shows

that D1(y) is less accurate. Using approximation D2(y), the expression for drift

period can be written as,

τd =
2πqB0R

3
e

mv2
1

LRe

[
1− 1

3
(sinαeq)

0.62

]
. (C.5)
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Figure C.11: Comparison of approximation D1(y) and D2(y) with exact solution. (a) and

(b) shows the exact solution of D(y) (plotted with red color) and approximated (plotted with

blue) as a function of y. (c) and (d) shows the percentage deviation (plotted with blue)

of approximations with the exact solution. The maximum percentage deviation (δmax) for

each approximation is written. The black line at zero represents the approximation with zero

deviation.
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Highlights 

 3D test-particle simulation model is developed to examine trapped particle dynamics. 

 RK4 can simulate only bounce motion of the protons due to more numerical dissipation. 

 RK6 can simulate trapped particle motion of energy 5 keV to 250 MeV at L= 2-6. 

 The simulation results of bounce and drift periods are in agreement with theory.  

 RK6 can be applied to the time-varying and non-analytical magnetospheric studies. 
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