Ideal MHD
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Maxwell’s equations describe evolution of electric field E(r,t) and magnetic field

B(r, t) in response to current density j(r, ) and space charge 7(r, t):

(1)
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(4)

(5)
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VXE = 57 (Faraday)
1 OE
VxB = i+, = (cop) ", (Ampere)
V-E = 1, (Poisson)
€0
V-B =0. (no monopoles)
Gas dynamics equations describe evolution of density p(r,t) and pressure p(r, t):
D
D’? +pV-v = E +V - (pv) =0, (mass conservation)
Dp Op .
Dr +vpV - v = En +v-Vp+~ypV-v =0, (entropy conservation) (6)
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is the Lagrangian time-derivative (moving with the fluid).



e Coupling between system described by { E, B} and system described by {p, p}

comes about through equations involving the velocity v(r, t) of the fluid:
‘Newton’s’ equation of motion for a fluid element describes the acceleration of a fluid
element by pressure gradient, gravity, and electromagnetic contributions,
Dv
"Dt
‘Ohm’s’ law (for a perfectly conducting moving fluid) expresses that the electric field
E' in a co-moving frame vanishes,

=F=-Vp+pg+)jxB+7E; (momentum conservation) (7)

E=E+vxB=0. (Ohm) (8)
Equations (1)—(8) are complete, but inconsistent for non-relativistic velocities:
v, 9)

= We need to consider pre-Maxwell equations.



1. Maxwell's displacement current negligible [O(v*/c*)] for non-relativistic velocities:
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= Recover original Ampeére’s law:
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2. Electrostatic acceleration is also negligible [O(v?/c?)]:
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= Space charge effects may be ignored and Poisson’s law (3) can be dropped.

3. Electric field then becomes a secondary quantity, determined from Eq. (8):
E=-vxB. (11)

= For non-relativistic MHD, |E| ~ |v||B|, i.e. O(v/c) smaller than for EM waves.



Exploiting these approximations, and eliminating E and j through Egs. (10) and (1),
the basic equations of ideal MHD are recovered in their most compact form:
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%—?—VX(VXB)—O: V-B=0. (15)

= Set of eight nonlinear partial differential equations (PDEs) for the eight variables

p(r,t), v(r,t), p(r,t), and B(r, ).

The magnetic field equation (15)(b) is to be considered as a initial condition: once

satisfied, it remains satisfied for all later times by virtue of Eq.

15

().



(a) Young stellar object (YSO) (b) Active galactic nucleus (AGN)

(Rg~1AU,H; ~ 0.01 AU, (Rg ~ 50kpe, Hg ~ 120 pe,

My ~ 1Mo, n=108m™?): My ~ 10°M, ,n = 1012m™3):
Fp| = 5.3 x 10712, Fp| =22 x 1074,
FX=1.0x 1077, (22) FS=1.0x 1077, (23)
F'|=29x 107", F)'|=6.4x107%.
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Magnetic flux tubes

B-3, =0

Magnetic fields confining plasmas are essen-
tially tubular structures: The magnetic field
equation

V-B=0 (28)

is not compatible with spherical symmetry.

Instead, magnetic flux tubes become the es-
sential constituents.
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BlSl — BQSQ, S = 47TR2
Ry = 10% km RQ = 10 km B1 =100G=0.01T
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Line stretching

B1dS1 = B,dS5
p1dS1ly = padSals

By = Bi(p2/p1)(l2/11)
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Recall structure of the Sun:

e core, r < 0.20R5:
thermonuclear conversion of hydrogen
into helium;

e radiative zone, 0.25R, <r < 0.71R5:
outward radiative transport of produced
energy;

Sunspot

e convection zone, 0.71R; <r < Ry:
temperature gradient so steep that the |
plasma is convectively unstable

= seat of the solar dynamo!

(from SOHO web site)
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Convective Flows Below The Sun’s Surface
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THE SOLAR CYCLE
How the Sun uses a ‘conveyor belt’ of plasma to recycle sunspots

Polar fields Surface of Sun Weaker polar fields
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Buoyancy of flux tubes from the convective zone to the surface of the Sun.



e Dark spots in the (visible) photosphere that
are cooler (darker) than surroundings.

e (Can last days to months and rotate West-
East across the disk in bands up to 4+35°
about the equator.

e Reveal existence of several 1000 Gauss
magnetic field!

(from SOHO web site)
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