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Preface

We are living in a new age of discovery.

C. Murray, S. Dermott,
Solar System Dynamics (1999)

Dynamical chaos (the nondeterministic dynamical behaviour in the absence of any
random perturbations) plays a major, decisive role in the appearance of the observed
dynamical architectures of planetary systems, including our own Solar system.
Enough to say, the planet definition itself (as adopted by the General Assembly
of the International Astronomical Union in Prague in 2006) implies the existence of
a planetary chaotic zone cleared from low-mass material.

Therefore, three rapidly developing branches of modern science are exposed
in the book, exhibiting their interplay: the resonant and chaotic dynamics of
Hamiltonian systems, the dynamics of the Solar system bodies, and the dynamics of
exoplanetary systems. The necessary notions, methods, and tools of the dynamical
chaos science (such as symplectic maps, Lyapunov exponents and timescales,
chaotic diffusion rates, and stability diagrams and charts) are described and then
used to show in detail how the observed dynamical architectures arise in the Solar
system (and its subsystems) and in exoplanetary systems. Especially, we concentrate
on chaotic diffusion and clearing effects.

The dynamical chaos, as a plenipotentiary subject of research in physics and
dynamical astronomy, is a relatively recent development. The first milestone was set
60 years ago by Boris Chirikov in his work on the overlap of nonlinear resonances in
Hamiltonian dynamics (Chirikov 1959). The work was soon followed by large-scale
studies of chaotic dynamics in physical applications, such as physics of particle
accelerators and tokamaks. In celestial mechanics, the chaotic dynamics of celestial
bodies became a well-defined field of research in the 1980s of the twentieth century.
Today, studies of various manifestations and effects of dynamical chaos in systems
of celestial bodies form an integral part of modern astrophysics, celestial mechanics,
and exoplanetary science.

Indeed, this is a general trend in physical sciences: the theory of dynamical chaos
is becoming warranted in more and more applications. This trend is illustrated
in Fig. 1: a steady permanent rise is evident in the citing score of the classical
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Fig. 1 The integral number of citations of Chirikov’s (1979) work, as a function of time, up to
year 2019 inclusive, as inferred from NASA ADS citation data
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Fig. 2 The total number of confirmed discovered exoplanets, as a function of time, up to year
2019 inclusive, as inferred from Exoplanet.eu data

pioneering review by Chirikov (1979), from 1980s to nowadays. On the other hand,
the current rise in the discovery score of exoplanets is burst-like; see Fig. 2. There
is no doubt that “we are living in a new age of discovery”, as cited in the epigraph
to this Preface.

The book consists of three parts.
In Part I, the origins and manifestations of dynamical chaos in Hamiltonian

systems are considered. The nonlinear resonances and their interaction and overlap
are discussed in detail. The methods for analytical estimating the Lyapunov
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exponents and timescales, diffusion rates and timescales, widths of chaotic layers,
and extents of chaotic domains are described. Paradigmatic symplectic maps, such
as the standard map and the separatrix map, are introduced. An introduction to
modern numerical tools for characterizing qualitative dynamics is also presented.
These techniques are especially useful for building stability charts, for example, by
means of massive computations of the Lyapunov exponents on grids of initial data.

In Part II, based on the tools developed in Part I, we analyse resonances and chaos
in the Solar system and its subsystems, namely in the motion of large and minor
bodies of the Solar system—planets, planetary satellites, asteroids, and comets. We
demonstrate how the dynamical chaos affects the observed orbital and spin-orbit
properties of ensembles of the Solar system bodies.

In Part III, we focus on the dynamics of exoplanets. Resonances and chaos in
multiplanet systems of single stars and in planetary systems of binary stars are
considered. A number of spectacular examples of outstanding dynamical behaviours
of planets and planetesimal disks in model and real exoplanetary systems are
given. We concentrate on estimating the sizes of planetary chaotic zones and the
Lyapunov and diffusion timescales and explore how the effects of chaotic clearing
and dynamical packing determine the observed architectures of planetary systems.

In the limited volume of the book, it is impossible to provide a complete
panorama of such a broad field of studies. Personal preferences in the approach to
the general theme and in the choice of particular topics are inevitable. Concerning
the adopted style, it is more physical than mathematical, and in this respect, it largely
belongs to the physical tradition, founded in this field by Boris Chirikov.

To perceive a more “stereoscopic” and complete view of the subject, an advanced
reading of modern outstanding monographs and reviews in celestial mechanics,
dynamical chaos theory, and planetary science is recommended.

Especially, in the monograph by Boccaletti and Pucacco (1996, 1999), math-
ematical foundations of modern celestial mechanics, including dynamical chaos
theory and modern numerical tools, are addressed in detail. This monograph is
recommended as an advanced reading on the topics covered in the first part of our
book.

As different-styled introductions to problems of chaotic behaviour of Solar
system bodies, the reviews by Malhotra (1994, 1998), Lissauer (1999), and Davies
et al. (2014) are most helpful. In the book by Murray and Dermott (1999), one
may find an excellent general introduction to the dynamics of Solar system bodies,
including topics relevant to dynamical chaos. The book by Morbidelli (2002) is
highly recommended as an advanced course on the resonant and chaotic dynamics
of the Solar system and its subsystems.

In 2018, two encyclopedias on exoplanets (Perryman 2018; Deeg and Belmonte,
eds. 2018) were published. In these voluminous editions, an interested reader can
find a detailed modern astrophysical, astrochemical, and astrobiological material in
exoplanetology, with vast bibliographical lists.

Returning to our book, note that it was designed generally to be self-contained:
only basic knowledge in mathematics and mechanics is required for understanding
the material, if read from the beginning. I hope that the book can be helpful
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for researchers working in planetary and exoplanetary sciences, astrophysics,
celestial mechanics, nonlinear dynamics, at any level (researcher, graduate student,
undergraduate student), depending on the interests of the reader.

I am most thankful to Konstantin Kholshevnikov, Leonid Sokolov, and Alexander
Melnikov for useful discussions.

Saint Petersburg, Russia Ivan I. Shevchenko
2020
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Part I
Origins and Manifestations

of Dynamical Chaos

This book is focussed on the Solar system and exoplanetary dynamics. However,
an introductory theoretical part is necessary for understanding the further basic
material on chaotic dynamics in planetary systems. Analytical tools, addressed in
this introductory part, mostly concern an apparatus of paradigmatic symplectic
maps, such as standard and separatrix maps. This is needed to provide means for
estimating the diffusion and clearing rates, Lyapunov timescales, and extents of
chaotic zones in various dynamical applications, exposed further on in the book. We
concentrate on basic notions; detailed materials on symplectic maps can be found
in the classical review by Chirikov (1979) and in the monographs by Lichtenberg
and Lieberman (1992) and Abdullaev (2006). Here we treat the maps in a unified
manner, necessary to provide means for the planetary-focussed analysis. Various
models of interaction and overlap of non-linear resonances are addressed.

The presented material on numerical tools mostly includes means of construction
of charts and diagrams of global dynamics, such as methods based on computations
of LCE (Lyapunov characteristic exponents), MEGNO (mean exponential growth
numbers), FLI (fast Lyapunov indicators), and other chaos indicators. These numer-
ical techniques have become extremely popular in recent years, in particular in
studies of stability of exoplanetary systems. Here we address numerical techniques
for constructing global dynamical charts in a detailed and unified manner.



Chapter 1
Chaotic Behaviour

La plus haute perfection . . . se trouve
dans l’union de l’ordre et de l’anarchie.

Pierre-Joseph Proudhon,
Premier Mémoire (1840)

With a bit of imagination and fantasy
one may even conjecture that any macroscopic
event in this World, which formally is
a result of some quantum “measurement,”
would be impossible without chaos.

Boris Chirikov,
Patterns in Chaos (1990)

In this chapter, generic concepts of non-linear dynamics are considered: the non-
linear pendulum, resonances and chaos, among them. Various models of resonances,
phenomena of interaction and overlap of non-linear resonances are described.
Analytical instruments, addressed in this chapter, comprise symplectic maps in
general, the standard and separatrix maps, generalized separatrix maps, geometry
of chaotic layers. These tools are necessary for estimating the diffusion and clearing
rates, Lyapunov timescales, and extents of chaotic zones in various dynamical
applications, exposed further on in the book. The presentation partially follows
(in Sects. 1.1 and 1.3) the lecture by Shevchenko (2011c). In Sect. 1.6, it partially
follows the paper by Shevchenko (1999a), by permission from Springer Nature,
© 1999.

1.1 Pendulum, Resonances and Chaos

Resonance represents a generic concept of non-linear dynamics, if not the principal
one. According to Chirikov (1982), “resonance is understood as such a situation
when some frequencies of a non-perturbed system are close to each other or to
frequencies of an external perturbation.”

© Springer Nature Switzerland AG 2020
I. I. Shevchenko, Dynamical Chaos in Planetary Systems, Astrophysics
and Space Science Library 463, https://doi.org/10.1007/978-3-030-52144-8_1
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4 1 Chaotic Behaviour

This informal definition may seem rather comprehensive, but how one can be
convinced, in practice, in the existence of resonance in a system of any particular
celestial bodies? In fact, observed commensurabilities between frequencies in any
system may never be absolutely exact, at least due to observational errors. To
solve this problem, astronomers use the notion of the resonant phase (named
also the resonant or critical angle, or resonant or critical argument), defined
as a linear combination (algebraic sum) of angular variables of the system with
integer coefficients, the choice of which determines a resonant relation between the
frequencies. If the amplitude of variation of the resonant phase is limited, i.e., this
angle librates, similarly to libration of a pendulum, then the system is said to be in
resonance; otherwise, if the resonant phase increases or decreases unlimitedly, i.e.,
rotates, then resonance is absent. Trajectories at the border separating libration and
rotation are called the separatrices.

The dynamics of a rigid pendulum (Fig. 1.1), therefore, provides a model of
resonance. The pendulum model of resonance is ubiquitous, and can even be
called universal (Chirikov 1979, 1982), in what concerns the general requirement
for libration of the resonant argument and the existence of separatrices. However
note that, in mathematical formulations, various models of resonance exist that are
different from the mathematical pendulum model. Along with the mathematical
pendulum model, they are also considered henceforth in this book.

In celestial mechanics, one deals mostly with non-linear resonances, taking place
when the frequency of phase oscillations on resonance depends on the amplitude
(energy) of the oscillations, as in the pendulum example. Conversely, in linear
resonances, the frequency does not depend on the amplitude.

A slightest external push of the rigid pendulum, placed initially at the upper
position of equilibrium (ϕ = ±π = ±180◦; the angle ϕ is defined in Fig. 1.1),

Fig. 1.1 The pendulum
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can effect the dynamics qualitatively: it can replace oscillation with rotation or vice
versa. This phenomenon represents nothing but the so-called sensitive (essential)
dependence on initial conditions. What would occur, if the pendulum, initially
positioned at the separatrices, were subject to a periodic perturbation? It turns out
that, generically (for the majority of initial conditions), the motion becomes most
unusual. This is just the chaotic behaviour. For the first time, this confusing and
intricate behaviour was revealed by Poincaré (1899) in a study of the three-body
problem in celestial mechanics. However, at that time, the character of this intricate
motion was not considered in any sense as “random.”

However, in the first half of the twentieth century, the near-separatrix dynamics
did not attract much attention of researchers. The studies were limited to analysis
of special cases using traditional approaches. In 1908, A. Stephenson published
an article on the dynamics of the inverted (ϕ = π = 180◦) rigid pendulum with
an oscillating point of suspension (Stephenson 1908). He found that the vertical
oscillation of the suspension point is capable to stabilize the inverted pendulum,
if the oscillation frequency and amplitude are finely adjusted. Later on, at the end
of the 1940s of the twentieth century, Petr Kapitsa demonstrated this effect in a
real physical experiment (Kapitsa 1951, 1954). Modern opportunities of computer
techniques enable one to look at this effect from a novel viewpoint: if one constructs
a section of the phase space of motion of such a pendulum, it becomes evident
that the domain of stability represents only a small island in an extensive chaotic
“sea” formed by trajectories with obviously irregular behaviour. However, up to
the middle of the twentieth century this chaotic motion was not a subject of any
scientific study, neither the chaotic motion of any other dynamical system was such
a subject. One may say that chaotic regions of phase space rested “invisible” for
researchers.

In 1959, Boris Chirikov described the dynamical chaos theoretically, as an
outcome of interaction of resonances (Chirikov 1959). As a criterion for occurrence
of large-scale chaos he offered a resonance overlap concept. Using the pendulum
model, the criterion can be understood as follows. The phase space of a non-
perturbed rigid pendulum has two dimensions, defined by two variables: the angle ϕ,
measuring the pendulum’s deviation from the vertical direction, and the momentum
p = mlϕ̇, where m is the mass of the pendulum, l is its length, ϕ̇ is the rate of
variation of the angle ϕ. In the well-known phase portrait ϕ–p of the non-perturbed
pendulum (Fig. 1.2), a single domain (“cell”) of librations, bounded by the non-
perturbed separatrices, is present. Therefore, the non-perturbed pendulum model
describes a single resonance. If one “switches on” a periodic perturbation, e.g., the
oscillation of the suspension point, then the phase space of our dynamical system is
not two-dimensional any more. To compare the perturbed and non-perturbed cases,
it is necessary to construct a phase space section. It is built as follows: one plots the
values of variables not continuously but discretely, at constant time intervals equal
to the perturbation period. Then, on the section constructed in this way, one finds
out not one but three domains of libration, which are straightforward to regard as
three abstract resonances (Fig. 1.5). If the perturbation frequency is large enough,
the separation of the resonances in the momentum is significant and they interact
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Fig. 1.2 A phase portrait of the non-perturbed pendulum

only weakly. On reducing the perturbation frequency, the resonances approach each
other and chaotic layers (the bands of obviously irregular behaviour) in the vicinities
of their separatrices become visible, as in Fig. 1.5; on reducing the perturbation
frequency further on, the layers merge into a single chaotic domain.

1.2 Models of Resonance

The pendulum provides the first fundamental model of resonance. It is given by the
Hamiltonian

H = Ap2 + B cosϕ, (1.1)

where ϕ is the pendulum angle (the resonance phase angle), p is the momentum,
A and B are constant parameters. By a suitable rescaling of the momentum and
time, the Hamiltonian (1.1) can be straightforwardly reduced to a form without any
parameters:

H = I 2 + cosϑ, (1.2)

where I and ϑ are new canonical variables. The phase portrait of the first
fundamental model is given in Fig. 1.2.

The pendulum model is often regarded as a “universal” model of non-linear
resonance, due to its high usefulness in many applications. However, strictly
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speaking, it is not universal, because other resonance phenomena exist that do not
fit the pendulum model. The next in importance after the first model is the second
fundamental model of resonance (Henrard and Lemaître 1983; Lemaître 1984); its
Hamiltonian is given by

H = I 2 − Im/2 cosmϑ. (1.3)

The integerm (m > 0) is called the resonance order. At a given orderm, the second
fundamental model can be recast to the form in a minimal parametrization by a
single parameter. At m = 1, this form can be given by

H = I 2 − 3(1 + δ)I − 2(2I)1/2 cosϑ, (1.4)

where δ is a single parameter (Henrard and Lemaître 1983). Useful formulas,
explicitly describing separatrices in the second fundamental model for resonance
at various values of orderm (m = 1, 2, 3, 4), are given in Malhotra (1990).

Bifurcations of contour plots for Hamiltonian (1.4) on increasing δ from
negative to positive values are illustrated in Fig. 1.3. Especially note that at high
positive δ values the libration (resonance) cell becomes practically identical to that
described by the first fundamental model; this property can be readily exploited in
applications, because the first model theory (especially in what concerns resonance
overlap phenomena) is well developed.

An important particular case of the second fundamental model is represented
by the so-called parametric resonance. In the parametric resonance model, the
dependence on the momentum in the coefficient of the harmonic term in Eq. (1.3)
is linear (m = 2). The parametric resonance model was extensively explored in
the framework of the theory of particle accelerators in the 1950s and 1960s of the
twentieth century. Properties of the parametric resonance are considered in detail in
Chirikov (1979).

Shinkin (1995) proposed a third fundamental model of resonance, described by
the parameterized formula

H = 1

2
p2 + α

4∏

k=1

(p + βk)jk/2 cosmϕ, (1.5)

where the integer numbers j1 + j2 + j3 + j4 ≤ m; α and βk (k = 1, 2, 3, 4) are arbi-
trary parameters (see Shinkin 1995; Breiter 2003). An extended fundamental model
of resonance is presented in Breiter (2003). The third and extended fundamental
models allow one to describe resonances in a broad field of dynamical problems; see
a particular example concerning the Lidov–Kozai resonance in Shevchenko (2017a).
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Fig. 1.3 Upper panel: Contour plots for Hamiltonian (1.4) at negative values of δ, in the
coordinates x = (2I)1/2 cos ϑ, y = (2I)1/2 sinϑ . Middle panel: The same at small positive
values of δ. Bottom panel: The same at high positive values of δ (Figures 6 and 7 from Henrard
and Lemaître (1983), by permission from Springer Nature, © 1983)



1.3 Interaction and Overlap of Resonances 9

1.3 Interaction and Overlap of Resonances

In Chirikov’s saying, “. . . the physicist first of all tries to find out which resonances
play role in this or that system and how they interact with each other” (Chirikov
1982). It is just the presence of resonances, often regarded to be an embodiment of
order, leads to the unpredictable, chaotic character of the motion. In other words, the
presence of resonances in the phase space causes the presence of chaos. However,
as we have just seen, for chaos to exist, the presence of not one but two or more
resonances in the phase space is required, because their interaction is necessary.

To illustrate this concept, let us take, for the model of perturbed non-linear
resonance, the paradigmatic Hamiltonian

H = Gp2

2
− F cosϕ + a cos(kϕ − τ )+ b cos(kϕ + τ ) (1.6)

(see, e.g., Shevchenko 2000a). Its first two terms represent the Hamiltonian H0 of
the unperturbed pendulum with the pendulum angle ϕ (equivalently, the resonance
phase angle) and the momentum p. The last two terms represent periodic perturba-
tions; τ = 
t+τ0 is the phase angle of perturbation,
 is the perturbation frequency,
τ0 is the initial perturbation phase. The parameters F , G, a, b, and integer k are
constants.

If k = 1 and a = b, model (1.6) has a well-studied prototype in theoretical
mechanics, already mentioned above in Sect. 1.1: it describes a pendulum with the
suspension point that vertically oscillates (Bardin and Markeev 1995). The quantity
ε = a/F = b/F characterizes the relative perturbation amplitude.

If the perturbations are “switched on” (i.e., ε �= 0), a section of the phase space of
the motion can be constructed. Let us construct the section at τ = 0 mod 2π , taking
the parameters’ values as follows: 
 = 8, ω0 = 1, k = 1, a = b, ε = 0.5. The
resulting section is shown in Fig. 1.4; now not one but three domains of librations,
i.e., three resonances, are present.

We define the adiabaticity parameter λ to be equal to the ratio of the frequency
of perturbation to the frequency of small-amplitude oscillations on resonance. The
adiabaticity parameter λ measures the separation of the perturbing and guiding
resonances in the units of one quarter of the guiding resonance width. Indeed,
λ = |
|/ω0, and the separation of resonances in frequency space is equal to 
,
while the guiding resonance width is equal to 4ω0 (Chirikov 1979). Therefore, the
adiabaticity parameter λ can be regarded as a kind of resonance-overlap parameter.
In the asymptotic limit of the adiabatic perturbation, λ � 1, the resonances in
the multiplet strongly overlap, while in the asymptotic limit of the non-adiabatic
perturbation, λ � 1, the resonances are separated and do not interact.

If the perturbation frequency is relatively large, as in the case of Fig. 1.4 where
λ = 8, the separation of resonances in the momentum p is also large and they
almost do not interact. On reducing the frequency of perturbation, they approach
each other, and appreciable chaotic layers emerge in the vicinity of the separatrices
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Fig. 1.4 A chaotic resonance triplet. Weak interaction (λ = 8) (Figure 1 from Shevchenko (2014),
with permission from Elsevier)

Fig. 1.5 A chaotic resonance triplet. Moderate interaction (λ = 5) (Figure 2 from Shevchenko
(2014), with permission from Elsevier)

(see Fig. 1.5, where λ = 5 and ε is the same as in Fig. 1.4). As it is well visible in
Fig. 1.5, the motion in the vicinity of the separatrices is irregular. On reducing the
frequency of perturbation further on, the layers merge into a single chaotic layer, due
to the strong resonance overlap (see Fig. 1.6, where λ = 2). The sequence of phase
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Fig. 1.6 A chaotic resonance triplet. Strong overlap (λ = 2) (Figure 3 from Shevchenko (2014),
with permission from Elsevier)

space sections in Figs. 1.4, 1.5, and 1.6 graphically demonstrates the interaction and
overlap of resonances.

1.4 Symplectic Maps in General

Solely basic results (those that are needed henceforth) in the symplectic map theory
are presented here, generally following ideas and approaches given in Meiss (1992),
Meiss (2007), and Lichtenberg and Lieberman (1992); Abdullaev (2006). For a
detailed analysis and complete descriptions, reviews contained in these works are
highly recommended.

Dynamical system is defined as a phase space of states plus a set of rules
governing the evolution of these states (Meiss 1992). If the rules are given by
differential equations, then the evolution is regarded as continuous, and if they
are defined by maps, then as discrete. Mappings arise either as outcomes of
physical models (as in cases of the paradigmatic Fermi map or Kepler map, see
Chirikov (1979), Chirikov and Vecheslavov (1989), and Lichtenberg and Lieberman
(1992)), or as outcomes of purely mathematical analytical methods (as in case of
the separatrix map, see Chirikov (1979) and Piftankin and Treshchev (2007)), or
as outcomes of direct numerical integrations (as in studies of the Hénon–Heiles
problem, see Hénon and Heiles (1964), Lichtenberg and Lieberman (1992), and
Shevchenko and Melnikov (2003)).



12 Symplectic maps in general

We consider solely Hamiltonian systems. Any Hamiltonian flow is given by a
scalar function H(p,q, t) that defines the system of differential equations

dpk
dt

= − ∂H
∂qk

,
dqk
dt

= ∂H
∂pk

, (1.7)

where vectors q and p are conjugate canonical coordinates and momenta, respec-
tively; k = 1, 2, . . . N ; N is the number of degrees of freedom.

A map is defined as a transformation

(p′,q′) = T (p,q) (1.8)

of canonical variables in the system’s phase space: T transforms each point (p,q)
to its image (p′,q′). The map’s orbit is given by the sequence of states

{. . . , (pi ,qi ), (pi+1,qi+1), . . . } (1.9)

where (pi+1,qi+1) = T (pi ,qi ) for any integer i.
Any map describing a Hamiltonian system is called symplectic or canonical. It

preserves the so-called Poincaré integral invariant, or just Poincaré invariant, which
is defined below.

In particular, the symplectic maps are volume-preserving:

det

(
∂pi+1
∂pi

∂pi+1
∂qi

∂qi+1
∂pi

∂qi+1
∂qi

)
= 1. (1.10)

The two-dimensional symplectic maps are therefore area-preserving.
The symplectic map theory can be developed starting from the action principle

(Meiss 1992, 2007). The action is defined as a functional on an orbit segment
(q(t),p(t)) at t0 < t < t1:

S =
∫ t1

t0

(p · q̇ − H(p,q, t)) dt , (1.11)

where the upper dot (˙) is the time derivative. The action on a closed loop in the
phase space is an invariant of the Hamiltonian flow; it is just the mentioned above
Poincaré integral invariant. By introducing a parameter λ, the loop can be described
as the set {q(λ),p(λ), t (λ); 0 ≤ λ ≤ 1}. The action of the loop L is the integral

SL =
∫ 1

0

(
p · dq

dλ
− H dt

dλ

)
dλ (1.12)

(Meiss 1992).
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Assume the loop L to be a set of initial conditions for Hamiltonian equations.
The closed loop L is defined as a loop in the extended phase space (q, p, t). One
may find the loop’s evolution by integrating the equations of motion. Consider a
time-independent function H and an arbitrary loop L on the energy surface H = E.
Since H is constant on E, the term Hdt does not contribute to the contour integral;
therefore, on the surface of constant energy one has

SL =
∮

L
p · dq =

N∑

k=1

σk

∫

Ak
dpkdqk , (1.13)

where σk = 1 if the projection of L on the plane k is described clockwise, and
σk = −1 if the projection is described counter-clockwise.

This equality is nothing but the generalization of the Stokes theorem to the case
of phase space of arbitrary dimensions. Recall that the classical Stokes theorem
states that the contour integral of F(r), where F is an arbitrary vector function of r,
over a closed contour C is equal to the flux of the curl ∇ × F through the surface
bounded by C.

The quantity SL is called the symplectic area. It is equal to the sum of areas ofN
projections of L on the planes (qk, pk); see Fig. 1.7. The symplectic area along the
flow specified by the time-independent Hamiltonian is thus preserved, because the
Poincaré invariant exists.

Fig. 1.7 The Poincaré invariant is the sum of oriented areas of the loop projections on the (qk, pk)
planes (Reprinted Figure 2 with permission from Meiss (1992). © 1992 by the American Physical
Society)
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Consider a parallelogram contour formed by two vectors δz1 and δz2 (in the
phase space (q, p)). Its symplectic area is given by

ω(δz1, δz2) = δp1 · δq2 − δq1 · δp2 =
∑

k,l

δz1
kωklδz

2
l . (1.14)

In the matrix form, ω = J−1, where the antisymmetric matrix J is the Poisson
matrix, or, the symplectic unit:

J =
(

0 I
−I 0

)
. (1.15)

It has dimensions 2N × 2N ; here I is the unit matrix of dimensions N × N . The
form ω is called the symplectic form.

Following Meiss (1992), consider an infinitesimal parallelogram formed by two
small arbitrary vectors δz1 and δz2 at a point z (in the phase space (q, p)). A
symplectic mapping T takes this parallelogram to a point z′:

δz′ = ∂T

∂z
δz . (1.16)

The symplectic area of the image is equal to that of the inverse image:

ω(δz1′
, δz2′

) = ω(δz1, δz2) (1.17)

and

MtrωM = ω , (1.18)

where “tr” means “transposed,” and M is the Jacobi matrix with elements

Mkl = ∂z′
k

∂zl
. (1.19)

Equation (1.18) represents the necessary and sufficient local condition for a map
to possess the Poincaré invariant. A map satisfying it everywhere is called locally
symplectic (Meiss 1992, 2007). This matrix equality is conveniently used to verify
the symplectic property of any map.

Taking determinants of the right and left parts of Eq. (1.18), one has

Det(MtrωM) = Det(ω) , (1.20)
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hence

(Det(M))2 = 1 , (1.21)

because Det(ω) �= 0. Therefore, Det(M) = ±1. In reality Det(M) = +1, that is,
any symplectic map preserves both volume and orientation. In particular, any two-
dimensional symplectic map preserves both area and orientation; and, conversely,
any two-dimensional map preserving both area and orientation is locally symplectic.

Any numerical procedure for solving a system of differential equations consists
in iterations of a map. It is important to be aware that, if the system of differential
equations is Hamiltonian, it is desirable to ensure that the integration scheme is
symplectic.

1.5 The Standard Map

Let T : (x, y) → (x ′, y ′) be a two-dimensional symplectic map of a cylinder (with
x being the angular coordinate) onto itself, and assume that T is differentiable. Then
T is a twist map (with the twist to the right) if there exists K such that

dx ′

dy
≥ K > 0 (1.22)

(Meiss 1992). In other words, x ′ is a monotonically increasing function of y.
The twist condition is physically natural (Meiss 1992, 2007), as soon as y

represents the momentum, and a larger momentum usually implies a higher speed.
Therefore, points with a larger value of y will move farther along x. In fact, the
twist property (1.22) is ubiquitous: it naturally emerges when one of the variables is
momentum-like, and the other one is angle-like.

It often happens that one and the same map arises in both physical and abstract
mathematical models. For example, the standard map arises in “microtron” and
Frenkel–Kontorova physical models (Chirikov 1979, 2000; Lichtenberg and Lieber-
man 1992; Meiss 1992); while, on the other hand, it arises purely mathematically as
a local (in the action-like variable) approximation of more complicated maps, e.g.,
separatrix maps.

The standard map (sometimes called the Chirikov map or the Chirikov–Taylor
map) is given by

yi+1 = yi +K sin xi,

xi+1 = xi + yi+1, (1.23)

where K is the so-called stochasticity parameter (Chirikov 1979; Lichtenberg and
Lieberman 1992).
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The Hamiltonian of the dynamical system described by the standard map is

H = p2

2
+ K

4π2

k=+∞∑

k=−∞
cos(x − kt) (1.24)

(Chirikov 1979). The variables x(ti), p(ti ) = yi/(2π), taken at t = ti = 2πi
(where i are integers) correspond to the variables of the standard map (1.23). In
fact, the standard map is a symplectic integrator for the equations of motion defined
by the Hamiltonian (1.24); i.e., the standard map can be regarded as a symplectic
scheme for numerical integration of the given equations of motion.

The stochasticity parameterK of the standard map (1.23) relates to the adiabatic-
ity parameter of the original system (1.24) by the equation

K = (2π/λ)2. (1.25)

The standard map (1.23) describes the motion in an infinite multiplet of equal-
amplitude equally-separated resonances, explicitly represented by the trigonometric
terms in (1.24). It has the twist property (1.22).

At small values of the parameterK, K � 1, the phase space of the standard map
is mostly regular, with the chaotic component measure tending to zero withK → 1.
On increasingK , the chaotic separatrix layers of resonances swell, resonances start
to overlap, and the chaotic behaviour becomes more and more pronounced. The
chaotic component of phase space rises in volume. and the maximum Lyapunov
exponent (measuring the rate of divergence of nearby trajectories, see Sect. 2.1) of
the chaotic motion increases. An important constant in the standard map theory is
the critical value of the stochasticity parameter, at which the chaotic orbits become
unbounded in momentum, because the last invariant curve is destroyed (Chirikov
1979; Greene 1979; Meiss 1992; Lichtenberg and Lieberman 1992). This happens at
K = KG = 0.971635406 . . ., as analytically shown by Greene (1979). At this value
of K , the relative measures of the chaotic and regular components of the map’s
phase space are approximately equal, about one half each: ≈ 0.46 and ≈ 0.54,
respectively (Shevchenko 2004a).

1.6 The Separatrix Map

For weakly perturbed systems, the chaotic component of the phase space in the
vicinity of perturbed separatrices can be described using the notion of a chaotic
layer, a near-separatrix domain where a dynamical system moves chaotically. The
chaotic layer theory has applications in various areas of physics, mechanics and,
in particular, in celestial mechanics (Chirikov 1979; Shevchenko 2007a, 2010).
The key role in this theory is played by separatrix maps. They represent the
motion of a system close to a separatrix in a discrete way (“stroboscopically,” as
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in constructing the phase space sections): the system state, set by the “time” and
“energy” variables, is fixed not continuously, but discretely at passages by the model
pendulum (describing the resonance) of the positions of equilibrium.

The separatrix map was deduced in an implicit form at the end of 1960s by
Zaslavsky and Filonenko (1968), and in the modern form in the seventies by
Chirikov (1977, 1978, 1979). Initially it was named “whisker map,” as the perturbed
separatrices were graphically called “whiskers.”

The classical separatrix map is an effective tool for analysis of the motion in
chaotic layers formed by splitted separatrices of non-linear resonances (Piftankin
and Treshchev 2007), and its theory can be used for estimating parameters of chaotic
layers, when the standard map theory, valid for the case of an infinite multiplet of
equally-spaced equal-size resonances, is not applicable.

A number of problems on non-linear resonances in mechanics and physics is
described by the perturbed pendulum-like Hamiltonian (1.6). We assume that F > 0
and G > 0. The case of symmetric perturbation a = b with k = 1 is of especial
interest. In this case, the Hamiltonian (1.6) describes, in particular, the pendulum
with the vertically oscillating point of suspension. Models with arbitrary non-zero
values of integer k and zero either a or b concern the problem of a particle motion in
the field of two planar waves (Escande and Doveil 1981; Escande 1985; Zaslavsky
et al. 1991; Zaslavsky and Abdullaev 1995). Models with k = 1/2 and specific a and
b values were applied to describe dynamics in vicinities of the 3/1 orbital resonance
in planetary satellite systems (Malhotra 1990; Shevchenko 2000b). A model with
k = 1 and b = −a/7 describes rotational dynamics close to synchronous spin-orbit
resonance, of non-spherical satellites in elliptic orbits (Wisdom et al. 1984; Celletti
1990).

The near-separatrix motion of system (1.6) in the symmetric case a = b and
k = 1 was demonstrated in Chirikov (1977, 1978, 1979) to be effectively described
by the separatrix map

wi+1 = wi −W sin τi,

τi+1 = τi + λ ln
32

|wi+1| (mod 2π). (1.26)

The variable w ≡ H0F − 1 denotes the relative (with respect to the unperturbed
separatrix value) pendulum energy, and τ is the phase angle of perturbation.

The separatrix map has a domain-dependent twist property (Ahn et al. 1996).
The adiabaticity parameter λ (see Sect. 1.3) is equal to the perturbation frequency


 in units of ω0 = (FG)1/2, the frequency of small phase oscillations on resonance:

λ = 


ω0
= 


(FG)1/2 . (1.27)
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The second parameter,W , when a = b and k = 1, is given by

W = a

F λα
c
2(λ), (1.28)

or, equivalently,

W = ελ (A2(λ)+ A2(−λ)) = 4πελ2

sinh πλ2
(1.29)

(Shevchenko 1998b). Special functions αck(λ) with k = 0, 1, 2, . . . are explicitly
given in Appendix C.

The Melnikov–Arnold integral (“MA-integral”)W sin τ gives the model pendu-
lum energy increment over one circulation or half-libration period of the pendulum
in its near-separatrix motion, as a function of phase τ at the moment of the pendulum
passage of its upper point of equilibrium. The coefficientA2 is given by the formula

A2(λ) = 4πλ
exp(πλ/2)

sinh(πλ)
, (1.30)

see Chirikov (1979), Shevchenko (1998b, 2000a). Formula (1.29) differs from that
given in Chirikov (1979) and Lichtenberg and Lieberman (1992), as the A2(−λ)
term is added here. It is negligible when λ � 1. However, it is significant when
λ� 1 and λ ∼ 1 (Shevchenko 1998b).

For arbitrary k, formulas forW are presented in Chirikov (1979) and Shevchenko
(2000a), and for arbitrary a and b they are given in Shevchenko (2000a). The
accuracy of map (1.26) in describing the original system (1.6) can be estimated,
by an order of magnitude, as ∼ ε (Treshchev 1998; Abdullaev 2006). The accuracy
can be estimated directly, e.g., by measuring the chaotic layer width.

The expression used in map (1.26) for the phase τ increment is approximate:
it is valid only asymptotically at low strengths of perturbation, i.e., at w � 1.
To improve the accuracy at larger perturbation amplitudes, the phase increment
logarithmic approximation can be replaced by the increment’s original expression
through elliptic integrals (Shevchenko 1998b, 1999a).

Another important circumstance that should be taken into account when using
Eqs. (1.26), is that the motion of the original system (1.6) is iterated by Eqs. (1.26)
asynchronously (Shevchenko 1998b): the relative energy w is taken on passing the
upper vertical position ϕ = ±π of the model pendulum, while the perturbation
phase τ is taken at its lower vertical position ϕ = 0. The map can be synchronized by
an especial procedure (Shevchenko 1998b, 2000a). The synchronized map provides
authentic phase space sections for the near-separatrix motion at both high and low
frequencies of perturbation (i.e., at any value, either greater or less than unity, of
the adiabaticity parameter λ), as demonstrated in Shevchenko (2000a) by direct
comparisons of the map phase portraits and phase space sections obtained by direct
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numerical integrations of the original system. We consider the synchronization
procedure in detail blow in Sect. 1.8.

The asymptotic formula forW that ensues from Eq. (1.29) at λ ∼ 0 isW ≈ 8ελ.
Its good agreement with the actual amplitude of the separatrix map, as found by
means of numerical integrations of the original system, was verified in Vecheslavov
(2004).

An equivalent form of Eqs. (1.26), used, in particular, in Chirikov and Shepelyan-
sky (1984) and Shevchenko (1998a,b), is

yi+1 = yi + sin xi,

xi+1 = xi − λ ln |yi+1| + c (mod 2π), (1.31)

where y = w/W, x = τ + π ; and

c = λ ln
32

|W | . (1.32)

An illustrative example of the chaotic layer described by the separatrix map (1.31)
is shown in Fig. 1.8. In this example, the adiabaticity parameter λ = 1.34, and
c = 2.32.

Another example, with λ = 5 and c = 0, is given in Fig. 1.9. In Fig. 1.10, a
zoom of critical structure at the layer border is presented. The corresponding area
in Fig. 1.9 is shown by a rectangle. The layer border is situated at |y| ≈ λ; at these
values of y, as can be easily verified, the linearization of the separatrix map in y
results in the standard map (1.23) with K ≈ 1.

In our pendulum model, the so-called non-adiabatic chaos takes place if the
perturbation frequency is much greater than the frequency of small-amplitude
oscillations on resonance. In other words, the condition is that the distance between
resonances in the momentum should be much greater than the sum of their half-

Fig. 1.8 An example of the chaotic layer, as described by the separatrix map (1.31) with λ = 1.34
and c = 2.32 (Figure 1 from Shevchenko (1998b), by permission of IOP Publishing/AAS)
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x

y

(a)

p–p

Fig. 1.9 An example of the chaotic layer, as described by the separatrix map (1.31) with λ = 5
and c = 0 (Figure 1a from Chirikov (1991), with permission from Elsevier)

widths. Conversely, adiabatic chaos, or slow chaos, takes place if the interacting
resonances overlap and merge.

As a rule, non-adiabatic chaos is bounded inside a near-separatrix layer. In case
of adiabatic chaos, the motion represents a global diffusion across overlapping
resonances, merged in a single domain in phase space.

Let us now consider how the ordinary separatrix map (1.26) can be generalized to
the case of asymmetric perturbation (Shevchenko 1999a). The introduction of such
a map expands the field of application of the separatrix map theory; for example, this
map can be directly applied to describe chaotic rotations of a satellite, as discussed
further on in Sect. 7.1.

Consider the Hamiltonian (1.6). The separatrix map in case of asymmetric
perturbation a �= b differs from the separatrix map in the symmetric case, because
energy increments are different for the prograde and retrograde motions of the
pendulum. Therefore, the separatrix map in the asymmetric case represents an
algorithm, the separatrix algorithmic map. The essence of this algorithm consists
in taking into account alternations of values of the parameter W . It alternates
when the direction of the motion changes. The separatrix algorithmic map contains



1.6 The Separatrix Map 21

Fig. 1.10 A close-up of the rectangle-delimited area in Fig. 1.9 (Figure 1b from Chirikov (1991),
with permission from Elsevier)

conditional transfer statements (Shevchenko 1999a). The map is given by

if wi < 0 andW = W− thenW := W+,

if wi < 0 andW = W+ thenW := W−;
wi+1 = wi −W sin τi,

τi+1 = τi + λ ln
32

|wi+1| (mod 2π); (1.33)

where λ is the adiabaticity parameter, as given by Eq. (1.27). The former W
parameter is generalized to

W+(λ, η) = ελ (A2(λ)+ ηA2(−λ)) ,
W−(λ, η) = ελ (ηA2(λ)+ A2(−λ)) , (1.34)

and ε = a
F , η = b

a
.
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One should be aware that the expression for the increment of the phase τ in the
ordinary separatrix map (1.26) is an approximation, valid asymptotically when the
near-separatrix rotation/oscillation period on resonance tends to infinity. Therefore,
it is applicable at low strengths of perturbation (W � 1), when the chaotic layer is
thin. Conversely, if the perturbation is not weak, one may improve the performance
of the separatrix map by means of replacing the logarithmic approximation by
the original exact expression through elliptic integrals (Shevchenko 1998b). The
expression form depends on whether the phase rotates or oscillates. On performing
this substitution, one obtains for the τ increment:

�n+1τ =
{

2λK
(
(1 + wn+1

2 )1/2
)
, if wn+1 < 0,

2λ(1 + wn+1
2 )−1/2K

(
(1 + wn+1

2 )−1/2
)
, if wn+1 > 0,

(1.35)

where K(k) is the elliptic integral of the first kind. The first line in Eq. (1.35)
corresponds to libration of the model pendulum, and the second one to its rotation.

The separatrix algorithmic map maps the motion of the system (1.6) (at k = 1)
on the plane (τ , w) at fixed values of the resonant phase angle ϕ equal to 0 and
±π . When Poincaré sections are constructed numerically in applied problems, it is
customary to use another plane, namely the plane (ϕ, p) taken at a fixed value of the
phase angle of perturbation, e.g. τ = 0 (mod 2π).

Consider the problem how the section of the second kind can be found with the
help of the separatrix map. In order to characterize the current state of the system,
described by the separatrix algorithmic map, introduce temporary designations
w = wn, τ = τn; and �τ = τn − τn−1. The value of W , which specifies the
current prograde/retrograde state of the system, is taken at the next iteration n + 1.
The matter is that the values of the variables wn and τn, given by the separatrix
algorithmic map (1.33), as well as by the usual separatrix map (1.26), correspond to
different instants of time (the property of asynchronism, see Sect. 1.8). The phase τn
is mapped with a delay in relation to the relative energy wn. The delay is equal to a
half-period of rotation, or a quarter-period of libration of the model pendulum. Due
to this delay, the value of W in the formula for wn+1 in the separatrix algorithmic
map (1.33) specifies the prograde/retrograde state of the system at the preceding
instant τn; or, inversely, the state of the system at τn is determined by the value of
W in the formula for wn+1, i.e., at the next iteration.

Let us find the phase point which is connected with the position of the system at
the current instant τ (corresponding to ϕ = 0) by a trajectory backwards in time,
and which is situated at the nearest surface τ = 0 (mod 2π). The trajectory is
assumed to be regular and possessing energyw. For convenience, the current instant
τ is taken modulo 2π , while the increment �τ is not. If �τ ≤ τ , there are no
intersections with the plane of interest on the open interval of time backwards in
relation to the current state, and no projection is made therefore at such an iteration
of the map. Otherwise, the projection to the nearest surface τ = 0 (mod 2π) is given
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by the formulae

ϕ =
{
ϕ
(
t = − τ




)
, if W = W+ (prograde),

−ϕ (t = − τ



)
, if W = W− (retrograde),

(1.36)

p =
{
p
(
t = − τ




)
, if W = W+ (prograde),

−p (t = − τ



)
, if W = W− (retrograde),

(1.37)

where ϕ(t) and p(t) represent the explicit solution of equations of the unperturbed
non-linear pendulum (see, e.g., Wisdom 1985):

cosϕ(t) = 1 − 2k2sn2(ω0t),

sinϕ(t) = 2k sn2(ω0t)(1 − k2sn2(ω0t))
1/2,

p(t) = 2ω0k

G cn(ω0t), (1.38)

for libration, and

cosϕ(t) = cn2(ωr t)− sn2(ωr t),

sin ϕ(t) = 2 sn(ωr t) cn(ωr t),

p(t) = 2ωr
G dn(ωr t), (1.39)

for rotation; sn, cn, dn are Jacobi elliptic functions, ωr = ω0
k

,

k =
{(

1 + w
2

)1/2
, if w < 0 (libration),

(
1 + w

2

)−1/2
, if w > 0 (rotation),

(1.40)

is the elliptic modulus (compare with Eq. (1.35)).
One iteration of the separatrix algorithmic map can produce several (or even

many) projected points. To find all projected points for a given iteration, it is
straightforward to use the following algorithm (Shevchenko 1999a). First, it is
verified whether the intersection condition�τ > τ is valid, and if yes, a projection
is made. Then the interval τ is incremented by 2π and it is verified whether the
intersection condition is still valid. If yes, the projection is accomplished once
more with the new value of τ , and one more phase point on the plane (ϕ, p),
τ = 0 (mod 2π), is found. The cycle is repeated until �τ ≤ τ . The complete
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algorithm can be represented as follows:

while �τ > τ do

evaluate ϕ , p by Equations (1.36, 1.37)

τ := τ + 2π

end do

(1.41)

Note that the input value of τ is taken modulo 2π , while the increment �τ and
consequent values of τ are not.

This procedure is applied at each iteration of the separatrix algorithmic map.
Since it is based on the regular approximation of the chaotic motion (when time
increments are much less than the Lyapunov time; for the definition of the Lyapunov
time, see Sect. 2.1), it is called the regular projection algorithm.

Now let us consider a non-linear resonance in the perturbed pendulum model
with several harmonic perturbations (i.e., in comparison with Hamiltonian (1.6), the
number of equally-spaced perturbing harmonics may be arbitrary):

H = Gp2

2
− F cosϕ +

M∑

k=1

ak cos(ϕ − kτ)+
M∑

k=1

bk cos(ϕ + kτ). (1.42)

Thus the number of resonances in the multiplet is equal to 2M + 1.
Let us build a separatrix map for Hamiltonian (1.42) with symmetric pertur-

bations (ak = bk). If the perturbations are asymmetric, the problem is more
complicated, because the separatrix map becomes algorithmic, as in the paradig-
matic triplet case (Shevchenko 1999a).

Setting ak = bk and calculating the increment of the energy variable
(analogously to the triplet case, considered in Chirikov (1979)) gives the result∑M
k=1Wk sin(kτi), whereas the increment of the time variable remains the same

as in the triplet case. Thus the separatrix map (1.26) is generalized to a multiplet
separatrix map, given by

wi+1 = wi −
M∑

k=1

Wk sin(kτi),

τi+1 = τi + λ ln
32

|wi+1| (mod 2π), (1.43)

where

Wk = 4πεk
λ2
k

sinh πλk2

,

where λk = kλ and εk ≡ ak
F = bk

F .
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The domain of validity of map (1.43) (in describing the near-separatrix motion)
is expected to be usually much smaller than that of map (1.26), because the natural
condition of validity |W | � 1 generalizes here to the condition

∑M
k=1 |Wk| � 1.

Thus, if there is a lot of perturbing harmonics, the maximum allowed amplitudes
εk in the multiplet case must be usually much smaller than the maximum allowed
amplitude ε in the triplet case, at any given value of λ.

Besides, note that in case of non-adiabatic perturbation (λ � 1/2) the multiplet
map (1.43) can be usually replaced by the classical map (1.26) for the “central”
triplet (with W = W1), because at high values of λ the coefficientsWk at k > 1 are
exponentially small with k, with respect toW1.

As we have seen, the separatrix map techniques allows one to rapidly construct
sections of phase space near the separatrix. Experience shows that separatrix maps
provide advantages by two or three orders of magnitude in the speed of computation,
in comparison with direct integrations. It is even more important that the separatrix
map theory provides means for straightforward analytical description of the near-
separatrix phase space. It allows one to precalculate the locations of resonances
and borders of chaotic layers; it provides conditions for occurrence of marginal
resonances and Hamiltonian intermittency, considered further on in Sect. 4.4.

1.7 Generalized Separatrix Maps

Let us write down the classical separatrix map in the form analogous to Eqs. (1.31):

yi+1 = yi + sin xi,

xi+1 = xi + λ ln |yi+1| + c, (1.44)

where y denotes, as defined above in Sect. 1.6, the normalized relative pendulum’s
energy, x is normalized time, and λ and c are constant parameters.

Consider a similar map with a power-law increment of the phase x instead of the
logarithmic one:

yi+1 = yi + sin xi,

xi+1 = xi + λ|yi+1|−γ , (1.45)

or, equivalently,

wi+1 = wi +W sin τi,

τi+1 = τi + κ |wi+1|−γ . (1.46)
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The map (1.46) is represented in form (1.45) by substituting w = Wy and τ = x;
therefore, λ = κW−γ . Form (1.45) is more convenient, because it has only one
parameter, λ, apart from the power-law index γ .

A number of dynamical and physical models are described by maps (1.45) and
(1.46) with appropriate rational values of γ . The γ = 1/4 and 1/3 values give
Markeev’s maps (Markeev 1994, 1995), describing the near-separatrix motion in
two important models of resonances. The γ = 1/2 value gives the “L̂-map”
(Zaslavsky et al. 1991) for the motion of a non-relativistic particle in the field of
a wave packet. This value also gives a map for the classical Morse oscillator driven
by a time-periodic force (Abdullaev 2006). The γ = 1 value gives the Fermi map
(Zaslavsky and Chirikov 1965; Lichtenberg and Lieberman 1992) for the Fermi
acceleration mechanism for cosmic rays. The γ = 3/2 value gives the Kepler
map (Petrosky 1986; Chirikov and Vecheslavov 1986; Vecheslavov and Chirikov
1988; Petrosky and Broucke 1988; Abdullaev 2006) for a number of physical and
celestial-mechanical applications (Shevchenko 2011b). The γ = 2 value gives the
“ultrarelativistic map” (Zaslavsky et al. 1991) for the motion of a relativistic particle
in the field of a wave packet. All these maps describe the near-separatrix (in a broad
sense) motion in corresponding models. For example, in case of the Kepler map
model, the separatrix separates the bound and unbound states of motion of a particle
in the restricted three-body problem.

1.8 Geometry of Chaotic Layers

An important property of the separatrix map in form (1.26), already mentioned
above, is that it maps the motion asynchronously (Shevchenko 1998b; Abdullaev
and Zaslavsky 1995, 1996): the energy variable is taken at the “pendulum” angle
ϕ = ±π , whereas the phase angle of perturbation is taken at ϕ = 0. This property is
a direct outcome of the way how the map is constructed. According to Shevchenko
(1998b), it leads to the phase portrait asymmetry with respect to the vertical axes
τ = 0 or τ = π ; see Figs. 1.8 and 1.9, and also Figure 6 in Ahn et al. (1996), or
Figure 3b in Jeon et al. (1996)).

Abdullaev and Zaslavsky (1995, 1996) outlined this property for the classical
separatrix map, and derived an improved map: a shifted separatrix map. In their
construction, the phase angle of the perturbation can be taken at any arbitrary cross
section, and the energy variable is taken at ϕ = ±π , as in the classical setup.

However, the cross section ϕ = ±π (corresponding to the pendulum’s unstable
equilibrium) does not represent the dynamics completely, because the pendulum
angle does not reach ±π point during oscillations. Therefore, it is more suitable
to derive a procedure for synchronizing the map to the surface of section ϕ = 0
(corresponding to the pendulum’s stable equilibrium).

Such a procedure for synchronizing the classical separatrix map was proposed in
Shevchenko (1998b) for the case of symmetric perturbation. Here we describe the
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synchronization procedure as derived in Shevchenko (2000a) for the general case of
asymmetric perturbation (1.6).

The synchronization makes meaningful comparisons of phase space sections
of the near-separatrix motion obtained by direct numerical integration with the
corresponding phase portraits of the separatrix map. Such comparisons allows to
directly verify ranges of validity of the separatrix map in its parameter space.

To construct the phase space section at ϕ = 0 of the system with the
Hamiltonian (1.6), it is necessary to calculate the energy increment not on the
(−∞, +∞) time interval, but on the (−∞, 0) or (0, +∞) time intervals. First of
all, let us write down some necessary formulas for the motion on the unperturbed
separatrix. As derived, e.g., in Chirikov (1979) and Lichtenberg and Lieberman
(1992), the time variation of the pendulum angle is given by

ϕ±(t) = ±(4 arctan exp(t)− π), (1.47)

where, as adopted in the following, the “+” upper index corresponds to the prograde
motion of the pendulum, and the “−” upper index corresponds to its retrograde
motion. The time variation of the momentum is given by

p+(t) = 2ω0

G cos
ϕ+(t)

2
(1.48)

for the prograde motion, and

p−(t) = − 2ω0

G cos
ϕ−(t)

2
(1.49)

for the retrograde motion.
One finds the required increment of H0 in the Hamiltonian (1.6) as

�H0 =
∫ 0

−∞
dH0

dt
dt, (1.50)

where the derivative is given by the Poisson bracket

dH0

dt
= {H0,H } = ∂H0

∂ϕ

∂H

∂p
− ∂H

∂ϕ

∂H0

∂p
=

= akGp (sin(kϕ − τ )+ η sin(kϕ + τ )) , (1.51)

and η = b/a. The H0 increment is expressed in terms of the Melnikov–Arnold
integrals, presented in detail in Appendix C. In the prograde case the increment is
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given by

�+H0 = − a λ
2
(A2k(λ)+ ηA2k(−λ)) sin τ0 −

− a (λ (B2k(λ)− ηB2k(−λ))+ 1 + η) cos τ0. (1.52)

Deriving the expression in the retrograde case is similar. In general, for the relative
energy (w = (H0/F)− 1) increment one has

�±w = − W±

2
sin τ0 − δ±W± cos τ0, (1.53)

where

W+(k, λ, η) = a

F λ (A2k(λ)+ ηA2k(−λ)) , (1.54)

W−(k, λ, η) = a

F λ (ηA2k(λ)+ A2k(−λ)) , (1.55)

δ+(k, λ, η) = λ (B2k(λ)− ηB2k(−λ))+ 1 + η
λ (A2k(λ)+ ηA2k(−λ)) , (1.56)

δ−(k, λ, η) = λ (ηB2k(λ)− B2k(−λ))+ 1 + η
λ (ηA2k(λ)+ A2k(−λ)) . (1.57)

Expressions (1.56, 1.57) for δ± are valid when the relative energy w is defined
as w = (H0/F) − 1. Expressions (1.54) and (1.55) represent a generalization of
formulas (1.34) to the case of arbitrary k.

If w is defined for the full energy H , i.e., w = H
F − 1, then the expressions for

δ± are somewhat different. As soon as dH
dt

= ∂H
∂t

, the increment ofH in that case is
given by

�H =
∫ 0

−∞
∂H

∂t
dt. (1.58)

Therefore, the expressions forW± do not change, but the expressions for δ± become

δ+(k, λ, η) = B2k(λ)− ηB2k(−λ)
A2k(λ)+ ηA2k(−λ) , (1.59)

δ−(k, λ, η) = ηB2k(λ)− B2k(−λ)
ηA2k(λ)+ A2k(−λ) . (1.60)

Below the definition of w in terms of H0 is everywhere adopted; therefore, we do
not employ formulas (1.59, 1.60).
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Also note that the given formulas are valid for any integer or half-integer value
of k, but the numerical illustrations in this section are given solely for k = 1.

The value of w at ϕ = 0, when its value wn at ϕ = ±π is known, is found by
summing wn and its increment�±wn:

w̃n = wn − W±

2
sin τn − δ±W± cos τn =

= wn +wn+1

2
− δ±W± cos τn, (1.61)

wherewn+1 is the next energy iteration of the non-synchronized separatrix algorith-
mic map. The synchronization of the map’s phase portrait is achieved by replacing
the (wn, τn) pair of values with (w̃n, τn).

The formulas (1.61) synchronize the separatrix algorithmic map (1.33), where
the index of δ (plus or minus) is taken to be the same as for the current value ofW .
In case of symmetric perturbation, corresponding to the classical separatrix map,
any one-named quantities with different indices (plus or minus) are equal to each
other.

Algorithm (1.33), used together with the synchronization procedure (1.61),
allows one to build synchronized phase portraits of the near-separatrix motion of any
system with Hamiltonian (1.6). Instead of employing the synchronization procedure
at each iteration of the map, the separatrix algorithmic map can be straightforwardly
written down in terms of the “synchronized” variables w̃, τ . The change of variables
fromw, τ to w̃, τ is canonical. However, the map constructed in this way is implicit.
Therefore, it is inconvenient in practical calculations. We write it down here solely
in the symmetric case a = b:

w̃n+1 = w̃n −W sin
τn + τn+1

2

(
cos

τn+1 − τn
2

− 2δ sin
τn+1 − τn

2

)
,

τn+1 = τn + λ ln 32 − λ ln

∣∣∣∣
w̃n + w̃n+1

2
+

+ W

2
cos

τn + τn+1

2

(
sin
τn+1 − τn

2
+ 2δ cos

τn+1 − τn
2

)∣∣∣∣

(mod 2π). (1.62)

The synchronization parameter δ can be found by taking the Melnikov–Arnold
integrals numerically directly in expressions (1.56) and (1.57), or (1.59) and (1.60).
Let k = 1. The primitives of the integrand expressions in the formulas for αc2(λ)
and βs2(λ) (see Appendix C), as functions of the independent variable t , oscillate
at t → +∞ with non-zero amplitudes. This implies that the upper limits in time
for the numerical integrations should be taken equal to some non-arbitrary discrete
values, see Shevchenko (2000a) for details.
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Consider the synchronization procedure in case of symmetric perturbation (a =
b) and k = 1 in more detail. This case corresponds to the classical separatrix
map (1.26). The synchronization parameter δ in is then given by

δ(λ) = βs2(λ)+ 2
λ

αc2(λ)
(1.63)

for both prograde and retrograde motions; αc2(λ) and βs2(λ) are given in Appendix C.
Using the recurrent relations presented in Appendix C one finds

δ(λ) = 1

2π

(
βc1(λ)+

2

λ2

)
sinh

πλ

2
=

= 1

π

(
Re

(
ψ

(
i
λ

2

)
− ψ

(
i
λ

4

))
+ 1

λ2 − ln 2

)
sinh

πλ

2
, (1.64)

where ψ(z) = �′(z)/�(z) is the digamma-function, and, here, i is the imaginary
unit.

Let us now see how the synchronized separatrix map performs in comparison
with direct numerical integrations of the original system of differential equations.

We take first an intermediate value of the adiabaticity parameter, namely,
λ = 0.5. In Figs. 1.11 and 1.12a, the corresponding phase portraits of the non-
synchronized and synchronized separatrix maps are shown. For comparison, the
phase space section constructed by a direct numerical integration of the original

Fig. 1.11 A phase portrait of the separatrix map (1.26); λ = 0.5 and W = 0.181 (Figure 2 from
Shevchenko (2000a). With permission from Pleiades Publishing Inc.)
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Fig. 1.12 (a) The same as in Fig. 1.11, but synchronized to the surface ϕ = 0; δ = 0.929.
(b) The corresponding phase space section obtained by a direct numerical integration. The tilde
(synchronization mark) overw is omitted, because the section is inherently synchronized (Figure 3
from Shevchenko (2000a). With permission from Pleiades Publishing Inc.)

system at ϕ = 0 is presented in Fig. 1.12b. Only the near-separatrix chaotic layer is
shown here and in the figures that follow.

One may see that the asymmetry (with respect to the τ = π line), present in the
non-synchronized phase portrait (Fig. 1.11), disappears in the synchronized portrait
(Fig. 1.12a), demonstrating that the asymmetry represents an artifact of the non-
synchronized map.

Figure 1.12b shows the corresponding phase section obtained by a direct numeri-
cal integration of the original system (1.6). The parameters in the Hamiltonian (1.6)
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correspond to λ = 0.5 and W = 0.181 in the separatrix map (1.26). Namely, the
parameters are: F = 1, G = 2, a = b = 0.05 (symmetric perturbation) and

 = 2−1/2. The integration is performed by the eighth order Dormand–Prince
(Hairer et al. 1987) method with controlled step-size; for details see Shevchenko
(2000a).

During the integration, the w and τ values are taken on the unified surface of
section ϕ = 0. Therefore, the section in Fig. 1.12b can be compared directly to
Fig. 1.12a, where the phase portrait of the synchronized separatrix map is given.
One may see that the behaviour of the original system (1.6) is perfectly described
by the synchronized separatrix map.

In Figs. 1.13 and 1.14, phase portraits of the synchronized separatrix map are
given for low and high frequency perturbation cases (λ = 0.1 and 10, respec-
tively). Direct numerical integrations (not presented here for brevity) reproduce the
behaviour identically.

Figures 1.13 and 1.14 show that the chaotic layer is strongly bent in the both
limits of low and high frequencies of perturbation. The bending is present only in
the phase portraits of the synchronized map. Conversely, the chaotic layer of the
non-synchronized map always engulfs the w = 0 axis.

The bending amplitude is given by the product δW , see Eq. (1.61). At k = 1
and η = 1 (symmetric perturbation), from Eqs. (1.54), (1.55), (1.56, and (1.57), if
λ = 0, one has δ+W+ = δ−W− = 4ε, and if λ = +∞ one has δ+W+ = δ−W− =
0. At k = 1 and η = 0 (maximum asymmetry of perturbation), if λ = 0, then
δ+W+ = δ−W− = 2ε, and if λ = +∞, then δ+W+ = δ−W− = 0. Therefore,
in the high-frequency perturbation limit, at any η, the bending amplitude always

Fig. 1.13 The phase portrait of the synchronized separatrix map (1.26), (1.61) with λ = 0.1, W =
0.00797, and δ = 4.99 (Figure 4 from Shevchenko (2000a). With permission from Pleiades
Publishing Inc.)
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Fig. 1.14 The phase portrait of the synchronized separatrix map (1.26), (1.61) with λ = 10, W =
0.000379, and δ = −232.5 (Figure 5 from Shevchenko (2000a). With permission from Pleiades
Publishing Inc.)

tends to zero. However, in comparison with the layer width, the bending cannot be
regarded as small. In the high-frequency limit of perturbation, the layer half-width
≈ λW ; see Chap. 5. Therefore, at energies w > 0, corresponding to the model
pendulum rotation, the ratio of the bending amplitude to the layer half-width is
≈ δ+

λ
for the prograde motion, and ≈ δ−

λ
for the retrograde motion. At any value of

the asymmetry parameter η, the absolute values of these products tend to infinity at
λ→ +∞. At energiesw < 0, corresponding to the model pendulum oscillation, the
prograde and retrograde motions alternate, and the required ratio can be estimated
as ≈ δ+

λ
for the prograde motion and ≈ δ−W−

λW+ for the retrograde motion.
Therefore, in the high-frequency perturbation limit the bending is strong in

the sense that the amplitude of energy deviations with respect to the unperturbed
separatrix is much greater than the chaotic layer proper width.

According to Eq. (1.61), the synchronization transforms the unperturbed separa-
trix w = 0 into the curve w̃ = δ±W± cos τ . Let us introduce the polar coordinates
τ and ρ = w̃ + 2; here the energy zero level corresponds to the pendulum’s lower
equilibrium state. When the chaotic layer is thin, λW± � δ±W±, its shape in this
frame represents a Pascal limaçon: ρ = 2 + δ±W± cos τ . The bending effect in
case of the maximum asymmetry of perturbation (η = 0) becomes appreciable (the
bending amplitude becomes greater than the layer width) at λ ≈ 8, both for the
prograde and retrograde motions.

At perturbations with ε ∼ λ−1 and ε > λ−1 the standard Poincaré–Melnikov
method for calculating exponentially small effects associated with the separatrix
splitting generally requires corrections (Gelfreich 1997; Treshchev 1998). For a
perturbation of arbitrary asymmetry (i.e., for any η) in system (1.6), the correction
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factor to the separatrix map parameter W , according to Simó’s formula (see

Gelfreich 1997), is |f (x)| =
∣∣∣ sinh(x)

x

∣∣∣, where x ≡ (2ε1ε2)
1/2 = (2ab)1/2

F ; here x

may be either a real or an imaginary number depending on the signs of a and b. In
case of Fig. 1.14, the correction factor f (

√
2) = 1.368.

This correction merely influences the layer width but not its bending amplitude
since the bending has no relation to the separatrix splitting effect. In Fig. 1.14, the
layer width is small compared to the bending amplitude; therefore, the correction
would not influence the general appearance of the phase portrait.

To conclude this topic, one should note that the synchronized separatrix algorith-
mic map describes motion of the system on the “phase perturbation angle—energy
deviation” plane at a fixed angle ϕ = 0. When Poincaré sections are constructed
numerically in applied problems, a different surface of section is frequently used,
namely, the “resonance angle—momentum” plane at a fixed perturbation phase
angle, for example 0 (mod 2π). Is it possible to build this second type of section
using separatrix map? In a good enough approximation, this is indeed possible by
utilizing a procedure which is again an algorithm containing conditional transfer
instructions; see algorithms and references in Sect. 1.6.



Chapter 2
Numerical Tools for Studies of Dynamical
Chaos

To date, quite a number of useful numerical tools that can be used to explore
instabilities and dynamical chaos in planetary systems, including our Solar system
and its subsystems, have been developed. The tools are based, in particular, on
massive computations of “mean exponential growth factors of nearby orbits”
(MEGNO) (Cincotta and Simó 2000; Cincotta et al. 2003; Goździewski 2003),
“fast Lyapunov indicators” (FLI) (Pilat-Lohinger and Dvorak 2002), Lyapunov
characteristic exponents (LCE) (Melnikov and Shevchenko 1998; Shevchenko
and Melnikov 2003; Popova and Shevchenko 2013), fundamental frequencies of
motion (frequency analysis) (Correia et al. 2009; Laskar and Correia 2009). A
software package for calculating various indicators of chaos (including LCE, FLI,
and MEGNO) is described in Carpintero et al. (2014). Dvorak et al. (2004)
and Schwarz et al. (2011) proposed and broadly used a “maximum eccentricity
method” (MEM), consisting in computation and graphical representation of the
largest (during a fixed integration time) eccentricities of a test particle, estimated
on grids of values of initial conditions. This method can be regarded as a version
of massive numerical assessments of escape/encounter conditions in three-body
and many-body systems (Holman and Wiegert 1999; Pilat-Lohinger et al. 2003;
Kholshevnikov and Kuznetsov 2011).

In this chapter, we concentrate on numerical tools needed to characterize the
chaotic behaviour in problems of celestial mechanics addressed further on in the
book. The presentation partially follows (in Sects. 2.1 and 2.7) the lecture by
Shevchenko (2011c).

2.1 Lyapunov Exponents

For dynamical chaos to emerge, three basic conditions should be satisfied (Devaney
1986; Meiss 1992, p. 810): (1) Sensitive (essential) dependence on initial conditions,
implying positive Lyapunov exponents (i.e., nearby orbits diverge exponentially
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in time). (2) The boundedness of the phase space, implying that the exponential
divergence does not simply reduce to a smooth expansion to infinity. (3) The set of
orbits with such behaviour should have non-zero measure. No strict analytical proofs
of the non-zero measure of irregular component in typical Hamiltonian systems
are available (Meiss 1992), but computer-generated phase space sections hint on
this; the irregular component seems to form so-called “fat fractals” (Umberger and
Farmer 1985).

If conditions (2) and (3) are implied to be satisfied, then, if nearby trajectories
in the bounded phase space diverge exponentially (in other words, if the distance
between two initially close points of these trajectories grows in time exponentially),
then the motion is regarded as chaotic.

The rate of divergence of nearby trajectories in the phase space is characterized
by the Lyapunov characteristic exponents (LCE).1 Set the initial time moment t =
t0 and let x(t0) and x′(t0) be the starting points of a nominal and a shadow (i.e.,
initially nearby) trajectories, respectively, in the phase space of motion. Consider
the evolution of the displacement d(t) ≡ ‖x(t) − x′(t)‖ � 1 with time, starting
with t = t0. The Lyapunov exponent is defined as the double limit

L = lim sup
d(t0)→0
t→∞

1

t − t0 ln
d(t)

d(t0)
. (2.1)

Depending on the direction of the initial displacement vector in the phase space
of a Hamiltonian system, the quantity L may attain 2N generally different values,
where N is the system’s number of degrees of freedom. The 2N values come in N
symmetric pairs: for each Li > 0 there exists Li+N = −Li < 0; i = 1, . . . , N
(Lichtenberg and Lieberman 1992). Therefore, it is enough to calculate a half of all
exponents, e.g., the set of non-negative ones, Li ≥ 0.

The set of all 2N exponents is called the spectrum of Lyapunov exponents, or,
the Lyapunov spectrum. In typical applied problems of Hamiltonian dynamics, a
non-zero value of the maximum Lyapunov exponent (maximum in the spectrum)
indicates the presence of dynamical chaos, in accord with the chaos conditions
formulated above, whereas its zero value indicates that the motion is regular, i.e.,
quasiperiodic or periodic (Chirikov 1979; Lichtenberg and Lieberman 1992).

On an everywhere dense set of starting data for shadow trajectories, the calcu-
lated Lyapunov exponent attains its maximum value, which is just the maximum
Lyapunov exponent (Lichtenberg and Lieberman 1992; Meiss 1992). We denote it
henceforth by L. The inverse of this quantity, TL ≡ L−1, is the so-called Lyapunov
time. It represents the characteristic time of predictable dynamics. The Lyapunov
timescales of celestial-mechanical systems are important, because any exact theory
of motion cannot be constructed on times much greater than the Lyapunov time
corresponding to given parameters and initial conditions of a considered system.

1A general definition of Lyapunov exponents of a function is given in Adrianova (1995). Here we
consider LCEs of dynamical systems.
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The art of computation of the Lyapunov exponents (and, in the first place,
the maximum Lyapunov exponent) has a long history, starting in seventies of
the twentieth century (Benettin et al. 1976; Benettin and Galgani 1979; Benettin
et al. 1980), and since that time it has become an extensive part of applied
mathematics, reviewed, in particular, in Froeschlé (1984) and Lichtenberg and
Lieberman (1992). Modern numerical methods for computation of the Lyapunov
exponents are effective and precise.

On the other hand, analytical estimating the Lyapunov exponents in practical
applications usually has a lower precision, but analytical approaches provide a
deeper insight in the causes of chaotic behaviour whenever it arises. The analytical
methods were started to be developed relatively recently (Morbidelli and Froeschlé
1996; Holman and Murray 1996; Murray and Holman 1997); they are considered in
detail in Chap. 3.

Numerically, the maximum Lyapunov exponent is calculated on a finite time
interval (say, ofm time units) by means of the formula

L(m) = 1

m�t

m∑

i=1

ln ri , (2.2)

where ri is the ratio of the current nominal–shadow displacement, di = d(t =
i), to the preceding one, di−1 = d(t = i − 1): ri = d(t = i)/di−1, and �t
is the time unit corresponding to one iteration (Benettin et al. 1976; Lichtenberg
and Lieberman 1992). The displacements should be periodically renormalized to a
small value (preserving the direction of the displacement vector), so that the shadow
trajectory is kept in a vicinity of the nominal one; see Fig. 2.1 (in this scheme, T
denotes the linearized mapping transformation).

In this way the problem with the first limit d(t0) → 0 in the defining
formula (2.1) is solved numerically. The problem with the second limit t → ∞
is usually solved as follows: the values of logL(m), calculated consequently, as
given by Eq. (2.2), are plotted versus logm, and the value of logL at which the
dependence is saturated, i.e., attains a horizontal plateau at some constant non-zero
L, is fixed; see Fig. 2.3 for an illustration. If the trajectory is regular, then logL goes
down on average linearly with logm (because d(t) in Eq. (2.1) oscillates around
a constant value), and the curve never attains any plateau. Therefore, chaotic and
regular orbits can be distinguished from each other.

Let us summarize the properties of LCEs in a greater detail, following Benettin
et al. (1976), Benettin and Galgani (1979), Benettin et al. (1980), and Lichtenberg
and Lieberman (1992). Consider the dynamical system

ẋi = Vi(x1, . . . , xM), i = 1, . . . ,M. (2.3)
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Fig. 2.1 A straightforward numerical procedure for calculation of the maximum LCE. The
displacement dn is periodically renormalized (Reprinted Figure 1 with permission from Benettin
et al. (1976). © 1976 by the American Physical Society)

w0

x0

x(t)

w(t)

Fig. 2.2 The nominal and shadow trajectories, and the evolution of the tangent (nominal–shadow
displacement) vector w (Figure 1 from Benettin and Galgani (1979))

Let two nearby trajectories start at points x0 and x0 +�x0, as shown in Fig. 2.2. The
so-called tangent vector is w ≡ �x, and its length is given by

d(x0, t) = ‖w(x0, t)‖. (2.4)

Linearizing Eqs. (2.3), we obtain the equations describing the evolution of w:

ẇ = M(x(t)) · w, (2.5)
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where the Jacobi matrix M ≡ ∂V/∂x. These are the so-called variational equations.
Following Eq. (2.1), we define the quantity

σ(x0,w0) = lim
t→∞
d(t0)→0

1

t − t0 ln
d(x0, t)

d(x0, t0)
. (2.6)

It has the meaning of the mean rate of divergence of nearby trajectories in the scale
of the exponential functions expαt; it is evident that for the latter functions one has
σ = α.

There exists a full system of M fundamental solutions ‖ei‖ of Eqs. (2.5). For
each of these solutions the rate σ has a definite (in general, individual) value:

σi(x0) = σ(x0, ei ). (2.7)

These are just the LCEs. Traditionally they are enumerated in the order of the value
decreasing: σ1 ≥ σ2 · · · ≥ σM . These quantities do not depend on the choice of the
phase space metrics (Oseledets 1968).

Consider a periodic trajectory of system (2.3), and, therefore, let the initial
conditions x0 belong to a periodic trajectory. Then Eqs. (2.5) define a linear map

wn+1 = A · wn (2.8)

with a period τ . The matrix A hasM generally complex eigenvalues λi , enumerated
as

|λ1| ≥ |λ2| · · · ≥ |λM |. (2.9)

Setting w0 = ei , where ei is the eigenvector corresponding to the eigenvalue λi ,
from Eqs. (2.8) one has

wn = λni ei , (2.10)

and, in accord with formula (2.6),

σ(ei ) = n

nτ
ln |λi | = 1

τ
ln |λi | = σi . (2.11)

The initial tangent vector

w0 = c1e1 + c2e2 + · · · + cMeM (2.12)

evolves as determined by the first non-zero coefficient ci : if c1 �= 0, then σ(w0) =
σ1; if c1 = 0 and c2 �= 0, then σ(w0) = σ2; and so on. Therefore, each element in
the Lyapunov spectrum determines the rate σ in some subspace with the number of
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dimensions smaller by unity, in comparison with the preceding element. Therefore,
for almost all w0 one has σ(w0) = σ1.

Oseledets (1968) generalized the notions of the eigenvalues and eigenvectors of
the tangent map to the case of non-periodic trajectories. The possibility of such
generalization is determined by the possibility of approximation of the non-periodic
trajectories by periodic ones with large enough periods.

For any trajectory given by Eqs. (2.3), at least one of the LCEs, namely
that corresponding to the eigenvector along the trajectory, is equal to zero. In
Hamiltonian systems, the LCEs have the symmetry

σi = −σ2N−i+1, (2.13)

where N is the number of degrees of freedom, and 2N is equal to M in Eqs. (2.3).
For any autonomous Hamiltonian system two Lyapunov exponents are therefore
equal to zero.

Mappings For the maps, the rate (2.6) of divergence is straightforwardly reformu-
lated by substituting time t with the current iteration number n:

σmap(x0,w0) = lim
n→∞
d(0)→0

1

n
ln
d(x0, n)

d(x0, 0)
. (2.14)

Consider anM-dimensional map

xn+1 = F(xn), (2.15)

and let λi(n) (i = 1, . . . ,M) be the eigenvalues of the matrix

An = [M(xn) · M(xn−1) · · · · · M(x1)]1/n, (2.16)

where M = ∂F/∂x is the Jacobi matrix for the map F. Then the LCEs are given by

σ
map
i = lim

n→∞ ln |λi(n)|. (2.17)

The LCEs of a map on a Poincaré section of the phase space of an original
dynamical system are directly proportional to the LCEs of the original system:

σ
map
i (x0) = τσi(x0), (2.18)

where i = 1, 2, . . . ,M . The proportionality coefficient τ is equal to the mean time
interval between consecutive crossings of the surface of section.

The map constructed for an autonomous Hamiltonian system with N degrees of
freedom, therefore, hasM = 2N − 2. The two zero LCEs of the original system are
eliminated by reducing the continuous system to the discrete map.
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Reviews of modern methods of the computation of the LCE spectra can be found
in Geist et al. (1990) and Skokos (2010); here we describe a modern algorithm
proposed and developed by Von Bremen et al. (1997). It is based on the QR-
decomposition of the tangent map matrix. The algorithm utilizes the Householder
transformation, and is therefore known as the HQR method. Von Bremen et al.
(1997) proved it to be numerically more stable than the method based on the Gram–
Schmidt orthogonalization originally proposed to compute LCEs in Benettin et al.
(1976). Let

xi+1 = Fi (xi) (2.19)

be the original map, then

δxi+1 = Ji (δxi ) (2.20)

is its tangent map. Here xi is the system state at the ith iteration step, δxi is the
corresponding tangent vector, and Ji is the Jacobi matrix. The approximation for
each LCE is given by

Lk(m) = 1

m�t

m∑

j=1

ln |rkj |, (2.21)

where rkj = Rkkj with k = 1, . . . , 2N are the diagonal elements of the right-
triangular matrix Rj obtained iteratively by the QR-factorization of the product
JjQ(j−1), i.e., QjRj = JjQ(j−1), where the matrix Q is orthogonal, and Q(0) is
the identity matrix.

The QR-decomposition of the matrix product JmJm−1 · · · J1 is obtained in the
following sequence of factorizations:

qr[JmJm−1 · · · J1] = qr[JmJm−1 · · · J2(J1Q0)] =
= qr[JmJm−1 · · · J3(J2Q1)][R1] =
= qr[JmJm−1 · · · J4(J3Q2)][R2R1] =
= · · · =
= qr[JmJm−1 · · · Jj+1(JjQj−1)][Rj−1Rj−2 · · · R2R1] =
= · · · =
= Qm[Rm · · · R2R1] = QmR, (2.22)

where Q0 = I (the identity matrix), and qr[·] denotes the QR-factorization process.
At each step j of the algorithm (2.22) (j = 1, 2, . . . ,m), a premultiplication

Bj = JjQj−1 is made followed by QR-factorization of Bj = JjQj−1 = QjRj .
Therefore, R = Rm · · · R2R1, and the diagonal elements of R are products of
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Fig. 2.3 Time dependences of the elements of the current Lyapunov spectrum (obtained by the
HQR method; solid curve) in a model for the chaotic rotation of Hyperion, the seventh satellite of
Saturn. The current maximum LCE, obtained by the shadow trajectory method, is also presented
(dashed curve); note its accord with the first element of the Lyapunov spectrum obtained by the
HQR method (Figure 3 from Shevchenko and Kouprianov (2002), reproduced with permission
© ESO)

the corresponding diagonal elements of the matrices Rj . The actual Lyapunov
exponents are the limiting values ofLk(m), whenm → ∞. In practice, dependences
of logLkm, on logm are constructed, and one finds the value of logLm at which the
dependences “saturate,” i.e., reach a horizontal plateau. An example of computation
of the Lyapunov spectrum of a chaotically rotating satellite orbiting a planet is
presented in Fig. 2.3.

If the tangent map matrix Ji is not available analytically, there are two ways to
compute it (Shevchenko and Kouprianov 2002). First, one may replace the tangent
vectors δxi in Eq. (2.20) with small displacement vectors: �xi = x′

i − xi , where xi
and x′

i are the nominal and shadow trajectories, respectively, at the integration step
i. Then both points are iterated independently using Eq. (2.19). This gives�xi+1 =
x′
i+1−xi+1. After repeating this procedure for 2N linearly independent vectors�xi ,

the equation

�xi+1 = Ji�xi (2.23)

can be solved with respect to the tangent map matrix Ji .
The tangent map matrix can be found with a higher precision, but at a much

greater computation cost, by computing it directly, by means of simultaneous
integration of the original and variational systems. This approach does not need the
introduction of an auxiliary small shift parameter�x0. The computational efficiency
of this method is decreased by the necessity to perform 2N additional iterations of
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the flow map at each step. However, an extra opportunity exists to compute the
tangent map matrix. This opportunity is appropriate when map (2.19) is defined by
an original continuous dynamical system

x′ = F(x, t). (2.24)

Then the tangent map matrix is approximated by

Ji = I + ∇xF(ti) ·�t, (2.25)

where ∇xF(ti ) is the Jacobi matrix of the system at t = ti = i�t , and I is the
unity matrix. This approximation, however, is valid only when the iteration step �t
is sufficiently small.

An appropriate test of accuracy for calculating full Lyapunov spectra is to
compute the sum of all exponents

∑2N
k=1 L

k; this sum must be close to zero with
sufficient precision. Possible deviations can be conditioned by the choice of the
initial shadow particle shift, the iteration step size, or the quality of the integrator
employed.

2.2 Fast Lyapunov Indicators

When it is needed to massively compute LCEs over grids of values of parameters or
initial conditions, the LCE method turns out to be rather time consuming; see, e.g.,
a discussion in Shevchenko and Kouprianov (2002). To reduce the computational
costs, simplified analogues of the Lyapunov exponents were proposed and devel-
oped. Nowadays, the most popular among them are the “fast Lyapunov indicators”
(FLI) (Froeschlé et al. 2012) and the “mean exponential growth factors of nearby
orbits” (MEGNO) (Cincotta and Simó 2000; Cincotta et al. 2003).

The main idea in the FLI concept, as proposed in Froeschlé et al. (2012), is to
track, in the course of a numerical integration, the distance between two trajectories
that are initially close to each other, and fix the time when the distance exceeds an
initially prescribed constant (a threshold, which is chosen in preliminary test runs).
When the dynamics is explored globally, i.e., on large sets of values of parameters
and/or initial data, these time values can serve as a relative measure of the stability
in different domains of phase space. Indeed, when the time is large (or even never
fixed on the time interval of integration), it signals the orbit’s regularity; when it
is short, it usually indicates chaoticity. In contrast to genuine LCE, FLI depend
on the choice of the variables of motion, the length of the initial displacement of
the shadow orbit, and on the choice of the threshold displacement; but this does not
matter much when we are interested in comparative properties of large sets of orbits.
Examples of massive computations of FLI are given in Pilat-Lohinger and Dvorak
(2002).
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Generally, it should be noted that simplifications and assumptions in defining
various LCE analogues may, of course, lead to erroneous assessments in type of
individual trajectories, but, in turn, the global picture of dynamics for large samples
of orbits can be qualitatively described in relatively simple and rapid ways.

2.3 MEGNO Charts

The MEGNO techniques has gained a great popularity in numerical studies of global
qualitative dynamics of planetary systems, due to its large potential for providing
clear graphical representations of the stability properties and, what is more, for
providing major economies in computing resources and computation time. It is
introduced in the following way (Cincotta and Simó 2000; Cincotta et al. 2003).

Let H(p,q) be the Hamiltonian of a system, and p(1)(t),q(1)(t) and
p(2)(t),q(2)(t) are two initially close trajectories with initial conditions p(1)(0),
q(1)(0) and p(2)(0), q(2)(0); t is time.

Let δp(t) = p(2)(t) − p(1)(t) and δq(t) = q(2)(t) − q(1)(t). The linearized
equations of relative motion are then given by

˙δpi = −
∑

j

∂2H
∂pj ∂qi

(p(1)(t),q(1)(t))δpj −
∑

j

∂2H
∂qj∂qi

(p(1)(t),q(1)(t))δqj ,

˙δqi =
∑

j

∂2H
∂pj ∂pi

(p(1)(t),q(1)(t))δpj +
∑

j

∂2H
∂pi∂qj

(p(1)(t),q(1)(t))δqj (2.26)

(Morbidelli 2002). Here δpi, δqi, pi , qi are the components of δp, δq,p,q; and the
upper dot is for time derivative.

The basic formula (2.1) for the maximum Lyapunov exponent can be formally
rendered in the integral form

L = lim
t→+∞

1

t

∫ t

0

δ̇(t ′)
δ(t ′)

dt ′ , (2.27)

where δ = ‖δp, δq‖, and δp(t), δq(t) are solutions of (2.26).
The MEGNO factor is defined as

Y (t) = 2

t

∫ t

0

δ̇(t ′)
δ(t ′)

t ′dt ′ (2.28)

(Cincotta and Simó 2000; Cincotta et al. 2003). The quantity defined in this way
clearly retains an important property of the Lyapunov exponent: it is independent of
the adopted metrics and coordinate system.
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It is also straightforward to see that if a trajectory with given initial conditions is
quasiperiodic, then δ is linear with time, and therefore Y (t) oscillates around 2. If
a trajectory is chaotic, then δ is exponential with time, and therefore Y (t) oscillates
around the linear solution y = Lt , where L is the maximum Lyapunov exponent.

Accordingly, at t → +∞, for the current time mean MEGNO one has

Y (t) = 1

t

∫ t

0
Y (t ′)dt ′ = 2 (2.29)

in the first case, and

Y (t) = L

2
t (2.30)

in the second case.
As noted in Morbidelli (2002), a computational advantage of MEGNO over LCE

is that the computed L(t) keeps a long memory on the initial transient behaviour of
the tangent vector δp, δq, whereas in the integral (2.28) the later-on evolution of the
tangent vector is taken with a greater relative weight. This technical shift allows one
to suppress the prominence of the initial “noisy” behaviour.

However, one should take into account that when computations are performed on
relatively short time scales, the obtained numerical MEGNO values cannot be put,
generally speaking, in correspondence with the genuine maximum LCE, because
any exact numerical value of MEGNO (as well as LCE) cannot be obtained on any
time scales less than the characteristic time of diffusion over the whole connected
chaotic region to which the initial conditions belong.

2.4 Frequency Analysis

A major spectral method is the method of frequency analysis (FA). Its description
and theoretical justification are given in Laskar (1990), Laskar et al. (1992), and
Laskar (1993). For regular orbits, the fundamental frequencies are constant, whereas
for chaotic orbits they vary in time. The FA method exploits this difference to
distinguish between different types of orbits.

Performing the FA at separate time intervals, one can numerically determine the
current fundamental frequencies and find out whether they vary with time, and, in
this way, to determine the character of the dynamics. Examples of implementation
of the FA technique, as proposed in Laskar (1990), Laskar et al. (1992), and Laskar
(1993) in the form of a numerical analysis of fundamental frequencies, can be
found in Laskar et al. (1992), Laskar (1993), Correia et al. (2009), Laskar and
Correia (2009), and Valluri et al. (2012). In particular, in Laskar et al. (1992), FA
is developed and used to demonstrate its accuracy in determining numerically the
critical value (already mentioned above in Sect. 1.5) of the stochasticity parameter
K of the standard map.
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In addition to the general opportunity of identification of regular and chaotic
domains in phase space, FA allows one to identify locations of resonances. However,
FA is laborious; it may require much more computing time than that required by the
LE method in one and the same problem (Maffione et al. 2013).

Massive frequency analysis was performed in Correia et al. (2009) and Laskar
and Correia (2009) in application to selected exoplanet systems. In these two works,
two-planet systems of Solar-like stars HD 45364 and HD 60532 were explored,
respectively. They were both shown to reside in 3/2 mean-motion resonance. These
were the first confirmed cases of 3/2 resonance (analogous to the Neptune–Pluto
resonance in the Solar system) ever detected in exoplanet systems.

2.5 Sections of Phase Space

As we have seen above in Sect. 1.4, a paradigmatic type of a map is provided by
the phase space transformation defined by integrating points in the phase space a
time step forward. Another type is given by a return map (Poincaré 1899, 1905;
Lichtenberg and Lieberman 1992; Meiss 1992; Abdullaev 2006) defined on sections
of phase space. In case of two degrees of freedom, the sections provide a graphical
and clear picture of the motion.

The return maps can be considered in the following setup (Meiss 1992). Let the
HamiltonianH be time-independent. Since the energy is conserved, the Hamiltonian
flow covers the (2N − 1)-dimensional energy surface E corresponding to the value
E = H.

Let us introduce another, (2N − 1)-dimensional surface Q, transversal (nowhere
parallel) to the flow locally. The Poincaré section of P is defined as the (2N − 2)-
dimensional intersection of E with Q. Therefore, the first return map z′ = T (z)
(where z are the points in the phase space of canonical coordinates q and momenta
p) maps the initial z taken on P to z′, to which the starting point returns on P for
the first time, following the flow; see Fig. 2.4.

The first return map is symplectic and has an action. For example, let Q be the
surface of qN = const. It is transversal to the flow if

dqN
dt

= ∂H
∂pN

�= 0 (2.31)

on Q.
The Poincaré sectionP can be specified in 2(N−1) variables, (q1, p1, . . . , qN−1,

pN−1). As soon as the energy level is chosen, the transversality condition (and the
implicit function theorem) implies that the equality H(q1, p1, . . . , qN, pN ) = E

can be rendered as

pN = pN(q1, p1, . . . , qN−1, pN−1; qN,E) . (2.32)
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Fig. 2.4 A scheme for the first return map. (Reprinted Figure 5 with permission from Meiss
(1992). © 1992 by the American Physical Society)

The first return map T is parameterized by choosing the values of E and qN . In
these frames, the action is reduced to

S =
N−1∑

i=1

∮
pidqi . (2.33)

In a particular case of a Hamiltonian system with two degrees of freedom (N = 2),
the map T acts on a two-dimensional phase space, namely, (q1, p1). Therefore, the
method of Poincaré sections is particularly valuable for systems of two degrees of
freedom.

The effectiveness of the method of sections is guaranteed by the Poincaré return
theorem. It implies that, if the energy surface is bounded (compact), almost all
trajectories, except those defined on a set of measure zero, starting from the surface
P , sooner or later intersect again with this surface.

By the method of sections it was first ever graphically demonstrated, in 1964, the
emergence of chaos in a Hamiltonian system, namely, in the Hénon–Heiles system
(Hénon and Heiles 1964). The system models the motion of a star in the Galactic
potential. Relevant diagrams of stability, resembling the original sections of phase
space in this model, are presented below in Sect. 2.7.
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2.6 LCE Charts

Regular and chaotic kinds of orbits can be distinguished numerically one from
another, on sets of initial conditions or values of parameters, by using a statistical
method (Melnikov and Shevchenko 1998; Shevchenko and Melnikov 2003). The
representative sets are usually defined on two-dimensional grids. In many problems
of celestial mechanics such a grid can be defined in the plane “semimajor axis—
eccentricity,” or, say, “pericentric distance—eccentricity.” The procedure consists
of three steps. For sets of initial data, it is as follows.

(1) Finite-time maximum Lyapunov exponents are computed for one and the
same set of initial data twice, on two different integration time intervals. Two
histograms (differential distributions) are respectively built. Thus one obtains
two distributions of the finite-time exponents.

(2) If the phase space of motion is divided, then each of these histograms has at
least two peaks, corresponding to two types of motion, regular and chaotic.
The peak that shifts (moves in the direction of the Lyapunov exponent smaller
values) with increasing the integration time corresponds to the regular motion;
that stays fixed, to the chaotic one.

(3) The location of the minimum of the distribution between the peaks provides the
critical finite-time Lyapunov exponent value that can be used to separate the
regular and chaotic domains of the initial data.

In any further integrations on finer data grids, integrations can be performed
on smaller time intervals, using the same critical maximum Lyapunov exponent to
separate orbits of different types.

An example of employing the method is given in Fig. 2.5. For this Figure, the
histograms are constructed on a grid of the eccentricity and pericentric distance
starting values for the Kepler-16b exoplanet, discussed further on in Sect. 14.2.1.
The time intervals of integration are set to 103 yr (red histogram) and 104 yr (blue
histogram). In the plot’s vertical axis, f designates the normalized (by the full
sample volume) number of orbits in the (log10 TL, log10 TL +� log10 TL) bin, where
� log10 TL = 0.02; the Lyapunov time TL is the inverse of the maximum Lyapunov
exponent. In Fig. 2.5, the shift of the histogram peak with increasing the integration
time is evident and pronounced. It is straightforward to see that the threshold value
of log10 TL, distinguishing chaotic orbits from regular ones, can be set to ≈ 2.5,
in the given example. The resulting stability diagrams are shown in Fig. 14.3 and
discussed in Sect. 14.2.1.

Generally, the described method for separating chaotic and regular trajectories
can be as well used on grids of values of parameters, at fixed initial conditions
(Melnikov and Shevchenko 2008).



2.7 Poincaré Recurrences 49

Fig. 2.5 Histograms of the
numerical-experimental
Lyapunov times computed on
two different integration time
intervals. The histograms are
constructed on a grid of the
eccentricity and pericentric
distance starting values for
the Kepler-16b exoplanet.
The time intervals of
integration are 103 yr (for the
red histogram) and 104 yr (for
the blue histogram). The shift
of the distribution peak is
evident (Figure 1 from
Popova and Shevchenko
(2013), by permission of IOP
Publishing/AAS)

2.7 Poincaré Recurrences

The Poincaré recurrence notion has a major methodological value, due to the
applicability potential of the Poincaré recurrence theorem (Poincaré 1890). The
theorem is valid in a broad class of dynamical systems, including Hamiltonian
ones. Assume one has a volume-conserving continuous one-to-one mapping g,
transforming a bounded domain D of Euclidian space in itself (gD = D). Then,
the theorem states (Arnold 1989) that in any neighbourhood U of any point of D
there exists a point x that returns to U : gnx ∈ U at some n.

In other words, any dynamical system of certain kind (in particular, with the
phase space bounded) recurs eventually to any neighbourhood of its initial state. The
return time can be large, but it is finite. Although the theorem is valid for systems
with the bounded phase space, the notion of Poincaré recurrence is defined for any
dynamical system.

The Poincaré recurrence method (PRM) is based on an analysis of the Poincaré
recurrence statistics on massive grids of initial data or values of parameters
(Shevchenko et al. 2020). The Poincaré recurrences are calculated as follows. First,
the grid for a system under study is chosen. Then, at each node of the grid, a
neighbourhood of the initial point of motion of fixed size ε is defined. The equations
of motion of the system are integrated numerically at each node. The integration
is stopped when either the first Poincaré recurrence takes place or the specified
integration time interval is over. In the first case, the time instant Tr is fixed when
the trajectory first returns to the given neighbourhood of the initial point. Then, the
recurrence times are represented in a colour or tone grade graphically on the defined
grid.
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To illustrate the effectiveness of PRM, let us consider the Hénon–Heiles problem.
The Hamiltonian of the problem is given by

H = 1

2
(p2

1 + p2
2 + q2

1 + q2
2 )+ q2

1q2 − 1

3
q3

2 , (2.34)

where q1, q2 are the canonical coordinates, and p1, p2 are the conjugate canonical
momenta (Hénon and Heiles 1964). Poincaré sections of the system’s phase space
were first ever constructed in Hénon and Heiles (1964).

Using notations defined in Sect. 2.5, we set q1 = 0 to define the transversal
surface Q and choose the inequality p1 > 0 to unambiguously define the function
p1(q2, p2;E, q1), where E ≡ H. The domain of allowed motion is bounded by
a closed curve, given by the equation q2

2 + p2
2 − 2

3q
3
2 = 2E, if E < 1/6. With

increasing the energy, E, the chaotic domain grows in volume, and at E = 1/6 one
finds almost all the phase space of the possible motion be chaotic (Hénon and Heiles
1964; Shevchenko and Melnikov 2003).

In Shevchenko et al. (2020), Poincaré recurrences were computed for a set of
initial data defined on a uniform grid in the plane (p2, q2); the section was defined
at q1 = 0, and p1 were calculated using Eq. (2.34) at E = 0.1. As shown in
Shevchenko and Melnikov (2003), at E = 0.1 the chaotic domain occupies ≈20%
of the whole phase space.

Figure 2.6 shows the (p2, q2) diagrams with the Poincaré recurrence and
Lyapunov times indicated in colour grades. One may see that the two diagrams
represent the global dynamics of the Hénon–Heiles almost identically. However, a
major advantage of the PRM is that it allows one to characterize the local diffusion
timescales (Shevchenko et al. 2020). What is more, PRM is algorithmically simple,
in comparison with computations of Lyapunov exponents, and it is straightforward
to apply.
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Fig. 2.6 (a) The Poincaré
recurrence chart for the
Hénon–Heiles system, in the
(p2, q2) plane, at the energy
E = 0.1. Red colour
corresponds to Tr > 105.
(b) The Lyapunov time chart
for the same system. Red
colour corresponds to
TL < 10 (Figure 1 from
Shevchenko et al. (2020),
with permission from
Elsevier)
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Chapter 3
Lyapunov Timescales

Generally, estimating the Lyapunov exponents, considered above in Sect. 2.1, is one
of the most important tools in studies of chaotic motion (Lichtenberg and Lieberman
1992), in particular in celestial mechanics. A non-zero value of the maximum
Lyapunov exponent typically indicates the chaotic type of motion, and the exponent
equal to zero signals its regular type. The Lyapunov time (the quantity reciprocal
to the maximum Lyapunov exponent) characterizes the timescale of predictable
dynamics. In this Chapter, we consider basic analytical methods how Lyapunov
timescales can be estimated. The discussed concepts include: Chirikov’s constant,
adiabatic chaos, non-adiabatic chaos, Lyapunov exponents in resonance doublets,
triplets, and, generally, in resonance multiplets. The presentation is partially based
(in Sections 3.2, 3.3 and 3.4) on the papers by Shevchenko (2008b) (by permission
from © Oxford University Press), Shevchenko (2007a) (by permission from Cam-
bridge University Press), and Shevchenko (2014) (by permission from Elsevier).

Morbidelli and Froeschlé (1996) and Nesvorný and Morbidelli (1999, p. 256)
suggested to estimate the Lyapunov time by taking it equal, by the order of
magnitude, to the libration/circulation period of the resonant angle, or, in practice,
to the period of small-amplitude oscillations on resonance, i.e., TL ∼ ω−1

0 , where
ω0 is the frequency of small-amplitude oscillations on resonance. This formula is
approximately valid at the adiabaticity parameter values λ � 1. Note thatL/ω0 → 0
in the both limits λ → 0 and λ → ∞. Moreover, L/ω0 may strongly depend on
other parameters, such as the perturbation amplitude ε.

An approach, based on a standard-type map theory, was proposed by Holman and
Murray (1996), Murray and Holman (1997) for the case of a triplet of overlapping
resonances. They introduced an effective overlap parameterKeff instead of ω0 or the
perturbation frequency
. In some wayKeff is analogous to the stochasticity param-
eter K of the standard map (see, e.g., Chirikov 1979; Lichtenberg and Lieberman
1992). Holman and Murray (1996) considered cases of moderate overlap, when
Keff ∼ 1, and strong overlap (adiabatic case), when Keff � 1. In the first case,
the maximum Lyapunov exponent was estimated as L ≈ ω0 (the frequency of

© Springer Nature Switzerland AG 2020
I. I. Shevchenko, Dynamical Chaos in Planetary Systems, Astrophysics
and Space Science Library 463, https://doi.org/10.1007/978-3-030-52144-8_3
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small oscillations on resonance), and in the second case as L ≈ 
 (the external
perturbation frequency).

In Shevchenko (2002a), Shevchenko (2008b, 2014), a method based on the
separatrix map theory was proposed and developed; it allows one to obtain analytical
estimates of the maximum Lyapunov exponent in a number of problems on
dynamics of the Solar system bodies (Shevchenko 2007a).

The notion of Lyapunov exponents is closely related to that of dynamical
entropy (Pesin 1977; Benettin et al. 1976; Chirikov 1978, 1979; Meiss 1992). For
Hamiltonian systems with 3/2 and 2 degrees of freedom with bounded phase space,
Benettin et al. (1976) gave a proof of the relationship

h ≈ Lμ (3.1)

(Benettin et al. 1976, Equation (6)), where h is the dynamical entropy, L is the
maximum Lyapunov exponent, and μ is the relative measure of the connected
chaotic domain where the motion takes place. Benettin et al. (1976) used Eq. (3.1)
in their study of dynamical chaos in the Hénon–Heiles system.

3.1 Chirikov’s Constant

Let us estimate the least upper bound for the maximum Lyapunov exponent of
the separatrix map (1.31). We call it Chirikov’s constant, because an analogue
of this quantity was introduced in Chirikov (1979). Based on results of massive
numerical experiments, Chirikov (1979) found out that the maximum Lyapunov
exponent, referred to the mean half-period of phase libration (or the mean period of
its circulation), of the motion in the chaotic layer of a non-linear resonance subject
to symmetric periodic perturbation is approximately constant in a wide range of the
relative frequency of the perturbation.

We will see that, in the perturbed pendulum model of non-linear resonance,
Chirikov’s constant coincides with the value of the maximum Lyapunov exponent
in the limit of infinitely high frequency of perturbation, and it does not depend on
the perturbation amplitude, i.e., it is defined robustly. The knowledge of Chirikov’s
constant is important for accurate analytical estimating the maximum Lyapunov
exponent in applications in mechanics and physics (Shevchenko 2002a).

It is instructive to see how measure μ of the main connected chaotic domain of
the standard map (1.23), its maximum Lyapunov exponent L, and the product of μ
and L, evolve with increasing the stochasticity parameterK (Shevchenko 2004a).

Figure 3.1 illustrates discontinuities in the μ(K) function. The function was
found numerically in Shevchenko (2004a) by means of computing the number of
cells explored by a single trajectory on a grid of cells on the phase plane (x, y)
∈ [0, 2π] × [0, 2π] of the standard map (1.23).

A prominent bump in the dependence, shown in detail in Fig. 3.1b, is conditioned
by the process of disintegration of the half-integer resonance, while K is increasing
from ≈ 2 to ≈ 2.5. The disintegration is due to a sequence of period-doubling
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(a)

(b)

Fig. 3.1 The chaotic component measure μ(K) (a), and its detail zoomed (b) (Figure 1 from
Shevchenko 2004a. With permission from Pleiades Publishing Inc.)

bifurcations. A similar but less pronounced bump is seen in Fig. 3.1a at 4 <

K < 4.5; this one is due a sequence of period-doubling bifurcations of the integer
resonance. At K � 6, the discontinuities are mostly conditioned by the process of
absorption of minor chaotic domains by the main chaotic domain around the integer
resonance, as K increases.
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Fig. 3.2 Standard map: maximum Lyapunov exponent and dynamical entropy. Upper curve:
L(K); middle curve: h(K) = μ(K)L(K); lower curve: ln K

2 (Figure 2 from Shevchenko 2004a.
With permission from Pleiades Publishing Inc.)

In Fig. 3.2, K dependences of the maximum Lyapunov exponent L and dynami-
cal entropy h are presented in a broader range of K . The Lyapunov exponents were
computed in Shevchenko (2004a) by the tangent map method. (Its description is
given in Chirikov (1979).)

The K dependence of the product Lμ, which is just the dynamical entropy h,
is given in Fig. 3.2. The dynamical entropy h looks continuous and monotonic in
K , in contrast to the discontinuous behaviour of the maximum Lyapunov exponent.
This is no wonder, because the dynamical entropy is a more fundamental quantity
(Shevchenko 2004a).

Chirikov (1979) derived analytically that asymptotically, at K → ∞,

L(K) = ln
K

2
. (3.2)

This formula is obtained by averaging the largest eigenvalue of the tangent map,
taking into account that the chaotic component dominates. From Fig. 3.2, it is clear
that this logarithmic function describes well the asymptotic behaviour of both L(K)
and h(K).

Downward spikes, prominent in Fig. 3.2, are due to the stickiness effect
(Shevchenko 1998a): a chaotic trajectory may stick for a long time to the borders of
the chaotic domain, where the motion is close to regular and, therefore, local rates of
divergence of nearby orbits are small. The computation times are always finite, that
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is why the stickiness effect may provide a computed finite-time Lyapunov exponent
much smaller than the actual one. This effect conditions a particular power-law
relationship between Lyapunov and recurrence timescales (Shevchenko 1998a).

In Figs. 3.1 and 3.2 we see that the μ(K) and L(K) functions are discontinuous
and obviously elude any simple analytical representation. However, atK � 1, h(k)
can be approximated by the function

h(K) = ln
K

2
+ 1

K2 , if K > 4.5, (3.3)

with absolute accuracy better than 0.01. Therefore, the K asymptotics of the h(K)
function contains a power-law component, in addition to the logarithmic law given
by Eq. (3.2). The same can be said for L(K), if one ignores the small (and local in
K) distortions emerging due to accelerator modes and periodic solutions of higher
orders.

Chirikov’s constant can be found by averaging the local maximum Lyapunov
exponent over the whole chaotic layer of the separatrix map (1.31) at λ → ∞.
The local Lyapunov exponent should be taken with a weight directly proportional
to the time that the trajectory is spending in the given locality; this time is directly
proportional to the local relative measure of the chaotic component. Therefore,

Ch = lim
λ→∞

yb∫

0
L̃sx(y)μ̃sx(y) dy

yb∫

0
μ̃sx(y) dy

, (3.4)

where

yb = λ

KG
(3.5)

is the value of y at the layer’s border (Chirikov 1990; Shevchenko 1998b), L̃sx(y) is
the local (with respect to y) value of the maximum Lyapunov exponent, and μ̃sx(y)

is the local chaos measure. The tilde cap marks that the quantities are local. This
formula is valid in the limit λ → ∞, because only in this limit the sum over all
integer resonances inside the layer can be rendered as an integral. Besides, Eq. (3.5)
is accurate also in this limit.

Setting y = λ/K , we introduce the new independent variable K , which is noth-
ing but the stochasticity parameter of the standard map that locally approximates
our separatrix map. The accuracy of the approximation improves with increasing
λ (Chirikov 1979), therefore, at λ � 1, one has L̃sx(y = λ/K) → L(K) and
μ̃sx(y = λ/K) → μ(K). The λ dependence in the limit λ → ∞ is eliminated, and
Eq. (3.4) is reduced to
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Fig. 3.3 The λ dependence for the maximum Lyapunov exponent of the separatrix map, and
its rational approximation (Figure 3 from Shevchenko 2004a. With permission from Pleiades
Publishing Inc.)

Ch = KG

σ

∞∫

KG

L(K)μ(K)
dK

K2 , (3.6)

where

σ = lim
λ→∞ y

−1
b

yb∫

0

μ̃sx(y) dy = KG

∞∫

KG

μ(K)
dK

K2 (3.7)

is the ratio of the chaotic component area to the layer’s total area. Therefore, one
minus σ is the relative total area of all regular islands inside the layer.

In Shevchenko (2004a), Eqs. (3.6) and (3.7) were integrated numerically, with
L(K) and μ(K) taken in tabulated form at K ∈ [KG, 10]. The remainders at K >

10 were estimated analytically, with h(K) = L(K)μ(K) described by Eq. (3.3),
and μ(K) = 1. It was found that

Ch = 0.80, σ = 0.78, (3.8)

with accuracy of two significant digits.
The given estimate of Chirikov’s constant can be verified by computing straight-

forwardly the maximum Lyapunov exponent L of the separatrix map (1.31) in the
limit λ � 1. (Note that we use the same designation L in both cases of standard
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and separatrix maps; this should not cause a confusion). The λ dependence for L is
given in Fig. 3.3. It was obtained in Shevchenko (2004a) for the case of the least
perturbed border of the layer, minimizing the contribution of marginal resonances,
whose emergences are local in varying the parameter c of the map. This case is
generic in applications. The dependence is well described by the fitting rational
function

L(λ) = b + cλ
1 + aλ (3.9)

where a = 2.097 ± 0.033, b = 0, and c = 1.691 ± 0.024 (Shevchenko 2004a).
Here b is set to zero so that L(0) = 0.

Chirikov’s constant is obtained in the limit L(λ → ∞): Ch ≈ 0.806, in accord
with the estimate (3.8).

3.2 Adiabatic Chaos

Adiabatic chaos in Hamiltonian systems takes place in conditions of strong res-
onance overlap, see Sect. 1.3. In the perturbed pendulum model of interacting
resonances, the adiabaticity parameter λ, Eq. (1.27), is therefore small, λ � 1.

Adiabatic chaos can be analysed by various analytical means, e.g., using methods
of theory of adiabatic invariants; see Timofeev (1978), Neishtadt et al. (1997),
Chirikov and Vecheslavov (2000a), Chirikov and Vecheslavov (2000b), Arnold et al.
(2006), Elskens and Eskande (1991), Elskens and Eskande (1993) and references
therein. Here we use a different approach, based on the separatrix map theory
(Shevchenko 2002a; Shevchenko 2008b). The applicability of the separatrix map
theory for describing the near-separatrix motion in the perturbed-pendulum model
of non-linear resonance in the full range of the relative frequency of perturbation,
including its low values, was discussed and shown to be legitimate in Shevchenko
(2000a).

Following Shevchenko (2002a), we represent the maximum Lyapunov exponent
L of the motion in the main chaotic layer of system (1.6) as the maximum Lyapunov
exponent Lsx of the system’s separatrix map divided by the time-averaged rotation
period (or, equivalently, libration half-period) T of the resonance phase ϕ. For
convenience, we introduce Tsx = 
T , which is non-dimensional. One has

L = 

Lsx

Tsx
(3.10)
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and, as usual, the Lyapunov time TL = L−1. For convenience, let us define two
special functions:

�(λ, c) = Lsx(λ, c)/λ, (3.11)

�(λ, c) = (〈�x〉 − c)/λ ≡ (〈xi+1 − xi〉 − c)/λ = (Tsx − c)/λ, (3.12)

where 〈· · ·〉 means averaging over the chaotic domain.
The �(λ, c) and �(λ, c) functions are 2π-periodic in c. They can be easily

numerically tabulated in any intervals of variation of λ and c. In terms of these
two functions, formula (3.10) takes the form

L = 

�(λ, c)

�(λ, c)+ c

λ

, (3.13)

where c is given by Eq. (1.32). Note that here it is taken modulo 2π only in the
arguments of � and�.

Equation (3.13) is valid for any frequency of perturbation in system (1.6) with
a = b. In the case of adiabatic chaos, when λ � 1, the diffusion across the chaotic
layer is slow, and on relatively short time intervals (during which the transport across
the layer can be neglected) the map’s trajectory can be approximated by a current
guiding curve. The guiding curve with an irrational winding number (irrational ratio
of frequencies) that is far enough from major rational numbers can be described
analytically, in a straightforward way (Shevchenko 2008a). Approximating the
winding number by rational numbers m/n, we set c ≈ 2πm/n. At the map’s
iteration n, the trajectory hits in a small neighbourhood of the starting point;
therefore, one has

dy

dx
= 1

nc − 2πm

n−1∑

k=0

sin(x + kc) =

= 1

nc − 2πm
sin
nc

2
cosec

c

2
sin

(
x + n− 1

2
c

)
. (3.14)

Here formula (1.341.1) from Gradshtein and Ryzhik (1962) was used. Integrating,
in the limit n→ ∞ one has

y = −1

2
cosec

c

2
cos

(
x − c

2

)
+ C, (3.15)

where C is an arbitrary constant of integration.
Any trajectory is chaotic if its guiding curve (3.15) crosses the curve y = sin x,

because the latter curve is singular; see Eqs. (1.31). Therefore, the tangency of the
guiding and singular curves corresponds to the chaotic layer’s border, and the layer’s
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half-width is then given by

yb =
∣∣∣cosec

c

2

∣∣∣ (3.16)

(Shevchenko 2008a). In terms of the relative energy variable w in Eqs. (1.26), it is

wb =
∣∣∣∣W cosec

(
λ

2
ln

32

|W |
)∣∣∣∣ , (3.17)

whereW , in the considered case of k = 1 and a = b, is given by formula (1.28).
Conditions for validity of the approximation (3.15) are simple. In deriving the

increment in x, the term λ ln |yi+1| in Eqs. (1.31) is neglected; therefore, one has to
set c � λ ln |yb| and c � λ ln

∣∣cosec c2
∣∣, at λ � 1. We find that the c value should

be far enough from the main resonance, i.e., c should not be close to 0 mod 2π .
Clearly, it should also not correspond to other prominent resonances.

The quantity − ln |yi+1| is equal to (〈�x〉 − c) /λ (see Eqs. (1.31)), where yi+1
is replaced by y of Eq. (3.15). Averaging this quantity over the chaotic layer in the
boundaries given by Eq. (3.17), by taking the integral, one finds analytically

�(c) ≈ ln
∣∣∣4 sin

c

2

∣∣∣ . (3.18)

Also the �(λ, c) function is needed. For an illustration, a �(c) function,
computed numerically at a fixed λ (namely, at λ = 0.01), is shown in Fig. 3.4a.
The�(c) function in Fig. 3.4a has a lot of peaks and, at a first glance, may seem not
to fit any analytical description. However, in a higher resolution in c (see Fig. 3.4b
and c), the resonant peaks turn out to be very thin; therefore, in the generic non-
resonant case they can be neglected, and one has

� ≈ 1. (3.19)

Using Eq. (3.18), we may estimate the winding numbers of the resonances corre-
sponding to the peaks of the �(c) function:

Q = 1

2π
〈�x〉 ≈ 1

2π

(
c + λ ln

∣∣∣4 sin
c

2

∣∣∣
)
. (3.20)

The peaks appear when regular islands inside the chaotic layer emerge.
In Fig. 3.4b and c, an anticorrelation between � and μ (the measure of the

chaotic component inside the chaotic layer’s outer borders) is clearly seen. In case
of the standard map, the dependence of the maximum Lyapunov exponent L on
the stochasticity parameter K has similar narrow local depressions arising due to
emergence of regular islands in the map’s phase space at specific values of K; see
Shevchenko (2004b).
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Fig. 3.4 Upper panel: the c dependence of �, at λ = 0.01. Middle panel: a close-up of the upper
graph near the 1/6 and 1/5 resonances, which correspond to the two highest peaks in the graph.
Bottom panel: a close-up near the 5/8 resonance, which corresponds to the highest peak in the
graph. In the middle and bottom panels, the total measure μ of the chaotic component is shown
by the lower curve. The measure μ was estimated by computing the number of cells explored by a
single trajectory on a grid exposed on the phase plane (Figure 1 from Shevchenko 2008b, © Oxford
University Press)
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Based on Fig. 3.4a, b, and c, one may conjecture that when chaos is adiabatic
and resonances are absent, � ≈ 1; equivalently, Lsx ≈ λ (Shevchenko 2008b).
This can be verified by constructing the λ dependence of Lsx in case of the least
perturbed layer, or, complete ergodicity, at which the average winding number of
the motion inside the chaotic layer is far from any resonances leading to significant
perturbations in the �(c) dependence. Therefore, the average winding number
should be chosen approximately equal to the golden number (3 − √

5)/2 ≈ 0.382.
The λ dependence of the separatrix map maximum Lyapunov exponent Lsx in this
generic non-resonant case is presented in Shevchenko (2008b). Its fitting by the
linear law Lsx(λ) = aλ gives a = 1.011 ± 0.001. The linear fit is valid at λ � 0.3.
At greater values of λ, including medium (λ ∼ 1) and high (λ � 1) ranges, the
Lsx(λ) dependence can be described by a rational function, as illustrated in Fig. 3.3.

The linear law Lsx = λ has a straightforward physical interpretation
(Shevchenko 2008b). Indeed, the motion on the guiding curve can be regarded
as regular only until the trajectory hits in a neighbourhood of the singular curve,
and the trajectory is momentarily shifted to another guiding curve. The relative
area μsn of the “scattering” neighbourhood of the singular curve scales as λ, while
the average maximum modulus of the tangent map eigenvalues for the motion
in the neighbourhood remains constant. The average return time to the scattering
neighbourhood in case of the non-resonant motion is inversely proportional to μsn;
therefore, the linear law, Lsx ∝ λ, naturally arises.

Setting� = 1, and� as given by Eq. (3.18), from Eqs. (3.13) and (3.18) one has

L ≈ 


ln
∣∣∣4 sin

c

2

∣∣∣+ c

λ

, (3.21)

where c = λ ln 32
|W | , see Eq. (1.32).

At k = 1 and λ� 1, Eq. (1.28) givesW ≈ 8λε, hence

L ≈ 


ln

∣∣∣∣
16

λε
sin

(
λ

2
ln

4

λ|ε|
)∣∣∣∣
. (3.22)

For estimating L analytically, by means of Eq. (3.13), the special functions �(c)
and�(c) can be used as tabulated in advance at any given values of λ.

To confront the theory with any numerical data, the maximum Lyapunov
exponent of system (1.6) can be directly computed as a function of the perturbation
amplitude ε; see Fig. 3.5. In this Figure, a perfect agreement is observed in the
ε range covering six orders of magnitude. However, small peaks perturbing the
smooth theoretical curves are present. Their emergence is conditioned by the
influence of resonances, as ε is varied.
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Fig. 3.5 Upper panel: the maximum Lyapunov exponent of system (1.6), in dependence on the
perturbation amplitude; numerical data (circles) and analytical functions given by Eqs. (3.13) (solid
curves) and (3.22) (dotted curves). Lower panel: the same, but with inverse winding numbers,Q−1,
indicated at resonant peaks (Figure 5 from Shevchenko 2008b, © Oxford University Press)
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3.3 Lyapunov Exponents in Resonance Doublets and Triplets

Lyapunov exponents can be analytically estimated in a number of generic models
of resonance interaction and overlap, though often rather approximately, first of
all because one has to deal with relations smoothed over original fractal-like
dependences, as we will see in many examples below.

In this Section, we consider four generic resonance interaction types, which can
be used as models approximating many actual dynamical situations. These four
types include: non-adiabatic chaotic resonance triplet, non-adiabatic chaotic reso-
nance doublet, adiabatic chaotic resonance triplet, and adiabatic chaotic resonance
doublet.

A fundamental model of perturbed non-linear resonance is given by the perturbed
pendulum Hamiltonian (1.6) with k = 1:

H = Gp2

2
− F cosϕ + a cos(ϕ − τ )+ b cos(ϕ + τ ). (3.23)

A section of the phase space of system (3.23), visualizing a non-adiabatic chaotic
resonance triplet, is given in Fig. 1.5. The section is taken at τ = 0 mod 2π , and the
system parameters are: 
 = 5 and ω0 = 1, i.e., the adiabaticity parameter λ = 5,
a = b, the perturbation amplitude ε = a

F = 0.5.

Non-adiabatic Chaotic Resonance Triplet Choosing a = b and λ > 1/2, one has
a symmetric triad of interacting resonances, and chaos is non-adiabatic. Following
Shevchenko (2002a), we take the dependence of the maximum Lyapunov exponent
of the separatrix map (1.31) upon λ in the form

Lsx(λ) ≈ Ch
2λ

1 + 2λ
, (3.24)

where Ch ≈ 0.80 is Chirikov’s constant, see Sect. 3.1.
For the average increment of τ per the separatrix map iteration inside the chaotic

layer one has

Tsx(λ,W) ≈ λ ln
32e

λ|W | (3.25)

(Chirikov 1979; Shevchenko 2002a); here e is the base of natural logarithms, and
W is given by formula (1.28) or formula (1.29). The basic Eq. (3.10) gives the
Lyapunov time of the original system:

TL = Tpert

2π

Tsx

Lsx
≈ Tpert

(1 + 2λ)

4πCh
ln

32e

λ|W | , (3.26)

where Tpert = 2π/
 is the period of perturbation in the original system time units.
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Non-adiabatic Chaotic Resonance Doublet The just given analysis of the sym-
metric case a = b allows one to proceed to the more general asymmetric case, a �=
b. Indeed, we shall see that the maximum Lyapunov exponent in the asymmetric
case can be found by averaging contributions of separate components of the chaotic
layer. To perform the averaging, one should assess ratios of the mean times of
the system’s residence in three different components of the layer; these three
components correspond to the model pendulum’s direct rotation, reverse rotation,
and libration. The ratios of the mean times of residence depend on the perturbation
asymmetry. Let us consider the limiting case, that with of a or b equal to zero. In
this case, one of the two perturbing resonances simply does not exist; thus, instead
of the resonance triad we have a resonance duad. If λ > 1/2 and b = 0, then
|W−| � |W+|, and, vice versa, if λ > 1/2 and a = 0, then |W−| � |W+|. The
negligible W− or W+ is further on set to zero, and the dominating W+ or W− is
further on designated asW .

Consider first the chaotic layer’s libration component. Then, W− and W+
alternate (replace each other) at each iteration of the map (1.33). If one of W±
is equal to zero, the separatrix algorithmic map (1.33) on any doubled iteration
step reduces to the classical separatrix map (1.26) with the doubled value of λ and
the same non-zero value of the dominating W (here the λ and W parameters are
regarded as mutually independent). One iteration of the new map corresponds to
two iterations of the old one. The half-width of the chaotic layer of map (1.26) is
known to be ≈ λW ; see Chap. 5. Therefore, the size of the libration component of
the chaotic layer in w in the asymmetric perturbation case effectively doubles and
becomes ≈ 2λW .

In the circulation case, the layer’s component corresponding to the reverse
rotations does not exist, ifW− = 0; conversely, the component corresponding to the
direct rotations does not exist, if W+ = 0. The remaining component is described
by the ordinary separatrix map (1.26) with the same λ andW equal to non-zeroW+
orW−; the component’s size in w is ≈ λW .

The averaged (over the whole layer) maximum Lyapunov exponent can be
calculated as the sum of weighted contributions of the chaotic layer components
corresponding to the model pendulum’s librations, direct rotations, and reverse
rotations. The weights are directly proportional to the relative times of the system’s
residence in these three components. Assuming ergodicity, they are therefore
proportional to measures (squares) of the components in the phase plane of the map.
Based on the just given estimates of the layer’s components widths, we find that, in
the duad case, the weight ratio of the libration and circulation components is 4:1.
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Hence, one obtains the maximum Lyapunov exponent and the Lyapunov time of the
original system:

L = 


μlibr + 1

[
μlibr

Lsx(2λ)

Tsx(2λ,W)
+ Lsx(λ)

Tsx(λ,W)

]
, (3.27)

TL = Tpert

2π
· μlibr + 1

μlibr
Lsx(2λ)
Tsx(2λ,W)

+ Lsx(λ)
Tsx(λ,W)

, (3.28)

where μlibr ≈ 4, andW , Lsx, Tsx are given by Eqs. (1.28), (3.24), and (3.25).

Adiabatic Chaotic Resonance Triplet If λ < 1/2, the diffusion across the layer
can be regarded as slow, and any trajectory of the ordinary separatrix map (1.31)
can be regarded as following close to some current curve called the guiding curve,
until it hits in vicinities of the map’s singular curve; see Sect. 3.2. Using an
analytical expression for the guiding curve, the following approximate formula for
the maximum Lyapunov exponent was derived above in Sect. 3.2:

L ≈ 


ln
∣∣∣4 sin

c

2

∣∣∣+ c

λ

, (3.29)

where c = λ ln 32
|W | . For λ � 1 one hasW ≈ 8ελ, hence the Lyapunov time

TL ≈ Tpert

2π
ln

∣∣∣∣
16

ελ
sin

(
λ

2
ln

4

|ε|λ
)∣∣∣∣ . (3.30)

Adiabatic Chaotic Resonance Doublet Using the approximation of the
Melnikov–Arnold integral A2(λ) ≈ 2πλ + 4 at λ � 1, η = 0, one has:
W± ≈ ελ(4 ± 2πλ) ≈ 4ελ. Therefore, in this case, the separatrix algorithmic
map (1.33) degenerates to the ordinary separatrix map (1.26) with W ≈ 4ελ, i.e.,
mathematically the case is equivalent to the “slow triad” case, but with a different
(halved) value of W . It is then straightforward to write down the formula for the
Lyapunov time:

TL ≈ Tpert

2π
ln

∣∣∣∣
32

ελ
sin

(
λ

2
ln

8

|ε|λ
)∣∣∣∣ . (3.31)

Summarizing the analytical results, we may state that for the four generic
resonance interaction types, namely, non-adiabatic chaotic resonance triplet, non-
adiabatic chaotic resonance doublet, adiabatic chaotic resonance triplet, and adi-
abatic chaotic resonance doublet, the Lyapunov timescales of motion are given,
respectively, by Eqs. (3.26), (3.28), (3.30), and (3.31).
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These analytical results, to assess their accuracy, can be confronted with
results of direct numerical integrations of the original Hamiltonian system (3.23),
as performed in Shevchenko (2007a). The program package (Shevchenko and
Kouprianov 2002; Kouprianov and Shevchenko 2003), realizing the HQRB method
by Von Bremen et al. (1997), was used in Shevchenko (2007a) to compute the
maximum Lyapunov exponents. Its capabilities are by far greater than that necessary
in the given task. It allows one to compute the full Lyapunov spectrum of a
multidimensional dynamical system. The Lyapunov spectrum of the given perturbed
pendulum system consists of a pair of Lyapunov exponents, namely, the maximum
one and its negative counterpart.

The computation results, obtained at λ = 0.1 (adiabatic chaos) and 2 (non-
adiabatic chaos), are shown in Fig. 3.6. In the Figure, they are accompanied by
theoretical curves, specified by Eqs. (3.26), (3.28), (3.30), and (3.31), and the
relation L = 1/TL. An agreement of the numerical results with the analytical
formulas is clearly present.

The computed dependences possess, however, minor local wave-like distur-
bances. These patterns are natural and inherent, as they are conditioned by emer-
gence of system’s resonances, as ε is incremented.

Fig. 3.6 The maximum Lyapunov exponent L in the chaotic layer of system (3.23), in dependence
on the perturbation amplitude ε: results of direct integrations (circles) and theoretical (solid)
curves, specified by Eqs. (3.26), (3.28), (3.30), and (3.31) (Figure 2 from Shevchenko 2007a, by
permission from © Cambridge University Press)
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3.4 Lyapunov Exponents in Resonance Multiplets

In this Section, we consider a dynamical situation, when there is a lot of interacting
resonances. An infinite multiplet of equally-sized equally-spaced interacting reso-
nances is given by the standard map Hamiltonian (1.24) and is described by the
standard map (1.23) (Chirikov 1979; Lichtenberg and Lieberman 1992).

An analytical approximation for the standard map’s maximum Lyapunov expo-
nent was derived in Chirikov (1979). By means of linearizing the standard map in the
momentum variable y in a vicinity of its fixed value and solving the characteristic
equation for the linearized map, one gets for the maximum eigenvalue at K � 1:

l+ ≈ K| cos x|. (3.32)

Assuming complete ergodicity of the motion at K � 1, the maximum Lyapunov
exponent is obtained by averaging l+ over the map’s phase plane, or, equivalently
over the phase variable x:

Lst ≈ 1

2π

∫ 2π

0
lnK| cos x|dx (3.33)

and, therefore,

Lst ≈ ln
K

2
. (3.34)

Equation (3.34) provides the needed approximation. Chirikov (1979) observed that
the difference between the theoretical and actual numerical-experimental values of
Lst, on increasing K , becomes less than ≈ 2% already at K = 6. For a graphical
comparison of the theory and numerics in a different numerical experiment, see
Fig. 3.2.

Therefore, for any multiplet of equally-sized equally-spaced resonances in
model (1.24), one has

L ≈ ln
2π2

λ2 , (3.35)

where the system’s adiabaticity parameter λ = 2πK−1/2, andK is the stochasticity
parameter of the standard map.

In the standard map dynamics, the onset of global chaos takes place at K ≈ 1; at
this K value, integer resonances start to overlap and the unbounded transport in the
momentum variable becomes possible (Chirikov 1979; Lichtenberg and Lieberman
1992). Judging by the data presented in Fig. 3.2, Eqs. (3.34) and (3.35) can be
used for satisfactory estimations of Lyapunov exponents already at λ � 6 and,
with much higher precision, at λ � 3. Therefore, the domain of validity of these
approximations covers not only the realm of adiabatic chaos, but also an actual
portion of the realm of non-adiabatic one.



70 3 Lyapunov Timescales

However, for the standard map model to be realistic in any application, the
number of resonances in the multiplet of a system under study should be great,
because in the standard map model it is infinite. Let us assume that the number of
resonances in a resonance multiplet is greater than three. In celestial-mechanical
applications, the number of subresonances of a resonance can be very large, see,
e.g., Sects. 8.2.3 and 8.2.4. In such cases, the multiplet is called a supermultiplet. If
chaos is non-adiabatic (λ � 1/2), then, to estimate Lyapunov timescales, one may
take into account solely the resonances that are closest to the guiding one, because
the interaction with all other resonances in the multiplet is exponentially small with
λ. Therefore, Eqs. (3.26) and (3.28), derived for resonance triplets and doublets, can
be used.

However, if chaos is adiabatic (λ � 1/2), the triplet or doublet models are not
adequate anymore and one has to develop a different approach. In the limiting case
of infinitely many interacting equally-sized equally-spaced resonances, formulas
based on the standard map theory can be straightforwardly used.

Precise fitting formulas for the maximum Lyapunov exponent L of the standard
map, as a function of the stochasticity parameter K , are given in Shevchenko
(2004b); Shevchenko (2004a) forK < 1 and K > 4.5:

L = 1

Tpert
·
{

0.1333K, if K < 1,

ln K
2 + 1

K2 , if K > 4.5.
(3.36)

Formulas (3.36) are graphically presented in Fig. 3.7. The asymptotic curves, if
extrapolated to intermediate K values, intersect at K = 2. Using the asymptotic
formulas in the 1.0 � K � 4.5 interval (corresponding to 3.0 � λ � 6.3) would
obviously underestimate actual Lyapunov exponents. To describe L(K) at any K
from zero to infinity, the following fitting formulas were proposed in Shevchenko
(2014):

L = 1

Tpert
·

⎧
⎪⎪⎨

⎪⎪⎩

0.1333K, if K < 1.1,

0.469(K − 1.037)1/2, if 1.1 ≤ K < 4.4,

ln K2 + 1
K2 , if K ≥ 4.4.

(3.37)

Therefore, the Lyapunov time for the infinitet (infinite multiplet) of interacting
resonances is given by

TL ≈ Tpert ·

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

7.50

K
(≈ 0.190λ2), if K < 1.1 (or, if λ > 6.0),

2.133(K − 1.037)−1/2, if 1.1 ≤ K < 4.4 (or, if 3.0 < λ ≤ 6.0),(
ln
K

2
+ 1

K2

)−1

, if K ≥ 4.4 (or, if λ ≤ 3.0),

(3.38)
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Fig. 3.7 Dots: the numerical-experimental dependence L(K) for the maximum Lyapunov expo-
nent of the standard map, based on data of Shevchenko (2004b); Shevchenko (2004a). Lower
(red) curve: ln(K/2). Middle (green) curve: functions (3.36) in junction. Upper (blue) curve:
formula (3.37). In the both formulas, Tpert is set to unity (Figure 4 from Shevchenko 2014, with
permission from Elsevier)

where

K = (2π/λ)2. (3.39)

It is obvious from Figs. 3.7 and 3.8 that at K � 1, i.e., at K less than its critical
valueKG ≈ 1, the upper bound of L(K) is close to linear with K .

This is explainable in the separatrix map theory framework Shevchenko (2004b).
Indeed, L(K) is expected here to be described by Eq. (3.26), corresponding to the
non-adiabatic chaotic resonance triplet, because at K � 1 one has λ � 6 and,
therefore, the resonances close to the guiding one can be solely taken into account,
as a first approximation.

Equation (3.10) gives L = 
Lsx/Tsx, where Lsx and Tsx are described by
Eqs. (3.24) and (3.25), respectively. From Eq. (3.24) it follows that Lsx ≈const, if
λ � 6. On the other hand, Tsx ∝ K−1, if K � 1, see Eq. (3.25) (or Equation (6.18)
in Chirikov 1979). Combining the relations, one finds L ∝ K , ifK is small enough.
The slope of this theoretical linear asymptotic law is, however, somewhat less than
that of the numerical linear fit L ≈ 0.1333K , presented by Eq. (3.37). An inspection
of Fig. 3.8 reveals that the slope of the actual numerical dependence decreases
with K; this explains the difference between the theoretical and adopted numerical
slopes.
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Fig. 3.8 Dots: the numerical-experimental dependence L(K) for the maximum Lyapunov expo-
nent of the standard map, based on data of Shevchenko (2004b); Shevchenko (2004a), in the
interval 0 < K < 1. Lower (blue) curve: the separatrix map theory without any correction to the
MA-integral. Upper (green) curve: the separatrix map theory with Chirikov’s zero-order correction
to the MA-integral. Middle (black) curve: the separatrix map theory with the Chirikov–Lazutkin–
Gelfreich correction to the MA-integral (Figure 5 from Shevchenko 2014, with permission from
Elsevier)

The actual numericalL(K) dependence atK < 1 has a lot of sharp local minima,
accumulating to K = 0. Their emergence is due to marginal resonances at the
borders of the chaotic layer (Shevchenko 2014). Marginal resonances also play a
major role in defining the chaotic layer width (Shevchenko 1998b, 2012; Soskin
et al. 2012).

Let us derive a formula for theL(K) upper bound. The basic relation (3.10) gives
L = 
Lsx/Tsx, where
 = 2π ;Lsx and Tsx are described by Eqs. (3.24) and (3.25),
respectively.

We modify the expression for W , which enters in Eq. (3.25), substituting W
with Wst = RstW , where Rst is a correction factor, specific for the standard map
(Chirikov 1979). Tsx is therefore given by

Tsx = λ ln
32e

λRst|W | . (3.40)
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Using Eq. (3.39), an equivalent form can be obtained:

Tsx = 


(
π2

K
−K−1/2 ln

2Rstπ
4

eK3/2

)
(3.41)

(Chirikov 1979).
The correction factor Rst was warranted to improve the separatrix map perfor-

mance in describing the chaotic layers of integer resonances of the standard map,
and at first it was numerically estimated (in numerical experiments with the standard
and separatrix maps) as Rst ≈ 2.15 (Chirikov 1979). Later on, this factor was
estimated with an unbounded numerical accuracy:

Rst = f0

16π3
= 2.255244393 . . ., (3.42)

as it had been expressed through the so-called Lazutkin splitting constant f0 =
1118.8277059409008 . . . (Vecheslavov and Chirikov 1998; Vecheslavov 1999).

If K �= 0, the stable and unstable separatrices of any integer resonance of the
standard map intersect transversally. To describe this phenomenon, Lazutkin (2005)
derived an asymptotic formula for the separatrix splitting angle, valid at K � 1.
The splitting angle at the first intersection of the separatrices with the x = π axis is
given by

α = π

h2 exp

(
−π

2

h

) ∞∑

m=0

cmh
2m, (3.43)

where

h = ln

(
1 + K

2
+
(
K + K2

4

)1/2)
, (3.44)

and for the first three coefficients cm one has the formulas

c0 = f0, c1 = f1 − c0

4
, c2 = f2 − c1

4
− 25c0

72
, (3.45)

where

f0 = 1118.8277059 . . . , f1 = 18.59891 . . . , f2 = −2.17205 . . . (3.46)

(Lazutkin 2005; Gelfreich 1999). Using Eq. (3.43), we arrive at

Rst ≈ 1

16π3 (c0 + c1h
2 + c2h

4), (3.47)

where h ≈ K1/2.



74 3 Lyapunov Timescales

Combining Eqs. (3.10), (3.24), (3.40), and (3.47), it is straightforward to con-
struct a theoretical L(K) dependence, which, therefore, embodies the separatrix
map theory with the Chirikov–Lazutkin–Gelfreich correction to the Melnikov–
Arnold integral (MA-integral). The corresponding curve is presented in Fig. 3.8 in
black.

For comparison, the lower (blue) curve in this Figure embodies the separatrix
map theory without any correction to the MA-integral, i.e., the theory with Rst set to
unity. The upper (green) curve embodies the separatrix map theory with Chirikov’s
zero-order (in h) correction to the MA-integral, i.e., the theory withRst set to 2.2552.

As one would have expected, the middle (black) curve, which is based on the
most advanced theory, is the best one in approximating the upper bound for the
numerically found dependence.

Now we have all analytical tools that are necessary to estimate Lyapunov
exponents in multiplets of resonances, in the first fundamental (pendulum) model
of resonance. Let us see how these analytical tools perform versus numerical
results. The original dynamical system is specified by the Hamiltonian (1.42). For
computing the Lyapunov exponents in direct integrations of the original system,
the HQRB numerical method by Von Bremen et al. (1997) is used, as described in
Shevchenko (2014).

Let us consider the ultimately large perturbation amplitude, namely, εk = ε = 1;
in other words, let us consider equally-sized equally-spaced multiplets. We call the
amplitude ε = 1 ultimately large, because the case of ε > 1 can be reduced to the
case of ε < 1 by changing the choice of the guiding resonance.

In addition to the above considered theory valid in the case of small-amplitude
perturbations, the standard map theory, given by Eqs. (3.37) and (3.38), can be
applied for estimating the maximum Lyapunov exponents in multiplets of equally-
sized equally-spaced resonances, if the number of resonances in a multiplet is large.
Thus, it is assumed that the dynamics in the infinitet (M = ∞) is approximately the
same as in any multiplet with M � 1.
λ dependences, both theoretical and numerical-experimental, of the maximum

Lyapunov exponent L (normalized by ω0) for four kinds of multiplets (doublet,
triplet, septet, and infinitet) of equally-sized equally-spaced resonances are shown
in Fig. 3.9. The dependences for the triplet and the septet obviously occupy
intermediate positions between the dependences for the doublet and the infinitet.
The numerical data for the doublet (black dots) agrees well with the separatrix map
theory (black curve), although the perturbation amplitude is maximal, ε = 1.

Comparing the maxima of the curves for ε equal to 0.01 and 1 (see Shevchenko
2014), one finds that L/ω0 depends on the perturbation amplitude ε rather strongly:
the difference is about three times. This difference highlights the fact that, when
estimating L, it is usually insufficient to take into account solely the frequencies (

and ω0), because the perturbation amplitudes may also play an important role.

Designating the Lyapunov exponents for the doublet, triplet and infinitet cases as
L(2), L(3), and L(∞), respectively, one may see that at λ ∼ 1–3 (i.e., in the interval
where L/ω0 are maximal) the ratios L(∞)/L(2) and L(∞)/L(3) both are ≈ 2. (At
the curves maxima, they are equal to 2.2 and 1.7, respectively.) How do the ratios
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Fig. 3.9 λ dependences of the maximum Lyapunov exponent L, normalized by ω0, for multiplets
of equally-sized equally-spaced resonances. Dots: numerical-experimental data. Upper (green)
solid curve: the standard map theory, given by Eqs. (3.37) and (3.39), for the infinitet. Lower
(black) solid curve: the separatrix map theory, given by Eqs. (3.28) and (3.31), for the doublet
(Figure 7 from Shevchenko 2014, with permission from Elsevier)

L(∞)/L(2) and L(∞)/L(3) behave in the limits λ → 0 and λ→ ∞? Note that L/ω0
tends to zero in the both limits.

Consider first the limit λ→ ∞. From Eqs. (3.28) and (3.26) for the non-adiabatic
chaotic doublets and triplets, respectively, one may easily find that

T
(2)
L

Tpert
= μlibr + 1

2Ch(μlibr + 2)
λ2 ≈ 5

12Ch
λ2 ≈ 0.521λ2 (3.48)

and

T
(3)

L

Tpert
= 1

4Ch
λ2 ≈ 0.313λ2. (3.49)

Therefore,

L(3)

L(2)
= 2

μlibr + 1

μlibr + 2
≈ 5/3 ≈ 1.67 (3.50)

asymptotically.
If λ → ∞, then L(∞) = L(3) and L(∞)/L(2) = L(3)/L(2) ≈ 1.67.
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Therefore, if λ � 1, the Lyapunov exponents in multiplets of equally-sized
equally-spaced resonances do not depend much on the number of resonances in
a multiplet: they differ by no more than a factor of two. Indeed, the Lyapunov
exponent in the infinitet is only about 70% greater than that in the doublet.

The differences in the opposite adiabatic limit (λ → 0) are not so small.
Indeed, Eqs. (3.31), (3.30), and (3.38) in this limit give L(∞)/L(2) → ∞, and
L(3)/L(2) → 1.

The differences are unimportant in applications, because L/ω0 → 0 at λ →
0. For the effect of the perturbation amplitude, the following remarks are in order
(Shevchenko 2014).

In the range of amplitudes ε ∼ λ−1 and above, the standard Poincaré–Melnikov
method for calculating the separatrix splitting effects requires corrections (Gelfreich
1997; Treshchev 1998). Assume that the perturbation is maximal, i.e., ε = 1.
Then, in the doublet case, the perturbation is completely asymmetric (η = 0),
therefore, according to Gelfreich (1997), the correction is zero. For the triplet
of arbitrary asymmetry, Simó’s hypothetical formula (Gelfreich 1997) gives the
correction factor R to the W parameter of the separatrix map for system (1.6):

|R(x)| =
∣∣∣∣
sinh(x)

x

∣∣∣∣ , (3.51)

where x = (2ε1ε2)
1/2 = (2ab)1/2

F . The value of x may be either real or imaginary,
depending on the signs of a and b. The value of W is corrected by means of
multiplying it by R.

In the symmetric triplet case, η = 1 and the correction factor R(
√

2) ≈ 1.3683.
Therefore, the correction factor for the triplet of equally-sized equally-spaced
resonances is significantly less than that for the infinitet of equally-sized equally-
spaced resonances, because, in the latter case, R ≈ 2.2552.

Concluding this Section, it is important to underline the numerical result that,
independent from the adiabaticity parameter λ value (controlling the degree of
interaction/overlap of resonances in multiplets), the maximum Lyapunov exponent
value in a multiplet of equally-spaced equally-sized resonances is minimal in the
doublet case and maximal in the infinitet case. This is consistent with the separatrix
map and standard map theories: it is clear from Fig. 3.9 that the theoretical curves
for the doublet and the infinitet serve as the lower and upper bounds for all Lyapunov
exponent values obtained numerically for all kinds of multiplets.

Another important fact worth mentioning is that, for almost all λ at the horizontal
axis of Fig. 3.9, the resonance overlap condition in the infinitet is satisfied (except
at λ � 6.4, i.e., at log10 λ � 0.8). Indeed, the resonances in the infinitet start to
overlap, on decreasing λ, at λ = 2π/

√
KG ≈ 6.37, as follows from the standard

map theory (Chirikov 1979; Meiss 1992).



Chapter 4
Diffusion Timescales

Timescales of chaotic transport are no less important than Lyapunov timescales.
They are even more important, because they are directly related to observable
properties of planetary systems and their subsystems. In view of further applications,
in this Chapter we discuss properties of chaotic transport, diffusion rates first of
all, in multiplets of interacting and overlapping resonances. As a model for the
multiplet, the standard map Hamiltonian is taken. Relationships between Lyapunov
and diffusion timescales are analysed; in this connection, two kinds of Hamiltonian
intermittency are discussed. The presentation is partially based (in Sections 4.2, 4.3,
and 4.4) on the papers by Shevchenko (2011a), Shevchenko (1998a) (by permission
from Elsevier), and Shevchenko (2010).

4.1 Diffusion Rates in Resonance Multiplets

In this Section we discuss properties of chaotic transport in multiplets of interacting
and overlapping resonances. As a model for the multiplet, we take the standard map
Hamiltonian (1.24).

From the standard map’s (1.23) first equation, we see that the variation in y per
step is K sin xi ; therefore, at each iteration of the map, an O(ε) uncertainty in x
propagates to an uncertaintyO(Kε) in y, and, consequently, in the next value of x.
Therefore, the escalation of error is exponential (Meiss 1992). The error rises if the
stochasticity parameter K > 1, and, therefore, one may suppose that the change in
the map’s behaviour at this value of K is critical. And this is indeed so: at K ≈ 1
the last rotational invariant curve in the map’s phase plane is destroyed and the
motion becomes unbounded in y (Chirikov 1979; Greene 1979; Lichtenberg and
Lieberman 1992; Meiss 1992). As Meiss (1992) notes, the exact threshold value
K = KG ≈ 0.97, is close to the given simple estimate.
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In view of the rapid loss of phase coherence at K � 1 one may expect that a
statistical description of the motion becomes plausible at such values ofK (Chirikov
1979). If the motion of the system within the phase plane square 2π × 2π were
completely ergodic (no regular islands present), then the distribution of x in the
[0, 2π] segment would be flat. The ergodicity was observed in many numerical
experiments, accomplished at K � 1 (Chirikov 1979).

Since the Lyapunov time ≈ ln K
2 (see Eq. (3.34), one may assume that even

initially adjacent values of phase variables become statistically independent in a
few iterations. This is the so-called assumption of random-phase approximation.

The diffusion coefficient D is defined, formally for any kind of discrete motion,
as the mean-square spread in a selected variable per unit of time. In case of the
standard map this variable is y, which is then intentionally not taken modulo 2π
and, therefore, its variation is unbounded, if K > KG. Therefore,

D ≡ lim
t→∞

〈(yt − y0)
2〉

t
, (4.1)

where the angular brackets denote averaging over some set of starting values, and
the discrete time t ≡ k in Eqs. (1.23) (Meiss 1992; Lichtenberg and Lieberman
1992).

The cumulative variation in y, achieved at time t ≡ k, is

�y = K

t∑

0

sin xt . (4.2)

The time averaging and the phase-space averaging (denoted in the following by
the bar and by the angle brackets, respectively) are equivalent, due to the assumed
ergodicity. Therefore, one has

�y = 〈�y〉 = 0, (�y)2 = 〈(�y)2〉 = 1

2
K2t (4.3)

(Chirikov 1979). As directly follows from Eqs. (4.3), the motion in y represents
normal diffusion with the rate

DQL = 〈(�y)2〉
t

= 1

2
K2. (4.4)

This formula embodies the so-called quasilinear diffusion approximation (Meiss
1992). The validity of approximation (4.4) was confirmed in many numerical exper-
iments: it was numerically validated that, when K is large, the diffusion coefficient
D ≈ DQL (Chirikov 1979; Lichtenberg and Lieberman 1992). Corrections to
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Fig. 4.1 A numerical-experimental dependence D(K), normalized by the quasilinear law

DQL, especially prominent at K ∼ 1, were analytically calculated in Rechester
et al. (1981); Cary et al. (1981), where they were expressed in the form of series
of products of Bessel functions. They perfectly reproduce wave-like variations of
D(K) observed in numerical experiments; see Fig. 4.1.

Another prominent feature in the D(K) dependence (Fig. 4.1) is a sequence of
periodic bursts of the diffusion rate to infinity on small limited intervals ofK . They
are due to sticking of trajectories to small islands corresponding to the so-called
accelerator modes, which represent the periodic orbits that satisfy xn = x0 + 2πk
and yn = y0 +2πl for integer k, l, n. Sticking of chaotic trajectories to these islands
leads to ballistic flights: on long time intervals the y variable varies linearly with
time. In the presence of the accelerator modes the diffusion coefficientD appears to
be infinite (Karney et al. 1982; Meiss et al. 1983). This regime of motion is a kind
of anomalous diffusion (Chirikov 1996).

The emergence of small regular islands, corresponding to periodic orbits at
particular values of K , results in local (in K) minima in the μ(K) dependence,
where μ is the relative measure of the chaotic component in the phase space; see
Fig. 4.2. The accelerator modes, emerging at K ≈ 2πm (m = 1, 2, . . . ) (Chirikov
1979, 1996), are responsible for the most prominent double minima in the graph.
Comparing with Figs. 4.1 and 4.2, one may verify that the bursts ofD are due to the
accelerator modes, as their K locations coincide with the K locations of the most
prominent minima in μ.
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Fig. 4.2 Relative measure of the chaotic component in the standard map’s phase space, as a
function of K (Figure 5 from Shevchenko 2007b, with permission from Elsevier)

4.2 Diffusion Rates in Resonance Doublets

Diffusion rates and timescales in infinitets1 of overlapping resonances, as well as
in supermultiplets2 of overlapping resonances can be analytically estimated using
formulas derived for the standard map, as shown above in Sect. 4.1. In the opposite
limit of multiplets comprising only two or three resonances, how the diffusion
timescales can be found? Here we describe how this problem can be solved,
following Shevchenko (2011a) and based on the separatrix algorithmic map theory.
The separatrix algorithmic map (1.33) was introduced above in Sect. 1.6.

A general approach for such kind of problems was originally proposed in
Chirikov and Vecheslavov (1986, 1989), where it was applied to describe long-
term cometary dynamics. Chirikov (2000) employed a similar method in a study
of anomalous diffusion in a general separatrix map model; see p. 11 in Chirikov
2000 and, in particular, formulas (20) and (21) therein.

First of all, a reservation should be made that it is often only approximate that one
may consider chaotic transport in any celestial-mechanical problem, in which solely
two or three resonances overlap, as diffusive. The matter is that the value of the
adiabaticity parameter λ in most of applications is equal, by order of magnitude, to
unity: λ ∼ 1. This is due to selection biases: indeed, if λ � 1, then chaos is simply
insignificant, because the chaotic layers are thin, see Sect. 5.3; on the other hand,

1Multiplets comprising an infinite number of resonances.
2Multiplets comprising a finite but large number of resonances.
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if λ � 1, chaos can be too slow to arise significantly within prescribed finite time
intervals. However, in the second case, estimating the diffusion times is nevertheless
important, in order to be able to compare them with other important physical or
dynamical timescales, in any problem under study.

As explained in (Chirikov 2000, p. 12–13), when λ ∼ 1, “. . . the layer width is
reduced down to the size of a single kick. . . . Hence, the diffusion approximation
becomes inapplicable. Instead, the so-called ballistic relaxation comes into play
which is much quicker. In other words, a slow diffusive motion . . . is replaced now
by rapid jumps of a trajectory over the whole layer . . . .”3 Therefore, the diffusion
rate estimates presented below in this Section should be regarded as an extrapolation
of diffusive description. Actually they may mostly serve as upper bounds for chaotic
transport timescales.

Chirikov and Vecheslavov (1986, 1989) considered chaotic dynamics in the
Kepler map model. The Kepler map is a kind of a generalized separatrix map; it
is discussed in Sects. 1.7 and 11.1.5. On general grounds, Chirikov and Vecheslavov
(1986, 1989) took the diffusion rate (in the map’s action-like variable), in the chaotic
domain of the map’s phase space, to be approximately equal to the mean (over time)
squared energy increment per one iteration of the map. Analogously, in case of the
ordinary separatrix map (1.26), we set the diffusion rate (in the energy variable) to
be equal to the mean squared energy increment, i.e., 〈W 2 sin2 τi〉. Averaging over
the phase interval 0 ≤ τi < 2π , we find the diffusion rate to be

Dmap ≈ W 2

2
, (4.5)

whereW is given by Eq. (1.28).
In case of the separatrix algorithmic map (1.33), the chaotic layer consists of

three components, corresponding to prograde rotations, retrograde rotations, and
librations of the phase variable. They should be considered separately. In the
prograde rotation case, the diffusion rate Dmap in the energy variable obviously
equals ≈ (W+)2/2; and in the retrograde rotation case, it equals ≈ (W−)2/2.

Using formulas (1.34), it is straightforward to calculate the parametersW+ and
W− of the separatrix algorithmic map (1.33). If λ > 1/2, the equality b = 0 implies
|W−| � |W+|, and the equality a = 0 implies |W−| � |W+|. If W− = 0, the
chaotic layer component corresponding to retrograde rotations does not exist, its
measure is zero. Conversely, if W+ = 0, the layer component corresponding to
direct rotations does not exist.

The third component, that corresponding to circulations, is described by the
ordinary separatrix map (1.26) with two parameters, λ and W = W± (the non-
zero value amongW+ andW−). The component extent in w is equal to half-width
of the map’s chaotic layer in case of non-adiabatic chaos, i.e., ≈ λ|W |, see Sect. 5.3.

3The “single kick” is a particle’s energy increment per one iteration of the separatrix map.
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Consider the layer’s libration side. On this side, the W− and W+ values of
the W± parameter alternate (replace each other) at each iteration of the separatrix
algorithmic map (1.33). As shown above in Sect. 3.3, ifW− orW+ is equal to zero,
then on any doubled iteration step the separatrix algorithmic map (1.33) reduces to
the ordinary separatrix map (1.26) with λ doubled andW equal to the largest (non-
zero) W±. Since one iteration of the new map corresponds to two iterations of the
original one, one finds that the diffusion rate referred to the original map time units
is given by

Dmap � 1

4
(W±)2, (4.6)

whereW± is the largest (non-zero)W±.
For the circulation component, one has

Dmap � (W+)2

2
, (4.7)

if b = 0, and

Dmap � (W−)2

2
, (4.8)

if a = 0.
The libration component extent in w in the given asymmetric perturbation case

effectively doubles and becomes ≈ 2λW , see Sect. 3.3. The parameters λ and W
are regarded here as independent from each other. Therefore, the chaotic domain
corresponding to libration dominates in the layer extent in w, and, to get a rough
estimate of the diffusion rate across the entire layer, it is sufficient to estimate the
rate across the libration component alone. Let us consider the doublet; then b = 0,
η = 0, andW± = W+, where, according to Eq. (1.54) with k = 1,

W+ = ελA2(λ) = 4πελ2 exp(πλ/2)

sinh(πλ)
. (4.9)

Therefore,

Dmap �
(

2πελ2 exp(πλ/2)

sinh(πλ)

)2

. (4.10)

To get the diffusion rate referred to real time units, the map time units should
be expressed through the original time units. This is achieved by dividing the
diffusion rate referred to the map time units by the mean period of phase rotations
(equivalently, the mean half-period of librations) inside the chaotic layer, since the
latter quantity is nothing but the average time interval corresponding to one map
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iteration. Therefore, the diffusion rate referred to real time units is

D = |
|Dmap

Tsx
, (4.11)

where Tsx is given by formula (3.25).
The characteristic diffusion time across the chaotic layer is defined here as the

inverse of the diffusion rate. It is just the time needed for a diffusing particle to cover
the relative energy interval equal to one.

However note that the maximum possible deviation in the relative energy w
from zero on the layer’s libration side is equal to −2 (Chirikov 1979); therefore,
the defined diffusion time gives an appropriate time estimate for the global mixing
inside the chaotic layer.

In the doublet case, b = 0 andW± = W+. For the diffusion time one gets

Td = 1

D
= Tsx(λ,W

+)
|
|Dmap

� 4Tsx(λ,W
+)

|
|(W+)2
, (4.12)

where

Tsx(λ,W
+) ≈ λ ln

32e

λ|W+| , (4.13)

see Eq. (3.25); here e is the base of natural logarithms. The W+ parameter is given
by formula (4.9). Finally,

Td � 4λ

|
|(W+)2
ln

32e

λ|W+| . (4.14)

Conversely, on the layer’s rotation side, in case of prograde rotation, the diffusion
rateDmap � (W+)2/2; therefore, the diffusion time is two times less than that given
by formula (4.14).

The diffusion rates in resonance doublets can be estimated by means of for-
mula (4.11), and the diffusion rates in resonance infinitets by using formula (4.4). In
any intermediate case (triplets, etc.), by means of the same formulas, two bounding
limits for the diffusion rate can be estimated. When estimates by an order of
magnitude are needed, assessment of the limits is usually sufficient.

Due to the possibility of ballistic flights mentioned in the beginning of this
Section, the chaotic mixing at λ ∼ 1 (and this is the usual case in actual applications)
might be far more effective and rapid than in the considered case of normal
diffusion. In studies of transport in resonance multiplets, the effect of ballistic
relaxation has not been yet explored.
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4.3 Lyapunov and Diffusion Timescales: Relationships

Considering Lyapunov and diffusion timescales in any chaotic system, one is
naturally led to the question whether these two timescales are related anyway. In this
Section, we explore statistical properties of the motion inside the near-separatrix
chaotic layer of a non-linear resonance and discuss how statistical relations may
arise between the two timescales, and what are the conditions for their emergence.
Generally, we follow approaches proposed and developed in Shevchenko (1998a,
2010).

Specifically, we consider two timescales: the chaotic transport time Tr needed
for a sudden orbital change and the Lyapunov time TL, taking into account that
the latter’s values are computed (as the inverse of the numerically found maximum
Lyapunov exponent) in any application on a finite time interval, usually not longer
than Tr. The time of a sudden orbital change is dynamically equivalent to the time of
a recurrence to some domain of the motion phase space, that is why it is designated
here as Tr.

In Soper et al. (1990), Lecar et al. (1992), Murison et al. (1994), Levison and
Duncan (1993), a prominent relationship in statistics of sudden orbital changes in
a number of celestial-mechanical models (in particular, in asteroidal dynamics and
dynamics of TNOs) was revealed and confirmed. This relationship consists in a
close-to-quadratic character of the dependence of the time Tr, needed for a sudden
orbital change, on the measured Lyapunov time TL:

Tr ∝ T βL , (4.15)

where β ≈ 1.7–1.9 typically. However, a considerable dispersion of the statistical
data was usually present.

Similar statistical relationships were revealed by Ferraz-Mello (1997),
Shevchenko (1999b), Shevchenko (1998a); they considered behaviour of asteroids
in vicinities of the 2/1 and 3/1 mean motion resonances with Jupiter. Tsiganis et al.
(2005) studied chaotic diffusion and actual stability of the Jovian Trojan asteroids;
for the motion inside the chaotic band around the Trojan stability zone, they
obtained the TL–Tr statistical relationship similar to the typical close-to-quadratic
one.

Numerical simulations by Mikkola and Tanikawa (2007), Urminsky and Heggie
(2008) of the disruption process in three-body systems revealed a new kind of the
TL–Tr statistical relationship, which turned out to be quasilinear.

Mikkola and Tanikawa (2007) investigated the way of disruption of an equal-
mass three-body system. They performed extensive numerical integrations and
computed the disruption times Td and the Lyapunov times TL for orbits with
randomized initial conditions. It was found that the system lifetimes, as a bound
triple, and the finite-time Lyapunov exponents (computed until the system decays)
were correlated: on long timescales, the Td–TL relationship was close to linear.
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Urminsky and Heggie (2008) explored correlations between the disruption times
Td and the Lyapunov times TL in a hierarchical three-body problem. The three-
body problem setting was different from that used in Mikkola and Tanikawa (2007):
the Sitnikov problem (Sitnikov 1960) was considered. As an outcome of extensive
numerical integrations, a two-component power-law relationship was obtained,
whose second component (at longer timescales) turned out to be close to linear.
This component is thus analogous to that revealed in Mikkola and Tanikawa (2007)
in the equal-mass three-body problem.

Later on, the quasilinear behaviour was also observed in numerical simulations
of the disruption process in the restricted three-body problem (Shevchenko 2010).

On shorter timescales, generally no Td–TL correlation at all can be observed;
see examples in Shevchenko et al. (2020). For the existing correlations (on longer
timescales), two kinds of the TL–Tr relationships, as listed above, are known to
have been revealed to date in numerical simulations: the close-to-quadratic one
(Soper et al. 1990; Lecar et al. 1992; Murison et al. 1994; Levison and Duncan
1993; Shevchenko 1999b, 2008a; Ferraz-Mello 1997; Tsiganis et al. 2005) and
the quasilinear one (Mikkola and Tanikawa 2007; Urminsky and Heggie 2008;
Shevchenko 2010).

Why these two different kinds of relationships arise? We will consider this
problem in the following.

Morbidelli and Froeschlé (1996) discussed conditions for emergence of statistical
relationships between the Lyapunov times and the macroscopic diffusion times
in general nearly integrable Hamiltonian systems. The perturbation strength was
considered to be the main controlling parameter, through which the both times were
expressed. It was qualitatively shown that in the multiple-resonance overlap regime
the relationship should be polynomial.

In Shevchenko (1998a), it was shown that a specific close-to-quadratic TL–Tr
relationship should arise if (1) the phase space of any Hamiltonian system under
study is divided (in terminology of Chirikov 1979), i.e., there are chaos borders
present in the phase space; (2) the maximum Lyapunov exponent for any trajectory
is computed on a recurrence. The matter is that when the Lyapunov exponent is
computed on a finite time interval, a chaotic trajectory may explore only a finite
local neighbourhood inside the whole connected chaotic domain, but not necessarily
the whole domain.

Let us associate the time of a sudden orbital change with the recurrence time Tr.
By the recurrence we imply the first recurrence, i.e., the first entering by a trajectory
in some specified domain in the phase space. If the phase space is divided, i.e., if it
comprises both chaotic and regular components, the longest recurrences of a chaotic
trajectory can be due to its sticking to any border between the chaotic and regular
components; on the sticking phenomenon, see Chirikov and Shepelyansky (1981),
Chirikov and Shepelyansky (1984), Chirikov and Shepelyansky (1986), Chirikov
(1990), Chirikov (1996) and Meiss (1992). Sporadic sticking events result in an
intermittent behaviour (Shevchenko 1998b, 2010).

As illustrated above in Sect. 2.1, the maximum Lyapunov exponent is tradition-
ally computed by building the logL(m) dependence, given by Eq. (2.2), versus
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logm, and by finding a logL value at which the dependence is saturated, i.e.,
attains a horizontal plateau.

Therefore, on one hand, the value of the maximum Lyapunov exponent is
computed on the time intervals not less than the time of saturation; on the other
hand, the computation time cannot be infinite. These limitations from below and
above impose certain selection effects, which are necessary to take into account
when calculating Lyapunov exponents.

The near-separatrix dynamics of the non-linear pendulum (serving here as the
model of non-linear resonance) is described by the separatrix map (1.26). If the
adiabaticity parameter λ � 1, then the separatrix map can be locally linearized in
the energyw variable and, thus, be reduced to the standard map (Chirikov 1979). In
this way, the chaotic layer of non-linear resonance can be locally described by the
standard map (1.23).

Consider chaotic dynamics in a vicinity of the critical curve that separates regular
and chaotic domains in the phase space of the map. This kind of dynamics is
called critical (Chirikov 1990), because it is takes place close to the critical curve.
Following designations by Chirikov and Shepelyansky (1986); Chirikov (1990), let
rn = pn/qn be the continued fraction convergents to the critical curve’s winding
number. These convergents are nothing but the winding numbers of the principal
resonances that are situated close to the critical curve. The stability of the periodic
trajectory with winding number rn can be characterized by the Greene residue
(Greene 1968, 1979). Its value Rn for a principal resonance close to the critical
curve is given by the formula

Rn = R(1) exp
(

1.20q1+α
n (K −KG)

)
(4.16)

(Chirikov and Shepelyansky 1986), where K is the stochasticity parameter of the
approximating standard map, KG = 0.971635406 . . . ≈ 1 is its critical value,
R(1) ≈ 1/4 is the critical value of the Greene residue; the numerical parameter
α = 0.013. Formula (4.16) follows from Greene’s relation R ∝ Kq (Greene
1979) applied at the chaos border; but in Chirikov and Shepelyansky (1986) it was
numerically improved: based on extensive simulation data, the numerical coefficient
1.20 was introduced instead of 1.

As noted in Chirikov and Shepelyansky (1986), formula (4.16) can be interpreted
in a rather simple way: the locally defined Lyapunov exponents

ln ≈ ln(4Rn)

qn
(4.17)

practically do not depend on qn, i.e., on a particular trajectory, and are equal to
the locally defined Kolmogorov–Sinai entropy (also called dynamical entropy, see
Chap. 3) h ∝ �K ≡ K −KG. Namely, Eqs. (4.16) and (4.17) give

ln ≈ 1.20�K. (4.18)
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Formula (4.18) is valid for the convergents to the critical curve. However, as soon
as it is based on Greene’s formula R ∝ Kq (Greene 1979), which is valid for all
periodic orbits, it is natural to assume that it is as well valid in the latter general
case. Periodic orbits densely fill the map’s phase space; therefore, one may use
Eq. (4.18) to characterize the maximum Lyapunov exponent local values, l, for all
orbits residing in the chaotic layer not far from the chaos border. Hence

l ∝ �K. (4.19)

In this way, the local (finite-time) maximum Lyapunov exponent is specified by the
stochasticity parameterK of the approximating standard map.

The �K dependence of the transport time (equivalently, recurrence time or
sticking time) Tr near the chaos border can be derived based on Chirikov’s resonance
theory of critical phenomena (Chirikov 1990, Section 4.3). This dependence is
derived in the following way Shevchenko (1998a). The recurrence time Tr ∼
τn, where τn is the transition time from scale qn, with n maximal for a given
recurrence, to the neighbouring scale, because τn rapidly diminishes with decreasing
n (Chirikov and Shepelyansky 1986). The averaged relationship �K ∝ ρ (where
ρ = |r − rc| is the detuning of the winding number r with respect to the winding
number rc of the critical curve) leads to the dependence �K ∝ q−2

n . Such a
dependence is not sufficient to destroy the principal critical scales qn; instead,
narrow (with size ∼ q−4

n ) chaotic layers emerge between them. The flux balance
condition, in the statistical equilibrium, gives τn ∝ q4

n (Chirikov and Shepelyansky
1986; Chirikov 1990). The recurrence time Tr ∼ τn, and the dependence of �K on
the winding number detuning is set to be linear; therefore

Tr ∝ �K−2. (4.20)

Using Eqs. (4.19) and (4.20), the recurrence time Tr is readily expressed through the
Lyapunov time TL, which is the inverse of the locally defined maximum Lyapunov
exponent. Finally,

Tr ∝ TL
2. (4.21)

Our analysis has been performed here for the perturbed non-linear pendulum,
which represents a system with one and a half degrees of freedom, i.e., one degree
of freedom plus time dependence. Could the resulting formula be applied to describe
chaotic dynamics in systems with many degrees of freedom?

In such systems, the Arnold diffusion takes place (Chirikov 1979, 1990).
This universal instability is not possible in systems with the number of degrees
of freedom less than or equal to two. In the higher dimensions the problem
is therefore much more complicated. However, different resonances in multi-
dimensional systems generically have different strengths. According to Chirikov’s
classification (Chirikov 1990), the guiding resonance can be chosen arbitrarily;
the choice depends on the phase space domain where the motion is considered.
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Remaining resonances are considered as driving. The strongest one among the
driving resonances is called the layer resonance. It drives transport across the
chaotic layer of the guiding resonance. This chaotic transport is faster than the
Arnold diffusion driven by the remaining resonances, and it can be described by
the separatrix map (1.26), see (Chirikov 1979, p. 355). Therefore, one may expect
that the generic TL–Tr relationship, derived above using the separatrix map theory,
can be also used in generic dynamical situations in multi-dimensional systems.

It should be noted that there are at least two natural selection biases, mentioned
already in Sect. 4.3, that render the emergence of the quadratic relationship (4.21)
ubiquitous in numerical simulations. First, the maximum Lyapunov exponent is
normally computed on a long enough time interval so that its value were saturated.
Consequently, this condition eliminates small recurrence times from consideration.
Second, when TL–Tr relationships are constructed, the computation time of the
maximum Lyapunov exponent is normally not greater than Tr; e.g., the computation
is stopped if the system decays.

On one hand, imposing the lower bound on the computation time may make
the role of sticking regimes prominent, and, on the other hand, imposing the
upper bound makes the computed maximum Lyapunov exponent value local, i.e.,
characterizing a particular sticking event. These two factors facilitate the emergence
of the generic relationship (4.21).

Some illustrative numerical-experimental examples are in order. First, let us
consider the separatrix map (1.31) itself. We build the TL–Tr plot, where TL is the
inverse of the maximum Lyapunov exponent computed while the trajectory stays at
one side of the chaotic layer, and Tr is the duration of any of these consequent stays.
Time is measured in the map iterations.

The staying at one side of the layer means that the w variable in Eqs. (1.31) has
a non-changing sign, plus or minus. When the trajectory crosses the unperturbed
separatrix (the w = 0 axis), the sign of w alternates. Thus, any segment of the
trajectory between the crossings of the w = 0 axis forms a separate recurrence.

For the separatrix map (1.31) parameters, we choose λ = 3.22 and c = 0. These
values are the same as used in Chirikov and Shepelyansky (1984), and they are
chosen in such a way that the critical curve has the golden winding number, i.e., the
winding number equal to the golden mean, namely, (

√
5 − 1)/2. The golden mean

is the irrational number that is farthest from neighbouring rational numbers; see
Lichtenberg and Lieberman (1992). The effect of marginal resonances (considered
in detail in Sects. 5.5 and 5.6) is thus reduced to a minimum, and the generic TL–
Tr relationship should manifest itself most clearly. The recurrences with Tr < 10
are eliminated from the analysis, so that the maximum Lyapunov exponent were
saturated, as explained above.

In Fig. 4.3, the computed dependence clearly follows the generic theoretical
quadratic relationship, as expected.

Another paradigmatic example, presented in Shevchenko (1999b), concerns the
standard map (1.23) with the stochasticity parameter chosen to be K = 2. In fact,
the explored statistical effects can be recovered at any non-zero K that is not too
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Fig. 4.3 A TL–Tr statistical relationship for the motion inside the chaotic layer of the separatrix
map (1.31). The parameters λ = 3.22 and c = 0 correspond to the “golden” critical curve case.
Time is expressed in the map iterations. Straight dashed line: the theoretical quadratic relationship.
The logarithmic scales are decimal (Figure 1 from Shevchenko 1998a, with permission from
Elsevier)

Fig. 4.4 The integral distribution of recurrence times in case of the standard map (1.23) with
K = 2. The major exponential decay preceded with the initial short-scale drop, as well as the
subsequent power-law decay, are prominent. Logarithms are decimal (Figure 1 from Shevchenko
1999b, by permission from Springer Nature, © 1999)

large, say,K < 4, for the regular component to be adequately present in the motion
phase space.

An integral distribution of recurrence times for a single chaotic orbit is shown
in Fig. 4.4. The F(Tr) quantity is the observed relative fraction of recurrences that
are longer than Tr. The recurrences are counted at the y = 0 mod 1 axis. Events
of sticking to the island of stability around the integer resonance situated at this
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axis lead to the initial steep short-scale drop in the distribution. Then, on a limited
interval, namely at 0.7 < log Tr < 1.2, the distribution is observed to be algebraic
with the power-law index equal to −0.56. This is close to the inverse square root
law, which is inherent to free diffusion in the central part of a chaotic layer until the
trajectory reaches the layer borders (Chirikov and Shepelyansky 1981, p. 9). Here,
the borders y = 0 mod 1 are conventional. At logTr = 1.2–1.3, the dependence
becomes exponential, because the finite width of the layer starts to be important.
Indeed, according to (Chirikov and Shepelyansky 1981, p. 10), when the time
of diffusion across a stochastic layer is finite, the recurrence distribution decays
exponentially due to the diffusion fluctuations. The tail of the distribution in Fig. 4.4
is algebraic, ∝ T −α

r , with the power-law index α ≈ 1.48. The over-all structure
of the distribution resembles structure of the distributions presented in Fig. 4 of
Shevchenko and Scholl (1997) for time intervals between eccentricity jumps of
intermittent chaotic trajectories in the 3/1 mean motion Jovian resonance. According
to Shevchenko and Scholl (1997), the power-law indices α in the tails of the latter
distributions are close to 1.5; this value was theoretically derived in Chirikov (1990,
1996) as imminent for the critical dynamics. Figure 4.4 shows that all the main
features (the major exponential decay preceded by the initial steep short-scale drop,
as well as the subsequent power-law decay) of the distribution are present already
in the much less sophisticated case of the paradigmatic standard map.

In Fig. 4.5, the dependence TL–Tr in the same case of the standard map is shown.
The maximum Lyapunov exponent is measured for a recurrence. As adopted, the

Fig. 4.5 The statistical TL–Tr relationship in case of the standard map (1.23) with K = 2. Dots:
the data obtained setting the number of iterations Nit = 106. Dots plus crosses: Nit = 108. Dots
plus crosses and diamonds: Nit = 109. Logarithms are decimal (Figure 2 from Shevchenko 1999b,
by permission from Springer Nature, © 1999)
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recurrences are counted at the line y = 0 mod 1. For convenience of handling
large data arrays, the plot field in Fig. 4.5 is partitioned in pixels; thus, the figure
represents a kind of a density plot. Any pixel is turned black, if it contains at
least one observed TL, Tr pair. Increasing the number of iterations Nit allows one
to recover recurrences with less and less frequent values of the TL, Tr pair. The
plot areas corresponding to Nit from 106 to 108 and then up to 109 are covered,
respectively, with crosses and diamonds. One may see that the recurrences with
log Tr > 2.5 are rare if Nit < 106, and, for them, the diffusion is normal, because
TL does not depend, on average, on Tr. At log Tr > 2.5 the dependence is algebraic
with the power-law index β ≈ 1.5–2.

Consider now an analytically more complicated problem, concerning the aster-
oidal motion in vicinities of the 3/1 mean motion resonance with Jupiter. Let us see
how the TL–Tr relationship looks like in this asteroidal problem, as considered in this
statistical respect in Shevchenko (1998a). The analysis was made in the framework
of the planar elliptic restricted three-body problem and was limited to asteroidal
orbits with eccentricities less than 0.4. The computations were performed using the
symplectic map developed in Wisdom (1983) especially to describe the dynamical
vicinities of the 3/1 mean motion resonance.

We set Jupiter’s perihelion to be at the origin of longitudes, i.e., its longitude of
perihelion�J = 0. Jupiter’s orbital semimajor axis is set to unity.

Let l be the mean longitudes of an asteroid,� its longitude of perihelion, a and
e its semimajor axis and eccentricity. The starting values for the asteroidal orbit are
regularly distributed on the rectangular grid 0.48025 ≤ a0 ≤ 0.48200, 0.005 ≤
e0 ≤ 0.050, with the step in a0 equal to 0.00005 and the step in e0 equal to 0.005.
For Jupiter, the eccentricity eJ = 0.048, and the initial value of its mean longitude
lJ set to be zero. For the asteroid, l0 = π and�0 = 0.

This choice of l0, �0 makes the set of starting values of the asteroidal motion
representative (Wisdom 1983): almost every orbit in the phase space in the
neighbourhood of the 3/1 Jovian resonance intersects the defined plane. The chosen
rectangular grid totally covers the chaotic domain at e0 ≤ 0.05 and includes
neighbouring domains of regular motion. In the statistical analysis, the regular orbits
are excluded.

The maximum Lyapunov exponents were computed on the time interval nit =
107 each (in iterations of Wisdom’s map), or less, if a jump in eccentricity was
encountered. The map’s iteration equals one Jupiter period. The jump was fixed if
the asteroidal eccentricity exceeded 0.2. The resulting TL–Tr relationship is shown
in Fig. 4.6. As in the above considered cases of the separatrix and standard maps,
the observed TL–Tr statistical dependence is obviously in accord with the generic
quadratic relationship expected for the motion near the separatrix of non-linear
resonance.

An intriguing feature of the observed relationship consists in the existence of a
group of chaotic orbits with unbounded recurrence time; these orbits do not exhibit
eccentricity jumps, at least during the adopted time interval of computation. In
Fig. 4.6, these are the points with logTr = 7. These orbits mostly have logTL =
4.0−4.2; therefore, they are definitely chaotic.
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Fig. 4.6 A statistical TL–Tr relationship for the chaotic asteroidal trajectories in the 3/1 Jovian
resonance, as described in the text. Time is in Jupiter orbital periods. Straight dashed line: the
generic quadratic relationship, shown for reference. The logarithmic scales are decimal (Figure 2
from Shevchenko 1998a, with permission from Elsevier)

Milani and Nobili (1992) identified chaotic asteroidal orbits without any promi-
nent orbital changes (such as eccentricity jumps) in a study of long-term dynamics
of the asteroid Helga. At a first glance, such a phenomenon seems to obviously
contradict the theoretical TL–Tr relationship. In reality, there is no contradiction; the
matter is how the “sudden orbital change” is defined in any given model. One and
the same definition should not be used when trajectories in the analysed statistical
set belong to disconnected chaotic domains in the phase space of motion.

Another statistical manifestation of the critical behaviour was numerically
observed by Shevchenko and Scholl (1996, 1997) in the statistical distributions
of time intervals between the eccentricity jumps of chaotic asteroidal orbits in
the 3/1 Jovian resonance. The distributions in the tails followed the power-law
decay. Such kind of decay, according to Chirikov (1990), is inherent to the sticking
regime of motion at chaos borders in the phase space. Thus, there are two known
long-term effects in the statistics of sudden changes of chaotic asteroidal orbits.
These are the power-law character of the TL–Tr relationship and the power-law
decay of the Tr distributions, with specific power-law indices. The both effects are
plausibly explained as critical phenomena, arising due to sticking of orbits to chaos
borders in the phase space. The presented above results of numerical simulations in
the standard and separatrix map models unambiguously recover similar dynamical
phenomena.

We have seen that the power-law indices of the observed algebraic dependences
are not usually determined precisely, due to large scatter of the numerical results.
An immanent distortion of any statistically evaluated power-law β index of the
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TL–Tr relationship is due to dominance of short recurrence times. In any accurate
calculations of β, therefore, longer recurrences should be taken with greater weights
(Shevchenko 1998a).

On the other hand, notwithstanding the large immanent scatter, the TL–Tr rela-
tionship can be indeed usually used to statistically predict sudden orbital changes,
if the initial small-Tr part of the relationship has been recovered numerically.

4.4 Two Kinds of Hamiltonian Intermittency

As shown in the previous Section, the close-to-quadratic relationship (4.21) between
the recurrence and Lyapunov times in general Hamiltonian systems with divided
phase space has a straightforward explanation, if one takes into account the
stickiness phenomenon. The correlation arises because the trajectories sticking to
chaos border have large recurrence times, i.e., the times of return to a specified
domain of the phase space of motion, and, since they mimic regular orbits, they
have also large computed Lyapunov times, which are local in nature.

Speaking in a more general framework, the emergence of the algebraic TL–Tr
relationship, Eq. (4.21), is due to the phenomenon of intermittency, i.e., chaotic
behaviour intermittently interchanged with close-to-regular one. This kind of phe-
nomena is well known in studies of dissipative dynamical systems (Lichtenberg and
Lieberman 1992). Much less it is discussed in relation with Hamiltonian dynamics.
There exist two kinds of Hamiltonian intermittency known to date.

The first one takes place in case of adiabatic chaos, when the motion is
“stochastized” at encounters of a trajectory with the separatrix, while most of the
time, spent far from the separatrix, the motion is regular-like (Zaslavsky et al. 1991).
The separatrix in the simple model by Zaslavsky et al. (1991), as well as in the
map models (1.45 and 1.46), is just the singular axis y = 0 separating bound and
unbound types of motion. The first kind Hamiltonian intermittency is inherent to
adiabatic chaos; see Shevchenko (2008a,b) and references therein.

The second kind Hamiltonian intermittency (Shevchenko 1998b) takes place in
case of non-adiabatic chaos, when a fractal “chaos–order” boundary is present in
the phase space of motion. Sticking of orbits to the chaos border results in the
emergence of long time segments of a close-to-regular behaviour; these segments
are separated by prominently chaotic dynamical events, arising when the trajectory
leaves the border neighbourhood (Shevchenko and Scholl 1996, 1997; Shevchenko
1998a,b).

Therefore, the physical cause for the first kind Hamiltonian intermittency consists
in encounters of a trajectory with the slowly pulsating separatrix, whereas the
physical cause for the second kind Hamiltonian intermittency consists in the
phenomenon of sticking of orbits to chaos border in the phase space of motion.
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Statistical properties of the two kinds of Hamiltonian intermittency are very
different, as demonstrated further on in this book. This is just the second kind
Hamiltonian intermittency that is responsible for the emergence of the algebraic TL–
Tr relationship (4.21). In Sect. 11.1.8 we shall see that, in certain circumstances, a
different TL–Tr relationship can arise, namely, a quasilinear one, and the emergence
of the quasilinear dependence is due to the first kind Hamiltonian intermittency.



Chapter 5
Extents of Chaotic Domains

Methods for estimating extents of chaotic domains in the phase space of Hamil-
tonian systems are potentially broadly applicable in problems of physics and
dynamical astronomy. In this Chapter, both analytical and numerical approaches
to measuring the widths of chaotic layers are described and discussed. We start
with considering the separatrix split phenomenon; then proceed to a discussion
of early heuristic estimates of the chaotic layer width. Then, modern methods for
estimating the layer width in cases of non-adiabatic chaos and adiabatic chaos
are described. Presence of marginal resonances may drastically affect the width
in the both cases; therefore, the marginal resonance phenomenon is especially and
separately discussed. The presentation is partially based (in Sections 5.4, 5.5, and
5.6) on the papers by Shevchenko (1998a, 2008a) (by permission from Elsevier) and
Shevchenko (2012).

Analytical and numerical approaches to measuring the widths of chaotic layers
have different merits and different demerits. An immanent shortcoming of any
analytical approach consists in that it implies an idealization of the phenomenon
under study, and, therefore, the obtained estimates are inherently approximate. The
accuracy of the estimates is hard to evaluate, due to a number of approximations
involved. On the other hand, numerical approaches to the problem are applicable
in a rather narrow range of values of the controlling parameters: the numerical
approaches usually cannot be used in case of low relative frequencies of pertur-
bation, i.e., at the adiabaticity parameter values λ � 1 (due to limitations on the
computation time), as well as in case of high relative frequencies of perturbation,
i.e., at λ � 1 (because the chaotic layer widths are exponentially thin with
the perturbation frequency), and also in case of tiny amplitudes of perturbation,
i.e., at ε � 1, due to limitations on the arithmetic precision. Therefore, only
analytical methods may provide the global picture. Their another advantage is that
the analytical estimating is easy and rapid to accomplish, as soon as any theoretical
model is shown to be valid. Finally, their most important advantage, perhaps,
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consists in the physical insight that the analytical methods provide, making the role
of each parameter clearly visible.

The widths of chaotic layers of interacting non-linear resonances are mostly
controlled by the adiabaticity parameter λ (the ratio of the perturbation frequency to
the frequency of small-amplitude phase oscillations on resonance). Chirikov (1979)
derived formulas for the widths in case of λ � 1 (non-adiabatic chaos). As follows
from these expressions (which are discussed in the following), the chaotic layers are
exponentially thin with increasing λ� 1. This means that the cases of intermediate
and low relative frequencies of perturbation are most actual in applications.

As an example demonstrating the complexity of the problem of estimating
extents of chaotic domains, let us consider the orbital dynamics of asteroids in
vicinities of the 3/1 mean motion resonance with Jupiter (Shevchenko 2002b). The
trajectories are computed by means of numerical integration of equations of motion
in the planar elliptic restricted three-body problem Sun–Jupiter–asteroid. Wisdom’s
map (Wisdom 1983) is used as an integrator; Jupiter’s eccentricity serves as the
controlling parameter. The maximum Lyapunov exponent is used as an indicator
of chaos. It is computed by means of the shadow trajectory method, illustrated in
Fig. 2.1.

As usually designated, a, e,� , l, and n are, respectively, an asteroid’s semimajor
axis, eccentricity, longitude of perihelion, mean longitude, and mean motion.
Jupiter’s orbital elements are marked with index “J.” We set aJ = 1, and the starting
mean longitude lJ0 = 0. Jupiter’s mass in Solar units is set equal to 1/1047.355.

By means of massive computations of the maximum Lyapunov exponents, the
chaotic domains are identified on a representative plane of starting values. The plane
is defined, following Wisdom (1983), as that satisfying the conditions� = �J = 0
and ϕ = π , where ϕ = l − 3lJ is the resonance phase. Wisdom (1983) argued that
almost each zero inclination orbit, that has initial conditions close to the 3/1 mean
motion resonance, crosses this plane. In the plots, the starting values a0 and e0 on
the representative plane are denoted simply by a and e.

Approximate charts of chaotic domains in the 3/1 resonance problem were
obtained also in Wisdom (1983) and Murray and Fox (1984). Here the charts are
computed with much higher resolution, allowing one to compare the extents of
chaotic domains at various values of Jupiter’s eccentricity. The resolution of the
charts in Figs. 5.1, 5.2, and 5.3 is 5 · 10−6 in the semimajor axis a and 2.5 · 10−4 in
the eccentricity e. The representative plane of starting values is limited from above,
e ≤ 0.1, because Wisdom’s map is applicable at e < 0.3–0.4 (Wisdom 1983).

The chaotic orbits are statistically distinguished by the method of “movable
peaks” (in histograms of computed finite-time Lyapunov exponents), described
above in Sect. 2.6. The identified chaotic domains are presented in Figs. 5.1, 5.2,
and 5.3. The three plots correspond, respectively, to three fixed Jovian eccentricities
(the minimum, current, and maximum ones). The starting data for the orbits
demonstrating jumps of eccentricity (e exceeds 0.2) are marked in black. Those
without jumps are marked in grey.

A comparative inspection of extents of the chaotic domains in Figs. 5.1, 5.2,
and 5.3 allows one to conclude that, contrary to any common sense expectations,
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Fig. 5.1 Vicinities of the 3/1 mean motion resonance with Jupiter at Jovian eccentricity fixed at
eJ = 0.030; a and e are the starting values of asteroidal semimajor axis (in Jovian units) and
eccentricity. Chaotic orbits with jumps of eccentricity are marked in black; chaotic orbits without
such jumps (e < 0.2) are marked in grey (Figure 1a from Shevchenko 2002b)

the maximum chaotic extents are not at all observed when the Jovian eccentricity
is maximal. What is more, the violently chaotic asteroidal orbits (those exhibiting
eccentricity jumps) are also not at all most abundant when the Jovian eccentricity is
maximal.

From Figs. 5.1, 5.2, and 5.3, we see that, during the complete period of slow
variation of Jupiter’s eccentricity, the extents of the asteroidal chaotic domain in
the given example of 3/1 resonance vary substantially, by the order of two. This
demonstrates why any ability to analytically predict extents of chaotic domains in
applications can be important and insightful.

5.1 The Separatrix Split

The separatrix split was first ever revealed and described in (Poincaré 1899).
Poincaré outlined the arising complicated scheme verbally, but did not try to depict
it as a graph or a sketch. He wrote: “When one tries to depict the figure formed
by these two curves and their infinity of intersections, each of which corresponds
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Fig. 5.2 The same as Fig. 5.1, but at eJ = 0.048 (Figure 1b from Shevchenko 2002b)

Fig. 5.3 The same as Fig. 5.1, but at eJ = 0.060 (Figure 1c from Shevchenko 2002b)
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Fig. 5.4 Stable and unstable manifolds for the standard map at the stochasticity parameter K = 1
(left panel) and K = 2 (right panel) (Figure 7 from Meiss 2008, by permission from Springer
Nature, © 2008)

to a doubly asymptotic solution, these intersections form a kind of net, web or
infinitely tight mesh; neither of the two curves can ever cross itself, but must fold
back on itself in a very complex way in order to cross the links of the web infinitely
many times. One is struck by the complexity of this figure that I am not even
attempting to draw” (Poincaré 1899). (The English translation is presented as given
in Meiss (2008).) The splitting structure, envisaged by Poincaré (1899), was first
ever drawn as a sketch much later on by Melnikov (1963). Nowadays, it can be
straightforwardly constructed using relevant computer codes; see resulting examples
is Fig. 5.4, where splitted separatrices (stable and unstable manifolds) of resonances
of the standard map at the stochasticity parameter values K = 1 and K = 2 are
shown. The left panel of Fig. 5.4 presents manifolds for the integer, half-integer,
one-third-integer, etc., resonances, whereas the right panel solely the manifolds for
the integer resonance.

In the article “Visual explorations of dynamics: The standard map,” Meiss (2008)
gives a nice example of a phase portrait of the standard map (1.23). This phase
portrait is reproduced here in Fig. 5.5. It is obtained by continuous iterations of the
standard map (1.23), with randomly selected starting conditions. The stochasticity
parameter K is set to K = 0.971635406, representing an approximation of its
exact critical value KG. In the portrait, the chaotic layers corresponding to integer,
half-integer, and one-fifth-integer resonances are shown in different colours and are
straightforwardly identifiable.

Comparing Fig. 5.4, left panel, and Fig. 5.5 makes it obvious that the separatrix
split is much less than the corresponding chaotic layer’s physical width, no matter
which resonance one considers. Indeed, the layer width at λ � 1 is ∼ λ times
greater than the split δ; see, e.g., Zaslavsky (1998, 2005).

The λ � 1 case just corresponds to Figs. 5.4 and 5.5, because λ = 2π/
√
K , see

Eq. (1.25). On the other hand, at λ� 1, the layer width is ∼ 1/λ times greater than
the separatrix split, as explained below.
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Fig. 5.5 The phase portrait of the standard map at K = 0.971635406 (Figure 1 from Meiss 2008,
by permission from Springer Nature, © 2008)

5.2 Early Estimates of the Chaotic Layer Width

Extents of chaotic domains, and, in particular, widths of chaotic layers, are among
the most important and valuable characteristics of the chaotic motion of Hamiltonian
systems. Various aspects of the problem of analytical estimating widths of chaotic
layers were considered in Zaslavsky and Filonenko (1968), Chirikov (1978),
Chirikov (1979), Zaslavsky (1984), Zaslavsky and Sagdeev (1988), Neishtadt
(1986), Sagdeev et al. (1991), Elskens and Eskande (1991), Lazutkin (1991), Ahn et
al. (1996), Yamagishi (1995), Treshchev (1998), Shevchenko (1998b), Vecheslavov
(2004), Shevchenko (2008a), Soskin and Mannella (2009).

Already at the very beginning of studies on this subject, it became clear that
the λ � 1 and λ � 1 cases are dynamically very different and, therefore, require
different and separate kinds of analysis.

Usually the width is measured in terms of the unperturbed energy of the motion
on the separatrix, i.e., the width wb ≡ �E/Esx . In the perturbed pendulum model,
an exponential decrease �E/Esx ∼ exp(−Aλ) (where A = const) with λ at λ� 1
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was advocated in Zaslavsky and Filonenko (1968) and derived rigorously later on in
Chirikov (1979).

In the adiabatic λ � 1 and intermediate λ ∼ 1 cases of the paradigmatic
perturbed pendulum model (1.6), several analytical estimates were proposed:

• If λ � 1, then wb ∼ λε (Zaslavsky and Filonenko 1968; Zaslavsky 1984;
Zaslavsky and Sagdeev 1988; Sagdeev et al. 1991).

• If λ � 1, then wb ∼ λε (Zaslavsky et al. 1991).
• If λ ∼ 1, then wb ∼ ε (Zaslavsky 1998, 2005).
• If λ � 1, then wb ∼ ε (Neishtadt 1986; Elskens and Eskande 1991).

Here ε is the relative strength of perturbation, see Eq. (1.6).
The second estimate wb ∼ λε at λ � 1 is inadequate. It was obtained in

(Zaslavsky et al. 1991, Equation (3.33)) in the same assumption as in Zaslavsky and
Filonenko (1968); Zaslavsky (1984); Zaslavsky and Sagdeev (1988); Sagdeev et al.
(1991), namely, in the assumption that the layer width is, by the order of magnitude,
is equal to the amplitude of variation of the model pendulum energy on the period
of rotation (or, equivalently, half-period of libration) of the model pendulum. This
period is just the separatrix map period, and the amplitude is just the parameter W
of the separatrix map (1.26). In the adiabatic limit λ → 0 this assumption fails: it
underestimates the width by a factor of λ. The physical reason why theW amplitude
(the Melnikov–Arnold integral) underestimates the layer width will be clear from
the general analysis given below in the subsequent Sections.

If the “�” symbol is interpreted as “any number less than approximately,” i.e.,
it characterizes the values less than “∼ 1,” then the first estimate is inadequate,
because it is thus reduced to the second estimate.

Note that a general formula for the layer width given in (Zaslavsky et al. 1991,
Equation (3.37)) underestimates the width at λ � 1 even by a larger factor (by
λ2), because it represents a generalization of the formula wb ≈ λW , valid solely at
λ� 1, to the whole range of perturbation frequencies, from zero to infinity.

The third estimate is just an equation that follows from the first two estimates if
one sets λ ∼ 1.

The fourth (valid) estimate is a trivial conclusion following from considering the
slowly pulsating separatrix in the original coordinate–momentum phase space of the
perturbed pendulum model of non-linear resonance.

5.3 The Layer Width in Case of Non-adiabatic Chaos

Let us consider the case of non-adiabatic chaos, i.e., the case λ � 1. First we explore
the problem numerically, in numerical experiments with the separatrix map (1.31).

The chaotic layer border yb, corresponding to the maximum energy deviation
(from the unperturbed separatrix) of a chaotic trajectory inside the layer, can be
obtained as the maximum of |yi | achieved by a single chaotic trajectory, if the
number of iterations of the map is large enough. The λ dependence of the chaotic
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Fig. 5.6 The λ dependence of the chaotic layer half-width ylb in case of the least perturbed border
(Figure 1 from Shevchenko 2008a, with permission from Elsevier)

layer half-width ylb is, therefore, constructed in the following way (Shevchenko
2008a).

At each step in λ, the value of c corresponding to the minimum yb is found (on
a fine grid exposed over the 0 ≤ c < 2π interval) and the minimum yb is plotted
against the current λ value. This yb value is denoted henceforth as ylb. It corresponds
to the case of the least perturbed border, because, by the given procedure, the role
of marginal resonances is minimized.

An initial part of the λ–ylb relationship, computed in this way, is given in Fig. 5.6.
The observed dependence clearly follows the piecewise linear law

ylb ≈
{

1, if 0 ≤ λ ≤ 1 − a,
λ+ a, if λ > 1 − a, (5.1)

where a ≈ 1/2. Indeed, at λ ∈ [0.5, 10], by linear fitting the numerical data in
Fig. 5.6 one finds ylb(λ) = a + bλ with a = 0.5351 ± 0.0041 and b = 1.0059 ±
0.0007 (Shevchenko 2008a).

We see that, at λ > 1/2, the λ dependence of ylb is a sum of two addends.
The first addend, a, is the half-amplitude of the last rotational invariant curve of
the standard map at the critical value of the stochasticity parameter K = KG =
0.971635406 . . ., because, at λ � 1, the separatrix map can be linearized in y and
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locally approximated by the standard map. The half-amplitude of the last rotational
invariant curve of the standard map can be numerically estimated to be ≈ 0.508,
in accord with the observed a ≈ 0.535. The second addend, bλ, is the border y
value averaged over the phase x ∈ [0, 2π]. The chaotic layer half-width at λ � 1
approximately equals λ, see Chirikov (1979); therefore the second addend is also in
accord with the existing theory.

The constant a component, conditioned by the border curve bending, can be
eliminated by subtracting the bending half-amplitude. The resulting quantity is
designated henceforth by ȳlb. At λ ≥ 1

2 , one has ȳlb ≈ λ. At λ ≤ 1
2 , ȳlb equals

to the maximum y divided by two, as follows from the border curve shape revealed
in the next Section. Therefore, for the time-averaged half-width one has

ȳlb ≈
{

1
2 , if 0 ≤ λ ≤ 1

2 ,

λ, if λ > 1
2 .

(5.2)

The qualitative change in character of the ylb–λ relationship at λ ≈ 1/2 manifests
a sharp distinction between two different types of dynamics, namely, adiabatic
chaos and non-adiabatic chaos. Adiabatic chaos can be interpreted as due to
sporadic encounters of the orbit with the y = 0 singular line (this mechanism of
chaotization was originally evoked in studies of the so-called “relativistic” map
in Zaslavsky et al. 1991). Non-adiabatic chaos is naturally explained as due to
resonance overlap phenomenon (Chirikov 1979).

However note that the border λ ≈ 1/2 (Shevchenko 2008a) between adiabatic
and non-adiabatic chaos does not coincide with the borderline between the cases
of overlapping and non-overlapping of resonances: the latter borderline lies much
higher in λ. For example, in the standard map phase space the integer resonances
start to overlap (on decreasing λ) at λ ≈ 2π/0.97 ≈ 6.5 (Chirikov 1979).

As already mentioned above, the linear λ dependence for the chaotic layer
width at λ � 1 was derived in Chirikov (1979) by means of approximating the
separatrix map by the standard map locally in y. In a rigourous mathematical study
by Ahn et al. (1996), a lower bound for the chaotic layer width was established;
see Equation (5.8) in Ahn et al. (1996). In our notations, this lower bound can be
represented as yb >

3
4λ, in accord with Chirikov’s estimate and Eq. (5.2).

The time-averaged half-width can be expressed through the original energy
variable w; this gives

wlb = |W |ȳlb = 4π |ε|λ2ȳlb

sinh πλ2
, (5.3)

where ȳlb is given by Eq. (5.2), and λ � 1.
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5.4 The Layer Width in Case of Adiabatic Chaos

Formula (5.3) is valid for any frequency of perturbation in system (1.6) with
k = 1, a = b, provided that the separatrix map correctly describes the behaviour
of the original system. At high relative frequencies of perturbation, λ � 1,
expression (1.29) for theW parameter needs correction, see Sect. 3.4. At low relative
frequencies of perturbation, λ � 1, formula (5.3) demonstrates that the chaotic
layer width, expressed in w, decreases linearly with λ (as soon as the case of the
least perturbed border is considered and, therefore, ε is not fixed).

If one fixes ε, the low frequency limit of the width is a non-zero constant.
This is a trivial consequence of the slowly pulsating separatrix description for
adiabatic chaos; see Neishtadt (1986), Bruhwiler and Cary (1989). Indeed, the
Hamiltonian (1.6) with k = 1, a = b can be naturally rendered in the form of a
pendulum with modulated frequency of small-amplitude oscillations:

H = Gp2

2
− (F − 2a cos τ ) cosϕ, (5.4)

see Chirikov (1979). Considering the relative full energy wH = H
F − 1 instead of

usual w = H0
F − 1, a simple heuristic estimate of the chaotic layer width in the limit

λ → 0 can be given. Indeed, as representation (5.4) implies, the wH energy on the
slowly pulsating separatrix varies in the limits from −2ε to 2ε; therefore, the layer
half-width is equal to 2ε. This quantity includes the amplitude of the chaotic layer
bending, described above in Sect. 1.8.

In case of λ � 1, the diffusion across the layer is slow, and on a short time
interval the phase point follows close to some current curve, called the guiding
curve, and using equations for this curve, formulas for the layer width can be derived
as described above in Sect. 3.2. The half-widths yb andwb, given by formulas (3.16)
and (3.17), represent the maximum relative energy deviations inside the layer. The
time-averaged half-widths ȳb andwb, as follows from the geometry of the boundary
curve, Eq. (3.15), are two times less.

In Vecheslavov (2004), a different approach was used for reducing the separatrix
map (1.26) to a differential equation, when chaos is adiabatic; it was assumed
that the increments of the map (1.26) variables were small at each iteration. Our
representation (1.31) of the separatrix map makes clear that this can be satisfied
only if y � 1, therefore, yb � 1. Then it follows from Eq. (3.16) that c should be
close to ≈ 0 mod 2π .

Let us assess the conditions at which our approximation (3.15) is valid. In
deriving the increment in x, the term λ ln |yi+1| in the second equation of Eqs. (1.31)
was neglected, therefore, the inequality c mod 2π � λ ln |yb| should hold. One has

c mod 2π � λ ln
∣∣∣cosec

c

2

∣∣∣ . (5.5)
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Fig. 5.7 Dependence of yb on c at λ = 0.1. Circles: numerical-experimental data. Solid curve:
theory given by Eq. (3.16) (Figure 2 from Shevchenko 2008a, with permission from Elsevier)

This means that at λ � 1, the value of c should be far enough from c ≈ 0 mod 2π .
What is more, c should not correspond to other resonances, the role of which,
however, is much less than the main one corresponding to zero c.

Theoretical width (3.16) is confronted with available numerical-experimental
data in Fig. 5.7. Numerically, the width was found by measuring maximum relative
energy deviations for orbits of the map (1.31). The theoretical curve closely
follows the numerical data at all values of c except resonant ones, where narrow
discontinuities are observed.

The latter discontinuities arise due to emergence of regular islands inside the
chaotic layer at resonant values of c. These disturbances are analogous to those
observed in the behaviour of the standard map. In the latter case, analogous local
disturbances emerge in theK dependence of the maximum Lyapunov exponent, and
they are conditioned by local depressions in the measure of the phase space chaotic
component, also due to appearance of regular islands, see Fig. 3.1.

The theory deviations from numerics are most prominent near the main res-
onance, i.e., at values of c close to 0 mod 2π . If λ and c are both close to
zero, the relative increments of w and τ in Eqs. (1.26) are both small. Then, the
already mentioned above approach by Vecheslavov (2004) becomes applicable.
Equations (1.26) reduce to the differential equation

dw

dτ
= −W sin τ

λ ln 32
|w|
, (5.6)

analogous to a similar one derived in Vecheslavov (2004), except that homogeneous
variables are used here and the condition on c is taken into account.
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Analogously to Eq. (3.15), the given Eq. (5.6) describes a guiding curve with an
arbitrary constant of integration C:

w ln
32e

|w| = W

λ
(cos τ + C). (5.7)

As in deriving Eq. (3.16), the expression for chaos border follows from the condition
for curve (5.7) to cross the w = 0 axis. Then, the constant of integration for the
chaotic layer boundary curves is C = ±1. The formula for the layer half-width is
consequently given by

wb ln
32e

wb
= 2|W |

λ
. (5.8)

An expression for the W parameter, which can be used here in the given case of
k = 1, follows from Eq. (1.29). If λ � 1, thenW ≈ 8ελ, and

wb ln
32e

wb
= 16|ε|. (5.9)

Hence, at λ � 1, wb depends solely on ε, i.e., the λ dependence has expired. For
different k values, formulas for W would be different, as presented in Shevchenko
(2000a), Vecheslavov (2004); however, the λ dependence in Eq. (5.8) expires all the
same.

Formulas (3.16) and (3.17) for the chaotic layer half-width are applicable in
case of generic values of the c parameter (excluding a vicinity of 0 mod 2π); and
Eqs. (5.8) and (5.9) are applicable, conversely, in the vicinity of c ≈ 0 mod 2π . In
the first case, the layer width depends on both λ and ε, whereas in the second case,
the λ dependence expires and the width depends solely on ε. When used in any
application, Eqs. (5.9) and (5.8) can be easily numerically solved by iterations.

The performance of the analytical theory versus numerical data is illustrated in
Figs. 5.8 and 5.9.

Numerically, the chaotic layer half-width was measured by two methods
(Shevchenko 2008a). The first one was proposed in Chirikov (1978, 1979) and
developed and extensively used in Vecheslavov (2004). The numerical procedure
consists in calculating the minimum period Tmin of motion inside the layer; then,
the layer half-width is estimated by the formula

wb = 32 exp(−ω0Tmin) (5.10)

(Chirikov 1978, 1979; Vecheslavov 2004). The maximum deviation in energy from
the unperturbed separatrix is thus obtained, because it just corresponds to the
minimum period of motion. Formula (5.10) directly follows from the second line
of the map (1.26).
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Fig. 5.8 The chaotic layer half-widthwb, in dependence on λ, for system (1.6) with k = 1 and a =
b. Dots: results of direct computation by the first method. Solid curve: theory given by Eq. (3.17).
Logarithms are decimal (Figure 3 from Shevchenko 2008a, with permission from Elsevier)

Fig. 5.9 The same as Fig. 5.3, but the half-width wb is computed by the second method, i.e., as
the maximum energy deviation. Logarithms are decimal (Figure 4 from Shevchenko 2008a, with
permission from Elsevier)

A more precise method consists in direct continuous measuring of the relative
energy deviation from the unperturbed separatrix w = H0F − 1 in the course of
numerical integration. By fixing the maximum deviation, one finds the layer size.

The direct integrations of the equations of motion were performed using the
Dormand–Prince integrator (Hairer et al. 1987). For k = 1, a = b, and ε = 10−5,
the results ofwb estimating by the first method are graphically presented in Fig. 5.8,
and the results obtained by the second method are given in Fig. 5.9.

The theory and the numerical-experimental data are generally in accord, even
sharp variations are qualitatively reproduced. Theoretical dependence (3.17)
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approximately reproduces the numerical-experimental one even at λ > 1. However,
Eq. (3.17) is applicable at low and intermediate relative frequencies of perturbation,
i.e., at λ < 1 and λ ∼ 1. At high relative frequencies of perturbation, i.e., at λ > 1,
a different formula, namely Eq. (5.3), which describes the width averaged over c,
should be used.

A notable feature of the constructed λ dependences consists in sharp narrow
peaks. They are conditioned by encountering resonances c ≈ 2πm, m = 1, 2, . . . ,
on varying λ. Equations (3.16) and (3.17) predict that at such values of c the width
goes to infinity; in reality, the width is of course finite. The λ locations of the peaks
are approximately specified by the equation

c = λ ln
4

|ε|λ = 2πm. (5.11)

The locations are practically insensitive to the k value. If |ε| � λ, they can be
approximately found as λm ≈ −2πm/ ln ε. On decreasing ε, the peaks move slowly
to the left.

The abscissas λm of the peaks in Figs. 5.8 and 5.9 all exceed 0.5; this means that
they are situated in the domain of non-adiabatic chaos. Therefore, the locations of
the peaks are expected to be better described by the tangency condition (Shevchenko
1998b, 2012) for emergence of integer marginal resonances, i.e., integer resonances
at the borders of the layer.

At λ � 1, the emergence of prominent (integer and half-integer) marginal
resonances cause sporadic strong variations of the relative energy w of individual
chaotic orbits (Chirikov 1979; Shevchenko 1998b, 2012). Such violent behaviour
becomes possible, when, with variation of a parameter, say, λ orW , an outer border
(any of the two outer borders) of the main chaotic layer starts to overlap with the
narrow near-separatrix chaotic layer of a prominent (say, integer) resonance; i.e.,
a heteroclinic connection (Meiss 1992) emerges between the main layer and the
latter layer. Since the latter layer is relatively narrow, the connection condition is
approximately equivalent to a “tangency” of the marginal resonance’s unperturbed
separatrix and the main layer border. The tangency condition is

W = W
(m)
t (λ) (5.12)

(Shevchenko 1998b), whereW at k = 1 and a = b is given by Eq. (1.29) and

W
(m)
t (λ) = 32

λ3

((
1 + λ2

)1/2 − 1

)2

exp

(
−2πm

λ

)
. (5.13)

Equation (5.12) can be solved numerically, and it does provide good accuracy for
the λ locations of the first five peaks logλm (m = 1, 2, . . . , 5), with deviations not
more than 0.02 (Shevchenko 2008a). Conversely, Eq. (5.11), generically valid in the
domain of adiabatic chaos, may serve here only as an extrapolation and, no wonder,
is less accurate; it provides the deviations up to 0.06.



5.4 The Layer Width in Case of Adiabatic Chaos 109

The tangency condition can be also employed for analytical estimating the height
of the peaks; see Equation (10) in Shevchenko (1998b).

Whereas the integer resonances (m = 1, 2, . . . ) manifest themselves in the plots
of Figs. 5.8 and 5.9 as the peaks, the m = 0 resonance produces, at λ → 0, an
asymptotic horizontal plateau. The cause for the plateau emerging at small λ is clear:
if one fixes ε, then, no matter how small this fixed value is, with λ decreasing the
value of c = λ ln(32/|W |) (Eq. (1.32)) also decreases and inevitably approaches c ≈
0. The point of transition to the main resonance domain corresponds to intersection
between the curve given by formula (3.17) (with λ → 0 this curve asymptotically
goes down to zero) and the horizontal line given by Eq. (5.8).

The plateau was first ever identified and discussed in Vecheslavov (2004), and an
approximate heuristic formula for its asymptotic height in energy was proposed:

wb/ε ≈ 0.22 · 8 = 1.76 (5.14)

in case of k = 1, see Equation (14) in Vecheslavov (2004); a misprint (missing ε)
is corrected here. This estimate is in approximate accord with the plateau heights in
Figs. 5.8 and 5.9, with an accuracy of a factor of 2. Equation (5.9) is potentially
much more precise: in case of the considered plots, it gives wb/ε = 1.00142,
perfectly close to the numerical-experimental height, which is equal to 1.00585.

Formula (3.17) giveswb/ε = 0.915, also in quite good accord with the numerics,
although c is close to zero.

In Fig. 5.9, the λ–wb relationship, constructed by the second method, at λ � 0.4
goes notably higher than the theoretical curve. This is due to the chaotic layer
bending phenomenon, considered in Sect. 1.8. This geometrical phenomenon is
absent in Fig. 5.8, because, when the first method is used, the bending averages
out. The relative energetic amplitude of bending at k = 1 in the limit λ → 0 at the
section of phase space ϕ = 0 mod 2π is equal to 4ε, see Sect. 1.8. The numerically
found value of wb/ε at λ = 0.01 is equal to 4.00158, in perfect agreement with the
theoretical prediction; the deviation is only 0.04%.

The plots in Figs. 5.8 and 5.9 concern the k = 1 case. Systems with different k
can be considered in a similar way. To obtain a λ–wb theoretical dependence, one
should simply use a relevant expression forW in Eq. (3.17). For example, in case of
k = 2 and a = b,

W = 8πελ2(λ2 − 2)

3 sinh πλ2
(5.15)

(Shevchenko 2000a, Vecheslavov 2004).
The role of resonances can be illustrated by means of constructing phase space

sections. Integer resonancesm = 0, 1, 2, . . . result in stretching the layer in y. The
border motion in these cases is quite simple: it follows the guiding curves (5.7). The
role of fractional resonances is more intricate. The phase portrait of the separatrix
map (1.31) in case of the fractional resonance with winding number Q = 4/5 is
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Fig. 5.10 Phase portraits of separatrix map (1.31) in resonant cases. Only chaotic component of
the phase space is presented. (a) 4/5 resonance (λ = 0.01, c = 5.0189). (b) The same as (a), but
c = 5.0289, i.e., c is shifted from its exact resonant value by 0.01 (Figure 6 from Shevchenko
2008a, with permission from Elsevier)

shown in Fig. 5.10a, where λ = 0.01 and c = 5.0189 ≈ 2πQ. Only the chaotic
component is shown. The choice of c corresponds to the minimum measure of the
chaotic component inside the layer.

In Fig. 5.10a, a “porous” structure of the layer is evident. The main pattern
is formed by 5 curves of sinusoidal form, embedded in narrow bands of generic
chaos. These curves are nothing but the singular curve y = − sin x and its four
consecutively iterated images. The plot illustrates how resonant structures with
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large amount of inner regular component are formed: in case of resonance with
the winding number equal to rational number p/q , the q+1th image of the singular
curve y = − sin x coincides with the initial singular curve exactly; therefore,
the bands of generic chaos in the neighbourhood of the singular curves are not
broadened; this results in the presence of large inner regular component.

At the given values of parameters, any small (≈0.002 is enough) positive or
negative shift in c leads to complete visual ergodicity of the motion inside the
layer; therefore, in Fig. 5.10b the layer turns totally black. However, the proximity
to resonance still determines the form of the outer borders. On further shifting c
away from the resonance, this influence decays, and the borders become more and
more close in form to the guiding curve given by Eq. (3.15).

In Fig. 5.10b, the value of the c parameter is shifted away from the resonant one
by 0.01. No regular islands are seen inside the layer; however, this visual impression
is deceptive: tiny islands are always present and can be revealed by implementing
especial numerical techniques (Shevchenko 2008a), such as massive computation
of Lyapunov exponents on fine grids of initial data.

Tiny peaks in numerical data in Figs. 5.8 and 5.9 are due to fractional resonances.
On decreasing λ, no matter what the ε value is, one reaches the plateau correspond-
ing to the m = 0 resonance.

Instead, if λ is fixed and ε is decreased, one finds much more intricate behaviour.
According to formula (1.32), no matter how small the λ value is, one can achieve
any value of c by diminishing ε. In other words, the complete set of resonances is
traversed once and once again, if ε is steadily decreased. At λ � 1 (in fact, already
at λ = 0.01) the encounters with prominent resonances take place at microscopic ε
values. Setting c = 2π(Q+m) (where m = 0, 1, 2, . . . and Q is taken modulo 1)
and rearranging Eq. (1.32), one has for the resonant value of ε:

εres = 4

λ
exp

(
−2π(Q+m)

λ

)
. (5.16)

According to this formula, if λ = 0.01, the 4/5 (mod 1) resonance considered
above is located at εres ≈ 2.004 · 10−216 (m = 0), εres ≈ 2.670 · 10−489 (m =
1), εres ≈ 3.559 · 10−762 (m = 2), . . . . That is why the resonant structure of the
separatrix map phase space portrait, presented in Fig. 5.10a, is impossible to reveal
by means of numerical computing sections of phase space of original system (1.6):
the relative magnitude of perturbation is microscopic.

Such situation is typical; this explains why chaotic layers in phase space sections
of slowly perturbed Hamiltonian systems usually do not show any sign of inner
regular component (see, e.g., Neishtadt et al. 1997): a very fine tuning of the
values of system parameters is necessary to achieve its visibility, and, besides, the
relative perturbation magnitudes, at which significant resonant structures emerge,
are microscopic.

In applications, phase space sections are usually constructed not in the time and
energy variables (in which the separatrix map is rendered, see illustrative portraits
in Figs. 1.8 and 1.11), but in “resonant phase–conjugate momentum” variables (see,
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e.g., Figs. 1.6, 1.5, 1.4, and 5.5). Therefore, it is important to be able to transform
the width rendered in energy to the width rendered in momentum. We have already
considered this problem above in Sect. 1.6, in connection with the regular projection
algorithm. In case of relatively thin layers, the layer width in momentum can
be assessed in a more straightforward way, using simple analytical relations. Let
us demonstrate how this can be done. We assess the total maximal width of the
chaotic domain around a resonance, in momentum p = ϕ̇; for the model with
Hamiltonian (1.6), this position corresponds to ϕ = 0 mod 2π ; see, e.g., Fig. 1.5.

As follows from Hamiltonian (1.6), the width �p of a thin chaotic layer in
momentum p is related to the width�w in the normalized energyw by the formula

�p = ω0

4
�w (5.17)

(Chirikov 1990, Shevchenko 2008b). Therefore, the total width of the chaotic
domain in momentum is given by

�ϕ̇ = �ϕ̇res + ω0

2
(wlb(λ, ε1)+wlb(λ, ε2)) , (5.18)

where the time-averaged half-width wlb in energy (in case of the least perturbed
border of the chaotic layer) is given by Eq. (5.3).

5.5 Marginal Resonances in Case of Non-adiabatic Chaos

As already discussed in part above in Sect. 4.4, Hamiltonian intermittency, mani-
festing itself in energy sporadic jumps, separated in time by relatively long periods
of its quiet behaviour, is prominent in the separatrix map dynamics when the map’s
parameters have specific fine-tuned values. The jumps become possible when, upon
variation of parameters, a heteroclinic connection is formed between the main
chaotic layer and the narrow chaotic layer of an integer resonance, i.e., they start
to overlap; thus a marginal integer resonance emerges (Chirikov 1979; Shevchenko
1998b, 2012). This phenomenon can be described by an approximate scheme: the
unperturbed separatrix of an integer resonance starts to be tangent to the border of
the main chaotic layer.

The chaotic layer width is maximal, or close to maximal, when a prominent
marginal resonance is present at the border of the chaotic layer, and its separatrix
chaotic layer is in heteroclinic connection with the main layer. The width is maximal
when the two layers are on the brink of heteroclinic disconnection. Relevant
formulas for the maximal width and for the critical values of parameters were
derived in Shevchenko (1998b, 2012) in the perturbed pendulum model of non-
linear resonance.

Any theory for estimating the layer width should be developed separately for
adiabatic and non-adiabatic cases of perturbation. Here we consider Hamiltonian
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intermittency in the adiabatic case. As shown above in Sect. 5.3, the border line
between non-adiabatic and adiabatic chaos is rather sharp and is located at the
adiabaticity parameter value λ ≈ 1/2 for any system described by the separatrix
map; see Fig. 5.6 for an illustration.

An approximate condition for the tangency of the unperturbed separatrix of a
marginal integer resonance to the border of the main chaotic layer (equivalently, the
approximate condition for the energy jumps in the near-separatrix motion) is given
by Eq. (5.12) (Shevchenko 1998b), where W and W(m)

t are expressed as follows.
The formula for W is determined by the choice of a system under study. For the
Hamiltonian (1.6) with k = 1 and a = b it is given by Eq. (1.29). The expression
for W(m)

t does not depend on the choice of the system. In the pendulum model of
the marginal resonance it has universal form (5.13).

The maximum value of the relative energy during the energy jump is

wextr = ±
(

64 exp

(
−2πm

λ

)
− λW(m)

t (λ)

)
, (5.19)

wherem is the order of the marginal resonance (Shevchenko 1998b). The λ location
of the mth peak, λ = λm, at any value of ε can be found by numerically solving the
functional equation (5.12) with respect to λ at anym. In particular, this can be easily
accomplished for any m in the Maple computer algebra system (Char et al. 1993).
Then the height of the mth can be found by setting λ = λm in Eq. (5.19).

In the considered case of non-adiabatic chaos, the approximation of marginal
resonance in the pendulum model perfectly works (Shevchenko 2012). In Fig. 5.11,
a phase portrait of the separatrix map (1.31) with λ = 3 and c = 5.55 mod 2π
is presented. Solely the upper part of the layer (y ≥ 0) and solely the chaotic
component of phase space is shown in Fig. 5.11. The chosen values of λ and c
correspond to the brink of heteroclinic disconnection between the primary chaotic
layer (shown in black) and the chaotic layer of the marginal resonance (the
secondary layer; shown in grey). A slightest increase in c disconnects the layers,
and the width momentarily drops to that of the primary layer.

In Fig. 5.11, it is evident that no regular approximation for the marginal resonance
can describe precisely the critical parameter values that would provide the maximal
width in case of non-adiabatic chaos, because the secondary layer has substantial
width. This width must be taken into account in any high-precision theory for
estimating the conditions for the critical heteroclinic connection.

It is also evident from Fig. 5.11, that the marginal resonance separatrix cell is
perfectly described by the theoretical pendulum cell. The borders of the theoretical
cell are depicted by solid curves, given by the equation

y = y(m) ± 2(y(m)/λ)1/2 cos
x

2
, (5.20)
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Fig. 5.11 The phase portrait of the separatrix map at λ = 3 and c = 5.55 mod 2π . The theoretical
pendulum cell for the marginal resonance is shown by solid curves. (Reprinted Figure 1 with
permission from Shevchenko 2012. © 2012 by the American Physical Society)

where y(m) is the location of the centre of the marginal resonance of orderm:

y(m) = exp
c − 2πm

λ
, (5.21)

as can be straightforwardly derived from Eqs. (1.31) (Shevchenko 2010).
The phase portrait here is synchronized: the pairs xi−1, (yi + yi−1)/2 are drawn

instead of xi , yi , so that the portrait corresponds to a unified surface of section of
phase space.

On decreasing λ, the marginal resonance separatrix cell deforms more and more.
In case of adiabatic chaos, when λ � 1, the pendulum model is not anymore
applicable for its description. This is evident from the phase portrait in Fig. 5.12,
where λ = 0.001 and c = 0.0076008 mod 2π . The separatrix cell does not anymore
have the well-known lenticular form, specific for the pendulum case.

5.6 Marginal Resonances in Case of Adiabatic Chaos

Soskin and Mannella (2009) presented a theoretical method for the calculating
maximal width of the separatrix chaotic layer, which is suitable for a wide class
of slowly periodically perturbed one-degree of freedom Hamiltonian systems.
The theory by Soskin and Mannella (2009) describes the shape of the resulting
peak in the “frequency of perturbation–relative energy” coordinates, the peak’s
location on the perturbation frequency axis and its height in the relative energy.
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Fig. 5.12 A phase portrait of the separatrix map; λ = 0.001 and c = 0.0076008 mod 2π .
(Reprinted Figure 2 with permission from Shevchenko 2012. © 2012 by the American Physical
Society)

In the framework of a classification, given by Soskin and Mannella (2009) for
periodically perturbed one-degree of freedom Hamiltonian systems, it provides
a general approach for description of Hamiltonian intermittency in such kind of
systems.

In the considered case of adiabatic chaos, the λ location of the mth peak λm,
according to Soskin and Mannella (2009), is given by

λm ≈ −2πm

ln h
4

= −2πm

ln ε
2

(5.22)

(Equation 63 in Soskin and Mannella 2009), and the corresponding theoretical value
of the chaotic layer maximal half-width is

wextr ≈ 2(4e+ 1)h = 4(4e+ 1)ε ≈ 23.75h (5.23)

(Equation 72 in Soskin and Mannella 2009). Formulas (5.22) and (5.23) are exact
in the limit h→ 0, otherwise they are approximate.

The layer width definition depends on whether you take into account the layer
bending effect or not. (The bending effect is described above in Sect. 1.8.) The
emergence of this effect in numerical experiments depends on which method is
used for measuring the layer width. In case of the method based on calculating
the minimum period of the motion in the chaotic layer, the effect is averaged out;
see Sect. 5.4. The theoretical value of the maximum half-width of the chaotic layer
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is then (when the bending is absent) given by

wextr ≈ 8eh = 16eε ≈ 21.75h, (5.24)

instead of formula (5.23).
One may see that the relative difference between (5.23) and (5.24) is rather small:

about 10% ≈ 1/(4e). The bending effect seems to be also small in estimating
the maximum width in the domain of non-adiabatic chaos also, because the good
accord of the theoretical estimates and numerical-experimental data in the domain of
applicability of the theory exists, as described above. Comparing Figs. 5.8 and 5.9,
we see that the height of the first peak in Fig. 5.8 is lower by about 10% (≈ 1/(4e))
than that in Fig. 5.9. The cause of this difference is that the layer bending in the first
case is averaged out, while in the second case it is present.

The geometrical form of the separatrix cell in Fig. 5.12 (the adiabatic case) can
be quite easily described analytically, if one uses the separatrix map representa-
tion (1.31). Using this representation, formulas (5.22) and (5.24) can be also derived.

This is accomplished as follows. Let y ≥ 0 and assume that the increments of
x and y per iteration in Eqs. (1.31) are small compared to their total magnitudes
of variation. This approximation is analogous to that used in Vecheslavov (2004)
in case of the separatrix map in classical form. It is valid in presence of integer
marginal resonances, because the amplitude of variation of y is then much greater
than 1, while the increment of y per iteration is less than 1.1 Therefore, the map is
reduced to the differential equation

dx

dy
= −λ ln y + c − 2πm

sin x
. (5.25)

Here c may take any values, −∞ < c < +∞, whereas the m value is chosen in
such a way that 0 ≤ c − 2πm < 2π . Integrating, one finds the guiding curve in the
form

y(λ− λ ln y + c− 2πm) = − cos x + 1, (5.26)

where the integration constant is set equal to 1, so that the curve is tangent to the y =
0 axis. This tangency is critical, because a slightest change of the map parameters
may disconnect the curve from the y = 0 axis, and then the motion becomes regular.

It is evident that the geometrical form of the separatrix cell of the marginal
resonance in Fig. 5.12 is perfectly described by Eq. (5.26): the analytical curve
visually coincides with the cell’s computed borders.

The critical value of c is found as follows. The unstable fixed point of the
marginal resonance m of map (1.31) is situated at x = π , y = exp((c − 2πm)/λ),

1Note that in a general situation, when there are no marginal resonances, such an approximation is
invalid; see discussion in Shevchenko (2008a).



5.6 Marginal Resonances in Case of Adiabatic Chaos 117

whereas the stable fixed point (centre) of the same resonance is situated at x =
0 mod 2π , y = exp((c− 2πm)/λ); see Eq. (5.21). By evaluating the coordinates of
the unstable fixed point in Eq. (5.26) and solving the resulting equation with respect
to c, one finds the critical value of c:

cm = 2πm− λ ln
λ

2
. (5.27)

Substituting c = cm in Eq. (5.26) and solving the resulting equation with respect to
y, one finds that, at x = 0 and x = 2π , there exist two solutions of Eq. (5.26): y = 0
and y = 2e/λ. As easily analytically checked, they correspond to two different
extrema of the y(x) function. Therefore, the maximal value of y is

yextr = 2e

λ
. (5.28)

To relate the obtained parameter values with the original Hamiltonian parameters,
recall that y = w/W , and c is given by formula (1.32), where, in the considered
Hamiltonian model,

W ≈ 8ελ, (5.29)

if λ � 1. Hence, wextr ≈ 8eh and λm ≈ −2πm/ln(ε/2), in accord with Eqs. (5.24)
and (5.22).

Formula (5.28) combined with the equality of the y coordinate of the unstable
fixed point to 2/λ (at x = π , there exists only one solution, y = 2/λ) gives that
the relative amplitude of the motion at the layer’s outermost border is equal, in the
adiabatic limit, to e ≈ 2.718.

Let us underline that, concerning theoretical descriptions of marginal resonances,
the case of adiabatic chaos, in comparison with the cases of intermediary chaos
and non-adiabatic chaos, are much less actual, at least to date, for any physical or
technical applications. The cause is that even the first (m = 1) marginal resonances
appear at λ < 1/2 only if the perturbation strength ε is microscopic; indeed,
Eq. (5.22) implies that, for λ1 to be less than 1/2, the ε value should be less than
2e−4π ≈ 10−5. In typical applications, perturbation amplitudes are usually much
greater. For the second and higher order resonances (m ≥ 2) to appear in the domain
of adiabatic chaos, ε should be drastically less, supermicroscopic. All the resonances
with m > 1 emerge at λm > λ1; thus, when the perturbation is strong enough
(h � 10−5), all the peaks are situated in the domain of non-adiabatic chaos.



Part II
Resonances and Chaos in the Solar System

In the second part of the book, most remarkable manifestations of chaotic behaviour
in the dynamics of the Solar system bodies are considered, described and analysed.
These manifestations include: chaos in rotational dynamics of various bodies, in
orbital dynamics of satellite systems, asteroids and comets, and, finally, in orbital
dynamics of planets. At present, only several objects or classes of objects in
the Solar system demonstrate a directly observable strongly chaotic behaviour.
However, if one considers the long-term dynamical evolution of any class of objects,
it is usually found that the role of prior chaotic stages in determining the present
dynamical states is generically great.

Considering the rotational and orbital dynamics of celestial bodies, it is often
possible to explain chaotic manifestations by using various models of interaction
and overlap of non-linear resonances, thoroughly discussed in the first part of the
book. In particular, one may obtain analytical estimates of the Lyapunov timescales
(representing the “time horizons” of predictable dynamics) and the chaotic diffusion
timescales. Locations and extents of chaotic domains in the phase space of motion
are also of great interest, and they can also be characterized in the same models.



Chapter 6
Defying the Orrery Paradigm: Historical
Background

. . . But when the planets
In evil mixture to disorder wander,
What plagues and what portents, what mutiny . . .

William Shakespeare,
Troilus and Cressida, I, iii (1602)

In course of many centuries, up to the 20th one, nothing had seemed to any scientist
or philosopher to be less prone to chaos and accident than the repetitive measured
motion of the Solar system bodies, first of all planets and the Moon.

The idea of harmonious celestial order inspired and led Johannes Kepler in his
revolutionary studies of planetary motions. In 1593, 50 years after publication of
De Revolutionibus Orbium Coelestium1 by Nicolaus Copernicus, he found and was
inspired by the fact that the circle inscribed in an equilateral triangle and the circle
described around the same triangle (Fig. 6.1) have approximately the same ratio of
radii as the orbits of Jupiter and Saturn. In the following years, Kepler developed a
more sophisticated model of the Solar system in the form of a concentric sequence of
five principal polyhedra (Fig. 6.2). In this model, afterwards named Kepler’s goblet,
the Solar system obeyed a static geometrical order.

In 1784, 5 years before the Great French revolution, Pierre Simon Laplace paid
attention to another, not geometrical but dynamical, relationship between the orbits
of Jupiter and Saturn: the orbital periods of these planets are close to the integer
commensurability (resonance) 2/5. Taking this relationship into account in a newly
developed analytical theory, based on Newton’s law of gravitation, he succeeded to
explain observed anomalies in the orbital motion of Jupiter and Saturn and revealed
a periodic character of these anomalies, thus showing that they do not lead to any
monotonous changes.

1On the Revolutions of the Heavenly Spheres.
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Fig. 6.1 The orbits of Jupiter and Saturn, and Kepler’s triangle

Fig. 6.2 “Kepler’s goblet”
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This triumph of celestial mechanics was preceded in 1759 by another outstanding
achievement: on the basis of Newton’s theory of gravitation, Alexis Claude Clairaut
accurately predicted the time of return of Comet Halley (the time of passage of
perihelion by the comet), and observations of the comet confirmed this prediction
triumphantly.

These and other remarkable successes of Newton’s theory in describing the orbits
of celestial bodies inspired Laplace to put forward a philosophical concept that all
motions in the Universe are absolutely predetermined: if, at any moment of time,
the initial positions and velocities of all the world-comprising particles are set, then
the world’s subsequent history is also set. Pannekoek (1961) gives a clear-cut short
description of this scientific-philosophical platform: “The Solar system was thought
to be a huge mechanism brought and pushed in the motion solely by the force of
universal gravitation. It was a fully cognizable and calculable clockwork which kept
the motion forever.”

This deterministic concept is graphically embodied in a mechanical device,
called orrery (Fig. 6.3). The orrery displays the motions of the Solar system planets
and their satellites by means of a clockwork, demonstrating the perfect predictability
of the motions.

Since the work of Laplace, the deterministic nature of the motions of large and
minor bodies of the Solar system had never been put in question for about 200 years,
until the middle of the twentieth century. Observed rational commensurabilities
between the orbital periods of some Solar system bodies, such as Galilean moons
of Jupiter, were regarded as a graphical manifestation of the reigning order and
harmony.

Fig. 6.3 An orrery
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From our modern dynamical viewpoint, it can be stated that the deterministic
idea originally stemmed from the consideration, by Laplace, of a specific commen-
surability (resonance), namely, the 2/5 one between the motions between Jupiter and
Saturn.

It may seem paradoxical (although historically logical) that, two centuries after
Laplace, studies of interactions of resonances by Boris Chirikov, Jack Wisdom, and
other scientists led to abandoning the deterministic concept in celestial mechanics.
The process of adopting a new concept, that of dynamical chaos, was promoted, in
particular, by Comet Halley’s return in 1986. This was the third one after the return
accurately predicted by Clairaut in 1759. In 1986, in the works of Petrosky (1986)
and Chirikov and Vecheslavov (1986), Comet Halley’s orbit was not considered
anymore a triumphant example of the predetermined motion, but was regarded as a
prominent manifestation of dynamical chaos.

Thus, the Laplace determinism reigned in celestial mechanics within the time
span of about two centuries, covered by three orbital revolutions of Comet Halley.
It is curious that even during these two centuries, the educated community as a
whole did hardly perceive the cosmic world as an ideal predictable mechanism:
for example, the apparitions of comets were generally perceived as sudden and
dangerous; see Fig. 6.4 and a discussion in Boime (1990).

Fig. 6.4 Starry night by Vincent Van Gogh (a sketch, 1889). Credit: https://commons.wikimedia.
org/wiki/File:Van_Gogh_Starry_Night_Drawing.jpg

https://commons.wikimedia.org/wiki/File:Van_Gogh_Starry_Night_Drawing.jpg
https://commons.wikimedia.org/wiki/File:Van_Gogh_Starry_Night_Drawing.jpg


Chapter 7
Rotational Dynamics

Considering the rotational dynamics of celestial bodies, it is often possible to
explain chaotic manifestations by using various models of interaction and overlap of
non-linear resonances, addressed in the first part of the book. In particular, analytical
estimates of the Lyapunov timescales and the chaotic diffusion timescales can be
obtained. Locations and extents of chaotic domains in the phase space of motion
are also of great interest, and they are characterized in this Chapter in the same
models. We concentrate on chaos phenomena in the rotational dynamics of planetary
satellites (first of all, in the rotation of Hyperion, the seventh satellite of Saturn) and
on chaotic obliquities of planets. The presentation partially follows (in Section 7.1)
the papers by Kouprianov and Shevchenko (2005) (by permission from Elsevier)
and Melnikov and Shevchenko (1998).

7.1 Rotational Dynamics of Satellites

Rotational dynamics of planetary satellites presents a variety of intriguing dynam-
ical behaviours, including the historically first ever case of predicted and directly
observed dynamical chaos, that in the rotation of Hyperion, the seventh satellite of
Saturn.

7.1.1 Hyperion and Other Chaotic Rotators

Wisdom et al. (1984) predicted, on a basis of numerical experiments and theoretical
estimates, that the seventh satellite of Saturn, Hyperion, rotates chaotically with
respect to its centre of masses: the orientation of the satellite and the velocity of its
rotation change in time chaotically.
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Fig. 7.1 Hyperion. An image taken by the Cassini space probe (Figure 1a from Thomas et al.
2007, by permission from Springer Nature, © 2007)

The cause of chaos in the rotational dynamics of satellites consists in interaction
of spin-orbit resonances (resonances between the rotational and orbital motions).
It turned out that in case of Hyperion this interaction is especially strong, due to
a prominent non-sphericity of its figure (see Fig. 7.1) and its appreciable orbital
eccentricity (e ≈ 0.1).

The primary source of information on the rotational dynamics of minor Solar
system bodies is provided by analysing their lightcurves. The lightcurve is nothing
but a time sequence of values of flux of light from any observed astronomical object.
Klavetter (1989b) constructed precise lightcurves of Hyperion with high resolution
in time, and carried out their analysis and modelling. He concluded that this satellite
was, most likely, indeed in the chaotic rotation state. Later on, the “tumbling”
character of Hyperion’s rotation was directly observed during the flyby of Voyager-2
near Saturn (Black et al. 1995). To date, the rotation of Hyperion is the only known



7.1 Rotational Dynamics of Satellites 127

Fig. 7.2 Model lightcurves of Hyperion (solid curves), for observational data by Klavetter (1989a)
(left panel) and for observational data by Devyatkin et al. (2002) (right panel). The observed
lightcurves are shown by dots. JD is for Julian date, m is for stellar magnitude (Figure 6 from
Devyatkin et al. 2002. With permission from Pleiades Publishing Inc.)

example of observable chaos in rotational dynamics of planetary satellites (Wisdom
et al. 1984; Wisdom 1987a; Klavetter 1989b; Black et al. 1995; Devyatkin et al.
2002; Melnikov 2002; Harbison et al. 2011; Tarnopolski 2015).

Melnikov (2002) modelled Hyperion’s lightcurves, using the observational data
by Klavetter (1989a) and Devyatkin et al. (2002). By means of computation of
the Lyapunov exponents of the motion he arrived to an observationally rigourous
conclusion that Hyperion was indeed in the chaotic mode of rotation. In Fig. 7.2, the
model lightcurves of Hyperion are presented.

Planar (in the orbit plane) oscillations and rotations of any satellite near
synchronous spin-orbit resonance (the resonance at which the period of rotation
of a satellite is equal to its orbital period, as in case of the Moon) are described
by the perturbed pendulum Hamiltonian (1.6) with specific parameters. The role
of the deviation angle of the pendulum is played by the angle specifying the
satellite orientation with respect to the direction to the planet. Therefore, methods of
analytical estimating the maximum Lyapunov exponent, based on the separatrix map
theory (Chap. 3), are applicable. For Hyperion, the resulting theoretical estimates of
the Lyapunov time (≈30 d) turn out to be in accord with numerical-experimental
ones (Shevchenko and Kouprianov 2002; Kouprianov and Shevchenko 2005).

Do there in the Solar system exist any other (except Hyperion) satellites that are
chaotically tumbling? For many satellites the character of rotation is yet unknown.
Most of the satellites, for which it is determined, rotate synchronously with the
orbital motion. Similar to the Moon, they permanently face their planet by one
side. However, in the course of the long-term dynamical evolution, any satellite
at some moment of time enters a state of chaotic rotation, especially violent in a
neighbourhood of the separatrices of synchronous resonance.

The theoretical research by Kouprianov and Shevchenko (2005) showed that,
apart from Hyperion, the 16th and 17th Saturnian satellites Prometheus and Pandora
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may also rotate chaotically. If they do, the Lyapunov times of their rotation are very
small, ∼1 d.

The following problem is important: whether in the course of the chaotic
tumbling there exists a preferable orientation of the satellite, or all its orienta-
tions in this case are equiprobable? Calculations by Melnikov and Shevchenko
(2008) show that Prometheus and Pandora in case of chaotic rotation do have
preferable orientations of the largest axis of the figure in direction to Saturn. This
complicates making conclusions about the character of rotation of these satellites
from observations, because the chaotic mode is observationally similar to the
usual synchronous rotation. According to numerical-experimental and analytical
estimates by Shevchenko and Kouprianov (2002), Kouprianov and Shevchenko
(2005), the Lyapunov times of chaotic rotation of minor planetary satellites can
be very small, as small as ∼1 day (as, theoretically, in case of Prometheus and
Pandora), i.e., chaos in case of its presence is observable.

Up to now, Hyperion remains the sole proved example of a Solar System body
observed to rotate chaotically. Another candidate for chaotic rotation was suggested
to be Nereid, the second satellite of Neptune (Dobrovolskis 1995), mainly on the
grounds of the large orbital eccentricity (≈0.75). The large eccentricity, on one
hand, broadens chaotic domains in the rotation phase space and, on the other hand,
as found by Dobrovolskis (1995), calls forth shortening the time of satellite’s tidal
despinning. However, observations by Grav et al. (2003) proved that Nereid rotates
regularly; its rotation is too fast (too far from synchronous resonance) to be chaotic
(Hesselbrock et al. 2013; Terai and Itoh 2013).

Four circumbinary satellites Nix, Hydra, Styx, and Kerberos in the Pluto–Charon
system were supposed to rotate chaotically (Showalter and Hamilton 2015; Correia
et al. 2015), but this was not confirmed by imaging data from the New Horizons
space mission (Weaver 2016); with a possible exception of Styx, see Quillen et al.
(2017).

Namaka, one of two known moons of the dwarf planet Haumea, may rotate
chaotically (Hastings et al. 2016), due to its large orbital eccentricity, but the chaos
requires further observational confirmation.

For all latter six moons (Nereid, Nix, Hydra, Styx, Kerberos, Namaka), the
rotation rates are actually (or possibly) too large for a satellite to reside in
the rotation phase space chaotic domain around synchronous resonance; i.e., the
satellites have not been enough tidally despun, in the course of their long-term
dynamical evolution.

By means of analysis of stability of possible rotation states of planetary satellites
(judging from their location in the “inertial parameter–orbital eccentricity” plane),
Melnikov and Shevchenko (2010) showed, that although the majority of moons with
known rotation states rotate synchronously, more than two thirds of all satellites
with unknown rotation states are in other (fast or, less probably, chaotic) modes of
rotation.

About 200 planetary satellites have been discovered to date. The rotation state
has been observationally determined for not more than a quarter of them. Amongst
those with identified rotation states, most are in synchronous resonance, whereas the



7.1 Rotational Dynamics of Satellites 129

remaining minority has periods of rotation much less than orbital periods. This is a
selection effect: small moons, which usually rotate fast (being not tidally despun),
are more difficult to observe than big ones, which have been mostly despun down to
entering the synchronous state.

Small and big satellites differ in the character of chaotic rotation. For the minor
(irregularly-shaped) satellites, the rotation represents a three-dimensional tumbling;
for majority of the large satellites (which are close to spherical in shape), the
rotational motion in the chaotic domain at the separatrix of synchronous resonance
preserves planarity: the rotation axis keeps the approximate orthogonality to the
orbit plane (Kouprianov and Shevchenko 2005).

And what about the Moon? As it is well-known to everyone, the Moon always
faces the Earth by one and the same side, i.e., it is in synchronous resonance. Not
so widely known is that it is subject to small oscillations with respect to the exact
synchronous state. This phenomenon carries the name of physical libration. How
much regular and predictable these small oscillations of our Moon can be, on long
time timescales? This problem has not been considered till now, maybe due to its
complexity.

7.1.2 Spin-Orbit Resonances

Assume that a satellite of negligible mass moves in a fixed ellipse around a
gravitating point (planet). The satellite’s vector of the angular momentum coincides
with the axis of its maximum moment of inertia and is orthogonal to the orbit plane;
i.e., the rotational motion is planar.

The motion is then described by the Beletsky equation (Beletsky 1965) for the
planar librations/rotations of a satellite moving in an elliptic orbit. If the orbital
eccentricity is small (e � 1), then the Hamiltonian, which is derived by neglecting
all terms beyond the first order in the eccentricity, is given by

H = y2

2
− ω2

0

4
cos(2x − 2t)− 7eω2

0

8
cos(2x − 3t)+ eω2

0

8
cos(2x − t) (7.1)

(Wisdom et al. 1984, Celletti 1990), where x is the satellite orientation angle, i.e.,
the angle between the axis of the minimum moment of inertia and the line of apsides;
y = ẋ, t is time, and “ẋ” designates the time derivative of x. The model parameters
comprise the eccentricity e and the inertial parameter

ω0 =
(

3(B − A)
C

)1/2

, (7.2)

where A < B < C are the principal moments of inertia of the satellite. The time
unit is equal to 1/(2π) times the orbital period. The ω0 parameter characterizes the
satellite’s dynamical asymmetry.
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By means of the canonical transformation p = y−1
2 , ϕ = 2(x − t), the

Hamiltonian (7.1) is readily reducible to the perturbed pendulum paradigm (1.6):

H = 2p2 − ω2
0

4
cosϕ − 7eω2

0

8
cos(ϕ − t)+ eω2

0

8
cos(ϕ + t). (7.3)

The motion in a vicinity of the separatrix of system (7.3) can be described by the
separatrix algorithmic map (1.33). Comparing Eqs. (1.6) and (7.3), one finds that
k = 1, F = ω2

0/4, G = 4, 
 = 1, a = −7eω2
0/8, and b = eω2

0/8.
Hence the separatrix algorithmic map parameters λ = 1/ω0, W

+ and W− are
determined by ω0 and e; see Eqs. (1.54) and (1.55). For the η parameter, η = b/a =
−1/7; thus, the perturbation asymmetry is intermediate. If λ > 1, then W+ ≈
−7W−.

The separatrix algorithmic map can therefore be straightforwardly used to
describe the rotational motion of satellites in the vicinity of the separatrix of syn-
chronous spin-orbit resonance. Usually, this vicinity is not at all small (Shevchenko
1999a); rather often, it is large enough to engulf, apart from the synchronous
resonance, the neighbouring important spin-orbit resonances.

Data on the inertial and orbital parameters for several minor satellites, along
with calculated values of the separatrix algorithmic map parameters, are given in
Table 7.1.

In Fig. 7.3, a phase portrait of a model near-synchronous planar rotation of
Phobos is shown, as obtained by using the separatrix algorithmic map (1.33) and
the regular projection algorithm, described in Sect. 1.6. The map’s phase portrait
corresponds to the phase space section of system (7.3), taken at t = 0 (mod 2π).
Note that the transformation from (ϕ, p) to (x, y) at this plane is: x = ϕ

2 , y =
1 + 2p.

The corresponding section of the phase space of system (7.3) can be constructed
by means of a direct numerical integration of the equations of motion of the original
system (7.1). This section is given in (Wisdom 1987a, Figure 1). It closely agrees
with Fig. 7.3, resulting from the separatrix map application.

Table 7.1 Inertial, orbital and separatrix algorithmic map parameters of several minor satellites
(Shevchenko 1999a)

Satellite ω0 e Ref. λ W+ W−

Phobos 0.86 0.015 Wisdom (1987a) 1.163 −0.286 0.0336

Deimos 0.81 0.0005 Wisdom (1987a) 1.235 −0.00962 0.00118

Amalthea 1.14 0.003 Wisdom (1987a) 0.877 −0.0509 0.00408

Janus 0.37 0.009 Goździewski (1997) 2.673 −0.0850 0.0121

Epimetheus 0.87 0.007 Goździewski (1997) 1.149 −0.133 0.0155

Pandora 0.93 0.004 Goździewski and Maciejewski (1995) 1.075 −0.0749 0.00818

Prometheus 1.17 0.004 Goździewski and Maciejewski (1995) 0.855 −0.0668 0.00503

Bifurcation case 0.50 0.01 – 2 −0.152 0.0214



7.1 Rotational Dynamics of Satellites 131

Fig. 7.3 A model for rotating Phobos. The phase portrait of the near-synchronous rotation state,
obtained with the separatrix algorithmic map and the regular projection algorithm (Figure 1 from
Shevchenko 1999a, by permission from Springer Nature, © 1999)

Fig. 7.4 Same as Fig. 7.3, but for model Deimos (Figure 2 from Shevchenko 1999a, by permission
from Springer Nature, © 1999)

In Figs. 7.4 and 7.5, analogous phase portraits are presented for Deimos and
Janus models. Corresponding phase space sections, obtained by direct integrations,
can be found in Wisdom (1987a) and Goździewski (1997); see Figure 3 in
Wisdom (1987a) (Deimos) and Figure 5a in Goździewski (1997) (Janus). They all
closely agree with the phase portraits obtained by the separatrix map techniques.
Generally, the separatrix algorithmic map, in concert with the algorithm of regular
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Fig. 7.5 Same as Fig. 7.3, but for model Janus (Figure 3 from Shevchenko 1999a, by permission
from Springer Nature, © 1999)

projection, reproduces phase portraits of the rotational motion in close agreement
with the known phase space sections (Shevchenko 1999a). This demonstrates the
separatrix map theory opportunities, and verifies its validity for further applications
in assessing major properties of chaos in the given problem, such as widths of
chaotic domains, Lyapunov and diffusion timescales of the rotational dynamics.

The phase space structure can be also readily analysed using the separatrix map
techniques. For example, let us see how locations of the major 1/2 and 3/2 spin-orbit
resonances, neighbouring to the synchronous one, can be found.

The time-averaged derivative of the resonance argument is 〈ϕ̇〉 = 2〈y〉 − 2;
therefore, these two resonances both correspond to an integer resonance of the
separatrix map. This resonance has the winding number Q = 1/〈ϕ̇〉 = ±1. If,
say, 〈y〉 = 5/2, then Q = 1/3. The elliptic modulus k(Q) of the motion with the
winding numberQ can be found by numerically solving the equation

λk(Q)K
(
k(Q)

)
= π |Q|, (7.4)

following from Eq. (1.35). The equation can be efficiently solved by iterations.

The energy deviation is w(Q) = 2
((
k(Q)

)−2 − 1
)

. On the other hand, the

expression for H0 (cf. Eq. (1.6)) is reducible to

y = 1 ± ω0

21/2 (1 + w + cosϕ)1/2. (7.5)

The plus and minus signs correspond here to the prograde and retrograde motions,
respectively. In the x axis, the resonances are centred at x = π/2 mod π (resonance
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1/2) and at x = 0 mod π (resonance 3/2). Since ϕ = 2x at t = 0, Eq. (7.5) gives the
following y locations for the centres:

y1/2 = 1 − ω0

21/2

(
w(1)

)1/2
,

y3/2 = 1 + ω0

21/2

(
2 + w(1)

)1/2
. (7.6)

The separatrix-map estimates of y1/2 and y3/2, given by formulas (7.6), are in
accord with data in (Wisdom et al. 1984, Figure 3), obtained by localization of
the resonances in direct numerical integrations.

7.1.3 Lyapunov Timescales of Chaotic Rotation

A theoretical analysis of rotation stability accomplished in Kouprianov and
Shevchenko (2005) showed that the 16th and 17th Saturnian satellites Prometheus
and Pandora may rotate chaotically. Let us estimate analytically the Lyapunov times
of the rotation of Prometheus and Pandora, if it were chaotic. Here we adopt the
planar rotation model, in which the rotation axis is set to coincide with that of the
satellite’s maximum moment of inertia and to be orthogonal to the orbit plane. If
the satellite’s orbital eccentricity is small (e � 1), then the equations of motion are
specified by Hamiltonian (1.6).

According to Sect. 7.1.2 and Eq. (7.3), in the pendulum paradigm (1.6) one has:
ε1 = −7e/2, ε2 = e/2, λ = 1/ω0, where ω0 is given by formula (7.2). Since
|ε1| � |ε2|, one can neglect ε2, setting it to zero. Thus, one of the two perturbing
resonances is set to be non-existent, and the resonance triplet is reduced to a
doublet, and henceforth we denote ε1 by ε. The adiabaticity parameter λ, relative
perturbation strength ε, and perturbation period Tpert = 2π/
 for any satellite
can be evaluated based on observational data, compiled, e.g., in Shevchenko and
Kouprianov (2002). This gives λ = 0.85, ε = −0.014, and Tpert = Torb = 0.61
days for Prometheus; and λ = 1.07, ε = −0.014, and Tpert = Torb = 0.63 days for
Pandora; Torb is the orbital period.

We see that λ > 1/2 in the both cases. Therefore, chaos is non-adiabatic, and,
according to Sect. 3.3 and Eq. (3.28), the Lyapunov time in the chaotic resonance
duad is given by

TL ≈ 5Tpert

2π
·
(

4f (2λ)

g(2λ,W(λ))
+ f (λ)

g(λ,W(λ))

)−1

, (7.7)

where

W(λ) = 4πε
λ2

sinh πλ2
(7.8)
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and

f (x) = Ch
2x

1 + 2x
, g(x, y) = x ln

32e

x|y| , (7.9)

where Ch ≈ 0.80 is Chirikov’s constant given by formula (3.8), here e is the base
of natural logarithms and x and y are “dummy” variables.

Equation (7.7) gives TL = 1.6 days for Prometheus and TL = 1.9 days for
Pandora. Comparing these theoretical values with numerical-experimental ones,
namely, TL = 1.5 days for Prometheus and TL = 1.8 days for Pandora, obtained in
Shevchenko and Kouprianov (2002) for the planar chaotic rotation of these moons
by means of direct numerical integrations of equations of motion, we see that the
separatrix map techniques are perfectly accurate. If the chaotic rotation is non-planar
(i.e., it represents a spatial tumbling), the Lyapunov times computed in Shevchenko
and Kouprianov (2002) are somewhat smaller: TL = 0.8 days for Prometheus, and
TL = 1.1 days for Pandora.

In the spatial case, the dynamical system has 3 and 1/2 degrees of freedom,
instead of 1 and 1/2 in the planar case. Notwithstanding this difference, the
Lyapunov time analytical prediction is, by an order of magnitude, still in accord to
the estimates found in numerical integrations. In fact, this is no wander, because the
synchronous resonance still plays the dominant role in the rotational phase space.

The Lyapunov times of the hypothetical chaotic rotation of Prometheus and
Pandora are about thirty times less than the Lyapunov time of the observed chaotic
rotation of Hyperion. This means that the chaotic nature of rotation of these two
satellites, if their rotation were indeed chaotic, can be established on time intervals
of observation much shorter than needed in case of Hyperion. However, there
exists a dynamical effect that may impede the observational identification of chaos
(Melnikov and Shevchenko 2008); this is the effect of preferential orientation of
satellite’s figure in the course of chaotic rotation.

7.1.4 Widths of Chaotic Layers

Wisdom et al. (1984) and Wisdom (1987a) estimated widths of the near-separatrix
chaotic layers of spin-orbit resonances in the dynamics of planetary satellites and
Mercury, using Chirikov’s approach (Chirikov 1979) based on the separatrix map
theory. Let us see how the widths can be estimated.

Here we designate the satellite’s orientation by θ . The total width of the chaotic
domain in momentum is given by Eq. (5.18). Comparing Hamiltonians (1.6), (7.1),
and (7.3), one has�ϕ̇ = 2�θ̇ = 2�ẋ.

According to Hamiltonian (7.1), for the satellite’s orientation one has θ = x =
ϕ/2; and, according to Eq. (5.18),

�θ̇ = �θ̇res + ω0

4
(wlb(λ, ε1)+wlb(λ, ε2)) , (7.10)
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where wlb is given by Eq. (5.3). Therefore,

�θ̇ = ω0

(
2 + 1

4
(wlb(λ, ε1)+ wlb(λ, ε2))

)
. (7.11)

For Hyperion, the parameters are: ω0 = (
3B−A

C

)1/2 ≈ 0.89, λ = ω−1
0 =

1.13, e = 0.1, ε1 = − 7e
2 = −0.35, and ε2 = e

2 = 0.05 (Melnikov and Shevchenko
1998). Since �θ̇res = 2ω0, one arrives at

�θ̇res = 1.77, wlb(λ, ε1) = 2.31, wlb(λ, ε2) = 0.32, (7.12)

and

�θ̇ = 2.33, (7.13)

in perfect agreement with the rotational phase space section obtained by direct
numerical integrations, see Fig. 7.6.

Fig. 7.6 Section of the rotational phase space in case of Hyperion (Figure 3 from Melnikov and
Shevchenko 1998. With permission from Pleiades Publishing Inc.)
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7.1.5 Chaotic Planar Rotation and Chaotic Tumbling

Assume that a triaxial satellite moves in an eccentric orbit with fixed eccentricity
around a gravitating point mass (planet). The inertial parameters comprise the A/C
and B/C ratios of the principal central moments of inertia A ≤ B ≤ C of the
satellite. The sole orbital parameter is the eccentricity e. The size of the satellite is
supposed to be negligibly small compared with the distance to the planet: r � R.

Let the initial orientation of the satellite in space be arbitrary. An xyz inertial
reference frame (Fig. 7.7) is defined at the pericentre of the satellite’s orbit as
follows. The x axis is directed along the planet–satellite radius vector, the y axis
is directed along the satellite’s orbital velocity vector, and the z axis is orthogonal to
the satellite’s orbital plane and completes the reference system to the right-handed
one. Let a right-handed set of axes a, b, and c, directed along the satellite’s principal
axes of inertia with the moments A, B, and C, be “frozen” inside the satellite
and coincide with the xyz axes set. The spatial orientation of the satellite in the
xyz frame is defined by a sequence of imaginary rotations of the satellite by the
Euler angles θ, φ, and ψ from the given position until the satellite reaches its
actual orientation. The imaginary rotations are performed in the following order:
(1) rotation by θ about c; (2) rotation by φ about a; (3) rotation by ψ about b. These
rotations are graphically presented in Fig. 7.7.

This definition of the Euler angles is identical to that used in Wisdom et al. (1984)
and is different from the standard one. The motivation for using the non-standard
definition is that the standard one has a coordinate singularity when the c axis (the
axis of the maximum moment of inertia) is orthogonal to the orbital plane. In the
adopted system, this situation corresponds to φ = 0, and the singularity is moved to
φ = ±π/2, which corresponds to the satellite’s axis of rotation lying in the orbital
plane.

Fig. 7.7 Definition of the
Euler angles in the xyz
inertial reference frame
(Figure 1 from Kouprianov
and Shevchenko 2005, with
permission from Elsevier)
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The adopted set is related to the standard (ψ ′, φ′ ∈ [0, 2π), θ ′ ∈ [0, π]) set as
follows:

sin θ ′ = √
1 − cos2 φ cos2ψ,

cos θ ′ = cosφ cosψ,
sin φ′ = −cosφ sinψ/ sin θ ′,
cosφ′ = sin φ/ sin θ ′,
sinψ ′ = (cos θ sinψ + sin θ sinφ cosψ)/ sin θ ′,
cosψ ′ = (− sin θ sinψ + cos θ sin φ cosψ)/ sin θ ′.

(7.14)

In the adopted coordinate frame, the Euler equations read:

ω̇a = B−C
A

(
ωbωc − 3

R3 βγ
)
,

ω̇b = C−A
B

(
ωcωa − 3

R3 γα
)
,

ω̇c = A−B
C

(
ωaωb − 3

R3αβ
)
,

θ̇ = (ωc cosψ − ωa sinψ)/ cosφ,
φ̇ = ωa cosψ + ωc sinψ,
ψ̇ = ωb − (ωc cosψ − ωa sinψ) tan φ,

(7.15)

where

R = 1 − e cosE

is the satellite–planet distance, and the eccentric anomaly E can be calculated by
solving the Kepler equation

E − e sinE = t . (7.16)

Time t is measured in units of Torb/2π , where Torb is the satellite’s orbital period.
The direction cosines of the planet–satellite radius vector on the axes a, b, and c
are

α = cosψ cos(θ − f )− sinψ sinφ sin(θ − f ),
β = − cosφ sin(θ − f ),
γ = sinψ cos(θ − f )+ cosψ sinφ sin(θ − f ),

(7.17)

where the true anomaly f is determined by the equation

tan
f

2
=
(

1 + e
1 − e

)1/2

tan
E

2
. (7.18)
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The current state of the system is characterized by the vector

x = (ωa, ωb, ωc, θ, φ,ψ), (7.19)

where ωa, ωb, ωc represent projections of the angular velocity vector ω on the
a, b, c axes, and θ ∈ [0, 2π), φ [−π/2, π/2], ψ ∈ [0, 2π) are the Euler angles.

The Lyapunov spectrum of system (7.15) consists of six elements:L(1) ≥ L(2) ≥
L(3) ≥ L(4) ≥ L(5) ≥ L(6), with L(1) = −L(6), L(2) = −L(5), and L(3) = −L(4).
Expressed in the original time units, the Lyapunov time is TL = Torb/(π(L

(1) −
L(6))) = Torb/2πL(1) days.

In the model of a uniform-density ellipsoidal satellite, the inertial parameters are
defined by the satellite’s shape parameters, namely, by the semi-axes a ≥ b ≥ c of
the triaxial ellipsoid that approximates the satellite shape:

A/C = (b2 + c2)/(a2 + b2), B/C = (a2 + c2)/(a2 + b2). (7.20)

The shape parameters of many satellites can be found in Seidelmann et al. (2002).
If the near-separatrix chaotic layer is thin, then the half-width of the synchronous

resonance cell, bounded by the separatrix, can be calculated as equal to the
amplitude of variation of the angular velocity on the separatrix:

�ω = ω0 =
(

3(B − A)
C

)1/2

(7.21)

(Beletsky 1965; Wisdom et al. 1984). The half-width is equal to the frequency
ω0 of small-amplitude oscillations on the synchronous resonance; ω0 is given by
formula (7.2).

In case of Deimos, the chaotic layer is thin, see Fig. 7.4 and also Figure 3 in
Wisdom (1987a) and Figure 5 in Melnikov and Shevchenko (1998). Then, the
resonance size is described by the given formula. In case of Hyperion, the chaotic
layer is broad, see Fig. 7.6 and also Figure 2 in Wisdom et al. (1984) and Figure 4
in Klavetter (1989b); then, the maximal total variation of the angular velocity on the
resonance can be calculated only if the chaotic layer width is taken into account. In
case of Nereid, whose orbit is extremely eccentric (∼0.75), even a moderate non-
sphericity of the satellite’s shape may lead to emergence of a vast chaotic domain
formed by overlap of a great number of integer spin-orbit resonances, see Figures 8
and 9 in Dobrovolskis (1995).

In case of quasi-spherical (big) planetary satellites moving in close-to-circular
orbits, the chaotic layers can be so thin that they cannot be discerned in any sections
of the rotational phase space. Nevertheless, the chaos presence can be identified
by calculating the Lyapunov exponents, if the initial conditions reside in the thin
chaotic layer. For big satellites, the chaotic rotational motion, initially set close to
planar one, remains to be almost planar, i.e., it is stable with respect to tilting the
rotation axis. In case of, e.g., a model satellite with the parameters of Io, |φ| and
|ψ| both do not exceed 0.0025 radians, if one sets φ0 = ψ0 = 0.001 (Kouprianov
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Fig. 7.8 How chaotic rotation of a big planetary satellite may look like: a time history of the
angular velocity ω of a model Io, if the initial conditions are set inside the near-separatrix chaotic
domain of the synchronous resonance (Figure 2 from Kouprianov and Shevchenko 2005, with
permission from Elsevier)

and Shevchenko 2005). This stability is unlike the behaviour numerically observed
by Wisdom (1987a) in case of small irregularly-shaped moons, which tumbled
chaotically before being captured into the synchronous resonance.

We see that, for the big satellites, entering the chaotic layer of the synchronous
resonance does not necessarily lead to any chaotic tumbling. However, a thorough
shake-up is still inevitable: on entering the chaotic layer, the more or less uniform
rotation is replaced by librations with extremal amplitudes. This is illustrated in
Fig. 7.8, where a time history of the spin rate of Io, with the initial conditions
set inside the chaotic layer. The second kind Hamiltonian intermittency pattern,
considered in Sect. 4.4, is readily recognizable.

How the overall statistics of satellite rotation states in the Solar system can be
characterized? By analysing the stability of the possible rotational states of planetary
satellites, Melnikov and Shevchenko (2010) showed that, although most satellites
with known rotation states rotate synchronously, a significant part (at least two
thirds) of all satellites with unknown rotation states reside in other (fast or chaotic)
rotation modes. To demonstrate this, a stability diagram in the (ω0, e) plane was
constructed, where ω0 is the satellite dynamical asymmetry parameter, given by
formula (7.2), and e is the orbital eccentricity (Fig. 7.9).

In the constructed diagram, theoretical borders of the zones of existence of
synchronous resonance modes are drawn according to Melnikov (2001). In the
given ranges of ω0 and e, the marked domains are delineated by four curves. At
the (ω0 = 1, e = 0) point, a branching curve stems. To the left of the curve, one
odd 2π–periodic solution of the Beletsky equation can exist; this solution is called
α-resonance. To the right of the curve, one or two stable solutions can exist; these
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Fig. 7.9 Distribution of moons with known radii in the (ω0, e) plane (Figure 3 from Melnikov and
Shevchenko 2010, with permission from Elsevier)

are, respectively, β-resonance or both α-resonance and β-resonance. α-resonance
exists both at ω0 ≥ 1 and at ω0 < 1; β-resonance exists only at ω0 ≥ 1. The
synchronous resonance modes are illustrated further on in phase space sections in
Figs. 7.12 and 7.13.

At the (ω0 = 1/2, e = 0) point, the zone of parametric resonance emerges. The
left border of this zone corresponds to the loss of stability of the α-resonance in
domain Ia, through the period-doubling bifurcation. In the plot, this is the dashed
curve on the left. The dashed curve on the right corresponds to the loss of stability
of the bifurcated mode, through the second consecutive bifurcation. The borders of
domains IV and VI are therefore formed by the first doubling bifurcation curve (on
the left) and by the second doubling bifurcation curve (on the right). For a detailed
classification of synchronous resonance modes, see Melnikov and Shevchenko
(1998), Melnikov (2001), Melnikov and Shevchenko (2008).

In sum, the zones can be characterized as follows. Zones Ia and Ib represent the
domains of existence of solely α-resonance. Zone II is the domain of existence of
solely β-resonance. Zone III is the domain of coexistence of α and β-resonances.
Zone IV is the domain of coexistence of α-resonance and period-doubling bifur-
cation modes of α-resonance. Zone V is the domain of non-existence of any 1/1
synchronous resonance. Zone VI is the domain of existence of solely period-
doubling bifurcation modes of α-resonance.

To place actual satellites in the diagram, one should first estimate their ω0
and e parameters. For 34 satellites, the ω0 and e data are directly available;
see compilation and references in Kouprianov and Shevchenko (2005). For the
remaining objects in the sample of 145 satellites, ω0 was estimated statistically,
and e were taken from satellite databases; see Melnikov and Shevchenko (2010).
According to Fig. 7.10, satellites with physical radii less than 300 km are irregularly-
shaped and, consequently, have large ω0, whose values can be statistically inferred
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Fig. 7.10 The dynamical asymmetry parameter ω0 dependence on the physical radius r . Boxes
A and B delineate two types of satellites: small irregularly-shaped and big spherical, respectively.
Solid curve: exponential approximation ω0(r) = A0 exp(−r/r0), where A0 = 0.88 and r0 =
270 km (Figure 1 from Melnikov and Shevchenko 2010, with permission from Elsevier)

from sizes of the satellites. In Fig. 7.9, the open circles show the objects with the
ω0 parameter determined statistically in Melnikov and Shevchenko (2010). Three-
sigma errors in estimating ω0 are shown by horizontal bars. The solid circles show
the objects with ω0 known from observations.

No synchronous rotation states exist in domain V. For most of satellites in domain
Ib, the synchronous state is highly probable to be attitude unstable. Therefore, all
satellites in domain V and most of satellites in domain Ib rotate either regularly (if
they are tidally unevolved) or chaotically (if they are tidally evolved). In sum, at
least two thirds of all presented satellites cannot rotate synchronously (Melnikov
and Shevchenko 2010).

In Fig. 7.11, a representative example of section of the phase space of the planar
rotation of a satellite residing in domain V is shown. The adopted e = 0.25 and
ω0 = 0.9 values correspond to the domain V centre. The phase space section is
defined at the pericentre of the orbit, i.e., the motion is mapped each orbital period.
Obviously, no synchronous state is present in the phase space section; there is a
broad chaotic band instead.

Representative examples of the phase space sections, corresponding to other
domains, namely, Ia, Ib, III, and IV, are given in Melnikov and Shevchenko (2010).

With the gradual emergence of new observational ground-based and space-
based capabilities, the number of discovered planetary satellites is increasing. Since
all newly discovered satellites are small, they are all strongly non-spherical; see
Fig. 7.10. Besides, the orbits of newly discovered objects are typically highly
eccentric. Therefore, all newly discovered satellites are expected to reside mainly
in domain V of the (ω0, e) plane, where the 1/1 synchronous state of rotation is
impossible.
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Fig. 7.11 A section of the phase space section of the planar rotation of a satellite in domain V of
the (ω0, e) diagram in Fig. 7.10 (Figure 6 from Melnikov and Shevchenko 2010, with permission
from Elsevier)

7.1.6 Stability with Respect to Tilting the Axis of Rotation

Even in absence of external torques, an isolated rotating non-spherical body
generically suffers permanent deformations by centrifugal forces, depending on the
position of the rotation axis inside the body (Burns and Safronov 1973). The rotation
energy dissipates, but the total angular momentum is conserved, while the rotation
axis is slowly turning inside the body until the state with the minimally possible,
for the given total angular momentum, rotational energy is achieved (Peale 1977;
Wisdom 1987b). In this state, the angular momentum vector coincides in direction
with the axis of the largest moment of inertia.

In case of a planetary satellite, the rotation is subject to external torques. The
gravitational tides stretch the satellite approximately along the planet–satellite line,
but the tidal bump is displaced in the direction of rotation, because the material
reaction to the tidal force is not instantaneous.

In the beginning of the long-term tidal evolution, satellites have rotation periods
much smaller then their typical orbital periods (Peale 1977). The planet’s gravita-
tion, acting on the tidal bump, first, tends to reduce to zero the angle between the
rotation axis and the normal to the satellite’s orbit plane, and, second, creates a
torque, which tends to slow the rotation down, typically, to the synchronous state
(Peale 1977; Wisdom 1987b). Therefore, the natural final state of the long-term
tidal evolution is the planar (the rotation axis being orthogonal to the orbit plane)
rotation of the satellite in synchronous resonance with its orbital motion. In this
state, the planar rotation axis coincides with the axis of the maximum moment of
inertia of the satellite.
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Depending on initial conditions and tidal parameters, the way to the final
synchronous “calm harbour” may turn out to be not smooth at all. The despinning
satellite successively enters near-separatrix chaotic layers of various spin-orbit
resonances, where the rotation can be unstable with respect to tilting the rotation
axis; then, the satellite starts to chaotically tumble. The major obstacle is the near-
separatrix chaotic layer of the synchronous resonance, where such instability was
revealed by means of direct numerical integrations by Wisdom (1987a). Whether the
satellite starts to tumble or eludes this fate, depends on its tidal evolution speed and
on its shape and orbit parameters. For the final synchronous state to be possible, the
motion in the centre of synchronous resonance should itself be stable with respect
to tilting the rotation axis.

In the present Section, we discuss the stability with respect to tilting the rotation
axis in the synchronous and other spin-orbit resonances. The orbital and inertial
parameters are taken for the cases of Hyperion, Phobos, Deimos, and Amalthea. To
separate the rotation trajectories into regular and chaotic ones, the modal structure
of the finite-time Lyapunov exponent distributions is analysed, as described in
Sect. 2.6.

In the course of the long-term tidal evolution, the satellite passes through
various resonant spin-orbit states and crosses corresponding near-separatrix chaotic
layers. Therefore, the stability analysis should be accomplished not only for the
synchronous resonance centre, but also for a large-enough phase-space domain near
the synchronous resonance.

Consider the satellites listed in Table 7.2. Since the orbital eccentricity of
Hyperion is subject to long-periodic oscillations (caused by perturbation from Titan;
see Klavetter 1989b), in the e range from 0.08 to 0.12, three cases were considered
in Melnikov and Shevchenko (1998): e = 0.08, e = 0.1, and e = 0.1236.

The model Amalthea is illustrated in Figs. 7.12 and 7.13. Both kinds of trajecto-
ries (chaotic and regular) are shown in Fig. 7.12, whereas only those unstable with
respect to tilting the rotation axis are shown in Fig. 7.13. This doubled representation
allows one to class the trajectories into stable and unstable ones with respect to
tilting the rotation axis, irrespective of the planar trajectory kind.

Therefore, the phase space sections in Figs. 7.12 and 7.13 contain information on
the stability of the main spin-orbit resonances (as well as non-resonant spin-orbit
states) with respect to tilting the rotation axis. Major spin-orbit states are easily

Table 7.2 The orbital eccentricity e and the inertial parameters A/C and B/C (Klavetter 1989a;
Black et al. 1995; Thomas et al. 1995; Wisdom 1987a; Melnikov and Shevchenko 1998)

Satellite e A/C B/C

Hyperion 0.08–0.12 0.622 0.884

Phobos 0.015 0.723 0.850

Deimos 0.0005 0.711 0.914

Amalthea 0.003 0.473 0.957
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Fig. 7.12 The phase space section defined at the orbit pericentre; e = 0.003, A/C = 0.473,
and B/C = 0.957 (model Amalthea) (Figure 3a from Melnikov and Shevchenko 1998. With
permission from Pleiades Publishing Inc.)

Fig. 7.13 Same as Fig. 7.12, but solely the trajectories unstable with respect to tilting the rotation
axis are shown (Figure 3b from Melnikov and Shevchenko 1998. With permission from Pleiades
Publishing Inc.)
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identifiable, in which the satellite may or may not reside in the course of its long-
term tidal evolution, if the orbital eccentricity is kept close to their present-day value.

The stability/instability in spin-orbit resonances 1/2, 1/1 (unstable), 2/1, and
9/4 (stable) in case of Hyperion with e = 0.1 was numerically investigated in
Wisdom et al. (1984), and that in resonances 1/2 (unstable), 1/1, and 3/2 (stable)
in case of Phobos were studied in Wisdom (1987a). The data following from the
presented phase space sections in Figs. 7.12 and 7.13 perfectly agree with the results
of Wisdom et al. (1984), Wisdom (1987a).

In case of Amalthea, there are two centres of synchronous resonance in the
phase space section; see Figs. 7.12 and 7.13. Comparing Figs. 7.12 and 7.13, we
see that the motion in one of the centres of synchronous resonance is stable, and
in the second one it is unstable. These two centres of the synchronous resonance
correspond to the α mode and β mode, considered above in Sect. 7.1.5.

7.2 Chaotic Obliquities of Planets

Laskar et al. (1993) and Néron de Surgy and Laskar (1997) argued that the current
obliquity of the Earth is long-term stable due to the presence of the Moon: the
Moon-caused precession of Earth’s spin axis is rapid enough to prevent the chaotic
diffusion between relevant spin-orbit resonances, as they are more widely separated
in the phase space, due to this precession. This phenomenon is important to take into
account when assessing habitability properties of rocky exoplanets with and without
big moons (Shevchenko 2017b).

With the Moon, Earth’s obliquity stays within the range from 22.1◦ to 24.5◦
(Lissauer et al. 2012). If the Moon were absent, the Earth would suffer large
variations of its obliquity (between 0◦ and 85◦), and this would cause catastrophic
variations of climate (Laskar et al. 1993; Néron de Surgy and Laskar 1997).
Conversely, the obliquity of Mars, which does not have a large satellite, varies in the
range 0–60◦ (Laskar and Robutel 1993). This must be at least one of the causes of its
long-term non-habitability, although Mars is marginally inside the Solar habitability
zone.

On the other hand, Lissauer et al. (2012), Li and Batygin (2014) performed series
of simulations of the long-term Earth rotation and concluded that in the Moon
absence the chaotic diffusion rate in the obliquity would be low enough for the
development of life to be successful, and, therefore, the long-term habitability would
not be precluded.

7.2.1 Relevant Spin-Orbit Resonances

In Fig. 7.14, real and possible dynamical causes for the long-term variations in
obliquity of the Earth are illustrated, as outlined in Laskar and Robutel (1993). In
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Fig. 7.14 The precession frequency and the maximum, average and minimum obliquities of the
Earth’s rotation axis, as functions of the initial obliquity. Left panel: the Moon present; right panel:
the Moon absent (Figures 2 and 3 from Laskar and Robutel 1993, by permission from Springer
Nature, © 1993)

the upper panels, the precession frequency ρ of the Earth’s rotational axis is given,
and, in the lower panels, the maximum, average and minimum obliquities ε of the
Earth’s rotation axis are presented. All the quantities are given as functions of the
initial obliquity ε0. In the left panel, the plots for the model taking into account
the Lunar torque are shown. In the right panel, conversely, the plots for the single
Earth model (the Moon absent) are shown. One may see that the Moon stabilizes
the Earth’s obliquity.

Conversely, a Moonless Mars may have large chaotic variations of the obliquity,
causing catastrophic variations in climate; this may be the reason of its sterility
(Laskar and Robutel 1993).

Tantalizingly, the favourable range of the Earth’s surface temperature variations
is conditioned by the suitable obliquity of the Earth, most probably caused by a giant
impact (Williams 1993). Conversely, the generic tilt of any planet in a relatively low
orbit around its host star is equal to zero, as in case of Mercury and Venus, because
this is a natural outcome of the tidal spin-orbit evolution of orbiting bodies; see, e.g.,
Wisdom et al. (1984).



Chapter 8
Orbital Dynamics of Minor Bodies

The Moon upon her fluent Route
Defiant of a Road

Emily Dickinson, Poem 1528

In studies of orbital dynamics of celestial bodies it is also usually possible to explain
chaotic manifestations by using paradigmatic models of interaction and overlap
of non-linear resonances, addressed in the first part of the book. In this chapter,
we consider major classes of the Solar system minor bodies on the subject of
their actual or potential chaotic behaviour. These classes include: planetary satellite
systems (in particular, the Miranda–Umbriel, Mimas–Tethys, and Prometheus–
Pandora systems); near-Earth asteroids (NEAs), main-belt asteroids and Kuiper belt
objects; and comets, which are typically highly chaotic. In connection with the
considered dynamical populations, concepts of two-body and three-body resonances
and secular resonances are considered. Dynamical environments of small bodies,
and, in particular, chaotic zones around contact binaries (such as famous KBO 2014
MU69), are analytically characterized. The presentation in this chapter is partially
based (in Sects. 8.1, 8.2, and 8.3) on the papers by Melnikov and Shevchenko
(2005), Shevchenko (2008b) (by permission from © Oxford University Press),
Shevchenko (2007a) (by permission from Cambridge University Press), Smirnov
and Shevchenko (2013) (by permission from Elsevier), and Shevchenko (2010).

8.1 Dynamics of Satellite Systems

If the orbital frequencies (mean motions) of two planets in a planetary system, or
two satellites in a satellite system, are approximately commensurable, i.e., their ratio
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is approximately equal to the ratio of two integers, the system is, from a common
sense viewpoint, either close to orbital resonance,1 or resides in it.

In the Solar system, many planetary satellites form resonant or close-to-resonant
configurations. In the Jovian satellite system, the Galilean satellites Io and Europa,
as well as Europa and Ganymede, reside in the 2/1 mean motion resonance; thus,
the system of these three satellites is involved in the three-body resonance 4:2:1
(called the Laplace resonance). In the Saturnian system, Mimas and Tethys, as well
as Enceladus and Dione, reside in the 2/1 mean motion resonance, Dione and Rhea
are close to the 5/3 resonance, and Titan and Hyperion are in the 4/3 resonance. In
the Uranian system, all commensurabilities are approximate: Miranda and Umbriel
are close to resonance 3/1, Ariel and Umbriel to 5/3, Umbriel and Titania to 2/1,
Titania and Oberon to 3/2.

Captures of satellite systems in orbital resonances represent natural stages of the
long-term tidal evolution of these systems (Tittemore and Wisdom 1990). Capture
in a resonance may considerably affect the subsequent dynamical history of any
satellite system (Malhotra and Dermott 1990; Tittemore and Wisdom 1989) and
even internal structure of satellites (Dermott et al. 1988).

For a satellite system to be captured in a mean motion resonance, it should cross
the near-separatrix chaotic layer of the corresponding resonance. Inside the layer,
the system moves chaotically. Therefore, any system now observed to reside in a
resonance, spent some time of its long-term dynamical history in a chaotic regime.
When neighbouring resonances overlap, chaos can be wide-spread and the time of
residence in the chaotic regime can be rather prolonged.

Chaos in the orbital dynamics of satellite systems (and, generally, many other
celestial-mechanical systems, including planetary systems) may emerge due to
interaction and overlap of neighbouring mean motion resonances, as well as, inside
a separate mean motion resonance, due to interaction and overlap of subresonances
corresponding to the given mean motion resonance; see, e.g., Malhotra (1994,
1998). The orientation of orbits in space is subject to variations including secular
precession of pericentres and nodes, and this precession is just the reason of
splitting of orbital resonances into subresonances. Chaos acting on longer (orbital
precession) timescales is due to interaction of secular resonances, see Sect. 8.2.5.

Stages of dynamical chaos played important role in the long-term orbital
evolution of planetary satellites in the Solar system. The Miranda–Umbriel system
is perhaps the best studied one in this respect. Miranda and Umbriel are the second
and fifth satellites of Uranus; at present, the system is close to the 3/1 mean
motion resonance. It is rather probable that the system attended this resonance
and its chaotic domain in the past in the course of tidal evolution (Malhotra and
Dermott 1990; Tittemore and Wisdom 1990). To the accuracy of the second order
in eccentricities and inclinations, the 3/1 mean motion resonance is split into six
subresonances (Malhotra 1990; Malhotra and Dermott 1990): three inclination-type

1The expression “close to resonance” means that the frequencies satisfy the given integer relation
only approximately, and, therefore, the corresponding resonant phase rotates, instead of libration.
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subresonances and three eccentricity-type subresonances. The resonance dynamics
can be considered in this approximation separately in the circular-inclined and
planar-eccentric problems. The Hamiltonian of each of these problems can be
reduced to that of the non-linear pendulum with periodic perturbations. Analytical
and numerical-experimental estimates of the Lyapunov time for several selected
stages of evolution of the system are given in Melnikov and Shevchenko (2005).
Both the theory and numerical integrations give the Lyapunov time of order of
100 yr. This means that, even if the system were chaotic at present, its chaos would
be practically unobservable.

Apart from the Miranda–Umbriel system, chaotic states in past epochs of orbital
evolution and their effect on the present orbital states are known to have been
prominent in the Enceladus–Dione system (S2 and S4) (Ferraz-Mello and Dvorak
1987; Karch and Dvorak 1988; Callegari and Yokoyama 2007), Miranda–Ariel
system (U5 and U1) (Tittemore and Wisdom 1990), Ariel–Umbriel system (U1
and U2) (Tittemore and Wisdom 1988, 1990), Titan–Iapetus system (S6 and S8)
(Noyelles and Vienne 2005), Galilean system (J1, J2, J3 and J4) (Tittemore 1990;
Noyelles and Vienne 2005, 2007).

Prominent chaos in the orbital dynamics of satellite systems took place not only
in the past epochs, but is also immanent to the nowadays dynamics of some systems.
Champenois and Vienne (1999a,b) considered dynamics of Mimas and Tethys, the
first and third satellites of Saturn, residing at present in the 4/2 orbital inclination-
type mean motion resonance. This resonant pair is unique in the Solar system,
as it has large-amplitude librations (�95◦) of the resonant phase, with a rather
small time period (about 70 yr). The averaged Hamiltonian of the problem was
reduced in Champenois and Vienne (1999b) to the form of a non-linear pendulum
with periodic perturbations. Using this analytical representation of the Hamiltonian,
one may readily obtain analytical estimates of the Lyapunov time. Such estimates
were obtained in Melnikov and Shevchenko (2005), and were confirmed therein by
direct integrations of the equations of motion. They turned out to be 300–600 yr in
various models. Thus, chaos in this system does not manifest itself on short enough
timescales accessible to observations.

To date, the chaotic orbital behaviour of Prometheus and Pandora is the only
known example of directly observable orbital chaos in the Solar system, just as
the rotation of the 7th satellite of Saturn, Hyperion, is the only known example of
observable chaos in the rotational dynamics of planetary satellites.

Historically, chaos in the orbital motion of Pandora was theoretically envisaged
by Borderies et al. (1984), as early as in 1984, in the same year when chaos in
the rotation of Hyperion was predicted by Wisdom et al. (1984). However, contrary
to the Hyperion case, chaos in the Prometheus–Pandora system was not especially
sought for in observations, but was independently discovered later on.

In fact, the Halley comet dynamics, considered further on in Sect. 8.3, provides
another example of chaos identified in observations. However, there exists a
principal difference. Comet Halley’s chaos is not directly observable; it was revealed
by Chirikov and Vecheslavov (1986), Vecheslavov and Chirikov (1988), Chirikov
and Vecheslavov (1989) by means of analysing data of historical chronicles covering
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many hundreds of years. Conversely, chaos in the Prometheus–Pandora system can
be observed directly anytime on short enough timescales.

Here we are concerned with solely chaotic orbital regimes of satellite systems.
For general reviews on the dynamics of planetary satellites see Peale (1976, 1986,
1999). An introductive theory and discussions can be found in Malhotra (1998).

8.1.1 The Miranda–Umbriel System

Chaotic regimes play prominent roles in the long term orbital evolution of the
planetary satellite systems. The Miranda–Umbriel system (U5 and U2) is perhaps
the best studied one in this respect.

No low-order commensurabilities are observed now in the orbital motion of the
satellites of Uranus (Malhotra 1990). Tittemore and Wisdom (1989) found that
chaos associated with the 3/1 mean motion resonance of the Uranian satellites
Miranda and Umbriel could result in a significant change in the orbital elements
of these moons and in an escape from the resonance in the course of their long-term
orbital evolution; a passage of the moons through this resonance in the past could
have caused the present high inclination (�4.3◦) of Miranda’s orbit.

In this context, Malhotra and Dermott (1990) considered a role of secondary
resonances in the long-term orbital evolution of Miranda and Umbriel. By definition,
the secondary resonances represent resonances between phase oscillations on the
primary resonance and an external periodic perturbation. Malhotra and Dermott
(1990) developed a perturbed pendulum model describing the dynamics of the
Miranda–Umbriel system in a secondary orbital resonance. Within the framework
of this model, they showed that the capture in the 3/1 mean-motion resonance
and the following capture in the 3/1 secondary resonance with the backward final
escape from the main resonance resulted in the present-day anomalously high orbital
inclination of Miranda.

Malhotra (1990) obtained analytical and numerical estimates of the probability
of capture in the 3/1 secondary resonance. The probability turned out to be high
enough for this mechanism to work. Therefore, the Miranda–Umbriel system could
pass through the near-separatrix chaotic layer of the 3/1 orbital resonance twice
during its dynamical history.

The problem of chaotic motion in the 3/1 orbital resonance is of interest,
since its study helps to clarify details of the long-term orbital evolution of the
Miranda–Umbriel system. The averaged (on the orbital timescale) Hamiltonians
of the three-body problem “planet—two satellites” in the vicinities of the 3/1
and 2/1 mean motion resonances can be reduced, in some approximation, to the
Hamiltonian of the non-linear pendulum with periodic perturbations (Malhotra
1990; Malhotra and Dermott 1990; Champenois and Vienne 1999b). Due to the
precession of lines of apsides of satellite orbits, orbital resonance splits into
subresonances. In case of the 3/1 mean motion resonance, in approximation of
the second order in eccentricities and inclinations, there exist six subresonances
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(Malhotra 1990; Malhotra and Dermott 1990): three inclination-type subresonances
and three eccentricity-type subresonances. In this approximation, the resonant
dynamics can be considered separately in frameworks of inclined-circular and
planar-elliptic three-body problems. The system Hamiltonian in each of these cases
is reducible to a Hamiltonian with two degrees of freedom.

According to Malhotra and Dermott (1990), approximate equations of the
motion in the inclined-circular and planar-eccentric problems have similar analytical
structures. If the terms of order higher than two in inclinations are neglected, the
Hamiltonian of the inclined-circular three-body problem “planet—two satellites” in
the vicinity of the 3/1 mean-motion resonance is reducible, after averaging on the
orbital timescale, to the form

H = −GI
2

2
+ F cosφ + ε1 sin

(
φ

2
+ τ̃

)
+ ε2 sin

(
φ

2
− τ̃

)
(8.1)

(Malhotra 1990). In Eq. (8.1), φ = 3λ2 − λ1 − 2
1 − π is the resonant phase of
the so-called inclination-type i21 resonance (Malhotra 1990; Malhotra and Dermott
1990), τ̃ = 
̃t is the perturbation phase angle, 
̃ is the perturbation frequency,
equal to the half-frequency of the rotation of the phase angle 3λ2 − λ1 − 2
2 of
the neighbouring i22 resonance, λ1 and λ2 are the mean longitudes of the inner and
outer moons, respectively; 
1 and 
2 are the longitudes of the ascending nodes of
the inner and outer moons, respectively; I is the momentum conjugated to φ; t is
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Here, G is the universal gravitational constant; m1 and m2 are the masses of the
inner and outer moons, respectively; ires

1 is the orbital inclination of the inner
moon in the exact 3/1 resonance (this inclination is approximately equal to the
mean value of i1 for the motion inside the resonance); i2 is the outer moon’s
orbital inclination, assumed to be a model-dependent constant, see Malhotra (1990),
Malhotra and Dermott (1990); b(1)3/2(α) and b(2)3/2(α) are Laplace coefficients; and
α = a1/a2 ≈ 0.481 is the ratio of the semimajor axes of the inner and outer moons
in the 3/1 resonance. It follows from Eq. (8.2) that
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(Malhotra 1990; Shevchenko 2000b). The perturbation frequency 
̃ is determined
mostly by the dynamical oblateness of the host planet:
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(Malhotra 1990), where M, R, and J2 are the mass, equatorial radius and second
zonal harmonic of the gravitational field of the host planet, respectively.

For the Miranda–Umbriel system, we set R = 26,200 km, J2 = 3.346 ·
10−3, m1/M = 7.9 · 10−7, m2/M = 1.45 · 10−5, a1/R = 4.8626, and a2/R =
10.1145. According to formula (8.4), 
̃ � −0.3251 yr −1. Formula (65) in Malhotra
(1990) gives nearly the same value: 
̃ � −0.3306 yr−1. Following Shevchenko
(2000b) and Melnikov and Shevchenko (2005), we reduce the Hamiltonian (8.1) to
the perturbed pendulum standard form, by performing the canonical transformation
I = −p, φ = φ (with valence equal to −1), the change 
̃ → −
̃ (to make
the 
̃ frequency positive), and the shift τ̃ = τ + π

2 . One gets the paradigmatic
Hamiltonian (1.6), where ϕ is the deviation angle of the model pendulum from its
position of equilibrium, p is the momentum, τ = 
̃t + τ0, where 
̃ and τ0 are the
frequency and the initial phase of perturbation, respectively; k = 1/2, a = −ε1,
and b = ε2.

In the inclined-circular approximation, the inclinations of the moons slowly
vary in time in the course of the system long-term evolution. Data on the orbital
inclinations of Miranda and Umbriel (ires

1 and i2, respectively) are presented in
Table 8.1 for four epochs of the past long-term evolution, according to the numerical
modelling in Malhotra and Dermott (1990). Each epoch corresponds to a separate
dynamical model with individual fixed parameters. In model 1, the system dynamics
is distinguished by the presence of the 4/1 secondary resonance. In models 2 and 3,
the 3/1 and 2/1 secondary resonances, respectively, dominate. Model 4 corresponds
to the time epoch of the system escape from the i21 resonance.

In the course of the long-term evolution, the Miranda–Umbriel system passes,
in succession, through secondary resonant states corresponding to the models
presented in Table 8.1. If the i1 initial value is 0.1◦, the inclination of Miranda’s
orbit reaches 2.2◦ (model 1) when t � 1.4 · 105 yr. Models 2, 3, and 4 correspond
to the time epochs t � 2 · 105, 4 · 105, and 8 · 105 yr, respectively.

Table 8.1 The
Miranda–Umbriel system,
four epochs of dynamical
history (Melnikov and
Shevchenko 2005)

Model ires
1 ,

◦ i2,
◦ 
̃, yr−1 ε1/F ε2/F

1 2.2 0.20 −0.325 −0.182 0.312

2 2.8 0.20 −0.325 −0.143 0.245

3 4.1 0.20 −0.325 −0.098 0.168

4 5.7 0.15 −0.325 −0.053 0.090
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Fig. 8.1 Phase space sections τ = 0 (mod 2π) for the four models presented in Table 8.1. Panels
(a, b, c, d) correspond to models 1, 2, 3, 4, respectively (Figure 1 from Melnikov and Shevchenko
2005. With permission from Pleiades Publishing Inc.)

Figure 8.1 shows phase space sections, defined at τ = 0 (mod 2π), for the
system (8.1). The sections were constructed in Melnikov and Shevchenko (2005)
by means of direct numerical integrations of the equations of motion defined by the
Hamiltonian (8.1).

In the next section, we discuss how such phase space sections can be interpreted
in the framework of the separatrix map theory.

8.1.2 Generalization of the Separatrix Algorithmic Map

Recall that Eqs. (1.33) constitute the separatrix algorithmic map for the Hamilto-
nian (1.6) in case of k = 1. In case of k = 1/2, the unperturbed pendulum
Hamiltonian H0 is 2π-periodic with respect to ϕ, but the perturbed Hamiltonian
H is 4π-periodic (see Eq. (1.6) or (8.1)). This makes construction of the separatrix
algorithmic map in case of k = 1/2 somewhat different.

If −π < ϕ < π , the W quantity has a specific sign, and, when ϕ is in the
interval π < ϕ < 3π , the sign of W is opposite. These ϕ intervals alternate at each
iteration of the separatrix map, if the model pendulum rotates; in case of its libration,
the trajectory stays inside one particular ϕ interval. Taking this into account, it is
straightforward to write down the separatrix algorithmic map in case of k = 1/2:

if wn > 0 thenW := −W,
if wn < 0 andW = ±W± thenW := ±W∓;
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wn+1 = wn −W sin τn,

τn+1 = τn +�n+1τ (mod 2π) (8.5)

(Shevchenko 2000b). Here the first line corresponds to the model pendulum rotation,
and the second one to its libration. The expressions for W+ and W− in case of
any positive integer or half-integer k can be found by using formulas given in
Appendix C.

In case of k = 1, a complete picture of the motion in the (τ , w) variables
is provided by constructing two phase portraits of the separatrix algorithmic
map (1.33), one for the prograde (W = W+) motion, and one for the retrograde
(W = W−) motion; see Sect. 1.6. In case of k = 1/2, a complete picture is provided
by constructing four phase portraits of the map (8.5): these are two prograde-
retrograde pairs, one for −π ≤ ϕ < π and second for π ≤ ϕ < 3π . If W = W±,
then the motion takes place in the first interval; if W = −W±, then in the second
one.

The separatrix algorithmic map takes the motion of the system (1.6) on the (τ ,w)
plane at fixed values of the resonant phase angle ϕ, equal to 0 and ±π . When
Poincaré sections are constructed numerically in applied problems, it is customary to
use another plane, namely the (ϕ, p) plane, taken at a fixed value of the perturbation
phase angle, say, τ = 0 (mod 2π). In our case, to construct a section in the
usual phase-angle–momentum variables, an adequate projection procedure should
be employed.

For k = 1, a regular projection algorithm is described in Sect. 1.6; it is given by
the scheme (1.41). The algorithm is called regular, because it is based on a regular
approximation of the chaotic motion on small (much smaller than the Lyapunov
time) time intervals. Let us rewrite the original algorithm (1.41), rendering it in the
current variables. We introduce designations w = wn, τ̂ = τn, �τ = �nτ =
τn − τn−1, andW = Wn+1.

The projection of a function f = ϕ or f = p to the surface τ = 0 (mod 2π) is
given by the formula

f |projected =
⎧
⎨

⎩
f
(
t = − τ̂




)
, if W = W+,

−f
(
t = − τ̂




)
, if W = W−.

(8.6)

The functions ϕ(t) and p(t) represent the explicit solution (via elliptic functions)
of the equations of the unperturbed non-linear pendulum; these functions can be
evaluated given the current value of w.

One iteration of the separatrix algorithmic map can produce several (or even
many) projected points. The algorithm (1.41) for finding all projected points for a
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current step of the map can be rewritten as

while �τ > τ̂ do

evaluate ϕ, p by Eq. (8.6)

τ̂ := τ̂ + 2π

end do

(8.7)

Here the τ̂ initial value is taken modulo 2π , while the increment �τ and
consequent values of τ̂ are not.

In more detail, the algorithm can be commented as follows (Shevchenko 1999a,
2000b). First, it is verified whether the condition of intersection of the trajectory
with the chosen surface of section is valid for the time span corresponding to the
current step of the map, and if yes, the projection is made. Then the τ̂ interval is
incremented by 2π , and it is verified whether the intersection condition is still valid.
If yes, the projection is made once more with the new value of τ̂ , and one more phase
point on the (ϕ, p) plane, at τ = 0 (mod 2π), is found. The cycle is repeated until
the�τ ≤ τ̂ condition starts to hold. The procedure is performed at each iteration of
the separatrix algorithmic map.

This is the regular projection algorithm for the case k = 1. Let us generalize it to
the k = 1/2 case. In case of k = 1/2, Eq. (8.6) changes to

f |projected =
⎧
⎨

⎩
f
(
t = − τ̂




)
, if |W | = |W+|,

−f
(
t = − τ̂




)
, if |W | = |W−|. (8.8)

Besides, one should attribute each projected point to a specific resonance domain.
In case of libration, the trajectory stays inside one particular resonance domain. If
W = W±, then the motion takes place inside the first primary resonance, −π <
ϕ < π . If W = −W±, then it takes place inside the second primary resonance,
π < ϕ < 3π . By using Eq. (8.8), one obtains a value of ϕ modulo 2π , for example,
−π < ϕ < π . According to the sign ofW , this ϕ value should be shifted (attributed)
to the corresponding domain of the motion. This shift is zero ifW = W±, or is equal
to 2π ifW = −W±.

In case of rotation, the trajectory jumps from one ϕ interval to another one
at each iteration of the separatrix algorithmic map; i.e., the intervals alternate.
In this situation, one should take into account the property of the separatrix map
asynchronism (see Sect. 1.6): τ is mapped with a delay in relation to w. Since the
sign of W alternates, this delay affects the attribution of any projected point to the
specific primary interval in ϕ. Namely, for the initial value −π ≤ ϕ < π given
by Eq. (8.8): if |W | = |W+| and ϕ > 0, then one should set ϕ := ϕ − 2π ; and if
|W | = |W−| and ϕ < 0, then one should set ϕ := ϕ+ 2π . Afterwards, as in case of
libration, ifW = −W±, then one shifts ϕ := ϕ + 2π once more. Finally, ϕ is taken
modulo 4π . This completes the regular projection algorithm in the k = 1/2 case.
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Let us see how the separatrix algorithmic map in the k = 1/2 case and the
corresponding regular projection algorithm work in application to the chaotic orbital
dynamics of the Miranda–Umbriel system, at a particular stage of its long-term
orbital evolution. For an illustration, we choose model 3 in Table 8.1, because this
model corresponds to parametric resonance,2 i.e., the adiabaticity parameter λ = 2.

Indeed, the value of λ = 
̃
ω0

is given by the approximate relation λ ≈ 0.143
ires
M

=
8.17
ires
M ,

◦ (Malhotra 1990). The inclinations of Miranda and Umbriel in model 3 are

ires
M = 4.1◦, iU = 0.20◦; therefore, λ = 2. From Eqs. (8.3), (1.54), and (1.55) one

has:

a

F = 0.0976,
b

F = 0.168,

W+ = 0.106, W− = 0.182.

In Fig. 8.2, the corresponding phase space section for the system (8.1) in the
(ϕ, p) variables, taken at τ = 0 (mod 2π), is shown. The section is constructed
by applying the separatrix algorithmic map (8.5) and the regular projection algo-
rithm (8.7). In Fig. 8.3, the same section is shown, but obtained by direct numerical
integrations of the equations of motion defined by the Hamiltonian (8.1). One may
see that the both ways for constructing the section provide almost identical results.

However, as one could have expected, a small zone near the resonance centre,
where the period-doubling bifurcation occurs due to the parametric resonance, is
out of reach for the separatrix algorithmic map. This pattern is located too far from
the separatrix.

Figures 8.2 and 8.3 graphically illustrate a mechanism of destabilization of the
3/1 mean motion resonance due to capture of the Miranda–Umbriel system in
the 3/1 secondary resonance (Tittemore and Wisdom 1989; Malhotra and Dermott
1990; Malhotra 1990; Henrard and Moons 1992; Moons and Henrard 1994). The
3/1 secondary resonance represents here the resonance between the circulation
and libration frequencies of the neighbouring i22 and i21 resonances, respectively.
In the course of the Miranda–Umbriel system long-term dynamical evolution, this
secondary resonance moves outward from the centre of the primary 3/1 resonance;
in the considered model 3 it is already deep inside the chaotic layer of the primary
resonance; therefore, it is already close to complete destabilization. Three small
regular islands, corresponding to the secondary resonance, are yet clearly present
inside the chaotic layer.

2For the parametric resonance theory, see Chirikov (1979).
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Fig. 8.2 The Miranda–Umbriel system, model 3 of Table 8.1: the phase space section at τ =
0 (mod 2π). Constructed by applying the separatrix algorithmic map and regular projection
algorithm; λ = 2, W+ = 0.106, W− = 0.182. The chaotic layer is shown in violet, and regular
orbits in green (Figure 1 from Shevchenko 2000b, by permission. Copyright © 2000 by World
Scientific Publishing Co. Pte. Ltd.)

Fig. 8.3 Same as Fig. 8.2, but obtained by direct numerical integrations of the equations of motion.
Note the period-doubling bifurcation of the resonance centre. This central pattern is too far from
the separatrix, and the separatrix map cannot be used to describe it (Figure 2 from Shevchenko
2000b, by permission. Copyright © 2000 by World Scientific Publishing Co. Pte. Ltd.)
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8.1.3 The Mimas–Tethys System

Amongst Saturnian satellites, there exist at present three resonant relations (Cham-
penois and Vienne 1999b), a mean motion resonance in the Mimas–Tethys system
among them. Namely, Mimas (inner moon) and Tethys (outer moon) reside now in
the inclination-type i1i2 resonance 4/2.3 The subscripts 1 and 2 designate the inner
and outer moons, respectively. The resonance phase ϕ = 2λ1 − 4λ2 + 
1 + 
2
librates about 0◦ with the amplitude �95◦ and the period ≈70 yr (Champenois and
Vienne 1999a,b). Due to the large amplitude of the resonant argument oscillations,
the system resides inside the near-separatrix chaotic layer. Before entering the layer,
Mimas and Tethys spent some time in the i21 resonance, from which they eventually
escaped (Champenois and Vienne 1999b).

In total, there are six subresonances corresponding to the 4/2 mean motion
resonance, in a model of the second order of smallness in the eccentricities and
inclinations. Champenois and Vienne (1999b) showed that, in the Mimas–Tethys
system, resonances of higher orders in inclinations and eccentricities, namely, the
i21e2, i1i2e2, and i22e2 resonances, strongly affect the dynamics in the i1i2 resonance.
Neglecting the terms of order greater than 3 in the inclinations and eccentricities,
the Hamiltonian of the “planet—two satellites” three-body problem in the vicinity
of the 2/1 mean motion resonance can be represented as

H = GI 2

2
− F cosϕ + ε1 cos

(ϕ
2

− τ
)

+ ε2 cos
(ϕ

2
+ τ

)
+ ε3 cos

(
3

2
ϕ + τ

)

(8.9)

(Champenois and Vienne 1999b), where ϕ = 2λ1 −4λ2 +
1 +
2 is the resonance
angle of the i1i2 resonance, τ = 
̃t + τ0 is the perturbation phase angle, 
̃ is the
perturbation frequency equal to the rotation frequency of the angle 1

2
1 − 3
2
2 +

�2, τ0 is the initial perturbation phase, λ1 and λ2 are the mean longitudes of the
satellites, 
1 and 
2 are the longitudes of ascending nodes, I is the momentum
conjugated to ϕ; t is time. The parameters G, F , ε1, ε2, and ε3 are given by

G = −1, F = f0(α)σγ1γ2,

ε1 = −e2f3(α)σγ
2
2 , ε2 = −e2f2(α)σγ1γ2, ε3 = −e2f1(α)σγ

2
1 , (8.10)

where σ = 12n2
1αm2 + 48n2

2m1, γ1 = sin(i1/2), and γ2 = sin(i2/2); n1, n2 are
the mean motions of Mimas and Tethys; m1 and m2 are the masses of the satellites
in units of Saturn’s mass; α = a1/a2 is the ratio of the semimajor axes of the
moons. The functions fk(α) are expressed in terms of Laplace coefficients and their
derivatives; see Champenois and Vienne (1999b).

3Here the “4/2 resonance” designation instead of the “2/1 resonance” designation is justified
because the mean longitudes of Mimas λ1 and Tethys λ2 enter the corresponding resonant terms
of the Hamiltonian expansion with the coefficients 2 and 4.
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By analogy with (8.3), one has

ε1

F = −e2
f3(α)

f0(α)

γ2

γ1
,

ε2

F = −e2
f2(α)

f0(α)
,

ε3

F = −e2
f1(α)

f0(α)

γ1

γ2
. (8.11)

In the Hamiltonian (8.9), the terms with the ε1 and ε2 coefficients correspond to
the i22e2 and i1i2e2 resonances, respectively, whereas the term with the ε3 coefficient
corresponds to the i21e2 resonance. Following Champenois and Vienne (1999b), we
set n1 = 2422.44 yr −1, n2 = 1213.17 yr −1, m1 = 6.34 · 10−8, and m2 = 1.06 ·
10−6. Assuming α = 0.6306, one has f0 = −1.6509, f1 = 5.2379, f2 = 9.7082,
and f3 = 0.2219.

Model parameters used below are given in Table 8.2. Models 1 and 2 in Table 8.2
approximately correspond to the current observational status of the system, within
the observational data accuracy limits. Note that, due to its smallness, the orbital
eccentricity of Tethys is known with relatively low accuracy; e2 = 0.001 is
maximally possible. Models 3–6 give possible orbital parameters during the capture
in the i1i2 resonance �2 · 108 yr ago.

Sections of the phase space of the Hamiltonian (8.9), obtained by direct
numerical integrations at τ = 0 (mod2π), are shown in Fig. 8.4 for all six models
given in Table 8.2. The sections graphically illustrate that the chaotic domains may
occupy very different volumes in the phase space, depending on the model choice
(i.e., the evolutionary stage), from practically non-existent to significant levels.

8.1.4 The Prometheus–Pandora System

To date, a unique case of observable orbital chaos in satellite systems is known
to exist; this is chaos in the Prometheus–Pandora system. The Saturnian satellites
Prometheus (S16) and Pandora (S17) are the shepherds of Saturn’s F ring. The both
moons were discovered during the Voyager space mission in 1980–1981 (Synnott
et al. 1984). Consequent observations from the Hubble Space Telescope in 1995
revealed that the mean longitudes of Prometheus and Pandora differed at that time

Table 8.2 The Mimas–Tethys system and the parameters of the Hamiltonian (8.9) (Champenois
and Vienne 1999b; Melnikov and Shevchenko 2005)

Model i1,
◦ i2,

◦ e2 
̃, yr−1 ε1/F ε2/F ε3/F
1 1.62 1.093 0.000235 2π/200 0.000021 0.001382 0.001105

2 1.62 1.093 0.001 2π/200 0.000091 0.005881 0.004702

3 0.5 1.093 0.0005 2π/185 0.000147 0.002940 0.000726

4 0.5 1.093 0.002 2π/185 0.000588 0.011761 0.002904

5 0.5 1.093 0.0028 2π/185 0.000823 0.016466 0.004064

6 0.5 1.093 0.009 2π/185 0.002644 0.052926 0.013063
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Fig. 8.4 Phase space sections at τ = 0 (mod 2π), for the Mimas–Tethys system models given in
Table 8.2. Panels (a, b, c, d, e, f) correspond to models 1, 2, 3, 4, 5, 6, respectively (Figure 2 from
Melnikov and Shevchenko 2005. With permission from Pleiades Publishing Inc.)

by some 20◦ from the values predicted by the Voyager ephemerides (Bosh and
Rivkin 1996; Nicholson et al. 1996; McGhee et al. 2001), with Prometheus lagging
its predicted longitude, and Pandora leading by the same amount. What is more,
abrupt changes (“kinks”) in the mean motions were observed (French et al. 2003).
Goldreich and Rappaport (2003a) interpreted the kinks as a signature of dynamical
chaos naturally arising in mutual gravitational interactions of these almost coorbital
satellites. In direct numerical integrations, they found that the system gradually
deviated from the Voyager ephemerides due to a slow chaotic diffusion in the space
of orbital elements; they attributed the kinks to bursts of gravitational interactions
during the apsidal anti-alignments, which occur every 6.2 yr.

Goldreich and Rappaport (2003b) and Renner and Sicardy (2003) interpreted the
chaos as due to interaction of subresonances in the 121/118 mean motion resonance
multiplet. The resonant librations were identified by surveying the rates of change
of all possible critical arguments for the Prometheus–Pandora system (Goldreich
and Rappaport 2003b, Figure 1). Chaos manifests itself in numerical simulations of
the system dynamics in all observationally possible initial settings (Goldreich and
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Table 8.3 The Prometheus–Pandora system parameters (Goldreich and Rappaport 2003b; Farmer
and Goldreich 2006)

Satellite m/M a, km e n, ◦s−1 �̇ , ◦s−1

Prometheus 5.80 · 10−10 139,000 2.29 · 10−3 6.80 · 10−3 3.1911 · 10−5

Pandora 3.43 · 10−10 142,000 4.37 · 10−3 6.63 · 10−3 3.0082 · 10−5

Rappaport 2003a,b; Cooper and Murray 2004; Jacobson and French 2004; Renner
et al. 2005), with or without including perturbations from other Saturnian satellites.
Farmer and Goldreich (2006) studied the dynamics of the Prometheus–Pandora
system by analogy with a nearly adiabatic parametric pendulum and explored the
separatrix crossing phenomena in the system in this analogy.

The parameters of the satellite system, as adopted in Goldreich and Rappaport
(2003b); Farmer and Goldreich (2006), are given in Table 8.3. This Table contains
masses m (in units of Saturn’s massM), orbital semimajor axes a and eccentricities
e, mean motions n, rates �̇ of change of the longitudes of pericentres. Further on,
the quantities corresponding to Pandora are primed.

Saturn’s oblateness causes rapid apsidal precession of the orbits of Prometheus
and Pandora. The influence of satellite–satellite gravitational interactions on the
apsidal angles and orbital eccentricities can therefore be neglected, and one may
analyse solely changes in mean motions or in the resonance angle ψ ≡ 121λ′ −
118λ, where λ and λ′ are the mean longitudes of the moons.

As shown by Goldreich and Rappaport (2003b), the equations of motion of the
Prometheus–Pandora system can be reduced in this way to the paradigm of the
non-linear pendulum with periodic perturbations. The dynamics of the Prometheus–
Pandora system in this paradigmatic approximation was studied in detail by Farmer
and Goldreich (2006) in terms of adiabatic invariants and separatrix crossing
phenomena. Conversely, we use the separatrix map theory.

The system dynamics near the 121/118 resonance is approximately described by
the equation

d2ψ

d t2
= 3(121n′)2 m

M

(
1 + am′

a′m

)
�4
q=1Cq sin(ψ − δq) (8.12)

(Goldreich and Rappaport 2003b), where ψ = 121λ′ − 118λ is the general resonant
argument, and

δ1 = 3�, δ2 = 2� +� ′,

δ3 = � + 2� ′, δ4 = 3� ′,

where � and � ′ are the longitudes of pericentres of the moons. The four
trigonometric terms correspond to the components of the resonance multiplet. The
constant coefficients are: C1 = −0.00108, C2 = 0.00626, C3 = −0.0121,
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and C4 = 0.00782. In fact, the resonance quartet can be shortened, in a good
approximation, to a triplet, because C1 is negligible in comparison with C2, C3,
and C4.

We choose ϕ = ψ − δ3 as the phase angle of the guiding resonance in the triplet,
because the corresponding term is the strongest one. Then, the frequency of small-
amplitude phase oscillations on the guiding resonance is

ω0 =
∣∣∣∣3(121n′)2 m

M

(
1 + am′

a′m

)
C3

∣∣∣∣
1/2

, (8.13)

and the perturbation frequency is


 = �̇ − �̇ ′. (8.14)

The ratio of 
 = 1.01 rad yr−1 and ω0 = 2.55 rad yr−1 gives the adiabaticity
parameter: λ = 0.395 ≈ 0.4.

Since λ < 1/2, the Prometheus–Pandora system is slowly chaotic, i.e., it resides
in the adiabatic regime of chaos. The perturbation relative amplitudes are given by

ε1 = C2

C3
, ε2 = C4

C3
. (8.15)

The amplitudes are similar in magnitude; this means that the resonance triplet is
nearly symmetric. The mean perturbation amplitude is

ε = 1

2
(ε1 + ε2).

For any adiabatic resonance triplet, the maximum Lyapunov exponent is given
by formula (3.22); therefore, the Lyapunov time can be calculated as

TL ≈ Tpert

2π
ln

∣∣∣∣
16

λε
sin

(
λ

2
ln

4

λ|ε|
)∣∣∣∣ . (8.16)

With the data on Prometheus and Pandora presented in Table 8.3, the adiabaticity
parameter λ, the relative perturbation strengths, and the perturbation period Tpert =
2π/
 can be easily calculated: λ = 0.395, ε1 = 0.517, ε2 = 0.646, ε =
0.582, Tpert = 6.237 yr.

Then, formula (8.16) gives the Lyapunov time TL = 3.59 yr. The uncertainty
of this value can be estimated in the following way (Shevchenko 2008b): by
varying the perturbation relative amplitude in the range from ε1 to ε2, one obtains
the estimate of the Lyapunov time by formula (8.16) in the range of 3.5–3.7 yr;
therefore, TL = 3.6 ± 0.1 yr.

In direct numerical integrations, Goldreich and Rappaport (2003a) and Gol-
dreich and Rappaport (2003b) obtained estimates for the Lyapunov time of the
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Prometheus–Pandora system in a model setting restricted to mutual gravitational
interactions between Prometheus and Pandora. According to their results, the
Lyapunov time TL ≈ 3.3 yr. Later on, the Lyapunov time was estimated by Cooper
and Murray (2004) also in direct numerical integrations, but in the full problem
taking into account all important perturbations from other Saturnian satellites.
Farmer and Goldreich (2006) made estimates of the Lyapunov time by means of
numerical integration of Eq. (8.12). The known numerical-experimental estimates
of TL turn out to be similar:

• ≈3.0–4.0 yr (Goldreich and Rappaport 2003a, Figure 7, Goldreich and Rappa-
port 2003b, Figure 4),

• ≈3.3 yr (Cooper and Murray 2004, Figure 10),
• ≈3.3–4.2 yr (Farmer and Goldreich 2006, Figure 9).

The presented above analytical estimate, TL = 3.6 yr, is within the range of the given
numerical-experimental results. One should underline that it is just the small, ∼3 yr,
value of the Lyapunov time that makes the chaos in this system directly observable.

The separatrix map parameter c, given by Eq. (1.32), turns out to be ≈1.154. The
winding number of the slowly chaotic motion is given by Eq. (3.20); one has Q ≈
0.233. This means that the Prometheus–Pandora system resides between two low-
order resonances withQ = 1/5 and 1/4, and the system is rather far from them both.
With respect to the 121/118 primary mean motion resonance, these two resonances
are secondary, i.e., they represent resonances between the perturbation frequency
and the frequency of phase librations on the primary resonance. The remoteness of
the Prometheus–Pandora system from the major low-order secondary resonances
means that its motion inside the chaotic layer is almost ergodic. Therefore, the
ergodicity condition is fulfilled, and the analytical formulas (3.22) and (8.16) should
be practically precise; thus, it is no wander that the analytical TL estimate is
practically the same as the numerical-experimental TL values.

Now let us see how the chaotic domain width in the Prometheus–Pandora system
can be analytically estimated, in observable variables, and the width can be related
to available observational data.

When the model pendulum, in the course of its near-separatrix motion, passes
through its lower position, the momentum variation near the separatrix is connected
to the variation in the relative energy by the formula

�p = ω0

2
�w, (8.17)

which follows from the w definition and from the pendulum equation, given by the
unperturbed part of Hamiltonian (1.6). Formula (8.17) is analogous to that derived
by Vecheslavov and Chirikov (1998) in a study of splitting of separatrices of the
standard map integer resonances.
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Let us set p ≡ ϕ̇ by definition, then

dw/dp = psx(ϕ = 0)/ω2
0 = 2/ω0.

The full width �p = �ϕ̇ of the chaotic domain in the momentum is equal to the
sum of the width of the unperturbed resonance

�ϕ̇res = 4ω0

and twice the half-width

pb = ω0

2
wb(λ, ε)

of the chaotic layer in the momentum, given by Eq. (8.17). One has

�ϕ̇ = �ϕ̇res + ω0wb(λ, ε) = (4 +wb(λ, ε)) ω0. (8.18)

For any adiabatic chaotic resonance triad, the chaotic layer width is given by
formula (3.17), where, at λ ∼ 0, W ≈ 8λε asymptotically, as follows from
Eq. (1.28). Hence

wb(λ, ε) = 8λ

∣∣∣∣εcosec

(
λ

2
ln

4

λ|ε|
)∣∣∣∣ . (8.19)

As estimated above, for the Prometheus–Pandora system, one has ω0 =
2.55 rad yr−1, λ = 0.395, ε = 0.582; therefore

�ϕ̇res = 10.19 rad yr−1, wb = 3.17, (8.20)

and the full sum is

�ϕ̇ = 18.3 rad yr−1. (8.21)

The rates of change of the mean motions of Prometheus and Pandora are
connected to that of the ψ resonant phase by the equations

ṅ = − (am′/a′m)
118 [1 + (am′/a′m)]

ψ̇, ṅ′ = 1

121 [1 + (am′/a′m)]
ψ̇ (8.22)

(Goldreich and Rappaport 2003b). If, when calculating the maximum deviation
range in the mean motions, one takes into account solely the unperturbed resonance
width �ψ̇ = �ψ̇res = 10.2 rad yr−1, then

�n ≈ 1.8 deg yr−1, �n′ ≈ 3.1 deg yr−1, (8.23)

as found by Goldreich and Rappaport (2003b).
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Conversely, in Eq. (8.21), the contribution of the near-separatrix chaotic layer
width is taken into account. This contribution increases the expected full extent of
the chaotic domain substantially:

�ψ̇ = �ϕ̇ = 18.3 rad yr−1,

in accord (18 versus 16 rad yr−1) with the chaotic scatter in the phase space section
constructed in (Goldreich and Rappaport 2003b, Figure 8).4

Finally, as given by Eqs. (8.22), the expected full ranges of chaotic variations in
the mean motions of Prometheus and Pandora turn out to be

�n ≈ 3.3 deg yr−1, �n′ ≈ 5.5 deg yr−1. (8.24)

These ranges are about two times broader than those calculated in Goldreich and
Rappaport (2003b) by considering solely the width of the unperturbed resonance;
see Eqs. (8.23). The chaotic mean motion variation observed in the course of 15 yr
is ≈ 20◦ (Bosh and Rivkin 1996; Nicholson et al. 1996; McGhee et al. 2001).
The observed range is naturally smaller than the theoretical range, because the
latter provides the maximum possible bounds, perhaps achievable on much longer
timescales of observations.

The orbital dynamics of the Prometheus–Pandora system represents the first ever
known example of directly observable chaos in the orbital dynamics of natural
bodies in our Solar system. If one considers also rotational dynamics, then the
Prometheus–Pandora system should be regarded as the second known example of
directly observable dynamical chaos in the Solar system.

Indeed, the first example is chaotically rotating Hyperion, the 7th satellite of
Saturn; see Sect. 7.1.1. If the orbital eccentricity of Hyperion remained unchanged,
then its chaotic rotational regime were the final stage of the dissipative tidal
dynamical spin-orbit evolution. The regular final state would not exist, because all
relevant spin-orbit modes are attitude unstable, at the current orbital eccentricity
(Wisdom et al. 1984; Wisdom 1987a). In other words, if one considers long-term
dynamics and, therefore, takes into account tidal dissipation, then this chaotic
rotational regime plays the role of a chaotic attractor. Whether the chaotic orbital
motion of the Prometheus–Pandora system is a chaotic attractor in the same sense
or it represents a transient chaotic state in the long-term dynamical history of the
system, remains an open problem.

It is remarkable that, in addition to the orbital chaos, the rotational dynamics
of both Prometheus and Pandora might also be chaotic, with the Lyapunov time
of only ∼1 d, see Sect. 7.1.1. Contrary to the case of Hyperion, the chaos in the
rotational dynamics of these two moons, if exists, would be due to fine tuning
of their dynamical and physical parameters rather than to the large extent of the
chaotic domain in the rotation phase space. If, in addition to the orbital chaos,

4In Goldreich and Rappaport (2003b), the ϕ angle is designated as �3.
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the rotational chaos were observationally confirmed, then Prometheus and Pandora
would be real “champions” of dynamical chaos in our Solar system, and not only in
what concerns the emergence of double (orbital and rotational) chaos itself, but also
in the degree of unpredictability of the both kinds of motion, orbital and rotational.
The Lyapunov times of the chaotic orbital dynamics and the hypothetically chaotic
rotational dynamics of these satellites are the smallest amongst the known Lyapunov
times of natural bodies in the Solar system; therefore, their dynamics are most
unpredictable. Of course, future observations and theoretical studies may reveal
new minor bodies with even smaller Lyapunov times of orbital or rotational chaos;
however, most probably, such bodies would be physically smaller.

For comparison, let us assess, following the work of Melnikov and Shevchenko
(2005), how small might be the Lyapunov times for the considered above Miranda–
Umbriel and Mimas–Tethys systems. For analytical estimates of the Lyapunov times
in these systems, methods described above in Sect. 3.3 are used. Relevant numerical-
experimental estimates of the Lyapunov times (Melnikov and Shevchenko 2005)
are based on direct numerical integrations of the equations of orbital motion,
accomplished in parallel with calculations of the Lyapunov exponents by the HQR
method (Von Bremen et al. 1997) in software realization by Shevchenko and
Kouprianov (2002), Kouprianov and Shevchenko (2003). The HQR method allows
one to calculate the full spectrum of the Lyapunov exponents.

For the Miranda–Umbriel system, the Hamiltonian (8.1) parameters are given in
Table 8.1; and in the Hamiltonian (1.6) it is set k = 1/2, a = −ε1, and b = ε2.
The corresponding parameters of the separatrix algorithmic map (8.5) are given in
Table 8.4. Here the perturbation frequencies 
̃ are expressed in yr−1. Accordingly,
the Lyapunov exponents are also expressed in yr−1, and the Lyapunov times are in
years.

Based on these parameters, Melnikov and Shevchenko (2005) calculated theo-
retical Ltheor values of the maximum Lyapunov exponent. Along with numerical-
experimental Lnum values, computed in direct integrations of the equations of
motion, these estimates are presented in Melnikov and Shevchenko (2005). As
follows from the obtained analytical and numerical results (which are in accord
with each other), the typical Lyapunov times in the Miranda–Umbriel system in all
four models range from ∼50 to ∼100 yr.

Concerning the Mimas–Tethys system, its Hamiltonian is given by Eqs. (8.9),
and the parameters are presented in Table 8.2. There are three perturbing terms,
instead of two perturbing terms in the model pendulum Hamiltonian (1.6) and in
the Hamiltonian (8.1) for the Miranda–Umbriel system. To estimate the Lyapunov

Table 8.4 The separatrix
algorithmic map parameters
for the Miranda–Umbriel
system (Melnikov and
Shevchenko 2005)

Model λ W+ W−

1 3.717 0.0248 0.0425

2 2.985 0.0493 0.0848

3 2.000 0.1060 0.1820

4 1.372 0.1030 0.1790
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times, first, the sum of all three perturbing terms (the “i22e2 + i1i2e2 + i21e2” model)
is taken; then, the sum of the first two perturbing terms (the “i22e2 + i1i2e2” model)
is taken.

The first model corresponds to reality; and the second model is considered solely
to estimate the role of the third perturbing term. In the both cases, the i1i2 resonance
is the guiding one. The ε1 and ε2 resonances (in our designations) correspond
to the i22e2 and i1i2e2 resonances, whereas the ε3 resonance corresponds to the
i21e2 resonance. In the second model, the Hamiltonian is completely similar to the
Hamiltonian (1.6); therefore, one may estimate the maximum Lyapunov exponent
in actually the same way as accomplished above for the Miranda–Umbriel system.
One has k = 1/2, a = ε1, and b = ε2.

The parameters of the separatrix algorithmic map are given in Table 8.5. The
resulting theoretical Ltheor values of the maximum Lyapunov exponent, along with
their numerical-experimental counterparts Lnum, are considered and discussed in
Melnikov and Shevchenko (2005). The obtained Lnum and Ltheor values turn out
to be generally in accord. It follows that the typical Lyapunov times in the model
Mimas–Tethys system range from ∼300 to ∼600 yr; see Melnikov and Shevchenko
(2005) for details.

The Lyapunov times for the Miranda–Umbriel system are negligible compared
to the time spent by the system in the i21 resonance; the latter time, according to
Dermott et al. (1988), Tittemore and Wisdom (1990), is 108–109 yr. The Lyapunov
times for the Mimas–Tethys system are negligible compared to the time elapsed
from the epoch of capture of the system in the i1i2 resonance; the latter time,
according to Champenois and Vienne (1999a), is �2 · 108 yr.

Table 8.5 The separatrix algorithmic map parameters for the Mimas–Tethys system (Melnikov
and Shevchenko 2005)

Model λ Perturbing resonances W+ W−

1 0.293 “i22e2 + i1i2e2 + i21e2” −0.000454 0.001266

0.293 “i22e2 + i1i2e2” −0.001461 0.003794

2 0.293 “i22e2 + i1i2e2 + i21e2” −0.001934 0.005389

0.293 “i22e2 + i1i2e2” −0.006215 0.016146

3 0.571 “i22e2 + i1i2e2 + i21e2” −0.000904 0.008014

0.571 “i22e2 + i1i2e2” −0.001031 0.008775

4 0.571 “i22e2 + i1i2e2 + i21e2” −0.003617 0.032055

0.571 “i22e2 + i1i2e2” −0.004124 0.035101

5 0.571 “i22e2 + i1i2e2 + i21e2” −0.005064 0.044878

0.571 “i22e2 + i1i2e2” −0.005774 0.049142

6 0.571 “i22e2 + i1i2e2 + i21e2” −0.016278 0.144250

0.571 “i22e2 + i1i2e2” −0.018560 0.157956
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8.2 Chaotic Dynamics of Asteroids and Kuiper Belt Objects

Tu t’es fatiguée à force de consulter : Qu’ils se
lèvent donc et qu’ils te sauvent, ceux qui connaissent
le ciel, qui observent les astres, qui annoncent,
d’après les nouvelles lunes, ce qui doit t’arriver !

Esaïe 47:13

Historically, studies of dynamics of planet-crossing minor bodies provided first ever
theoretical hints for identifiable chaotic behaviour in the motion of celestial bodies.
Giovanni Valsecchi convincingly argued (Valsecchi 2007) that the history of studies
of chaotic dynamics of minor bodies actually started with works by Anders Johan
Lexell, Leonhard Euler’s pupil, in the seventies of the eighteenth century and by
Urbain Le Verrier in the forties and fifties of the nineteenth century. They explored
dynamics of the famous Lexell comet (Lexell 1777a,b, 1778a,b; Le Verrier 1844,
1848, 1857). Giovanni Valsecchi wrote: “It can be said that the work of Lexell
started the modern understanding of the dynamics of small solar system bodies”
(Valsecchi 2007). This modern understanding consists in taking into account, when
explaining the observed dynamics of such kind of objects, the essential role of
resonances and close encounters with planets. In celestial-mechanical studies by
Le Verrier (1844, 1848, 1857), a novel concept of the sensitive dependence on initial
conditions appeared for the first ever time: tiny model variations (about several
metres per second) of the Lexell comet velocity in its orbit perihelion resulted in
qualitative changes of the comet’s orbit. Thus, scientific grounds for exploration
of dynamical chaos, whatever the phenomenon could have been called at that time,
emerged in the science of celestial mechanics already in the middle of the nineteenth
century.

In 1770, the Lexell comet passed at an unprecedentedly close distance from the
Earth. Nine years later, it was most probably thrown away from the Solar system as a
result of its close encounter with Jupiter. In the history of astronomical observations
it became the first ever outstanding example of a celestial body closely encountering
the Earth. This example graphically shows that the problem of estimating the degree
of predictability of the motion of planet-crossing bodies is not solely theoretical, but
is practically important.

Estimating the degree of predictability of the orbital motion of near-Earth
asteroids (NEAs), as well as of other objects potentially hazardous to the Earth, is
one of complicated aspects of the whole problem of the asteroid-cometary hazard.
Some objects move in quite predictable orbits, others do not. Whipple (1995) wrote:
“The existence of a significant population of extremely chaotic Earth-crossing
asteroids must be factored into the thinking about the potential hazard posed by
these objects. An asteroid with a Lyapunov time of 20 years may be considered as an
example. If the initial error in its position is 100 km (a very optimistic assumption)
then that error will grow to one Earth radius in 83 years and to an Earth–Moon
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distance in 165 years. Assessments of the threat from specific objects like this can
be made for only short spans of time.”

As follows from data contained in the AstDyS database (AstDyS 2020), where
estimates of Lyapunov times (obtained in direct integrations on time intervals of
2 mln years) are provided, any asteroids with Lyapunov times less than 400 yr are
absent in the main belt.

Conversely, asteroids and comets crossing the orbits of planets, such as near-
Earth asteroids (NEAs), represent major classes of chaotic objects in the Solar
system; they usually have Lyapunov times much smaller than those of the typical
main belt asteroids, and their motion is practically unpredictable on timescales as
small as tens of years.

8.2.1 Resonant Structure of the Asteroid Belt

In the dynamics of asteroids, the essential role of resonances became evident since
the time of discovery of gaps (sparsely populated areas) in the belt of asteroids in
1867 by Daniel Kirkwood. More than a hundred and 50 years ago, he sagaciously
wrote “. . . the tendency of Jupiter’s influence would be to form gaps or chasms
in the primitive ring” (Kirkwood 1867, p. 106). The distribution (histogram) of the
main belt asteroids in the semimajor axis shows prominent minima, called Kirkwood
gaps, which correspond to the 3/1, 4/1, 5/2, etc., mean motion resonances with
Jupiter (Kirkwood 1867); see Fig. 8.5.
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Fig. 8.5 Distribution of the main-belt asteroids in semimajor axis (number of objects
per 0.0005 AU). Several major Jovian resonances are indicated by arrows (Credits:
NASA/JPL/Caltech/Alan Chamberlain 2007)
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Although obviously related to Jupiter, the actual dynamical origin of the Kirk-
wood gaps remained enigmatic since 1867 for more than a century, until Wisdom
(1982) discovered that the motion of asteroids in a vicinity of the 3/1 resonance with
Jupiter is typically chaotic. In massive numerical simulations, he observed that the
asteroids exhibited sporadic excursions to high eccentricities, thus becoming Mars-
crossers and consequently being potentially removed by encounters with this planet.
Although nowadays the mechanism of opening the gaps, including the 3/1 one, is
perceived to be more complicated (Morbidelli 2002), it is still based on the concept
of chaotic diffusion in the space of asteroidal orbital elements.

The domain of chaos corresponding to the 3/1 mean motion resonance with
Jupiter is shown in Fig. 5.2 on a representative set of initial values of the semimajor
axis a and eccentricity e of asteroidal orbits. The plot is obtained in direct numerical
integrations of the asteroidal equations of motion in the framework of the planar
elliptic restricted three-body problem, with Jupiter’s eccentricity set to its modern
value, e = 0.048. The initial conditions resulting in chaotic orbits with and without
jumps of eccentricity are shown in black and grey, respectively. The graph clearly
reveals significant extents and intricate structure of the near-resonant chaotic zone.

The long-term behaviour of eccentricity of chaotic asteroids in the 3/1 mean
motion resonance is illustrated in Fig. 8.6. The Hamiltonian intermittency pattern is
readily recognizable in the plot. Note a periodic-like sequence of eccentricity jumps
at the end of the integration time interval; it is due to temporary sticking of the
trajectory to a particular chaos border in the divided phase space.

However, when perturbations from all planets of our Solar system are taken
into account, sporadic jumps of eccentricity transform into a more complicated
evolution. The clearing of the gap becomes more rapid and radical. A typical
evolution of the eccentricity, inclination, and semimajor axis of an asteroid, starting
in the 3/1 resonance with Jupiter, is shown in Fig. 8.7. It is obtained in a direct
numerical integration of the equations of motion in the full many-body problem,
including all planets of the Solar system. The asteroid’s orbit eventually achieves
small pericentric distance and, finally, the asteroid falls onto the Sun.

Fig. 8.6 Eccentricity versus time for an asteroidal trajectory in the 3/1 mean motion resonance
with Jupiter; the plot is obtained by a direct numerical integration in the planar elliptic restricted
three-body problem setting. Note a periodic-like sequence of eccentricity jumps at the end of the
integration time interval (Figure 1 from Shevchenko and Scholl 1997, by permission from Springer
Nature, © 1997)
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Fig. 8.7 A typical evolution of the eccentricity, inclination, and semimajor axis of an asteroidal
orbit, starting in the 3/1 resonance with Jupiter; the perturbations from all planets are taken into
account (Figure 9 from Farinella et al. 1994, by permission from Springer Nature, © 1994)

The orbital resonances in the motion of asteroids subdivide into the mean
motion resonances and secular resonances. The mean motion resonances correspond
to commensurabilities between the mean frequencies of the orbital motions of
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asteroids and a planet, and the secular resonances correspond to commensurabilities
between the rates of the apsidal or nodal precession of an asteroid and a planet.

Apart from the well-known two-body mean motion resonances, an essential role
in the dynamics of asteroids is played by the three-body mean motion resonances.
In this case, the resonant phase represents a combination of the angular coordinates
of an asteroid and two planets, e.g., an asteroid, Jupiter and Saturn. Atlases of two-
body and three-body mean motion resonances in the Solar System are presented in
Gallardo (2006, 2014).

Both for the two-body and three-body resonances, the equations of motion in
typical cases are approximately reducible to the equation of the non-linear pendulum
with periodic perturbations. Therefore, it becomes possible to estimate analytically
the Lyapunov times of the motion (Shevchenko 2007a). It should be noted that
the analytical estimating of the Lyapunov exponents represents a perspective tool
for identification of asteroids in resonances: by means of comparison of analytical
and numerical-experimental values of the Lyapunov exponents one may judge on
plausibility of any such identification.

In Fig. 8.8, the distribution of osculating elements of all main belt asteroids
(known in 1983) is shown, with separatrices (boundaries of the libration areas) of
low-order mean motion Jovian resonances superimposed, as calculated in Dermott
and Murray (1983). Inside the gross chaotic zone of the overlapping resonances,
the separatrices of the 2/1 and 3/2 resonances are dashed. It is evident that the
resonances are mostly cleared from asteroids. This is due to the subresonances

Fig. 8.8 Distribution of osculating elements of asteroids, with the separatrices of mean motion
resonances superimposed (Figure 5 from Dermott and Murray 1983, by permission from Springer
Nature, © 1983)
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Fig. 8.9 Two-dimensional distribution of asteroids in the “semimajor axis—eccentricity” proper
elements. Blue: resonant asteroids. Black: non-resonant asteroids. Red, yellow, and green:
members of asteroid families in various definitions (Credits: AstDyS 2020)

Fig. 8.10 Two-dimensional distribution of asteroids in the “semimajor axis—sine of inclination”
proper elements. The colour designations are the same as in Fig. 8.9 (Credits: AstDyS 2020)

overlap inside multiplets of subresonances, corresponding to the given mean motion
resonances; the overlap phenomenon will be discussed further on.

In Figs. 8.9 and 8.10, high-order two-body resonances and three-body reso-
nances graphically manifest themselves as depopulated narrow vertical areas in
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the distributions of asteroids in the “semimajor axis—eccentricity” and “semimajor
axis—inclination” proper elements. The proper orbital elements represent the
elements’ values after removal of any contributions due to perturbations from
other bodies. The proper elements characterize the inherent properties of the orbit;
rigourous definitions and procedures for calculations of the proper elements are
given in Murray and Dermott (1999).

The asteroid distributions in Figs. 8.9 and 8.10 show that, due to two-body and
three-body mean motion resonances, and also due to secular resonances (considered
further on in Sect. 8.2.5), the asteroid belt is essentially structured. Moreover, the
dynamical interaction of asteroid families with three-body and high-order two-body
resonances represents an important dynamical factor in the asteroidal transport in
the Solar system. A vivid example is provided by a chaotic diffusion process, due
to the 5-2-2 three-body resonance, in the (490) Veritas asteroidal family (Cachucho
et al. 2010).

It is usually not known which resonant multiplet causes chaotic behaviour of
a particular asteroid, because three-body resonances (which are most numerous
among the asteroidal resonances) are difficult to identify. A massive identification
of the main belt asteroids in two-body and three-body resonances with planets was
carried out in Smirnov and Shevchenko (2013). In direct numerical integrations, the
long-term behaviour of resonant arguments was analysed for all asteroids from the
AstDyS database (AstDyS 2020), containing hundreds of thousands of objects. The
asteroids in pure three-body resonances up to the 6th order inclusive were shown
to constitute about 1% of all studied objects, in good agreement with an earlier
estimate made by Nesvorný and Morbidelli (1998) based on a sample of several
hundreds asteroids.

Taking into account the D’Alembert rules (see, e.g., Morbidelli 2002), the
resonant argument for any two-body asteroid–Jupiter resonance of order q is defined
by the formula

σ = (p + q)λJ − pλ− q� (8.25)

(Murray and Dermott 1999; Morbidelli 2002; Gallardo 2006), where λJ and λ are
the mean longitudes of Jupiter and an asteroid, respectively, and� is the longitude
of perihelion of the asteroid; q ≥ 0 is the resonant order, p > 0 is an arbitrary
integer number. The approximate resonant semimajor axis of the asteroidal orbit is
given by

ares ≈ aJ(1 + μ)−1/3
(

p

p + q
)2/3

, (8.26)

where aJ is the semimajor axis of Jupiter’s orbit, and μ is the mass of Jupiter in
Solar units.

The resonant libration is defined as transient, if circulation of the resonant
argument appears at any time during the time interval of integration. In Smirnov and
Shevchenko (2013), to distinguish between the pure-resonant, transient-resonant
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and non-resonant behaviours, a technical parameter was introduced: the resonance
minimum time, which was set to 20,000 yr. If the total time of libration was equal
to the full time of computation (105 yr), then the asteroid was regarded to be in pure
resonance. If not, but the total time of libration exceeded the resonance minimum
time, then the asteroid was regarded to reside in transient resonance. If the total
time of libration was less than the resonance minimum time, then the asteroid was
regarded to be non-resonant.

Figures 8.11 and 8.12 show the time behaviour of the resonant arguments and
orbital elements of 190 Ismene (pure resonance) and 1915 Quetzálcoatl (transient
resonance), as two typical examples of asteroids in two-body resonances with
Jupiter. In fact, a half (≈53%) of all asteroids identified by Smirnov and Shevchenko
(2013) to be in pure two-body resonances with Jupiter are Trojans. Pure Trojans
plus pure Hildas (asteroids in the 3/2 resonance with Jupiter) constitute ≈85% of all
asteroids residing in pure two-body resonances.

The three-body resonant argument in the planar asteroid–Jupiter–Saturn problem
is given by

σpJ,pS,p = mJλJ +mSλS +mλ+ pJ�J + pS�S + p�, (8.27)

Fig. 8.11 The orbital elements and resonant argument of 190 Ismene, as a function of time. Ismene
is in the 3/2 resonance with Jupiter; the resonance is pure (Figure 8 from Smirnov and Shevchenko
2013, with permission from Elsevier)



176 Chaotic asteroids and KBOs

Fig. 8.12 The orbital elements and resonant argument of 1915 Quetzálcoatl, as a function of time.
Quetzálcoatl is in the 3/1 resonance with Jupiter; the resonance is transient (Figure 9 from Smirnov
and Shevchenko 2013, with permission from Elsevier)

where λJ, λS, λ, �J, �S, � are the mean longitudes and longitudes of perihelia
of Jupiter, Saturn, and an asteroid, respectively;mJ, mS, m, pJ, pS, p are integers
satisfying the D’Alembert rule

mJ +mS +m+ pJ + pS + p = 0. (8.28)

On the D’Alembert rules see Morbidelli (2002), and on the D’Alembert functions
in general see Kholshevnikov (1997, 2001).

The order q of a three-body mean motion resonance is defined as the absolute
value of the algebraic sum of the coefficients at the mean longitudes in the resonant
argument:

q = |mJ +mS +m|. (8.29)

The order q is important, because the coefficient of the leading resonant term
in the perturbing function contains the eccentricity e in the power of q (Nesvorný
and Morbidelli 1998). The corresponding subresonance width is proportional to the
square root of this coefficient. Therefore, the value of q determines the strength of
the guiding subresonance. Note that, in case of two-body resonances, the role of
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the two-body resonance order q is analogous: the coefficient of the leading resonant
term is proportional to eq (Nesvorný and Morbidelli 1998).

Three-body mean motion resonances correspond to commensurabilities between
the mean frequencies of the orbital motions of an asteroid and two planets, here
Jupiter and Saturn:

mJλ̇J +mSλ̇S +mλ̇ ≈ 0, (8.30)

where λ̇J, λ̇S, λ̇ are the time derivatives of the mean longitudes of Jupiter, Saturn,
and asteroid; mJ, mS, m are integers. The set of possible combinations of the
mJ, mS, and m integers is limited by the inequalities

q ≤ qmax, (8.31)

and

|mJ|, |mS|, |m| ≤ Mmax, (8.32)

where qmax and Mmax were set in Smirnov and Shevchenko (2013) to 6 and 8,
respectively.

In Smirnov and Shevchenko (2013), solely the resonances with Jupiter and
Saturn were studied, and the resonances were considered in the planar problem, i.e.,
the longitudes of nodes in the expression for the resonant argument were ignored.
The maximum considered order qmax of the three-body resonances was set equal to
6.

An example of a pure three-body resonance is given in Fig. 8.13, where the long-
term orbital behaviour of the asteroid 463 Lola, residing in the 4-2-1 resonance with
Jupiter and Saturn, is graphically presented. An example of a transient three-body
resonance is given in Fig. 8.14, where the time behaviour of 490 Veritas, residing in
the 5-2-2 resonance, is illustrated.

According to Smirnov and Shevchenko (2013), the fraction of asteroids in three-
body resonances (transient plus pure) up to the 6th order inclusive turned out to
be ≈4.4% of the total studied set of ≈250,000 asteroids. The fraction of asteroids
in pure three-body resonances of the same orders is ≈0.94% of the total studied
set. The top three most populated three-body resonances (pure plus transient ones)
turned out to be the 5-2-2, 4-2-1, and 3-2-1 ones. The top three most populated pure
resonances are the 4-2-1, 3-1-1, and 5-2-2 ones. By using a high-order extrapolation
(in the form of a power law) of the q dependence of the number of identified
resonant objects, the actual total fraction of asteroids residing in the pure three-body
resonances of all orders can be estimated as ≈1.1% of the whole set.

In the transient plus pure resonances, the identified three-body resonant asteroids
are ≈2.5 times more abundant than the two-body resonant ones. In the pure
resonances, the abundances are comparable, but, if one excludes Trojans and
Hildas, the abundance of three-body-resonant asteroids becomes overwhelming. If
one extrapolates abundances by taking into account higher-order resonances, this
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Fig. 8.13 The orbital elements and resonant argument of 463 Lola, as a function of time. Lola is
in the 4-2-1 resonance with Jupiter and Saturn; the resonance is pure (Figure 1 from Smirnov and
Shevchenko 2013, with permission from Elsevier)

overwhelming domination would even increase. Therefore, the analysis of Smirnov
and Shevchenko (2013) quantitatively confirms the assertion by Nesvorný and
Morbidelli (1998) that “the three-body mean motion resonances seem to be the main
actors structuring the dynamics in the main asteroid belt.”

The omnipresence of chaotic two-body and three-body mean motion resonances
in the asteroid belt is conveniently illustrated by the asteroidal maximum Lyapunov
exponent “scan,” across the whole belt, in the initial asteroidal semimajor axis with
all other initial orbital elements fixed to some values. Such a scan, constructed by
Morbidelli and Nesvorný (1999) in direct numerical integrations of the asteroidal
motion, is presented in Fig. 8.15. The initial asteroidal eccentricity is fixed to 0.1,
and the inclination to zero. The dynamical model comprises perturbations from the
four giant planets. The maximum Lyapunov exponent is measured in yr−1. In the
scan, the chaotic resonances reveal themselves as peaks, whose height characterizes
the chaoticity degree and whose width characterizes the resonance strength (the
radial extent of the corresponding multiplet of overlapping subresonances). The
flat ground level of the scan is due to the finite integration time, which was set
to 2.3 Myr. The peaks’ designations mostly indicate two-body Jovian resonances
and Jupiter–Saturn-asteroid three-body resonances; the exceptions are: S6/1 is the
6/1 resonance with Saturn, and 4J-2U-1 is a Jupiter–Uranus-asteroid three-body
resonance. The realm of the ν6 secular resonance is designated by “ν6.” The
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Fig. 8.14 The orbital elements and resonant argument of 490 Veritas. Veritas is in the 5-2-
2 resonance with Jupiter and Saturn; the resonance is transient (Figure 2 from Smirnov and
Shevchenko 2013, with permission from Elsevier)

resonant structure of the asteroid belt clearly manifests itself in Fig. 8.15. The
abundance of chaotic resonances obviously rises on approaching the orbit of the
main perturber (Jupiter).

8.2.2 The Kuiper Belt Objects

The Kuiper belt represents a broad ring of primordial planetesimals (trans-
Neptunian objects, TNOs), situated outer to Neptune’s orbit; see Fig. 8.16. The
Kuiper belt has a significant resonant component. It also contains a lot of highly-
eccentric bodies, whose orbits are essentially chaotic.

In Fig. 8.16, the distribution of the observed trans-Neptunian objects (TNOs)
is presented in the “semimajor axis—eccentricity” plane. The plot graphically
illustrates the complex structure of the Kuiper belt, featuring, first of all, its resonant
populations. The resonant structure of the belt clearly reveals itself. The vertical
lines indicate mean motion resonances with Neptune, including the 1/1 resonance
corresponding to the Neptune Trojans (at 30 AU). The objects of the scattered
disc are located in the region between two curves (dotted) of constant perihelion
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Fig. 8.15 The asteroidal maximum Lyapunov exponent as a function of the initial asteroidal
semimajor axis a, across the asteroid belt; see text for details (Figure 1 from Morbidelli and
Nesvorný 1999, with permission from Elsevier)
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Fig. 8.16 The Kuiper belt dynamical structure. Resonant and highly-eccentric populations are
obviously present (Figure 1 from Sheppard 2006, by permission from ASP)

distances, equal to 30 and 40 AU. The “extended scattered disc” objects have
pericentric distances greater than 45 AU. Classical TNOs are distributed at smaller
eccentricities, their orbital semimajor axes range up to 50 AU.

By debiasing the detection statistics, the 5/2 resonance with Neptune was found
to host a population comparable with that in the 3/2 resonance (Gladman et al.
2012); see Fig. 8.17. According to Gladman et al. (2012), the population of TNOs in
the 5/2 resonance with Neptune is estimated to be as large as in the 3/2 resonance,
whereas other (non-half-integer) resonant populations are radically smaller. One of
the most distant known resonant TNOs resides in the 27/4 resonance with Neptune
(Gladman et al. 2012).

The abundance of potential two-body and three-body mean motion resonances in
the Kuiper belt is illustrated by a model TNO’s maximum Lyapunov exponent scan,
across the whole Kuiper belt, in the initial TNO’s semimajor axis with all other
initial orbital elements fixed to some values. Such a scan, constructed by Nesvorný
and Roig (2001), is presented in Fig. 8.18. Its construction is analogous to that of the
scan for the asteroid belt, presented in Fig. 8.15. The peaks’ designations indicate
two-body resonances with Neptune and Uranus (marked, accordingly, with “N” and
“U”) and Neptune–Uranus–TNO three-body resonances. In Fig. 8.18, the resonant
structure of the Kuiper belt graphically manifests itself; note the greater chaoticity
of the “inner” (a � 43 AU) Kuiper belt.
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Fig. 8.17 Resonant populations of the Kuiper belt. Left panels: before debiasing the statistics;
right panels: after the debiasing (Figure 8 from Gladman et al. 2012, by permission of IOP
Publishing/AAS)

8.2.3 Two-Body Resonances

To estimate Lyapunov timescales of asteroidal orbits in mean motion resonances
with Jupiter, a resonance model derived in Holman and Murray (1996); Murray and
Holman (1997) can be straightforwardly used (Shevchenko 2007a). This model is
described further on, in Sect. 13.2.1, in a generalized form suitable for any passively
gravitating particle moving around a primary and perturbed by a secondary in an
outer mildly eccentric orbit. Thus, we work in the framework of the planar restricted
three-body “Sun–Jupiter-asteroid” problem.

Equations (13.9)–(13.13) are used to estimate parameters of any particular
resonance. The units are chosen in such a way that the system total mass (Sun plus
Jupiter), the gravitational constant G, Jupiter’s semimajor axis aJ are all equal to one;
μ = 1/1047.355, μ1 = 1 − μ. Jupiter’s mean longitude lJ = nJt , and eccentricity
eJ = 0.048. Jupiter’s mean motion nJ = 1, i.e., the time unit equals 1

2π th part of
Jupiter’s orbital period. The initial eccentricity of the asteroidal orbit is set to 0.01.

For any mean motion resonance, the guiding subresonance in the multiplet is
identified (as that with maximum |ϕk+q,k+p,k|), and its two closest neighbours
are considered as the perturbing resonances. The ratio of the obtained 
 and
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Fig. 8.18 Same as Fig. 8.15, but for the Kuiper belt; see text for details (Figure 2 from Nesvorný
and Roig 2001, with permission from Elsevier)

ω0 frequencies gives the adiabaticity parameter λ. Then, the resonance type
is determined: non-adiabatic chaotic triad, non-adiabatic chaotic duad, adiabatic
chaotic triad, or adiabatic chaotic duad. If the amplitudes of the neighbours differ
from each other less than by a factor of two, the model resonance is considered to
be a triad, otherwise a duad.



184 Chaotic asteroids and KBOs

Table 8.6 Lyapunov
timescales TL (yr) in mean
motion resonances
(Shevchenko 2007a)

k+q
k

λ log10
T num

L
a log10 T

theor
L Res. type

3/1 0.093 3.8–4.3 4.3 ACD

5/2 0.192 3.5–3.8 4.1 ACT

7/3 0.415 3.8–4.2 4.0 ACT

9/4 0.932 3.9–4.3 4.2 NACD

11/5 1.970 3.9–4.3 4.3 NACT

9/5 0.323 3.6–3.8 3.7 ACT

7/4 0.166 3.2–3.3 3.7 ACT

12/7 0.594 3.6–4.0 3.9 NACD

5/3 0.101 2.5–3.3 3.7 ACD

8/5 0.156 2.5–3.3 3.6 ACT

11/7 0.264 3.3–3.6 3.5 ACT

Reproduced with permission from Cambridge University
Press
aMorbidelli and Nesvorný (1999), Holman and Murray
(1996)

The resulting estimates are given in Table 8.6. In the table, the resonance types
are designated as “NACT” (non-adiabatic chaotic triad), “NACD” (non-adiabatic
chaotic duad), ‘ACT” (adiabatic chaotic triad), and “ACD” (adiabatic chaotic duad).
The analytical estimates of Lyapunov times are made by means of formulas (3.26),
(3.28), (3.30), and (3.31), respectively.

For comparison, we take the data on the numerical TL values from (Morbidelli
and Nesvorný 1999, Figure 1)5 and (Holman and Murray 1996, Figure 6), where the
motion close to the mean motion resonances was investigated in direct numerical
integrations.

From Table 8.6 it follows that the analytical Lyapunov timescale estimates
are generally in accord with the numerical-experimental ones. However, some
differences can be clearly seen, especially in the domain of adiabatic chaos. This
should be attributed to the imperfectness of the model (13.9) in application to the
given problem; mostly due to the ϕk+q,k+p,k coefficients being treated as constants.

Following Shevchenko (2007a), let us consider Lyapunov timescale of the
motion of a real asteroid, namely, 522 Helga. This asteroid is famous to be the first
ever actual example of stable chaos in the dynamics of asteroids (Milani and Nobili
1993): Helga’s Lyapunov time is relatively small (≈6900 yr), but its orbit does not
exhibit any gross changes on timescales of millions of years, as follows from direct
numerical integrations.

522 Helga is known to reside in the 12/7 mean motion resonance. We take
necessary data on the semimajor axis a, eccentricity e, and perihelion frequency
g = �̇ from the AstDyS database (AstDyS 2020). Tpert is defined by the perihelion
frequency g. One finds that the guiding subresonance in the resonance sextet is the

5Reproduced in Fig. 8.15 in this book.
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third one (p = 2); therefore, the perturbing neighbours in the model (13.9) have
numbers p = 1 and 3. Since εq = 0.624 < 1, the model is valid. The separatrix
map parameters λ = 2.325 and η = 0.812. Therefore, the resonance type is the
non-adiabatic chaotic triplet. Applying formula (3.26), one obtains TL = 9700 yr.

On the other hand, the standard map theory, given by Eq. (3.38), provides a lower
bound for the Lyapunov time. According to Eq. (3.39), the stochasticity parameter
K = (2π/λ)2, and for 522 Helga one has K ≈ 7.3. Equation (3.38) gives
TL ≈ 5100 yr (Shevchenko 2014). We see that the theoretical estimates of Helga’s
Lyapunov time range from 5000 to 10,000 yr; this generally agrees with results of
direct numerical integrations in the full dynamical problem (taking into account the
perturbations from all planets), which give 6900 yr (Milani and Nobili 1993) and
6860 yr (AstDyS 2020).

The standard map theory seems to provide TL estimates closer to the actual
numerical-experimental values. The cause is that the number of subresonances in
the multiplet is large and the relative perturbation strength ε is not far from unity,
i.e., to the value characteristic for the standard map Hamiltonian (1.24).

8.2.4 Three-Body Resonances

An essential role in orbital dynamics of Solar system bodies, and in particular
asteroids, is played by the three-body resonances, defined above in Sect. 8.2.1. The
three-body resonances can be analytically described in the perturbed pendulum
model (Murray et al. 1998; Nesvorný and Morbidelli 1998, 1999). The Hamiltonian
of the motion of a zero-mass test particle near a three-body resonance {mJmSm} with
Jupiter and Saturn in the planar-elliptic problem can be approximately expressed as

H = αS2 +
∑

pJ,pS,p

βpJpSp cos σpJpSp (8.33)

(Nesvorný and Morbidelli 1999), where the resonant argument

σpJpSp = mJlJ +mSlS +ml + pJ�J + pS�S + p�

is conjugated to the momentum-like S variable; α = −(3/2)n2a−2
res , n is the

asteroid’s mean motion. It is assumed that the time derivatives of lJ, lS, �J, and
�S are constants. Analytical expressions for βpJpSp(e) for some important three-
body resonances are given in (Nesvorný and Morbidelli 1999, Tables 3–6).

From the Hamiltonian (8.33) it is clear that any {mJmSm} three-body resonance
is split in a cluster of subresonances with various {pJpSp} combinations. The
frequency of small-amplitude phase oscillations on subresonance {pJpSp} is given
by

ω0 = 2πn(3βpJpSp)
1/2a−1

res (8.34)
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(Nesvorný and Morbidelli 1999). The perturbation frequency
 generally represents
an algebraic combination of the perihelion frequencies of Jupiter, Saturn, and
the asteroid. The combination is defined by the guiding subresonance choice,
as specified below. The ratio of 
 and ω0 gives the value of the adiabaticity
parameter λ.

Consider asteroids that were identified by Nesvorný and Morbidelli (1999)
to reside in three-body resonances. To assess the coefficients of resonant terms,
we use analytical data given in Tables 3–6 in Nesvorný and Morbidelli (1999).
The guiding subresonance in the multiplet is identified as the subresonance that
has the maximum value of |βpJpSp|. Its two closest neighbours are considered
as the perturbing resonances. The theoretical estimates of Lyapunov times are
accomplished by means of formulas (3.26), (3.28), (3.30), and (3.31), as in case
of two-body resonances in the previous section. The formula is chosen according to
the resonance multiplet type.

The identification of the guiding subresonances in the multiplets shows that the
three-body resonances can be subdivided into two distinct types: (1) in which the
perturbation frequency 
 in model (3.23) is equal to �̇ − �̇J, and (2) in which 

is equal to �̇S − �̇J (Shevchenko 2007a). The 5-2-2 and 3-1-1 resonances belong
to the first type, while the 2+2-1 and 6+1-3 resonances to the second. We set �̇J =
4.257′′/yr and �̇S = 28.243′′/yr (Bretagnon 1990). The data on �̇ , a, and e are
taken from the AstDyS database (AstDyS 2020).

The theoretical estimates of Lyapunov times are presented in Table 8.7. Some of
them agree with the numerical ones (in particular, that of Veritas), others do not.
The latter case is presented by Genua and Paine-Gaposchkin; one may judge that
these objects most probably do not reside in the chaotic domains of the prescribed
resonances. In this way, analytical estimating the Lyapunov times may allow one to
discern between possible models of chaos in the motion of actual asteroids.

Table 8.7 Lyapunov timescales TL (yr) of asteroids in three-body mean motion resonances
(Shevchenko 2007a)

Asteroid Resonance{mJmSm} λ
T num

L , yr
a

T num
L , yr

b T theor
L , yr Res.

type
258 Tyche 2 + 2 − 1 0.536 35,900 – 43,100 NACT

485 Genua 3 − 1 − 1 0.376 6550 6500 35,700 ACD

1642 Hill 3 − 1 − 1 0.643 36,100 – 43,300 NACD

936 Kunigunde 6 + 1 − 3 0.624 22,200 – 54,600 NACD

490 Veritas 5 − 2 − 2 0.546 10,200 8500 9100 NACD

2039 Paine-Gaposchkin 5 − 2 − 2 0.449 22,000 – 6020 ACD

3460 Ashkova 5 − 2 − 2 0.433 65,100 8300 5940 ACD

Reproduced with permission from Cambridge University Press
aAstDyS (2020)
bNesvorný and Morbidelli (1998, 1999), Milani et al. (1997)
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Fig. 8.19 Histograms of
resonant asteroids in the
maximum Lyapunov
exponent L. N is the number
of asteroids per bin. Grey:
asteroids in transient
resonances; black: asteroids
in pure resonances (Figure 6
from Smirnov and
Shevchenko 2013, with
permission from Elsevier)
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The AstDyS database (AstDyS 2020) provides information on the maximum
Lyapunov exponents for almost all asteroids contained in it. It is instructive to
check how the AstDyS data on Lyapunov exponents correlate with the pure/transient
division of resonances to which resonant asteroids, identified by Smirnov and
Shevchenko (2013), belong. In pure resonances, the motion is expected to be
mostly regular, whereas in transient resonances it is expected to be chaotic. Indeed,
sporadic transitions from libration to circulation and vice versa are characteristic for
dynamics in near-separatrix chaotic layers.

The resulting differential distributions of resonant asteroids in the maximum
Lyapunov exponent L are presented in Fig. 8.19. N is the number of asteroids in
the (L, L+�L) bin, where �L = 10, and L are measured in units of (mln yr)−1.
(Note that in the AstDyS database they are given in units of yr−1.) The histogram
for asteroids in transient resonances is depicted in grey, and that for asteroids in pure
resonances in black. At L > 500 (mln yr)−1 (the range not shown in the plot), there
are only few objects; such highly chaotic objects are in transient resonances.

As one would expect, the distribution of the transiently resonant objects in
Fig. 8.19 is much more extended to greater L values, in comparison with the pure-
resonant objects. This distinction is uniform for all resonant groups: in Fig. 8.20,
where the distribution of resonant asteroids on the “semimajor axis a—maximum
Lyapunov exponentL” plane is shown, the open circles (representing the transiently
resonant objects) are distributed to much greater heights, in comparison with the
black circles (representing the pure-resonant objects), in all resonant groups present
in the plot. From the plot it is evident that solely transiently resonant objects possess
extremely large Lyapunov exponents, corresponding to the Lyapunov time down to
≈570 yr.

Averaged over all identified pure-resonant asteroids, the maximum Lyapunov
exponent is L ≈ 34 (mln yr)−1, and, averaged over all identified transient-
resonant asteroids, it is L ≈ 50 (mln yr)−1. The Lyapunov times TL ≈ 3 · 104

and ≈2 · 104 yr, respectively. In the AstDyS database, asteroids with numerically
measured Lyapunov exponents have, on average, the maximum Lyapunov exponent
L ≈ 21 (mln yr)−1; this corresponds to the Lyapunov time ≈5 · 104 yr. Therefore,
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Fig. 8.20 Distribution of resonant asteroids on the “semimajor axis a—maximum Lyapunov
exponent L” plane. Open circles: asteroids in transient resonances; black circles: asteroids in pure
resonances (Figure 7 from Smirnov and Shevchenko 2013, with permission from Elsevier)

the pure-resonant and transient-resonant asteroids both turn out to be on average
more chaotic than a randomly chosen asteroid (Smirnov and Shevchenko 2013).

8.2.5 Secular Resonances

Along with two-body and three-body mean motion resonances, secular resonances
play an essential role in forming the dynamical structure of the asteroid belt (Murray
and Dermott 1999; Morbidelli 2002). Recall that secular resonances correspond to
commensurabilities between the rates of apsidal or nodal precession of orbits of an
asteroid and a planet.

The Lagrange planetary equations of the lowest order in the eccentricities and
inclinations are in the basis of the classical secular planetary theory. Their solution
splits in two independent sub-solutions, one in the (e,�) elements (eccentricity and
longitude of pericentre) and one in the (i,
) elements (inclination and longitude
of ascending node); see, e.g., Murray and Dermott (1999). Using these solutions,
the locations of the main secular resonances in the proper elements space can
be identified. If one takes into account higher-order terms in the eccentricity and
inclination and/or the second order terms in the mass parameter, the two sub-
solutions are no more decoupled and the theory becomes more complicated; see
Froeschlé and Morbidelli (1994) and Knez̆ević and Milani (1994).
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A simplest secular resonance takes place if the frequency of the proper longitude
of pericenter �̇proper or the frequency of the proper longitude of ascending node

̇proper of a particle are in a resonant combination with one of the eugenfrequencies
of the system of perturbers. For an asteroid, a secular resonance takes place, for
example, if any of its proper frequencies of the apsidal or nodal precession equals
any of the proper frequencies of the planetary system. The secular-resonant relations
specify two-dimensional surfaces in the three-dimensional (a, e, i) proper element
space. The locations of principal linear secular resonances in the asteroid belt,
called the ν5, ν6, and ν16 resonances, were calculated by Williams (1969) and
Williams and Faulkner (1993). In these resonances, �̇proper−g5 = 0, �̇proper−g6 =
0, and 
̇proper − s6 = 0, respectively. Here gk and sk are the planetary frequencies,
k = 1, 2, . . . , 8. The subscript in the resonance designations gives the ordinal
number of the corresponding planetary frequency: ν1 = g1, . . . , ν10 = g10, ν11 =
s1, . . . , ν18 = s8.

In Fig. 8.21, the distribution of the main-belt asteroids in the “semimajor axis—
inclination” plane of proper elements is shown along with the curves corresponding
to several major secular resonances; the curves data were calculated for eproper = 0.1
in Milani and Knežević (1990). From the plot it is clear that the main belt’s
inner edge is formed by the ν6 resonance, and the outer edge by the 2/1 mean
motion resonance; see also Fig. 8.15. The distributions of the main-belt asteroids

Fig. 8.21 Dashed curves: the ν5, ν6, and ν16 secular resonances in the “proper semimajor axis—
proper inclination” plane, at eproper = 0.1. Dots: distribution of asteroids (Figure 7.19 from Murray
and Dermott 1999, by permission from © Cambridge University Press)
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Fig. 8.22 Distribution of 12487 asteroids in two planes of proper elements (Figure 1 from Zappalà
et al. 1995, with permission from Elsevier)

in inclination at i < 30◦ are controlled by the ν5, ν6, and ν16 resonances. The
depletion of the ν5 resonance is mostly due to the Lidov–Kozai effect, described
further on in Sect. 15.

The so-called non-linear secular resonances6 correspond to terms of higher
order in the eccentricities and inclinations in the expansion of the perturbing
function. According to Knez̆ević and Milani (1994), the following non-linear secular
resonances are important in the asteroid belt: �̇proper + 
̇proper − g5 − s6, �̇proper +

̇proper −g6 − s6, �̇proper + 
̇proper −g5 − s7, �̇proper − 2g6 +g5, �̇proper − 2g6 +
g7, �̇proper − 3g6 + 2g5, 
̇proper − s6 − g5 + g6, 2�̇proper + 
̇proper − 2g6 − s6,
and 3�̇proper + 
̇proper − 3g6 − s6.

In Fig. 8.22, distribution of some twelve thousand asteroids on two planes
of proper semimajor axes, eccentricities, and inclinations is presented; and, in
Fig. 8.23, the locations and widths of major secular resonances are shown, for a
model with the proper eccentricity set equal to 0.1. Comparing Figs. 8.22 (left
panel) and 8.23, one may see that, in areas where major secular resonances overlap,
the asteroidal population is strongly depleted. The population is also depleted at
the resonances themselves, due to overlap of their subresonances. In this way, the
secular resonances play a major role in formation of the asteroid belt’s dynamical
structure.

6Not to confuse with general non-linear resonances, introduced in Sect. 1.1.
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Fig. 8.23 The locations and widths of major secular resonances in the “proper semimajor axis—
proper inclination” plane, at eproper = 0.1; compare with Fig. 8.22a (Figure 5 from Milani and
Knežević 1990, by permission from Springer Nature, © 1990)

8.3 Cometary Dynamics

The cometary motion and, generally speaking, any perturbed highly-eccentric
motion is generally chaotic, even when close encounters with perturbers are absent.
The fundamental cause for the cometary chaos lies in the accumulation of the p/1
mean motion resonances between the “planet” (inner perturber) and the comet
(test particle) in the vicinity of the parabolic trajectory, which plays the role of
a separatrix between the bounded (elliptic) and unbounded (hyperbolic) types of
motion. This was revealed in the works by Petrosky (1986) and Chirikov and
Vecheslavov (1986); in the both works, an especial area-preserving two-dimensional
map, now called the Kepler map, was independently derived to provide analytical
means for description of the chaotic motion of comets in perturbed highly-eccentric
orbits.

The goal of the work by Chirikov and Vecheslavov (1986) was to characterize
the qualitative dynamics of the Halley comet, while awaiting its apparition in
1987. As well as Hyperion’s rotation served as the first-ever example of observed
chaotic rotational motion in the Solar system, the motion of comet Halley served
the first-ever example of revealed (although not directly observed) chaotic orbital
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motion. The chaos in the Halley comet long-term orbital dynamics was revealed by
Chirikov and Vecheslavov (1986, 1989) in an analysis of the historical chronicles
of the comet’s apparitions. Since then, the modern Kepler map theory allows one
to characterize the chaotic diffusion phenomenon in the cometary dynamics and
dynamics of meteor streams (Emelyanenko 1992; Liu and Sun 1994; Malyshkin
and Tremaine 1999; Zhou and Sun 2001; Zhou et al. 2000, 2002).

8.3.1 Comets: Highly Chaotic

The Kepler map is derived in the assumption that the planetary perturbation is
concentrated at the time moment when the comet passes its orbital pericentre; and
away from the pericentre it moves in a non-perturbed Keplerian orbit. The map is
given by Eqs. (1.45) or (1.46) with γ = 3/2:

yi+1 = yi + sin xi,

xi+1 = xi + λ|yi+1|−3/2, (8.35)

where y is the comet’s normalized orbital energy, x is the normalized time, and λ
is the map’s sole constant parameter, analogous to the adiabaticity parameter of the
ordinary separatrix map. Each iteration of the map corresponds to one consecutive
orbital revolution of the comet. This means that the map time unit, corresponding
to one iteration, is not constant: the increment of actual time per iteration is �xi =
xi − xi−1.

The chaos described by the Kepler map is generically non-adiabatic, with the
adiabaticity parameter λ � 1 (Shevchenko 2011b). This allows one to approximate
the Kepler map locally in the y variable by the standard map with good accuracy.
Then, using the standard map theory, the local and global Lyapunov and diffusion
timescales of the motion can be estimated straightforwardly.

According to Fig. 8.24, the Kepler map’s chaotic trajectories have the Lyapunov
time TL ∼ 1 in the units of the map iterations; therefore, any two chaotic trajectories
with slightly different initial conditions would substantially diverge already on the
timescale of several map iterations.

First estimates of the Lyapunov and diffusion timescales were made in the
pioneering works of Chirikov and Vecheslavov (1986, 1989) in application to the
Halley comet. As given by formula (11.99), the Kepler-map-based lower bound for
the Halley comet’s Lyapunov time is ∼30–40 yr (Shevchenko 2007a). This lower
bound characterizes the Lyapunov timescale averaged over all possible dynamical
states of the comet inside the Kepler map’s chaotic layer. Using data of Chirikov and
Vecheslavov (1986); Vecheslavov and Chirikov (1988); Chirikov and Vecheslavov
(1989) on the amplitude of perturbation of the comet’s energy, one finds λ ≈
1.2 · 104 � 1; therefore, the local approximation of the Kepler map by the standard
map, used in deriving the lower bound, is valid.
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Fig. 8.24 Dots: the λ dependence of the maximum Lyapunov exponent LK of the Kepler map.
Solid curve: a fitting rational function (Figure 3 from Shevchenko 2007a, by permission from
© Cambridge University Press)

This lower bound is in accord with results of numerical integrations of the
comet’s dynamics performed in the full problem settings (Muñoz-Gutiérrez et al.
2015; Boekholt et al. 2016; Pérez-Hernández and Benet 2019). The integrations
usually give the Lyapunov time of the order of hundreds of years. Note that
the numerical-experimental estimates typically has a local character, as they are
naturally obtained on restricted time intervals, limited from above at least by the
time of comet’s ejection from the Solar system.

It is expectable that relation (11.99) applies for the motion of any long-periodic
comet, or any Halley-type comet, or any asteroid in a highly-eccentric orbit with
a similar kind of perturbation; i.e., the Lyapunov time of such an object can be in
practice approximately determined by its orbital period solely.

As a whole, the planet-crossing comets and planet-crossing asteroids, near-Earth
asteroids (NEAs) among them, form the most chaotic classes of orbiting bodies
in the Solar system. The Lyapunov times of these objects in comparison with the
Lyapunov times of the ordinary main-belt asteroids can be rather small, down to
several years. Whipple (1995) explored the chaotic orbital motion of 175 actual
asteroids with the pericentric distance q < 1.6 AU (corresponding to the Solar
system inner part), and found that the Lyapunov times could be as small as 10 yr,
due to encounters with the terrestrial planets. The TL values range from ∼10 to
∼20,000 yr. 34 of these 175 objects are so chaotic, that the errors in determination
of their orbits double in less than 70 yr.

To date, no known asteroid or comet seems to violate the bound (11.99). In
this respect, a “Lyapunov time—semimajor axis” diagram, constructed in (Whipple
1995, Figure 2) is of particular interest; in this diagram, one may see that all the
highly-chaotic objects presented in the diagram have TL ≥ 10 yr, and, since their
semimajor axes a < 3.5 AU, the bound (11.99) is in no way violated.



194 Chaotic asteroids and KBOs

Tancredi (1995, 1999) considered the orbital evolution of two groups of planet-
crossing bodies, namely, (1) 145 Jupiter family comets and (2) 307 NEAs. The
NEAs were defined as inactive objects with aphelia Q > 1 AU and perihelia
q < 1.5 AU. In direct integrations, the TL values were found to be in the range
30–200 yr for the first group, and 10–300 yr, mostly 50–150 yr, for the second one.
The minimum observed value was ≈10 yr.

Therefore, the planet-encountering asteroids and comets definitely belong to the
most chaotic classes of objects in the Solar system; their Lyapunov times can be as
low as several years. This is in accord with the straightforward estimate (11.99).

8.3.2 Lévy Flights at the Edge of Escape

Chaotic behaviour of planet-crossing, and not only planet-crossing, small bodies in
celestial-mechanical problems can be naturally considered in the framework of the
abstract theory of Lévy flights. The Lévy flights, i.e., the increments (in a kind of
a random walk) that have a heavy-tailed distribution, is a well-studied subject with
various applications; see discussion in Shevchenko (2010). They were thoroughly
studied in connection with abstract problems of Hamiltonian dynamics; see Denisov
et al. (2002) and references therein. In celestial mechanics, Lévy random walks
arising due to close encounters with perturbing bodies were analysed in studies of
the long-term cometary orbital evolution (Zhou et al. 2002).

Lévy flights are typically considered in random walks with steps possible in at
least two (forward and back) directions. Conversely, the Lévy distributions analysed
below are one-sided: the increments are positive. In a general statistical setting, one-
sided Lévy flights are considered in Koren et al. (2007a,b), where exact results for
the first passage time and leapover statistics are given.

Both kinds of Lévy flights studied below in the framework of the three-body
problem are not directly due to encounters of bodies. One of these two kinds is due to
encounters of a trajectory with the separatrix in the phase space of motion; hereafter
we call such flights the Lévy flights of the first kind, or LF1s, since this phenomenon
corresponds to the Hamiltonian intermittency of the first kind. Conversely, the Lévy
flights of the second kind, or LF2s, are due to sticking of a trajectory to chaos borders
in the divided phase space of motion; these flights arise due to the second kind
Hamiltonian intermittency. They effect the duration of long Poincaré recurrences,
but not (practically) the orbital periods (Shevchenko 2010).

In the orbital behaviour of a tertiary in the planar restricted three-body problem,
which we consider in what follows, LF1s emerge in the form of sudden jumps in the
orbital semimajor axis and period, while LF2s emerge in the form of long sequences
of orbital revolutions with almost constant orbital semimajor axis and period.

The Lévy flights emerge independently of whether any encounters between
bodies take place or not. For example, in the cometary dynamical model described
by the Kepler map (Sect. 8.3), the perihelion distance of the comet can be by any
amount greater than the semimajor axis of the perturber’s orbit, but encounters with
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Fig. 8.25 A chaotic trajectory of the Kepler map (8.35) with λ = 5. LF1s are prominent as the
peaks of Porb at i − i0 � 100, and an LF2 is obvious as the oscillatory “plateau” of y and Porb
at i − i0 � 200. Thin curve: y; bold curve: log10 Porb. The i0 value is a large iteration number
chosen so that to exhibit the given part of the trajectory. (Reprinted Figure 1 with permission from
Shevchenko 2010. © 2010 by the American Physical Society)

the separatrix, with or without the separatrix crossings, may still take place, if the
cometary orbit is chaotic.

In the dynamics of the generalized separatrix map (1.45), LF1s and LF2s coexist,
if λ is large enough, as we shall see further on. In Fig. 8.25, a fragment of a chaotic
trajectory of the map (1.45) with γ = 3/2 is shown. At i − i0 � 100, LF1s are
prominent; they are presented by narrow peaks in the variation of the orbital period
Porb of the tertiary. At i − i0 � 200, an LF2 is obvious; is betrays itself by the
oscillatory low “plateau” in the variation of y and Porb. When y comes close to
y = 0, a jump in the orbital period is observed. When the trajectory sticks to a chaos
border in the divided phase space, both the energy and the orbital period oscillate
near some low constant value.

The stickiness effect, immanent to Hamiltonian dynamics in conditions of
divided phase space (Chirikov 1990), determines the distribution character for
Poincaré recurrences on large timescales: it is algebraic (Chirikov and Shepelyansky
1981, 1984). The algebraic decay in recurrence statistics in Hamiltonian systems
with divided phase space was considered, in particular, in Chirikov and Shepelyan-



196 Chaotic asteroids and KBOs

sky (1981, 1984), Chirikov (1990), Chirikov (2000), Cristadoro and Ketzmerick
(2008), starting with the pioneering work by Chirikov and Shepelyansky (1981).
Chirikov (1990), using his resonant theory of critical phenomena in Hamiltonian
dynamics, justified the value of 3/2 for the critical exponent α in the recurrence
length integral distribution

F ∝ T −α
r . (8.36)

The F(Tr) integral distribution is defined here as the relative fraction of the
recurrences with the duration greater than Tr, in the whole sample. An illustration
to the law (8.36) is given in Fig. 4.4.

In Cristadoro and Ketzmerick (2008), the algebraic decay of Poincaré recur-
rences was explored statistically on the basis of massive numerical data on
behaviour of various Hamiltonian systems. These numerical experiments showed
system-dependent power-law exponents, but the mean universal exponent α turned
out to be well-defined and equal to 1.57±0.03, somewhat different from the standard
3/2 value. Venegeroles (2009) reports α = 1.54 ± 0.07, resulting from averaging
independent massive numerical results; see Table 1 and references in Venegeroles
(2009).

In celestial mechanics, the algebraic decay was observed in numerical exper-
iments by Shevchenko and Scholl (1996, 1997) on asteroidal dynamics in the
3/1 mean motion resonance with Jupiter. The experiments were performed in the
framework of the restricted three-body Sun–Jupiter–asteroid problem; it was found
that the distribution tail for intervals Tr between asteroidal eccentricity jumps is
algebraic:

F ∝ T −α
r (8.37)

with α ≈ 1.5–1.7. This was interpreted as an effect of the chaotic orbits sticking to
chaos borders in the divided phase space of motion (Shevchenko and Scholl 1997).
In other words, this is the second kind Hamiltonian intermittency effect.

On the other hand, Dones et al. (1996) reported on algebraic tails of integral
distributions with the power-law index α = 0.8 ± 0.2, in studies of escape
time statistics of the highly-eccentric chaotic cometary dynamics in the Solar
system, with perturbations due to the four giant planets all taken into account.
This behaviour was interpreted in Shevchenko (2010) as an effect of the first kind
Hamiltonian intermittency. The reason is that the integral distribution decay with
α ≈ 1.5 is expected when LF2s dominate over LF1s.

The decay law with α ≈ 0.7 was observed in the behaviour of the Kepler map
by Borgonovi et al. (1988). They analysed long-time decay properties of a Kepler
map describing a one-dimensional model of hydrogen atom in a microwave field,
and by means of rigorous analytical deduction found the T −2/3

d law for the first
approximation for the time decay of the survival probability in case of the escape
times measured in real (constant) time units. This law was confirmed in Borgonovi
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et al. (1988) in numerical experiments; see Figure 1 in Borgonovi et al. (1988). On
the opposite, when the escape times were measured in the map (fictitious) time units,
the usual T −3/2

d law was observed; see Figure 2 in Borgonovi et al. (1988).
Along with the rigorous treatment by Borgonovi et al. (1988), several heuristic

deductions of the T −2/3
d law were given in related problems (Schlagheck and

Buchleitner 2001; Hut 1993; Malyshkin and Tremaine 1999). Hut (1993) derived an
heuristic T −2/3

d law as a lower bound for the time decay of the survival probability
in a general hierarchical resonant scattering setting for the three-body interaction
(Heggie 1975; Hut 1993). Malyshkin and Tremaine (1999) derived the T −2/3

d law
for the time decay of the survival probability in cometary ensembles in the Solar
system. Schlagheck and Buchleitner (2001) obtained the T −2/3

d law for the time
decay of the survival probability in an autoionizing configuration of chaotic helium.

In these approaches, two basic assumptions were made explicitly or implicitly:

(i) the distribution of ejection energies is flat or smooth in the neighbourhood of
the zero energy threshold,

(ii) the asymptotic decay of the survival probability is the same as the tail of the
distribution of the orbital periods of the escaping body.

Due the complete ergodicity of the motion near the threshold, the first assumption
is reasonable, but the second one is solely hypothetical. However, given that all
results by Schlagheck and Buchleitner (2001), Hut (1993), Malyshkin and Tremaine
(1999) coincide with the result of the rigorous treatment in Borgonovi et al. (1988),
one may regard the second assumption to be also plausible.

Using the same two assumptions, an asymptotic distribution of the phase
increments per iteration (which are the orbital periods of the escaping body in case
of γ = 3/2) can be found in the general case of arbitrary γ in the map (1.45)
(Shevchenko 2010). The phase increment is

P = �xi = xi − xi−1 = λ|yi |−γ (8.38)

in the original time units. In case of γ = 3/2, the original time unit is equal to the
central binary’s orbital period divided by 2π .

Therefore, |yi| = λ1/γ P−1/γ . The near-separatrix motion is locally ergodic, i.e.,
any significant regular islands are absent. Indeed, in the local (in y) approximation
of the map (1.45) by the standard map, the standard map stochasticity parameterK
tends to infinity when y tends to zero. The ergodicity implies that, if y � 1, then
the distribution function of y is flat: f (y) = const. Therefore,

const d|y| ∝ P− 1
γ −1dP, (8.39)

and the differential distribution function of P has the form

f (P ) ∝ P
− 1
γ

−1
. (8.40)
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Then, the integral distribution

F(P) ∝ P− 1
γ .

In case of the Kepler map, γ = 3/2 and P = Porb (the tertiary’s orbital period).
Then, the differential distribution

f (Porb) ∝ P
−5/3
orb ,

and the integral distribution

F(Porb) ∝ P−2/3
orb .

Kepler’s third law gives

f (a) ∝ a−2

for the differential distribution of the orbital semimajor axis. Thus, the distribution
of the orbital size is also heavy-tailed. The process of orbital disruption is charac-
terized by the Lévy flights in both tertiary’s orbital period and size.

By assumption (ii), the law (8.40) coincides with the asymptotics of the survival
probability time decay. Alternatively, the same law follows from an analytical
treatment, analogous to that given in Borgonovi et al. (1988), for arbitrary γ values
instead of 3/2. If one adapts the rigorous deduction, accomplished by Borgonovi
et al. 1988 in case of γ = 3/2, to the case of arbitrary γ , one arrives at the following
recurrence time distribution:

F(Tr) ∝ T
− 1
γ

r .

Borgonovi et al. (1988) explained the dominance of LF1s over LF2s (in our
notations) in actual time statistics in the dynamics of the Kepler map, using an
argumentation based on the infinite measure of the extended near-separatrix phase
space. If one uses this argumentation in the general case of (1.45) with arbitrary
γ > 0, then it follows that LF1s should dominate for all γ ≥ 1 at least. However,
while at γ ≥ 1 LF1s indeed dominate, the transition to this domination occurs at
γ < 1. Let us estimate this critical γ value. At γ < γcrit, when LF2s dominate,
the slope index is critical (as it is conditioned by the critical structure at the chaos
border):

α = αcrit ≈ 3/2.
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At γ > γcrit, when LF1s dominate, the slope index α = 1/γ . These two α(γ ) curves
intersect at

γ = γcrit = 1/αcrit ≈ 2/3.

What is the physical cause for the behaviour change at this point? For the
recurrences forming LF2s with durations greater than T , the total sojourn time

∼ T F(T )

(Chirikov 2000), i.e., ∼ T −αcrit+1. Analogously, in case of LF1s, the total sojourn
time is

∼ T F(T ) ∝ T
− 1
γ

+1
.

LF1s asymptotically dominate, if the second sojourn time is greater than the first

one, i.e., T − 1
γ +1

> T −αcrit+1. Hence, the condition for the LF1 domination is

γ > α−1
crit.

This is just what has been derived above for the point of intersection of the two α(γ )
curves.

Therefore, if the adiabaticity parameter λ is large enough (as discussed below),
the critical non-trivial value γcrit of the γ parameter exists: the maps with γ > γcrit
have LF1s dominating over LF2s in actual time statistics; whereas at γ < γcrit LF2s
dominate in both the actual time and map-time statistics.

One has γcrit = 2/3 if α = 3/2, and γcrit ≈ 0.637, if α = 1.57 (as numerically
estimated in Cristadoro and Ketzmerick 2008). For example, LF1s dominate over
LF2s in the actual time statistics of Poincaré recurrences in the Fermi map dynamics
(γ = 1, Lichtenberg and Lieberman 1992) and the Kepler map dynamics (γ = 3/2);
whereas for the Markeev maps (γ = 1/4 and 1/3, Markeev 1995, 1994), the L̂-map
(γ = 1/2, Zaslavsky et al. 1991), and the separatrix map (1.31), the tails of the
recurrence distributions are LF2-dominated (if λ is large enough) and their slopes
do not depend on the choice of units (map units or actual time units) in which the
recurrence lengths are measured.

What is the boundary value of the adiabaticity parameter λ, separating the cases
with and without global fractal chaos border? It can be estimated from the λ
dependence of the maximum Lyapunov exponent L of the map (1.45). The L value
increases with λ, while λ is small, but then saturates at some constant value; see
Fig. 8.24 for the γ = 3/2 case. The saturation takes place when the role of the chaos
border becomes important in the dynamics. As follows from Fig. 8.24, the boundary
value of λ for this map is ≈2–3. In case of the ordinary separatrix map (1.31), the
transition value of λ is ≈0.5–1; see Fig. 5.6.
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By means of constructing the dependencesL(λ) at arbitrary 0 < γ < 2, it can be
shown that the boundary value of λ does not change much with γ and, by the order
of magnitude, is ∼1 (Shevchenko 2010). Therefore, if λ � 1, then LF1s and LF2s
coexist in the map (1.45) dynamics. If λ� 1, then only LF1s are possible.

8.4 Dynamical Environments of Small Bodies

Although hundreds of binary and multiple asteroids have been discovered up to now,
one should not expect that chaos in such systems can be often observed. Indeed, the
binary asteroids whose type of inner dynamics is already identified all have regular
behaviour. Moreover, as a rule, they possess double synchronization: the periods of
rotation of both components about their mass centres are equal to the period of the
components’ orbital revolution about the system barycentre. Thus, both components
are always facing each other by the same sides, i.e., one deals with the systems that
have reached their final stage of tidal evolution.

8.4.1 Chaotic Zones Around Contact Binaries

In the nineties of the twentieth century, a new potential class of chaotic celestial
bodies was revealed: it was found out that the orbital dynamics of a satellite of
a rotating irregularly-shaped asteroid can be highly chaotic (Chauvineau et al.
1993; Scheeres 1994). Since then, dynamics of satellites orbiting around rotating
irregularly-shaped bodies was thoroughly and extensively studied, because several
asteroids with satellites were discovered and a number of space missions were
planned and under way to asteroids and cometary nuclei. For the sake of space
missions, understanding of dynamical environments of target bodies was required,
both in view of possible existence of moons, fragments, and debris orbiting around
the bodies, and, no less important, in view of stability/instability of planned passive
orbits (around the target bodies) of the space probes themselves; see Scheeres (1994,
2012) and references therein.

A number of models to describe gravity fields of such objects were proposed
and used: a model of a uniform-density triaxial ellipsoid (Chauvineau et al. 1993;
Mysen et al. 2006; Olsen 2006; Mysen and Aksnes 2007), a polyhedron model
(Werner and Scheeres 1996), a “molecule of gravitating points” (Petit et al. 1997), a
rod model (Bartczak and Breiter 2003), a dumbbell (bilobed) model (Marchis et al.
2014; Feng et al. 2016; Lages et al. 2017, 2018b; Lages and Shevchenko 2020).
Resonant phenomena, along with determination of stability/instability zones, were
studied (Scheeres 1994; Hu and Scheeres 2004; Mysen et al. 2006; Olsen 2006;
Mysen and Aksnes 2007; Scheeres 2012; Feng et al. 2016), featuring the role of
resonances between the orbital particle’s motion and the rotational motion of the
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irregularly-shaped, elongated or bilobed host body (Mysen et al. 2006; Olsen 2006;
Mysen and Aksnes 2007; Lages et al. 2017, 2018b; Lages and Shevchenko 2020).

Dynamical environments of asteroids Castalia, Eros, Hektor, Toutatis and a
number of other minor irregularly-shaped minor bodies were explored in model
numerical simulations (Scheeres et al. 1996, 1998, 2000; Marchis et al. 2014;
Yu and Baoyin 2012). Many asteroids and cometary nuclei are bilobed, i.e., they
resemble contact binaries or dumbbells. A well-known example is the nucleus of
the 67P/Churyumov–Gerasimenko comet, which was the target of the Rosetta space
mission (Jorda et al. 2016). Another example is asteroid 25143 Itokawa, which was
the target of the Hayabusa space mission (Jorda et al. 2016).

Chaotic dynamical environments of asteroid Ida, and, more generally, small
dumbbell-shaped objects, can be conveniently described by the Kepler map (8.35)
in a generalized version, which allows for the arbitrary rate of rotation of the central
object (Lages et al. 2017). Indeed, the Solar system small bodies, like asteroids,
trans-Neptunian objects, cometary nuclei, and planetary satellites, with physical
radii smaller than 300–500 km, typically have irregular shapes; see Fig. 7.10.

Many of them resemble dumbbells, and are therefore called contact binaries.
Rotation of a gravitating dumbbell creates around it a zone of chaotic orbits.
In Lages et al. (2017), the extent of this zone was determined analytically and
numerically.

Any gravitating binary, such as a binary star or a binary asteroid, that has the
mass parameter μ � 0.05, is surrounded by a circumbinary chaotic zone, where all
circumbinary orbits of the orbiting particles with any initial eccentricity are chaotic
(Shevchenko 2015); see Sect. 11.1.5. In Lages et al. (2017), the Kepler map theory
was generalized to describe the motion of a particle in the gravitational field of a
spinning body modelled by a dumbbell with masses m1,m2 separated by constant
distance (dumbbell size) d . Thus, an irregularly-shaped body is modelled by two
contact uniform-density spheres (equivalent to two point masses). The dumbbell
rotates around its mass centre with angular frequency ω, which can be different
from the Keplerian frequency ω0 for the contact binary’s masses m1 and m2.

The Keplerian rate of rotation of a contact binary, consisting of two tangent
equal-sized equal-mass spheres, is given by

ω0 = (πGρ/3)1/2 , (8.41)

where G is the gravitational constant, ρ is the body’s density (Scheeres 2007). This
Keplerian rate is critical: it corresponds to centrifugal disintegration of the contact
binary; at greater rotation rates the contact binary cannot exist. For the typical
density ρ = 1 g/cm3, one has ω0 = 2.5 · 10−4 s−1. This corresponds to the rotation
period ≈7 hr.

From the generalized Kepler map theory it follows that rotating gravitating
dumbbells create circumbinary zones of chaos. The chaotic zone is formed by
the overlap of accumulating integer and half-integer orbit-spin resonances with
the rotating contact binary (Lages et al. 2017, 2018b). The chaotic zone swells
significantly if the dumbbell rotation rate is decreased. As found by Lages et al.
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(2017), the chaos zone swells more than twice if the rotation rate is decreased
ten times with respect to the ω0, the centrifugal breakup threshold, given by
formula (8.41).

The generalized Kepler map, derived in Lages et al. (2017), can be used to
describe chaotic dynamics around bilobed cometary nuclei and contact-binary
TNOs. For cometary nuclei, the circumbinary chaos can be described based on
accessible observational data for five comets whose nuclei are well-documented to
resemble dumbbells (Lages et al. 2018b). Using the map, the sizes of chaotic zones
around the cometary nuclei, as well as the Lyapunov timescales inside the chaotic
zones, were estimated in Lages et al. (2018b). In case of Comet 1P/Halley, it turned
out that its circumnuclear chaotic zone seems to engulf an essential part of the Hill
sphere of the comet, at least for orbits of moderate to high eccentricities.

All five cometary nuclei with well-documented shape parameters resemble
dumbbells. Four of them were visited and closely observed by space probes:
1P/Halley by Vega-1, Vega-2, Giotto in 1986; 19P/Borrelly by Deep Space-1 in
2001; 67P/Churyumov–Gerasimenko by Rosetta-1 in 2014–2016; and 103P/Hartley
by Deep Impact EPOXI space mission in 2010. No circumnuclear material (moons,
fragments, large particles) was observed, apart from obviously replenishable clouds
of “grains”; see, e.g., Bertini et al. (2015) and references therein. The observed
absence of circumnuclear material is in accord with the theoretical results of Lages
et al. (2018b) on large extents of the circumnuclear chaotic zones.

There exist physical mechanisms of material introduction in orbits around
cometary nuclei; see Fulle (1997), Scheeres and Marzari (2000), A’Hearn et al.
(2011), Keller et al. (2017). However, Lages et al. (2018b) find that, even in the
absence of any forces other than gravitational, no material may sustain in long-lived
stable orbits inside the circumnuclear zones of chaos. The clearing process is two-
fold: if any particle chaotically diffuses in pericentric distance down to almost zero,
it eventually hit the host body, is absorbed and thus removed; and if the particle
diffuses in eccentricity up to unity, it is consequently ejected to outer space and thus
removed.

8.4.2 Ida and Dactyl

Properties of the chaotic environments of small bodies are illustrated in Lages
et al. (2017), in examples of the dynamical environments of asteroids 243 Ida and
25143 Itokawa. Among small irregularly-shaped asteroids, 243 Ida is famous to
have a small natural satellite, discovered by the Galileo space probe. This tiny moon,
named Dactyl, moves in an orbit prograde with Ida’s rotation. The orbit has very
small inclination, i < 8◦, with respect to Ida’s equatorial plane (Petit et al. 1997).

Petit et al. (1997) made a unique estimate of the Lyapunov time of the chaotic
dynamics of the asteroid’s moon: in direct numerical integrations they found that
the orbital motion of Dactyl can be chaotic with the Lyapunov time ranging from



8.4 Dynamical Environments of Small Bodies 203

Fig. 8.26 Ida and Dactyl. An image taken by the Galileo space probe (A fragment of Figure 1
from Belton et al. 1995, by permission from Springer Nature, © 1995)

9 d to 4 yr. In conditions of the strong dynamical chaos, Dactyl should eventually
either fall on Ida’s surface, or escape to outer space.

Figure 8.26 shows 243 Ida and its satellite Dactyl. The image was taken by
the Galileo space probe on 28th August 1993, when it was on its way to Jupiter.
Ida’s diameters, in the triaxial ellipsoid model, are ≈56 × 24 × 21 km, whereas the
diameter of Dactyl ≈1.4 km.

Ida resembles an aggregate of two merged bodies with the ratio of masses
m2/m1 � 1 (Petit et al. 1997). Therefore, it can be approximately described as
a symmetric dumbbell with the mass parameter μ = m2/(m1 +m2) ≈ 1/2 (Lages
et al. 2017). Ida’s density ρ and rotation period Prot = 2π/ω can be estimated as
equal to 2.24 g · cm−3 and 4.63 h, respectively (Petit et al. 1997; Vokrouhlický et al.
2003). Ida’s mass in the same model is 3.6 · 1019 g (Petit et al. 1997).

In units of ω0, Ida’s rotation rate is ω � 0.953ω0; i.e., it is almost at the brink
of centrifugal decay. Any twin binary, consisting of two tangent spherical masses
m, has ρπd3/3 = 2m = M , where M and d are the full mass and size of the
dumbbell, respectively (the size is the distance between the mass centres of the
dumbbell components). For Ida, therefore, d � 24.9 km (Lages et al. 2017).

For the Ida–Dactyl system, it was analytically demonstrated in Lages et al.
(2017) that Dactyl orbits chaotically, not far from the outer border of the chaotic
zone created by rotating Ida. The stability diagram, in the “pericentric distance—
eccentricity” coordinates, for dynamics around Ida is shown in Fig. 8.27. Chaos
is determined by the maximum Lyapunov exponent � values for the particle’s
orbits with initial values of pericentric distance q and eccentricity e. The critical
eccentricity ecr at which integer resonances between orbiting Dactyl and rotating
Ida overlap is shown by solid black line (ecr as a function of q), and the critical
eccentricity at which half-integer resonances bifurcate is shown by dashed black



204 Chaotic asteroids and KBOs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 2.5 3 3.5 4 4.5

e

q/d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 2.5 3 3.5 4 4.5
-5

-4

-3

-2

-1

 0

 1

Lo
g 1

0
Λ

Fig. 8.27 A stability diagram for dynamics around Ida. � is the maximum Lyapunov exponent.
Red colour means chaos. Solid black curve: the critical curve for overlap of integer resonances.
Dashed black curve: the critical curve for bifurcation of half-integer resonances. Black dot:
the most probable location of Dactyl (Figure 7 from Lages et al. 2017, by permission of IOP
Publishing/AAS)

line. The most probable Dactyl’s position, as identified in Petit et al. (1997), is
depicted by a black dot.

In Fig. 8.27, the 51/1 and 52/1 “resonant teeth” (corresponding to the 51/1 and
52/1 orbit-spin resonances between orbiting Dactyl and rotating Ida) delimit the
resonant cell where Dactyl might be located. Higher-order orbit-spin resonances
densely accumulate at higher eccentricities in the diagram. From Fig. 8.27, it is clear
that the motion of Dactyl is chaotic (Lages et al. 2017), in accord with results of
direct numerical integrations performed in Petit et al. (1997). By calculating the
ecr(ω, q) dependence, the size of the chaotic zone around the asteroid can be found;
it is given by the root of the equation ecr(q) = 0 at ω � 0.953ω0. In case of Ida, the
root is q � 2.85d ≈ 70 km (Lages et al. 2017). This estimate for the chaotic zone
extent is in good qualitative agreement with the numerical-experimental findings on
the stability limit for Dactyl’s orbit size found in Petit et al. (1997).

The “ragged” structure of the chaos border in Fig. 8.27 is conditioned by the
orbit-spin resonances with the rotating central body. This structure is approximately
described by the separatrices of these resonances; they are explicitly presented in
Fig. 8.28.
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Fig. 8.28 A stability diagram in the “semimajor axis—eccentricity” coordinates for the initial
conditions of a particle orbiting Ida. Solid curves: locations of integer orbit-spin resonances with
rotating Ida. Dashed: separatrices of the resonances. Dotted: the approximate border of global
chaos. Black dot: the most probable location of Dactyl (Figure 19 from Petit et al. 1997, with
permission from Elsevier)

Time-limited observations from the Galileo space probe did not provide certain
data on the stability of Dactyl’s orbit. Dactyl can be either indeed chaotic and
therefore short-lived, or, conversely, it could appear in the chaotic part of the
stability diagram due to observational uncertainties in its orbital elements.

8.4.3 Trans-Neptunian Objects, 2014 MU69 Among Them

Apart from cometary nuclei, typical Kuiper belt objects (KBOs) have distinctive
abilities for clearing their immediate dynamical environments (Lages et al. 2018b).
In Fig. 8.29, the chaotic zone, where the clearing takes place, is represented
graphically in the “dumbbell rotation rate—particle’s pericentric distance” coor-
dinates. The rotation rate ω is measured in units of its critical value ω0, given by
formula (8.41). The pericentric distance q is in units of the binary’s size d , i.e.,
the distance between the mass centres of its components. The range of typical
rotation rates of KBOs is from ∼1 to ∼6 rev/d, i.e., typical rotation periods range
from ∼4 to ∼30 h (Thirouin et al. 2014, Figures 7 and 8). This corresponds to
ω/ω0 ∈ (∼0.2,∼1.0).
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Fig. 8.29 Extents of the chaotic zone (shown in red) around a contact binary as a function of the
binary’s rotation rate ω, in ratio to the critical rate ω0. The pericentric distance q is in units of the
contact binary size d (the distance between the components’ mass centres). The chaos borders
are drawn according to Lages et al. (2018b). White shaded area delimits the range of KBOs’
typical rotation rates, according to data given in Thirouin et al. (2014) (Figure 1 from Lages and
Shevchenko 2020, by permission from © Cambridge University Press)

The area bounded by these limits in Fig. 8.29 is white-shaded. Locations of the
1/2, 1/1, and 3/2 main orbit-spin resonances between particle orbits and the rotation
of the central body are shown as red curves. The stability diagram demonstrates that
typical KBOs may have rather extended circumnuclear chaotic zones: the pericentric
distance q of the chaotic orbits inside the zone may range up to ∼6d .

A distant TNO, 2014 MU69, was chosen to represent the second target of the
New Horizons space mission. MU69’s orbit around the Sun has semimajor axis
a = 44 AU, eccentricity e = 0.05, and inclination is negligible. Orbital period is
296 yr.

The rendezvous of the New Horizons space probe with MU69 took place on 1
January 2019. As images got by New Horizons demonstrate (see Fig. 8.30), MU69
turns out to be a classical contact-binary object. The figure of MU69 perfectly fits
the binary model, presented, in particular, in (Scheeres 2007, Figure 5) and in (Lages
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Fig. 8.30 The Kuiper belt object 2014 MU69. An image compiled from data transmitted by the
New Horizons space probe on January 1, 2019 (Credits: NASA/Johns Hopkins University Applied
Physics Laboratory/Southwest Research Institute/Roman Tkachenko)

et al. 2017, Figure 1). Note that, according to a further analysis of the transmitted
sequence of the TNO’s images, the companions are somewhat flattened (Stern et al.
2019; Spencer et al. 2020).

The components of MU69 have sizes (diameters) ∼20 and ∼18 km. Adopting
their density to be that of water ice (1 g/cm3), one finds that the Hill sphere radius of
MU69 is RH ∼ (m/(3M))1/3a ∼ (R/RSun)a ∼ 3 · 105 km. Here m ∼ ρd3, M =
MSun = 2 · 1033 g, RSun = 7 · 105 km. Therefore, the cleared zone around MU69
may range from zero up to ∼300 km in radial distance; the latter corresponds to ten
times maximum the full object size. This is thousand times less than the object’s
Hill radius and ten times less than the minimum distance between MU69 and the
New Horizons probe during the flyby.
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Tantalizingly, chaotic clearing processes affect both targets of the New Horizons
mission, but in different ways: Pluto is not able to clear any radial neighbourhood of
its orbit, and on this reason it was deprived of the planetary status (IAU General
Assembly 2006); conversely, MU69 is able to create a clearing, but of another
(circumnuclear) kind (Lages and Shevchenko 2020).



Chapter 9
Orbital Dynamics of Planets

The planets seem to interfere in their curves,
But nothing ever happens, no harm is done.

Robert Frost,

On looking up by chance at the constellations

And at the highest, planetary, level of the structural hierarchy of the Solar system
dynamical chaos also manifests itself. At the end of eighties—beginning of nineties
of the twentieth century, first ever estimates of the Lyapunov time of the Solar
planetary system were obtained in massive and complicated numerical experiments
(Sussman and Wisdom 1988, 1992; Laskar 1989, 1990, 1994). It turned out that it
is not at all infinite, and, therefore, the dynamics of the Solar planetary system is
chaotic. Moreover, the Solar system’s Lyapunov time is, in fact, small: TL ∼ 106–
107 yr, i.e., it is by three orders of magnitude less than the Solar system age.
According to Sussman and Wisdom (1988, 1992), the Lyapunov time of the Solar
system outer part (ranging from Jupiter to Pluto) is ∼107 yr, and for the full system,
including its inner part, TL ∼ 5 · 106 yr, either with or without Pluto.

Note that the boom in the Kuiper belt observational studies resulted in the
decrease of the official number of planets in the Solar System from nine to eight:
Pluto, by a resolution of the 26th IAU General Assembly in 2006 in Prague (IAU
General Assembly 2006), was attributed to a new class of celestial bodies, that of
dwarf planets, to which also large asteroids such as Ceres were attributed. The
decision was triggered by discoveries, in the Kuiper belt, of several large TNOs,
including one larger than Pluto, namely Eris, whose physical size exceeds that of
Pluto by some 10%.

Notwithstanding its small Lyapunov time, our Solar system is known to be
extremely stable in the sense that it does not disintegrate on timescales of billions
of years; this was established and confirmed in Sussman and Wisdom (1988, 1992)
and Laskar (1989, 1990, 1994). Due to the small Lyapunov time, the angle variables
of the system cannot be predicted on timescales greater than ∼106–107 yr, but the
planetary semimajor axes, eccentricities, and inclinations stay in restricted bounds.

© Springer Nature Switzerland AG 2020
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Fig. 9.1 Long-term evolution of the maximum eccentricities (panel a) and inclinations (panel b)
of the Solar system planets (Figure 1 from Laskar (1994), reproduced with permission © ESO)

However, as revealed in Laskar (1994), Mercury may escape from the system (and
become a rogue planet, in modern terms), on a timescale of several billion years.

Laskar (1994) considered the Solar system planetary dynamics in long-term
numerical integrations of averaged equations of motion. In Fig. 9.1, maximum
eccentricities and inclinations, exhibited by each of the planets at consecutive
intervals of 10 million years, are plotted as a function of time on the whole explored
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time span of 25 billion years. In case of giant planets, these quantities are practically
constant.

At a first glance, it might seem that the basic contribution to chaos must be
brought by the planets with relatively small masses, i.e., the terrestrial group planets,
as well as Pluto (ranked as planet until 2006). However, if the dynamical model were
limited to solely four giant planets, then, as it was revealed by Sussman and Wisdom
(1992) and confirmed by Murray and Holman (1999), chaos remains and, moreover,
the Lyapunov time practically does not change, staying at TL ≈ 5–7 million years.

9.1 Chaotic Giant Planets

Either with inner rocky planets and small Pluto or without them, the computed
models turned out to possess practically (by an order of magnitude) the same Lya-
punov times. This means that the giant-planet system is itself chaotic. What is the
dynamical cause for this chaotic behaviour? Murray and Holman (1999) attributed
the origin of chaos in the giant-planet system to interaction of subresonances
in a multiplet corresponding to a particular three-body Jupiter–Saturn–Uranus
resonance.

It is well-known that our Solar system is quite close to the 5/2 Jupiter–Saturn two-
body mean motion resonance, and it is also not far from the 7/1 Jupiter–Uranus two-
body mean motion resonance; but neither of the corresponding resonant arguments
librate, i.e., the system is out of the both resonances. Murray and Holman (1999)
argued that a three-body linear combination of the two resonant arguments may
actually librate, i.e., the 3J-5S-U7 three-body resonance

3λ̇J − 5λ̇S − 7λ̇U ∼ 0 (9.1)

may actually be present in the Solar system. Here λJ, λS, and λU are the mean
longitudes of Jupiter, Saturn, and Uranus, respectively; λ̇J, λ̇S, and λ̇U are the
corresponding mean motions; ẋ means the time derivative of x.

According to the D’Alembert rules, the resonance (9.1) possesses a lot of
eccentricity-type, inclination-type, and eccentricity-inclination-type subresonances.
This is just their interaction and/or overlap may cause the giant planets’ chaotic
behaviour. The possible two-body and three-body mean motion resonances in
the giant-planet system are straightforwardly revealed in the Lyapunov timescale
“scan,” in some range of the initial asteroidal semimajor axis of Uranus, with all
other initial conditions in the system fixed to some values. Such a scan for aU,
constructed by Murray and Holman (1999) in direct numerical integrations of the
planetary system, is presented in Fig. 9.2; its close-up is given in Fig. 9.3. The
scan was performed on a fine grid of the aU initial values; for each set of initial
conditions, the planetary system was integrated on the time interval of 200 Myr,
and the Lyapunov time was found. The scanned interval in aU ranges from 18.98 to
19.40 AU.
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Fig. 9.2 The Lyapunov time TL as a function of the initial semimajor axis aU of Uranus, with
all other initial conditions fixed. (Figure 1 from Murray and Holman (1999). Reprinted with
permission from AAAS)

All strong-enough chaotic resonances in this range were identified. In Fig. 9.2,
the strong chaos at aU � 19.13 AU is due to the potential 2/1 Uranus–Neptune
two-body resonance; and, at aU from 19.13 to 19.17 AU, it is due to the potential
7/1 Jupiter–Uranus two-body resonance. Chaotic zones associated with three-body
mean motion resonances (involving either Jupiter, Saturn, and Uranus; or Saturn,
Uranus, and Neptune) are present at aU ≈ 19.22, 19.26, 19.29, and 19.34 AU.

At a finer resolution of the scan (Fig. 9.3), at aU from 19.216 to 19.221 AU,
a cluster of interacting subresonances of the three-body resonance (9.1) is readily
identifiable. The subresonances do not quite overlap; that is why they are inter-
meshed with thin regular-looking zones. The actual location of Uranus is shown by
the solid vertical line.

From Fig. 9.3 it is clear that the actual degree of the Solar system chaoticity (the
maximum Lyapunov exponent) has, in some sense, arbitrary character: if the orbital
semimajor axis of Uranus differed from its present value by only several physical
sizes of this planet, then the chaoticity would sharply decrease. Indeed, the physical
diameter of Uranus is ∼10−4 AU, whereas the accuracy with which the actual orbital
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Fig. 9.3 Same as Fig. 9.2, in a higher resolution in aU. Solid vertical line: the actual location of
Uranus (Figure 2 from Murray and Holman (1999). Reprinted with permission from AAAS)

semimajor axis of Uranus is known is ∼10−5 AU. This circumstance explains
why the Solar system Lyapunov timescales obtained in numerical integrations
were observed to sharply depend on variations of initial conditions, whatever tiny
these variations were in the pioneering numerical-experimental works in this field
(Sussman and Wisdom 1988, 1992).

Massive direct numerical integrations performed by Guzzo (2006), Hayes
(2007), and Hayes et al. (2010) showed that the chaos-order interplay could be
present even on much finer scales. The location of the actual Solar system with
respect to the neighbouring chaotic resonances is conveniently illustrated in Fig. 9.4.
The FLI dynamical chart (on the FLI techniques, see Sect. 2.2) was constructed by
Guzzo (2006) by means of varying the initial Jovian and Saturnian semimajor axes
a5 and a6 on a fine two-dimensional grid of their values, whereas other initial orbital
elements of these two planets and the initial conditions for other planets in the
adopted Sun–Jupiter–Saturn–Uranus–Neptune model were fixed. The integration
time was set to 1 Myr for all orbits.

In Fig. 9.4, yellow colour corresponds to dynamical chaos, signalled by higher
values of the FLI, and dark orange (background) colour corresponds to regular
behaviour, signalled by low values of the FLI. The yellow colour evidently traces
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Fig. 9.4 A dynamical chart for the giant-planet system, obtained by varying the initial semimajor
axes a5 and a6 of Jupiter and Saturn, whereas other initial conditions are fixed. Yellow colour
corresponds to chaos, signalled by higher values of the FLI; dark orange (background) colour
corresponds to regular dynamics, signalled by low values of the FLI. Black dot: the actual location
of the Solar system (Figure 1f from Guzzo (2006), with permission from Elsevier)

major chaotic resonances, and the most pronounced among them is the Jupiter–
Saturn 5/2 resonance. The Jupiter–Saturn–Uranus three-body resonance, revealed
by Murray and Holman (1999), forms the thin yellow band closest to the actual
Solar system position, which is marked by the black dot. The diagram graphically
demonstrates how our Solar system is lucky to be located in a stable zone, although
a mesh of chaotic resonances is around.

In the eighteenth century, Pierre Simon Laplace found out that the 5/2 Jupiter–
Saturn near-resonance was responsible for observed anomalies in the orbital motion
of these two planets; he revealed that these anomalies had a periodic character
and, therefore, did not lead to any long-term monotonous changes of the orbits.
This discovery led Laplace to the concept of determinism. In 1999, by considering
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the same 5/2 Jupiter–Saturn near-resonance, in an ensemble with other relevant
resonances, Murray and Holman (1999) succeeded to put forward the described
above explanation of the giant-planets’ chaos. Murray and Holman (1999) wrote:
“We find it ironic that the 2:5 resonance plays such a strong role in producing chaos
among the outer planets, thereby placing a limit on our ability to state the positions
of the jovian planets in the distant future.”



Part III
Dynamics of Exoplanets

Up to the beginning of nineties of the last century, only nine planets (including
Pluto, regarded as a planet at that time) were observed to exist. Since then, the
number of known planets has risen immensely, by two orders of magnitude, due
to discoveries of planets in systems other than ours. The discoveries of exoplanets
grow in number like an avalanche. New effective observational tools and techniques
(mostly space-based) are used more and more broadly. Up to the beginning of
2020, more than 4000 exoplanets have been discovered (and much more await
confirmation),1 belonging to ∼3000 exoplanetary systems. The distances to known
exoplanet systems range from 4 light years to ∼30,000 light years, the maximum
and minimum differing by four orders of magnitude. The star closest to our Sun,
Proxima Centauri, which is only 1.32 pc far from us, possesses at least one planet
(Anglada-Escudé et al. 2016). The farthest known systems with confirmed planets
are SWEEPS-04 and SWEEPS-11 (Sahu et al. 2006, 2008).

Resonances, instabilities, and the chaotic behaviour caused by interaction of
resonances play an essential role in the dynamics of planetary systems at various
stages of their evolution. In concert with cosmogonical factors and migration
processes, they determine the observed system architectures. In this part of the book,
the dynamics of exoplanetary systems is considered. We concentrate on resonances
and manifestations of dynamical chaos; problems on resonant and chaotic orbital
dynamics of exoplanetary systems of various types are explored. The analysed
exosystems include multiplanet systems2 of single stars and planetary systems of
binary stars. Theoretical methods and criteria for revealing the stability or instability
in various planetary configurations are described.

1This rapid growth has been mostly due to the success of the Kepler space observatory mission.
2A planetary system is called multiplanet if it contains more than one planet.



Chapter 10
Exoplanets: An Overview

Night, full of constellations.
What fate, what destinations,
You sparkle broadly, Book,
For liberty or yoke?

Velimir Khlebnikov,
Night, full of constellations (1912)
(Translated from Russian by I.I. Shevchenko.)

In this Chapter, we describe history and methods of exoplanet discoveries, the planet
definition; typology and properties of exoplanets; types of exoplanets, physical
types of planetary systems. Architectures and dynamical configurations of exoplanet
systems are characterized, and actual examples of resonant and multi-resonant
systems are provided.

10.1 History and Discoveries

In ancient times, the planets were distinguished by properties of their motion in
the projection onto the celestial sphere. Indeed, in translation from ancient Greek,
“planet” means “wandering.” Unlike the ordinary stars, the Solar system planets
wander over the celestial sphere, sometimes writing out loops; that is why they were
named so. Nowadays, the planets are implied to constitute an astrophysical class of
objects whose properties occupy an intermediate domain between stars (including
brown dwarfs), on one hand, and dwarf planets and various “minor bodies,” on the
other hand.

Most known exoplanetary systems are not at all similar to our own Solar
system. In contrast to the Solar system planets, many exoplanets have large orbital
eccentricities; what is more, giant exoplanets are usually observed to have orbits
very close to their parent stars; orbital periods of a few days and even less are
observed. Such objects are called hot Jupiters or hot Neptunes, depending on planet
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size. The origin of hot Jupiters is enigmatic, though they are abundant. Supermassive
rocky planets (so-called super-Earths) are present in many exoplanet systems,
but there are no such objects in the Solar system. However, multiplanet systems
quite similar to our Solar system do exist, e.g., Gliese 581,1 47 UMa, μ Arae
(equivalently, HD 160691).2

The first ever detected two exoplanets were discovered in the early 1990s by
Wolszczan and Frail (1992). These planets orbit around PSR B1257-12, a neutron
star with mass 1.4 in Solar units. They were discovered by a technique which is now
called pulsar timing: in the observed radio pulses (with a proper period of only 6
milliseconds, corresponding to the star’s rotation period), periodic modulations were
detected, and they were interpreted as due to the presence of two planets with orbital
periods 66.54 and 98.21 d and masses 3.4 and 2.8 in Earth units, respectively. (More
rigorously, the mass estimate in this case represents the productmpl sin i, wherempl
is the planet’s mass, i is the inclination of the planet’s orbital plane to the celestial
plane.) It was also suggested that there exists a third orbiting body, with a Lunar
mass and orbital period of 25 d. Later on, a planet orbiting a similar star, pulsar
PSR B1620-26, was detected, much more massive (∼2.5 in Jovian units) than these
three ones. It is a wonder how planets of a neutron star could have survived the
supernova explosion of the host star? Or, maybe, they have formed only after this
catastrophic event? The astrophysicists have not come to a definite conclusion on
this subject up to now.

The first ever detected exoplanet orbiting a main sequence (Solar-like) star was
discovered in 1995 by Michel Mayor and Didier Queloz. For this discovery they
were awarded with Nobel prize 2019. The planet is hosted by the star 51 Pegasi.

Discoveries of planets of many other stars were reported in the consequent years;
see Fig. 2 in Preface. Bursts in the number of discoveries correspond to periods of
operation of specialized space missions, such as Kepler space observatory. As of the
end of 2019, ∼4000 exoplanets were discovered. They belong to ∼3000 exoplane-
tary systems, of which: ∼700 are multiplanet (have two or more planets), ∼140 are
planetary systems of multiple stars; 23 are circumbinary (in which the planets orbit
around the central binary star). In the whole set of discovered exoplanets, about one
third are members of multiplanet systems (Rein 2012). However, this low percentage
is undoubtedly determined by an effect of observational selection: it is not easy to
detect low-mass planets; instead, giant planets are discovered first of all. What is
more, the discoveries are statistically biased to planets orbiting close to their parent
stars. The observed deficit of multiplanet systems is mostly conditioned by a lack of
observable planets of relatively small size, in particular, Earth-sized planets, due to
the relative insufficiency of power of the observational techniques used now.

As an outcome of these selection effects, many newly discovered exoplanets
turned out to be hot Jupiters, i.e., planets of Jovian masses (or even much more

1The “Gliese” designation means that the star is from the catalogue of close-in stars compiled by
Wilhelm Gliese.
2The “HD” designation means that the star is from the star catalogue compiled by Henry Draper.
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massive), but orbiting close to their parent stars. The hot Jupiters can be defined
as Jupiters whose orbital radii are less than 0.1 AU, or orbital periods less than
≈10 days (Gaudi et al. 2005). For hot Neptunes and hot super-Jupiters, the orbit
size limitations are the same.

This is just due to the proximity of their orbits to the parent stars that the hot
Jupiters could have been discovered using the so-called radial velocity method
(which is described below). Later on, however, using the transit method (also
described below), super-Earths and even Earth-sized planets were discovered. Note
that planetary systems with planets in close orbits, e.g. systems containing hot
Jupiters, often have quite exotic configurations, completely different from the
configuration of the Solar system.

Methods of detection of exoplanets are naturally subdivided into direct and
indirect ones. The direct methods are based on direct observations of the proper
and reflected radiation from planets; indirect methods are all the rest. The direct
methods, in particular, include: direct acquisition of planetary images, differential
spectrophotometry during transits (the passages of a planet across the disc of the
parent star), coronography, polarimetry. Direct methods are extremely difficult to
apply due to the huge contrast of the detected radiation fluxes from the parent star
and its planet. For example, for a distant observer, the contrast of visual light fluxes
from the Sun and from the Earth is ∼1010. In infrared, the contrast is only somewhat
smaller. Direct observations are possible when a planet belongs to a sub-star (brown
dwarf). The first planet that was discovered directly was the giant 2M1207-39b
(Chauvin et al. 2004, 2005).

The indirect methods include: astrometry of stars (measurements of small
oscillations of a star in the celestial plane due to the presence of a planet or planets),
Doppler spectrometry (measurements of periodic variations of the radial velocity of
the star), pulsar timing—measurements of variations of times of radio pulses from
pulsars, eclipse timing—measurements of variations of times of eclipses in eclipsing
binary stars, observations of microlensing events, observations of transits (passages
of a planet across the disc of the parent star; such passages cause observable short-
term weak decreases in the total flux from the star). The latter method is adjoined
by the TTV (transit timing variations) analysis. The TTV consists in an analysis of
deviations from the strict periodicity of transits, due to perturbations in the planetary
motion.

Let us consider the most effective modern methods, as well as some promising
ones. The method of Doppler spectrometry (briefly, the RV-method, from “radial
velocity”) was the first one to have been successfully used to detect exoplanets. It
consists in measuring periodic variations (due to the presence of a planet or planets)
of the host star’s radial velocity. The method can be used for stars of spectral classes
from F to M. The basic formula of the RV-method is

mpl sin i = 0.035P 1/3�v, (10.1)

where the planet mass mpl is in Jovian units, �v is the observed radial velocity
variation half-amplitude, in metres per second, P is the observed variation period,
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in years; i is the inclination of the planet’s orbital plane to the celestial plane. At
i = 0 the effect is absent.

A distant observer (residing far from our Solar system) may potentially reveal
the presence of the Earth orbiting the Sun by detecting radial periodic oscillations,
caused by the Earth, in the radial velocity of the Sun. The oscillation amplitude
would be ∼10 cm/s. This is too small to allow detection, if the observer is equipped
by similar instruments that we have on the Earth; at present, their best resolution
is ∼80 cm/s. Therefore, RV-discoveries of Earth-like planets orbiting in habitable
zones of Solar-like stars are not yet possible.

The first ever detected exoplanet orbiting a Solar-like star, 51 Peg b, was
discovered just by the RV-method. Its host star is almost a twin of the Sun: its
spectral class is G5V, and mass is 1.06 in Solar units. Planet 51 Peg b is a
representative of the broad class of hot Jupiters.

The transit method of searching for exoplanets was first proposed by Otto Struve
in fifties of the twentieth century. The method consists in identification and analysis
of small periodic dips in a star’s lightcurve, emerging due to a planet’s passage
across the star’s disc. Of course, the transits can only be observed if the inclination of
the planet’s orbit relative to the line of sight is small enough. Astronomers have long
observed transits in the Solar system—passages of planets (Venus and Mercury)
across the Sun disc. A transit of Venus causes the total light flux from the Sun
to decrease by 0.01%. In observations of transits of Earth-like exoplanets of main
sequence stars, the “transit signal” is of the same order. In case of giant planets, the
flux drops by ∼1%. The first ever detected exoplanet transit was identified in an
analysis of the lightcurve of the star HD 209458 (Charbonneau et al. 2000), whose
planet had been previously discovered by the RV-method.

If a planetary system contains more than one planet, or the host star is multiple,
then the time intervals between the consecutive planetary transits, observed in
the system, are non-constant: due to variations of the perturbed orbital elements,
the transit time oscillates with respect to the strictly periodic nominal signal. The
analysis of the variability of transit times gave rise to the transit timing variations
(TTV) method. Theoretical studies (Agol et al. 2005; Holman and Murray 2005)
showed that the TTV modelling provides a virtually complete information on the
masses and orbital elements of the transiting planets.

TTVs were first ever discovered and modelled in systems with several transiting
planets (Lissauer et al. 2011a). In further applications of the TTV technique,
Nesvorný et al. (2012) managed to discover a non-transiting planet by analysing
its TTV signal. Thus, according to a graphical note by Morbidelli (2014), “The
TTV analysis brings Celestial Mechanics back to the glorious time when Le Verrier
predicted the existence and position of Neptune from an analysis of anomalies in
the motion of Uranus. The “miracle” of Le Verrier now repeats routinely.”

For details of planet discovery methods, see Perryman (2018). Each of the
described above methods has its advantages and disadvantages. Using different
methods in parallel gives most effective results. For example, one may combine the
transit method and the RV-method: since the position of the orbital plane is known
in a transit system, there is no need to hypothesize on the inclination i and therefore
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one may directly determine the planet mass mpl, instead of the mpl sin i product.
Then, the knowledge of the size (from the transit data) and mass makes it possible
to estimate the planet density.

10.2 Definition of a Planet

In view of the current rapid observational and theoretical progress in exoplanetary
studies, the term planet obviously requires a rigorous definition, distinguishing the
planets from other classes of celestial bodies.

Actually, the planet definition problem independently emerged in the beginning
of the century, in the framework of the Solar system studies. It was broadly and
thoroughly discussed at the 26th General Assembly of the International Astronom-
ical Union (Prague, 2006). The discussion was triggered by novel observations of
the Kuiper belt, where several new Pluto-sized objects and even larger bodies (such
as Eris) had been discovered several years before the Assembly took place. The
question was whether to class such objects as planets, analogously to Pluto, or to
introduce a new classification which would class Pluto and these new bodies as
different-type objects. The second way was chosen.

A simple straightforward approach would be to distinguish planets from “smaller
bodies” by ranging all them in size. However, this would not work out because
there is a number of planetary satellites larger than Mercury (say, Titan) in the Solar
system. Taking this and other subtleties into account, the Assembly adopted the
following definition: the planet is a celestial body that (1) orbits around the Sun;
(2) has mass large enough for the self-gravity to dominate over the rigid-body forces,
so that the body acquires a hydrostatic-equilibrium (nearly spherical) figure; (3) has
purged a neighbourhood of its orbit, so that no planetesimal material is left in this
neighbourhood.3

This definition emerged as a result of a profound scientific debate (see Stern
and Levison 2002; Soter 2006; and references therein). In particular, it implicitly
appeals to the stability conditions of the close-to-coorbital motion. Indeed, point (c),
distinguishing planets from dwarf planets, is implicitly based on a criterion for
emerging the close-to-coorbital chaotic band (considered further on in Sect. 11.1.2);

3In the original formulation, Resolution 5A of the 26th IAU GA reads: “The IAU therefore resolves
that planets and other bodies in our Solar System, except satellites, be defined into three distinct
categories in the following way: (1) A “planet” is a celestial body that (a) is in orbit around the
Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes
a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighbourhood around its
orbit. (2) A “dwarf planet” is a celestial body that (a) is in orbit around the Sun, (b) has sufficient
mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium
(nearly round) shape, (c) has not cleared the neighbourhood around its orbit, and (d) is not a
satellite. (3) All other objects, except satellites, orbiting the Sun shall be referred to collectively as
“Small Solar-System Bodies”.” (IAU General Assembly 2006).
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this implies existence of a clearing effect in the radial neighbourhood of the
planetary orbit.

The field of applicability of the stated definition is restricted to the Solar
system. By substituting a “star” for “the Sun” in it, one may seemingly arrive at
the needed general definition incorporating exoplanets. However, nowadays, there
is no problem in distinguishing exoplanets from “dwarf exoplanets” or “minor
exobodies,” due to obvious observational biases in exoplanet catalogues. Rather,
the problem is to distinguish them “from above,” i.e., from larger bodies. That is
why additional astrophysical criteria come into play.

Generally, a celestial body is regarded to be a planet, if it is not massive enough
to maintain the reaction of fusion of deuterium nuclei in its interims, i.e., its mass
m � 0.013mSun, or, equivalently, m � 13mJupiter. The objects intermediate in
mass between planets and stars (13mJupiter � m � 80mJupiter) are called brown
dwarfs. They are not massive enough to maintain the reaction of fusion of ordinary
hydrogen, but can maintain the reaction of fusion of deuterium; the temperature at
the centre of such a body is less than 6 · 106 K.

10.3 Typology and Properties of Exoplanets

10.3.1 Mass Function and Mass-Radius Relationship

The observed mass distribution of exoplanets peaks at Jovian masses, due to the
prevalence of hot Jupiters. Of course, this is a selection effect, because the most-
massive planets are discovered first of all. However, lists of discovered planets with
Neptunian and smaller masses, due to the current progress in observations, grow
permanently; the smallest detected exoplanet is a sub-Mercury Kepler-37b, which
is only slightly larger than the Moon and has mass ∼ 0.01 in Earth units (Barclay
et al. 2013). The mass function, uncorrected for the observational biases, can be
fitted in its tail by a hyperbolic law, i.e., the differential distribution ∝ 1/m; see
Fig. 10.1. The sharp decline at large masses is obvious. This effect is most likely real,
because observations of planets of such large masses are not prone to any known
observational biases.

Apart from the mass function, the mass-radius relationship is also of fundamental
importance. In a mass-radius plot for 138 planets with known masses and sizes
(Fig. 10.2), a clear break-up is evident, corresponding to the transition from
terrestrial planets and ice giants (m < 150mE) to gas giants (m > 150mE), where
mE is the Earth mass. In the first case, the solid-state isodens would have a slope
of 1/3 in the logarithmic frames, but the observed slope is ≈1/2. This deviation
indicates an increasing contribution of volatiles as mass increases. In the second
case, with mass increasing, the planetary radius keeps an almost constant value or
even decreases; this indicates a contribution of degenerate electron gas (Weiss et al.
2013). Besides, in the second case, enlargement of planets at high insolation levels



10.3 Typology and Properties of Exoplanets 225

Fig. 10.1 The differential distribution of planets in mass. The maximum is at Jovian masses, due
to the hot Jupiters domination. The sharp decline at large masses is obvious (Figure 1 from Marcy
et al. (2005), by permission from © Oxford University Press)

Fig. 10.2 Mass–radius and mass–density relationships (Figure 12 from Weiss et al. (2013), by
permission of IOP Publishing/AAS)

is statistically significant. It is believed that, due to high temperatures, the gas giants
swell.

Distributions of the observed binary star systems and star-planet systems (for
Solar-like stars) in terms of minimum mass in the system, constructed jointly for
these two classes, demonstrate that the planetary mass function is distinctly separate
from the stellar one: the maxima at mmin ∼ 0.001 andmmin ∼ 1 (in Solar units) are
separated by a profound dip with a minimum at mmin ∼ 0.01 (Udry et al. 2007). Of
course, this feature emerges because the mechanisms of formation of planets and
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Fig. 10.3 Correlation between stellar metallicity and presence of planets (Figure 4 from Fischer
and Valenti (2005), by permission of IOP Publishing/AAS)

stars are completely different. The so-called brown dwarf desert4 is prominent in
the distributions.

The spectrum of masses and sizes of known exoplanets is broad: it covers three
orders of magnitude in masses and more than one order of magnitude in sizes; see
Fig. 10.2. In the whole set of discovered exoplanets, the largest (in size) planet
is TrES-4, which is 19.8 times larger than the Earth and 1.8 times larger than
Jupiter. However, it is comparable to Jupiter in mass; therefore, it represents an
extremely low-density gas giant with mean density ∼0.3 g/cm3; compare with
Jupiter’s 1.33 g/cm3. For the planets with known sizes and masses, this density
value is the lowest one (Mandushev et al. 2007).

An important parameter of host stars is their metallicity. Usually it is defined as
equal to the relative content of iron, which correlates with the content of other heavy
elements. According to observational data, there can be a statistical correlation
between the metallicity of a star and the presence of planets orbiting around
it (Fig. 10.3): stars with low metallicity are observed to be relatively planetless,
whereas for stars with metallicity higher than the Solar value, the probability for
the planetary presence increases. It may indicate that planet-hosting stars are born
in molecular clouds with relatively high metallicity (Fischer and Valenti 2005):
with the increase in metallicity, the protoplanet disc’s heavy component fraction
increases. This fraction includes rocky material, forming large embryos, on which
volatiles condense and the disc’s gas accretes; in this way, gas-ice giant planets form.

4The statistical paucity of brown dwarfs in close (with radius � 5 AU) orbits around Solar-like
stars.
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10.3.2 Types of Exoplanets

From the very beginning of exoplanetary studies, it became clear that there exist
classes of exoplanets whose physical and dynamical properties are very different
from those immanent to the planets in our Solar system. In our system, the four
giant planets—Jupiter, Saturn, Uranus, and Neptune—have orbital radii ranging
from 5 to 30 AU. In contrast, the observed exoplanetary systems frequently contain
giant planets whose orbital radii are by two orders of magnitude smaller. As already
mentioned above, such planets, orbiting within the radial vicinity < 0.1 AU of their
host stars, are called hot Jupiters, on obvious reasons. The orbital periods of hot
Jupiters can be as small as a few days.

The problem with hot Jupiters is that, according to modern theoretical views,
they cannot form in situ, because the planet-forming accretion of matter cannot take
place in such close vicinities of the parent star (Bodenheimer et al. 2000). Therefore,
they should have been transported to their observed orbital locations, either due
to a slow radial inward migration in a thick protoplanetary disc, or due to some
other dynamical mechanism provided by perturbing bodies, such as other massive
planets or/and a stellar companion of the host star. In the latter case, the Lidov-Kozai
effect, considered further on in Chap. 15, may contribute decisively to any scenario
of the hot Jupiters formation. Another problem concerns a mechanism for stalling
the planets close to the host star (although their might be no permanent stalling, and
hot Jupiters are eventually absorbed by the star). Tidal effects may contribute much
to the dynamics in such close-to-star vicinities (Batygin et al. 2009; Lovis et al.
2011; Van Laerhoven and Greenberg 2012; Correia et al. 2013).

ESA’s CoRoT mission and, in particular, NASA’s Kepler mission became major
achievements in the field of discoveries and explorations of exoplanets with sizes
and masses of the Earth’s kind. The data obtained from these space telescopes made
it possible to distinguish five categories of relatively small planets: Mercuries (0.02–
0.4RE), sub-Earths (0.4–0.8RE), Earths (0.8–1.25RE), super-Earths (1.25–2.6RE),
Neptunes (2.6–6.0 RE), where RE is Earth’s radius.

In a more general classification, major classes of the star-hosted planets com-
prise: sub-Earths, Earths, super-Earths, Neptunes, Jupiters, and super-Jupiters.
Super-Jupiters are defined as giant planets with masses greater than 2–3, up to
∼10, in Jovian units. Super-Earths and super-Jupiters are not represented in our
Solar system. At masses greater than 13MJ, the super-Jupiters are classed as brown
dwarfs. Irrespective of mass, the radii of super-Jupiters do not differ much from that
of Jupiter, i.e., the density accordingly rises with mass. Any exoplanet, once its mass
and/or size is measured, can be attributed to one of these classes.

According to Stevens and Gaudi (2013), the boundaries in mass between the
planet classes, in Earth mass units, can be defined as:

• sub-Earths—Earths: 0.1,
• Earths—super-Earths: 2,
• super-Earths—Neptunes: 10,
• Neptunes—Jupiters: 100,
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• Jupiters—super-Jupiters: 1000,
• super-Jupiters—brown dwarfs: 4000.

For example, sub-Earths have masses less than 0.1, and Earths have masses
greater than 0.1 but less than 2, in the Earth units. These divisions are approximate
and conditional, and may slightly vary from survey to survey. Main physical
and orbital parameters of planetary class prototypes (Earth, Neptune, and Jupiter)
present in our Solar system are listed in Appendix B for comparison.

In our Solar system, Mercury can be attributed to the class of sub-Earths; Mars,
whose mass is 0.11 in Earth units, is just at the boundary between sub-Earths and
Earths; Venus and Earth are Earths; Saturn, whose mass is 95 Earth units, is just at
the boundary between Neptunes and Jupiters; Jupiter is Jupiter; Uranus and Neptune
are Neptunes.

According to Borucki et al. (2011), the boundaries in physical radius between
the planet classes, in Earth radius units, can be defined as:

• Earths—super-Earths: 1.25,
• super-Earths—Neptunes: 2,
• Neptunes—Jupiters: 6.

For example, super-Earths have physical radii greater than 1.25 but less than 2,
in Earth radius units. These divisions are also approximate and conditional. In the
given divisions, Saturn, whose radius is 9.1 Earth units, definitely belongs to the
class of Jupiters.

An important planetary parameter is the I/R ratio of masses of water (ice) and
solid matter (metals and rocks). According to Sotin et al. (2007) and Küchner
(2003), three types of planets can be distinguished, depending on the I/R value:

• I/R ∼ 10−4: rocky planets with water content as on the Earth;
• I/R ∼ 0.3–0.5: planets with a liquid ocean under an ice cover, similar to Jovian

moons Europe and Ganymede;
• I/R ∼ 1: completely oceanic planets.

Super-Earths, important in view of their enhanced potential habitability (due
to the enlarged, compared to the Earth, surface area), can also be defined more
strictly as the planets with masses from ∼1.5 to 13 Earth masses, with non-dominant
atmospheres. The atmosphere is regarded as non-dominant if its height is much less
than the planet’s radius.

Super-Earths may form due to dispersal of gas shells of giant planets by the
UV radiation of massive stars neighbouring to their host systems. Therefore, the
presence of planetary systems containing super-Earths can be expected in regions
of formation of massive stars; whereas the presence of systems with giant planets
can be expected in regions of formation of low-mass stars (Boss 2006). Super-Earths
may also form in the course of rapid radial inward migration of giant protoplanets,
when the process of contraction of the planet “is not in pace” with the migration
process: the tidal destruction of the protoplanet (which is a massive gas clot with a
core) leaves finally the sole core (Nayakshin 2011).
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There exist observable planets that do not belong to any stars. These solitary
objects travelling in interstellar space are called free-floating planets (FFPs), or
rogue planets, or orphan planets. First-ever detected FFPs were discovered in the
σ Orionis star cluster (Zapatero Osorio et al. 2000). This class of objects may origi-
nate due to escape processes in planetary systems. A significant fraction of planetary
populations formed in systems of binary stars can be ejected (Zinnecker 2001).
Examples of such processes are familiar to researchers in celestial mechanics. For
example, it is known that Mercury may escape from our Solar system, in the course
of the long-term chaotic diffusion of its orbit in eccentricity; however, the escape
timescale is large and may take billions of years (Laskar 1994).

10.3.3 Physical Types of Planetary Systems

When statistics of discovered planets are corrected for observational biases, it turns
out that at least 25% of all Solar-like stars in our Galaxy should actually host
planetary systems (Grether and Lineveawer 2004). Therefore, planetary systems of
main-sequence stars should be ubiquitous. Greaves et al. (2007) distinguish four
major observed types of stars with planets and discs:

1. Stars with debris discs (i.e., residual discs, consisting of small bodies and dust,
presumably left after the planetary formation epoch), but without observed
planets. An example is τ Ceti.

2. Stars with both planets and massive debris discs. An example is ε Eridani.
3. Stars with gas giants in orbits larger than 0.1 AU (“cold Jupiters”) and without

significant debris discs. An example is our Sun.
4. Stars with gas giants in orbits with radii smaller than 0.1 AU, and without debris

discs. An example is 51 Pegasi.

10.4 Architecture and Dynamical Configurations

To date, thousands of exoplanetary systems have been discovered. Many of them
are observed to be multiplanet systems, i.e., they host two or more planets. The
orbital resonance and near-resonance phenomena are ubiquitous in them. In several
multiplanet systems, planets were verified to be in mean motion resonances with
each other (Wright et al. 2011; Fabrycky et al. 2012). The planetary resonances are
believed to be a natural outcome of the primordial migration of planets due to their
interaction with the protoplanetary disc; see, e.g., Wang et al. (2012).

Apart from the well-known two-body mean motion resonances, three-body mean
motion resonances can be important. The three-body resonances in the dynamics
of asteroids and planets of the Solar system represent, historically, a well-studied
phenomenon; it was considered in the second part of this book. With the arrival of



230 10 Exoplanets: An Overview

massive observational data on multiplanet systems, studies of three-body resonances
in their dynamics were initiated (Quillen 2011).

Systems with planets in the 2/1 mean motion resonance are represented, for
example, by Gliese 876 and HD 82943; in the 3/1 resonance—by 55 Cnc. In the
Gliese 876 system, three planets are involved in two 2/1 resonances, thus forming
the Laplace resonance 4:2:1 (Martí et al. 2013); recall that, in the Solar system,
the Laplace resonance governs the dynamics of three Galilean satellites. Moreover,
a closely packed multiplanet resonant system, Kepler-223, exhibiting the 8:6:4:3
mean motion resonance, was reported (Lissauer et al. 2011a,b).

The presence of mean motion resonances and their interaction implies possibility
for chaos in the dynamics of exoplanets, as, for example, in case of the Kepler-36
system (Deck et al. 2012).

Planetary systems of binary stars might be no less ubiquitous that those of
single stars. Indeed, more than a half of all observed main-sequence stars belong
to multiple (mostly binary) star systems (Duquennoy and Mayor 1991; Mathieu
et al. 2000). The dynamics and formation of circumbinary planets is a particular
theoretical challenge, due to stringent stability conditions. One of the currently
known circumbinary planets, Kepler-16b, orbits around a system of two main-
sequence stars (Doyle et al. 2011). Although orbiting in a dangerous vicinity to
the chaotic circumbinary zone, Kepler-16b survives because it is safe inside a cell
bounded by the chaotic 5/1 and 6/1 resonances with the central binary (Popova
and Shevchenko 2013). It is likely that Kepler-16b, as well as other discovered
planets in circumbinary systems, suffered inward migration: its formation in situ is
problematic due to hostile conditions for planetesimal accretion, in particular, high
encounter velocities of planetesimals and low planetesimal spatial concentration in
the planet’s current orbital location (Meschiari 2012; Paardekooper et al. 2012).

10.5 Resonant and Multi-Resonant Systems

In Sect. 8.2 above, we considered, in particular, the resonant and chaotic dynamics
of asteroids in our Solar system. The asteroidal resonances in our system have
been explored for more than 150 years since the discovery of the gaps in the main
belt by Kirkwood (1867). This discovery was based on statistics of ∼100 objects;
nowadays, when orbital data are available for an even greater number of multiplanet
systems and planetary systems of binary stars, period ratio histograms for them can
be built analogously, so that to reveal possible resonant features. Such histograms
for exoplanet systems were built in several studies; see Pichierri et al. (2019) and
references therein.

In the analogy with asteroidal distributions, statistics of resonances in multiplanet
systems, as well as in binary stellar systems with planets, were analysed by Popova
and Shevchenko (2014). Orbital period ratios were calculated for each pair of
objects in the whole sample of systems suitable for the analysis. Histograms of
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period ratios, using the exoplanet.eu database (Schneider 2018), were constructed
separately for two possible configurations:

(a) The orbit of the dominating (in mass) body in the pair is inside the orbit of the
smaller body in the pair. In the Solar system, this configuration is analogous to
a “Neptune – TNO” configuration.

(b) The opposite case, analogous to a “main-belt asteroid – Jupiter” configuration.

The dominating body in the pair is considered to be the “perturber,” analogously to
orbital configurations in the Solar system, where Neptune and Jupiter are the main
perturbers for TNOs and main-belt asteroids, respectively.

The obtained histograms are presented in Fig. 10.4. In the both cases (a) and (b),
the outer body is indexed with “1” (for example, its orbital period is T1), and the
inner body is indexed with “2” (its orbital period is T2).

As one may see, several peaks are prominent in the distributions. They are present
at the nominal locations of resonances 3/2, 2/1, 5/2, 3/1, and 4/1. In Fig. 10.4, the
histograms are fitted with the curves given by the multi-peaked function
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e−(T1/T2−C)/D. (10.4)

Each fitting function fi models nothing but the normal distribution of the period
ratio values near a particular resonance. The function φ describes the wide bulge
and decay in the distribution tail. The Ai , μi , σi , B, C, and D parameters were
numerically evaluated using the Levenberg–Marquardt method. The numerical fits
are shown in Fig. 10.4 by solid curves.

In this way, the model fitting of the period-ratio histograms allows one to obtain
the best-fit locations of the resonant peaks; they are listed in Tables 10.1 and 10.2.
It is obvious that the resonant peaks are systematically shifted “to the right.” The
shifts are less prominent in case (a) than in case (b). In case (a), almost no shift is
present for the resonances of order greater than 1.

This is a known phenomenon in the statistics of exoplanetary systems, although
discovered not long ago. Possible dynamical and cosmogonical mechanisms for the
shifts of resonances were discussed in Lithwick and Wu (2012), Petrovich et al.
(2013), Batygin and Morbidelli (2013b), Fabrycky et al. (2014), and Pichierri et al.
(2019). For example, the shift may emerge, if the planetary masses in the pair
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Fig. 10.4 The period ratio histograms. Upper panel: the inner perturber case (a). Lower panel: the
outer perturber case (b) (Figures 1 and 2 from Popova and Shevchenko 2014)
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Table 10.1 Locations of
resonant peaks, case (a)
(Popova and Shevchenko
2014)

Resonance Peak position

2/1 2.122 ± 0.007

3/2 1.547 ± 0.024

3/1 3.000 ± 0.039

4/1 4.033 ± 0.046

5/2 2.500 ± 0.018

Table 10.2 Locations of
resonant peaks, case
(b) (Popova and Shevchenko
2014)

Resonance Peak position

2/1 2.131 ± 0.018

3/2 1.599 ± 0.025

3/1 3.168 ± 0.024

4/1 3.991 ± 0.039

5/2 2.517 ± 0.056

increase with time (Petrovich et al. 2013). In Batygin and Morbidelli (2013b) and
Lithwick and Wu (2012), the effect is interpreted as conditioned by tidal dissipation.
Pichierri et al. (2019) argue that additional physical mechanisms, active during early
stages of the dynamical evolution of planetary systems, are warranted to explain the
observed statistics of close-to-resonant system architectures.



Chapter 11
Planetary Architecture: Stability,
Packing and Ranging

In this chapter, we concentrate on resonances and manifestations of dynamical chaos
in exoplanet systems of various types, and explore problems on their resonant and
chaotic orbital dynamics. The analysed exosystems include multiplanet systems
of single stars and planetary systems of binary stars. Theoretical methods and
criteria for revealing the stability or instability in various planetary configurations
are described. The presented topics include: classical results on stability criteria,
Wisdom’s criterion; the Kepler map criterion; the Holman–Wiegert criteria; packing
and ranging criteria; the Moriwaki–Nakagawa criterion. The Kepler map, encounter
map and its versions are introduced and their theory is used in analytical derivations
of the stability criteria. We consider Lyapunov timescales, escape timescales, and
linear and quadratic relationships between them. The presentation is partially based
(in Sect. 11.1) on the papers by Shevchenko (2010), Shevchenko (2007a) (by
permission from Cambridge University Press), Shevchenko (2011b) (by permission
from Elsevier), and Shevchenko (2020).

11.1 Stability Criteria

11.1.1 Classical Results

De cette ardeur que vous dites,
où est le firmament?

Rainer Maria Rilke,
Vergers (1926)

In seventies of the eighteenth century, Pierre Simon Laplace and Joseph-Louis
Lagrange explored secular variations of the semimajor axes of the Solar system
planets under mutual perturbations and made first-ever rigorous conclusions on the
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Solar system long-term stability. In the secular theory valid in the first order in
planetary masses, the secular variations in the planetary semimajor axes were shown
to be absent (Lagrange 1892; Laplace 1895). This result does not completely solve
the stability problem, even in the first order in masses, because variations in the
planetary eccentricities may obviously lead to close encounters between planets, but
no limits on the variations of planetary eccentricities and inclinations were provided
by the theory; for historical details see Laskar (2015).

In the twentieth century, a major breakthrough was achieved with the advent
of Andrey Kolmogorov’s theorem (Kolmogorov 1954). The theorem can be stated
in the following formulation (Morbidelli 2002). Let a system with N degrees of
freedom and the quasi-integrable analytical Hamiltonian

H(p,q) = H0(p)+ εH1(p,q)

be given, and also a point p0 in the action space, such that

1. ω0 = gradpH0(p0) satisfies the diophantine condition

|k · ω0| > γ

|k|τ , ∀k ∈ ZN, k �= 0, (11.1)

where γ > 0 and τ > 0 are some constants;
2. H0 is locally non-degenerate in p0, i.e., the determinant of the ∂2H0/∂pi∂pk(p0)

matrix is non-zero.

Then there exists an ω0-depending threshold εcr such that at ε < εcr a canonical
transform (p,q) → (J,φ) can render the original H in the form

H(J,φ) = H0(J)+ H1(J,φ), (11.2)

where ‖H1‖ = O(‖J‖2) and gradJH0(0) = ω0; J and φ are conjugated action-
angle variables.

At J = 0, the equations of motion defined by the Hamiltonian (11.2) are

J̇ = 0, φ̇ = gradJH0(0), (11.3)

and, for the initial conditions (J,φ) = (0,φ0), the solution of these equations is

J = 0,

φ = gradJH0(0)t + φ0,

implying that the torus J = 0, φ ∈ TN is invariant with respect to the flow (11.2).
Therefore, at the small enough perturbations ε < εcr, the quasi-integrable Hamil-

tonian systems possess invariant KAM tori, which carry motion with diophantine
frequencies.
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The Kolmogorov theorem was generalized in works of Vladimir Arnold and
Jürgen Moser (Arnold 1963a,b; Moser 1962), and nowadays is usually referred to
as the KAM theorem. For details of the mathematical treatment and a sketch of the
theorem proof, see Morbidelli (2002).

The actual masses of planets in the Solar system (and in any other planetary
system) are by many orders of magnitude too large for the original KAM theorem
to be applicable to guarantee the stability. In 1966, Michel Hénon estimated that,
if one tries to directly apply the KAM theorem to prove the Solar system stability,
then one finds that the stability could be guaranteed if Jupiter’s mass were less than
10−320 of the Solar mass (for details see Laskar 2014). This is 10260 times less
than the electron mass. In other words, the original KAM theorem conditions are
too stringent to be applicable in practice. However, in modern developments and
refinements of the KAM theory (see Locatelli and Giorgilli 2000; Giorgilli et al.
2017, and references therein), the theoretical threshold perturbation values have
been drastically raised, almost up to the actual Jovian case, but these refinements
are model dependent.

The Arnold diffusion, universally taking place in multi-dimensional (N > 2)
Hamiltonian systems, and the Nekhoroshev theory (Nekhoroshev 1977) describing
the diffusion, is reviewed in Chirikov (1979). With an emphasis on applications in
celestial mechanics and dynamical astronomy, the Arnold diffusion is reviewed in
Cincotta (2002).

11.1.2 Wisdom’s Criterion: The μ2/7 Law

Let us consider the first-order orbital resonances of a passively gravitating test
particle and a perturber (say, a planet), both moving in initially circular close
orbits around a primary (a host star). These resonances correspond to period ratios
(p + 1)/p, where integer p ≥ 1. On increasing p, the resonances accumulate to
the 1/1 commensurability, and they start to overlap at some critical p, because their
widths do not decrease fast enough. Using Chirikov’s overlap criterion, Wisdom
(1980) inferred that the critical pcr is given by

pcr ≈ 0.51μ−2/7, (11.4)

where μ = m2/(m1 +m2) is the mass parameter, and m1 and m2 are the masses of
the primary (the star) and the secondary (the planet), respectively.

From the third Kepler law, one directly finds that p = pcr corresponds to the
chaotic zone half-width

�acr ≈ 1.31μ2/7a′ (11.5)

(Duncan et al. 1989; Murray and Dermott 1999), where a′ is the orbital semimajor
axis of the planet. The particles with the semimajor axis a within the interval
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a′ ±�acr move chaotically (Duncan et al. 1989; Murray and Dermott 1999). They
escape from this zone sooner or later, either by acquiring hyperbolic orbits, or by
colliding with the finite-sized planet. In such a way, particle-free zones around
planetary orbits can be formed.

At small initial eccentricities (e < 0.15) of the particle’s orbit, in the planar
circular restricted three-body problem, the radial half-width of the instability
neighbourhood of the perturber’s orbit can be well described by Eq. (11.5) (Murray
and Dermott 1999). Mustill and Wyatt (2012) generalized the Wisdom law by
deriving the dependence of the radial extent of the planetary chaotic zone on the
initial eccentricity of a close-to-coorbital particle. Thus, the shapes of debris disc
edges near a planet can be predicted when the disc particles are initially eccentric.

An insight in details of close-to-coorbital dynamics is provided by the so-called
encounter map.

11.1.3 The Encounter Map

Duncan et al. (1989) constructed an encounter map to describe the close-to-coorbital
motion of a particle and a perturber (a planet) around the primary body (a star). In
the map’s first version, it was assumed that the perturber is moving in a circular orbit,
the orbital inclination of the particle with respect to the planet’s orbital plane is zero,
and the particle’s orbital eccentricity is small or moderate. Initially, the particle is
close to be coorbital with the planet. The encounter map is based on the assumption
that the planet perturbs the particle’s motion solely when the particle moves in a
close vicinity of the planet. Otherwise, the particle moves in an unperturbed Kepler
ellipse determined by the last encounter. Here we describe the derivation of the map
in brief, following Duncan et al. (1989) and Murray and Dermott (1999).

The motion of the particle with zero mass orbiting around the central mass m1
is subject to perturbations from the planet m2 � m1 moving in a coplanar circular
orbit with the semimajor axis a2. It is natural to consider the particle’s motion in the
frames centred on the planet. The x axis is directed from m1 to m2, and the y axis
is orthogonal to x and is co-directed with the perturber’s motion, see Fig. 11.1.

The particle’s motion near the planet is described by Hill’s equations

ẍ − 2n2ẏ − 3n2
2x = − Gm2x

(x2 + y2)3/2
, (11.6)

ÿ + 2n2ẋ = − Gm2y

(x2 + y2)3/2
(11.7)

(Hill 1878; Murray and Dermott 1999), where n2 = (Gm1/a
3
2

)1/2
is the mean

motion of the planet m2.
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Fig. 11.1 A conjunction of the particle P , moving in an elliptic orbit, with the perturbing body
in a coplanar circular orbit (Figure 9.19 from Murray and Dermott 1999, by permission from
© Cambridge University Press)

In the limit m2 → 0, Hill’s equations have the solution

x = D1 cosn2t +D2 sin n2t +D3, (11.8)

y = −2D1 sin n2t + 2D2 cos n2t − 3

2
D3n2t +D4 (11.9)

(Hénon and Petit 1986), where D1, D2, D3, and D4 are integration constants.
The motion is assumed to be unperturbed between approximately instant per-

turbations in the conjunctions. Therefore, the problem is reduced to calculating
increments of D1, D2, D3, and D4 during a conjunction. D4 can be set to zero,
thus setting t = 0 when starting to consider each consequent conjunction. Duncan
et al. (1989) calculated the increments ofD1,D2,D3 with the accuracy to the lowest
orders in the particle’s eccentricity e and in the quantity

ε = a − a2

a2
,

where a and a2 are the semimajor axes of the particle and the planet, respectively.
The most notable change is in D2; the change in D1 is zero.

Let e and � be the eccentricity and the longitude of pericentre of the particle’s
orbit, and define the complex eccentricity

z = e exp(i�), (11.10)
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where i is the imaginary unit. Let λn be the mean longitude of the nth conjunction,
zn and εn be the values of z and ε just before the nth conjunction. The encounter
map is given by the equations

zn+1 = zn + sign(ε1)
ig

ε2
1

· m2

m1
exp(iλn), (11.11)

εn+1 = εn

(
1 + 4(|zn+1|2 − |zn|2)

3ε2
n

)1/2

, (11.12)

λn+1 = λn + 2π
∣∣∣(1 + εn+1)

−3/2 − 1
∣∣∣
−1

(11.13)

(Duncan et al. 1989). The constant

g = 8

9
[2K0(2/3)+K1(2/3)] = 2.239566674 . . . ,

where K0 and K1 are modified Bessel functions of the 2nd kind. Not that,
although the map, as presented here, consists of three equations, it is actually four-
dimensional, because the first equation is for a complex variable.

Another, more convenient, representation for the encounter map was derived in
Duncan et al. (1989) by introducing the variable �εn = εn − ε1 (for ε1 > 0) and
expanding Eqs. (11.12) and (11.13) in power series; this gives

zn+1 = zn + ig

ε2
1

· m2

m1
exp(iλn), (11.14)

�εn+1 = 2(|zn+1|2 − |zn|2)
3ε1

, (11.15)

λn+1 = λn + 4π

3ε1
− 4π�εn+1

3ε2
1

. (11.16)

The synodic period (the time interval between consecutive conjunctions) is given
by

Ts = 2π

|n2 − n| = 2π

n2

∣∣∣∣
(a2

a

)3/2 − 1

∣∣∣∣
−1

. (11.17)

It gives the encounter map period, i.e., the time interval corresponding to one
iteration of the map. Here n is the particle’s mean motion. As in cases of the
separatrix and Kepler maps, it varies from iteration to iteration, i.e., depends on n.

Duncan et al. (1989) modified and generalized the encounter map for a more
general case, in which the perturber’s orbit is elliptic. Namouni et al. (1996)
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provided an improved version, accounting for higher order terms in the particle’s
eccentricity and inclination.

The encounter map theory can be used to find analytically the radial width of the
chaotic zone around the perturber orbit (Duncan et al. 1989; Murray and Dermott
1999). The main idea is analogous to a heuristic method used in Zaslavsky and
Filonenko (1968), Zaslavsky et al. (1991) for estimating the chaotic layer width in
the perturbed pendulum model. Namely, it is assumed that the motion is chaotic,
being completely randomized in the phase angle variable, if this angle varies per
one map iteration by more than π . Note that this chaos condition is completely
heuristic and not sufficient, as, for example, a consideration of emergence of global
chaos in the standard map dynamics can show. This condition can be shown to
be partly analogous to the resonance overlap criterion in the perturbed pendulum
model or in the standard map. It means that correlations between consecutive (at
consecutive encounters) values of the mean longitude λ are lost, and the longitudes
of consecutive conjunctions are completely randomized. Using Eq. (11.16), one may
write down the criterion in the form

4π�εn
3ε2

1

� π, (11.18)

where ε = (a − a2)/a2, �εn = εn − ε1. Equivalently,

|�ε| � 3

4
ε2

1. (11.19)

Let the initial eccentricity be zero, then |z1| = 0, and from Eq. (11.14) one has

|z2| = g

ε2
1

m2

m1
. (11.20)

On the other hand, Eq. (11.15) gives

ε�ε = 2

3
|z2|2. (11.21)

Hence

�ε = 2

3

g2

ε5

(
m2

m1

)2

, (11.22)

and the condition (11.19) reduces to

ε1 �
(

8

9
g2
)1/7 (

m2

m1

)2/7

. (11.23)
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Fig. 11.2 The encounter map numerical-experimental data on �acr/a
′ in the planar circular

restricted three-body problem (Murray and Dermott 1999). Solid line: the best fit to the data.
Dashed line: Wisdom’s theoretical law (11.24). μ2 is the mass parameter equivalent to μ in our
notation (Figure 9.23 from Murray and Dermott 1999, by permission from © Cambridge University
Press)

Evaluating g and setting ε1 = �acr/a
′, one arrives at

�acr ≈ 1.24μ2/7a′, (11.24)

in accord with Wisdom’s original law (11.5).
Note, once again, that the increment of λ in the chaos condition is set equal to

π on solely heuristic grounds, that is why the perfect agreement in the numerical
coefficient is largely by chance.

In Duncan et al. (1989) and Murray and Dermott (1999), the validity of the
theoretical dependence (11.5) was checked in numerical experiments with the
encounter map, and a close agreement of the theoretical power-law index in
Eq. (11.5) with obtained numerical-experimental estimates was found. Murray and
Dermott (1999) estimated that, in the adopted μ interval (which was rather broad:
10−9 ≤ μ ≤ 10−3), the numerically measured power-law index was equal to 0.286,
practically coinciding with its theoretical value 2/7,1 but the numerically found
coefficient at the scaling was found to be some 20% greater:

εcr = �acr

a′ = 1.57μ0.286 � 1.57μ2/7, (11.25)

see Fig. 11.2. Therefore, the actual chaotic zone is about 20% broader than that
given by Eq. (11.5), regardless of the mass parameter μ value.

12/7 = 0.2857 . . . .
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In Fig. 11.2, the numerical-experimental results of Murray and Dermott (1999)
are represented by dots. The solid line shows the best linear fit in the logarithmic
coordinates, it is given by Eq. (11.25). Wisdom’s theoretical law (11.24) is shown by
the dashed line. Obviously Wisdom’s law serves as a lower bound for the numerical
data of Murray and Dermott (1999), providing a perfect fit for the slope of the
observed dependence.

It is important to outline that, if the initial conditions are inside the chaotic layer,
the encounter map cannot be iterated infinitely, because sooner or later the particle’s
eccentricity is raised high enough, and one of the conditions for the map validity
(namely, the low particle’s eccentricity) breaks down. This is not at all a fault of
the map, but rather a manifestation of the physical reality: the perturber “cleans up”
in such a way the radial neighbourhood of its orbit. This close-to-orbit clearing is
just one of the conditions set by the IAU General Assembly in Prague (IAU General
Assembly 2006) for a celestial body to be called a planet.

11.1.4 The Two-Dimensional Encounter Map

To describe the motion inside the planetary chaotic zone, a two-dimensional kind
of an encounter map can be derived using an adaptation of the tokamap technique,
introduced in Balescu (1998), Balescu et al. (1998).

In the planar circular restricted three-body problem, the Hamiltonian of a
particle’s motion in the vicinity of a mean motion first-order (p + 1)/p resonance
(p ≥ 1) with a planet can be written as

H = − 1

2�2
−�+

(
1 + p − p

�3

)
 − 3p2

2�4
 2 −21/2μBp 

1/2 cosψ (11.26)

(Wisdom 1980, Equation (42)), where

ψ = −pl + (p + 1)(t − g) (11.27)

is the resonant argument, and the Delaunay angles l and g are the mean anomaly
and the argument of pericenter, respectively; t is time;

� � [(1 − μ)a)]1/2
(

1 + p

2
e2
)
,  � [(1 − μ)a]1/2 e

2

2
(11.28)

are the canonical momenta. The resonant argumentψ is conjugate to the momentum
 ; a is the semimajor axis, e is the eccentricity. The canonical angle variable φ =
l + g − t , conjugate to the momentum �, is absent in the representation (11.26);
therefore� is constant in this approximation.

The unit system is defined in such a way: G(m1 + m2) = 1 (where G is the
gravitational constant), and the distance between m1 and m2 is unity. Thus, the
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orbital period of the binary is equal to 2π and the binary’s orbital frequency (mean
motion) is unity.

The mass parameter μ = m2/(m1 +m2) (wherem1 � m2 are the masses of the
binary’s components) is assumed to be small. The numerical coefficient Bp is given
by

Bp � −p + 1

π
[2K0(2/3)+K1(2/3)] � −0.802(p+ 1) (11.29)

(Wisdom 1980; Malhotra 1998), where K0 andK1 are modified Bessel functions.
Let us consider the motion in the vicinity of a guiding resonance (p + 1)/p,

taking into account its interaction with the multitude of all other first order mean-
motion resonances. Therefore, we incorporate all first-order resonances in the
Hamiltonian (11.26). We setψk = k(−l+t−g)+t−g for any k ≥ 1; for the guiding
resonance, then, according to Eq. (11.27), ψ ≡ ψp. Therefore, ψp+j = ψp − jφ

for any j ≥ 1 − p, and

H = − 1

2�2 −�+
(

1 + p − p

�3

)
 − 3p2

2�4 
2 − 21/2μ 1/2 ·

∞∑

k=1

Bk cosψk

= − 1

2�2
−�+

(
1 + p − p

�3

)
 − 3p2

2�4
 2 − 21/2μ 1/2 ·

∞∑

j=1−p
Bp+j cos(ψ − jφ).

(11.30)

The guiding resonance corresponds to the term with j = 0 in the sum.
We see that the canonical angle variable φ = l + g − t reappears in the

Hamiltonian. If p � 1, in the vicinity of the guiding resonance in the case of
particle’s inner (with respect to the perturber) orbits one has

φ̇ ≈ n− npl = p + 1

p
− 1 = 1

p
, (11.31)

where n = (p + 1)/p and npl = 1 are the mean motions of the particle and the
planet, respectively. Defining the frequency 
 ≡ φ̇, we rewrite Eq. (11.30) in the
form

H = − 1

2�2
−�+

(
1 + p − p

�3

)
 − 3p2

2�4
 2 − 21/2μ 1/2 ·

∞∑

j=1−p
Bp+j cos(ψp − j
t).

(11.32)

Equation (11.29) for the Bp coefficients is valid in the vicinity of the guiding
resonance. As soon as the resonances closest to the guiding one are most important,
henceforth we treat the amplitudes Bp+j of the perturbing resonances in the
(p + 1)/p “staircase” as having approximately the same value.
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Henceforth we consider the dynamics in the specific angular momentum,  ,
and its conjugate angle, ψ , assuming that the specific energy � is approximately
constant. In reality, neither energy nor angular momentum are conserved here, i.e.,
in the restricted three-body problem. Instead, in the restricted circular three-body
problem there exists the Jacobi constant, which, in some approximation, can be
reduced to the Tisserand relation. The approximation implies that μ � 1 and that
the particle’s motion is considered far from close encounters with the planet, i.e.,
the particle–planet distance is not much less than the particle–star distance; see,
e.g., Murray and Dermott (1999). During the encounters, the relation is subject to
deviations.

Introducing the Tisserand parameter T i, we write down the Tisserand relation in
the planar problem in the form

T i = 1

2a
+
[
(1 − e2)a

]1/2 � const, (11.33)

where a is the semimajor axis of the particle, measured in units of the semimajor
axis apl of the planet, e is the particle’s eccentricity.

If e ∼ 0, and a ∼ 1, as in our case, any relative (with respect to the initial value)
variations in e are much greater than the corresponding relative variations in a; and
the latter can be set relatively constant. Therefore, one may consider variations in
the specific angular momentum assuming the energy to be constant. This situation
is opposite to that in the Kepler map formalism, describing the particle’s highly
eccentric motion (Petrosky 1986; Petrosky and Broucke 1988), where the particle’s
pericentric distance is set constant and variations in the energy are considered; see
Sect. 11.1.5.

Now let us see how an appropriate map can be constructed to describe the close-
to-coorbital evolution. For this purpose, we use a tokamap technique. In Balescu
(1998); Balescu et al. (1998), a specific area-preserving two-dimensional map, now
known as tokamap, was derived to describe the dynamical behavior of the magnetic
field lines in tokamaks. Its derivation was based on the Wobig–Mendonça formalism
(Wobig 1987; Mendonça 1991). Nowadays, the tokamap technique is broadly used
in physical applications (Caldas et al. 2017).

Note that the tokamap derivation itself is quite standard: its key step consists in
representing the perturbation as a periodic delta-function (a sequence of “kicks”);
see Chirikov (1979), Lichtenberg and Lieberman (1992), Murray and Dermott
(1999), Wisdom (2018). However, as soon as we use the map equations as obtained
in Wobig (1987), Mendonça (1991) for a given Hamiltonian, we use the tokamap
terminology here.

The tokamap Hamiltonian is given by

H =
∫

dy

q(y)
+ εH1(y)

k=M∑

k=−M
cos(x − kt) M→∞=

∫
dy

q(y)
+ εH1(y) cos x

k=∞∑

k=−∞
δ(t − k),

(11.34)
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see (Abdullaev 2006, equation (10.78)); x and y are conjugate canonical variables,
t is time. The q(y) function is called the safety factor. Based on Eq. (11.34), the
general form of a tokamap can be written as

yk+1 = yk + 2πf (yk+1) sin xk,

xk+1 = xk + 2π

q(yk+1)
+ 2πf ′(yk+1) cos xk (11.35)

(Balescu 1998; Balescu et al. 1998), where f (y) ≡ εH1(y), f ′(yk+1) = ∂f ′(yk+1)
∂yk+1

.
The map period is equal to the period of perturbation.

We do not reproduce here q(y) and εH1(y) specific for tokamaks. Note that
Wobig’s map, derived originally in a specific tokamak model (Wobig 1987), can be
shown to describe the motion in an infinite multiplet of equal-sized equal-spaced
parametric resonances (considered, in particular, in Chirikov 1979). Analogously,
the standard map describes the motion in an infinite multiplet of equal-sized equal-
spaced pendulum-like resonances, i.e., the first fundamental model resonances; see
Sect. 1.2.

Here we derive a map that describes the motion in an infinite multiplet of equal-
sized equal-spaced second fundamental model resonances. We adopt the second
fundamental model as defined in Henrard (1982, 1983), Henrard and Lemaître
(1983). Its Hamiltonian is given by formula (11.34), if one sets

q(y) = 1

A+ By , f (y) = Cy1/2, (11.36)

where A, B, C are arbitrary constants. Solving for yk+1 in the first equation of
map (11.35), we derive the tokamap:

yk+1 =
[
πC sin xk +

(
π2C2 sin2 xk + yk

)1/2
]2

,

xk+1 = xk + 2π(A+ Byk+1)+ πCy−1/2
k+1 cos xk, (11.37)

where it is implied that y > 0.
To reduce Hamiltonian (11.32) to paradigm (11.34), we rescale the time in

Hamiltonian (11.32):
t → t; thus, the Hamiltonian itself is rescaled: H → H/
.
In Eq. (11.32), we assume that the sum of the harmonic terms starts from minus
infinity, as soon as p � 1. Therefore, we may apply the resulting Hamiltonian as
a local approximation of the motion, valid in the vicinity of any guiding resonance
(p + 1)/p with p � 1. Using definitions (11.36) and setting  ≡ y, ψ ≡ x, we
compare Hamiltonians (11.32) and (11.34), and find

A = 
−1
(

1 + p − p

�3

)
, B = −
−1 3p2

�4 , C = −21/2
−1μBp,

(11.38)
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where

Bp � −0.802(p+ 1), 
 � 1

p
. (11.39)

The variables � and  are expressed through μ, p, a, e by formulas (11.28). From
Eqs. (11.32, 11.38), it is straightforward to see that at p � 1 and e ∼ 0 one has

A � 0, B � −3p3, C � 1.134μp2. (11.40)

Making the substitution y = z/(2πB) in Eqs. (11.37), we arrive at

zk+1 =
[
J sin xk +

(
J 2 sin2 xk + zk

)1/2
]2

,

xk+1 = xk + zk+1 + Jz−1/2
k+1 cos xk + 2πA, (11.41)

where the new parameter

J = 21/2π3/2|B|1/2C � 15.5μp7/2. (11.42)

We see that the parameter A is mostly non-important, as it affects only local
winding numbers of the map, but not the local Lyapunov exponents and diffusion
rates, except at the border of the chaotic layer. At the border, its value controls the
prominence of marginal resonances, analogously to the case of the separatrix map,
as presented in Shevchenko (2012). Therefore, the derived tokamap has only one
important parameter, J .

Let us consider the map (11.35) behavior in the standard map approximation
in the vicinity of a fixed (integer-resonant) point yfp. The conditions at which the
standard map approximation is valid can be estimated using the original map in
form (11.41), and also Eqs. (11.40). Indeed, the inequality Jz−1/2 � 1 is required;
and this condition can be reduced to

y � π2C2 � 12.7μ2p4 � 2.51μ2ε−4. (11.43)

In other words, the standard map approximation is valid if y is much greater than the
“forced” y value, given by yf = e2

f /2 � 2.51μ2ε−4, where the forced eccentricity
ef is given below by Eq. (11.51). Note that one iteration of the map (11.37) just
provides the forced y value, if one sets the initial y to zero.

Ignoring negligible (on conditions specified below) terms, one obtains an
approximating map

ζk+1 = ζk −K sin xk,

xk+1 = xk + ζk+1 + const, (11.44)

where ζ = 2πB(y − yfp), K(yfp) = 4π2|B|Cy1/2
fp .
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The map (11.44) is identical to the standard map (considered in Sect. 1.5), except
that here const �= 0 generally. For the standard map’s stochasticity parameter K ,
setting yfp = e2/2, one has

K(yfp) = 4π2|B|Cy1/2
fp � 95.0 · μep5. (11.45)

If K > KG = 0.971635406 . . ., the chaotic diffusion in the momentum I is non-
bounded; see Sect. 1.5. In other words, on increasing the K parameter, at K =
KG ≈ 1 the last rotational invariant curve is destroyed and the motion becomes
non-bounded in I . According to Eq. (11.45), the critical value of yfp that marks the
border of the chaotic layer and thus corresponds toK = KG in map (11.44), is given
by

ycr = K2
G

16π4B2C2 � 5.23 · 10−5μ−2p−10. (11.46)

Another important y value, which corresponds to K = 4 and which we designate
as y4, roughly separates a chaotic layer’s mostly “non-porous” part (that with a
negligible total measure of regular islands) and its mostly “porous” part (that with
many large and small regular islands). In the “porous” part, trajectories may stick
to fractal borders of the islands and therefore the diffusion is generally anomalous.
The y4 value is given by

y4 = 1

π4B2C2 � 8.87 · 10−4μ−2p−10. (11.47)

The ratio ycr/y4 = K2
G/16 ≈ 0.059. The fraction of the “porous part” in the whole

extent of the layer in y depends on the values of p and μ. Recall that

y =  � [(1 − μ)a]1/2 e
2

2
, (11.48)

according to Eq. (11.28). Therefore y may vary in the interval from 0 to (1−μ)/2 ≈
1/2 (corresponding to the variation in eccentricity e from 0 to 1). If p � 1, then the
porous part is negligible. For example, if μ > 10−3 and p > 10, one has y4 < 10−7.

Let us use the tokamap (11.41) to estimate the width of the Wisdom gap. From
Eq. (11.45), atK = KG, as soon as y � e2/2 andB andC are given by Eqs. (11.40),
one has

p � 0.400 · (μe)−1/5, (11.49)

and the gap’s half-width is given by

εcr ≡ �acr

apl
� 2

3p
� 1.67 · (μe)1/5. (11.50)
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Fig. 11.3 The clearing of the planetary chaotic zone at μ = 10−8. Vertical solid blue line: the
classical border of the Wisdom gap, as given by formula εcr = 1.3μ2/7. Solid red line: the border
of the chaotic zone, as given by the generalized dependence εcr = 1.8(μe)1/5. Dashed black line:
the planet-crossing limit epc � ε. Crosses: evolved semimajor axes and eccentricities of ∼1000
particles, as obtained by direct numerical integrations over 10 Myr, in the three-body problem,
with initial conditions uniformly distributed over the grey rectangle. The solid red and dashed
black lines obviously delineate the cleared area (Figure 2 from Mustill and Wyatt 2012, © Oxford
University Press)

This scaling reproduces formulas obtained in a different way by Mustill and Wyatt
(2012) and Deck et al. (2013). However, the pre-law coefficient is slightly different.
In Mustill and Wyatt (2012), the coefficient is 1.8, and in Deck et al. (2013) it is
1.38. The intermediate value 1.67 seems to be in a better agreement with numerical
results presented in Mustill and Wyatt (2012); see Fig. 11.3.

The close-to-coorbital chaotic gap phenomenon was originally revealed in
Wisdom (1980) and Duncan et al. (1989) in assumption that the particles are initially
in circular orbits around the primary. However, the perturber (secondary) induces
eccentricity in particle’s motion. The forced eccentricity (the eccentricity raised
from zero by the perturber in a single conjunction) of a particle initially placed in
a circular orbit with radius a = apl ± �a is given, as can be deduced from (Hénon
and Petit 1986, Equations (33) and (127)), by

ef = gμε−2 � 2.24με−2, (11.51)

where, as defined above, ε ≡ �a
apl

, and, according to (Murray and Dermott 1999,
Equation (9.85)),

g = 8

9
[2K0(2/3)+K1(2/3)] ≈ 2.23957, (11.52)
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whereK0 and K1 are modified Bessel functions, as in Eq. (11.29).
Substituting the forced eccentricity in Eq. (11.50), one arrives at

εcr � 1.62μ2/7. (11.53)

Therefore, the scaling εcr ∝ (μe)1/5 first obtained in Mustill and Wyatt (2012)
directly implies the classical μ2/7 law, as the latter directly follows from the former,
when the forced eccentricity is taken into account.

A graphical illustration of the generalized dependence εcr ∝ (μe)1/5, along with
relevant numerical data, confirming the dependence, is given in Fig. 11.3. Obviously,
the cleared area is delineated by the planet-crossing limit epc � ε = �a/apl and the
generalized dependence.

The tokamap (11.41) can be regarded as a reduced two-dimensional version of
the four-dimensional encounter map, presented above in Sect. 11.1.3 to describe
the close-to-coorbital motion both in the energy and angular momentum variables
and their two conjugate angles. As soon as the diffusion in the eccentricity is
dynamically more important than that in the semimajor axis, as justified above for
the considered problem, the reduction to the two-dimensional case is appropriate.
However, the two-dimensional map cannot be straightforwardly derived from the
existing encounter map versions.

Comparing the tokamap (11.41) with the Kepler map (8.35), one should outline a
certain complementary symmetry between the two maps: the Kepler map describes
the motion in the energy variable, setting the angular momentum approximately
constant, as justified in Sect. 11.1.5, whereby the tokamap describes the motion
in the angular momentum variable, setting the energy approximately constant, as
justified above.

11.1.5 The Kepler Map Criterion: The μ2/5 Law

The Kepler map is a two-dimensional area-preserving map, introduced by Petrosky
(1986) and Chirikov and Vecheslavov (1986) to describe the highly-eccentric
circumbinary motion of a massless (passively gravitating) particle in terms of energy
and time. The model scheme is given in Fig. 11.4. The map’s second equation is
based on Kepler’s third law, hence the title of the map. Since 1980s the Kepler map
has become paradigmatic in applications in celestial mechanics and atomic physics.

The map was introduced by physicists, but in application to dynamical astron-
omy. The first publications, inspired by the return of the Halley comet in 1986–1987,
were very soon followed by many other contributions, where the map theory was
further developed and generalized. The generalizations concerned various problems
in celestial mechanics (Petrosky and Broucke 1988; Vecheslavov and Chirikov
1988; Chirikov and Vecheslavov 1989; Emelyanenko 1990) and atomic physics
(Casati et al. 1987; Gontis and Kaulakys 1987; Casati et al. 1988; Borgonovi et al.
1988; Jensen et al. 1988). In celestial mechanics, the Kepler map is broadly used
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Fig. 11.4 Near-parabolic
circumbinary motion of a
particle around a
“star–planet” binary (Figure 1
from Petrosky 1986, with
permission from Elsevier)

nowadays to describe and analyse long-term dynamics of various kinds of cosmic
objects in different settings of the hierarchical three-body and many-body problems.

Kepler’s third law, which provides the second equation of the map, was formu-
lated by Kepler in 1619 in the fifth book of Harmonices Mundi (Kepler 1619), a
sequel to Mysterium Cosmographicum. A brief mention of the law appeared already
in 1618, in A short summary of Copernican astronomy (Epitome Astronomiae
Copernicanae) (Kepler 1618). Therefore, one may say that the second equation
of the Kepler map was ready for derivation already some 400 years ago. It took
quite a long time, almost the same 400 years, for a scientific community to become
prepared to derive the first equation, although mathematically it does not look more
complicated than the second one.

The major problem in constructing the Kepler map analytically is to derive the
energy increment per one cometary orbital revolution. In the pioneering analytical
works on the Kepler map (Petrosky 1986; Petrosky and Broucke 1988), a number
of refined methods of mathematical physics were used to achieve this aim. The
methods included, in particular, the Lie algebraic formalism (the Hori method),
the Kolmogorov–Arnold–Moser (KAM) theory elements, a method of reduction of
a Fourier series with a small denominator to the Fourier integral in the Cauchy
integral form, a method of embedding the small denominator in an analytic function
through a suitable analytic continuation, analogies with scattering theory in quantum
mechanics. These methods became available in the twentieth century, and mostly in
the sixties of the twentieth century. Using these methods could be convenient, but
they are not necessary to derive the map. In principle, an analytical derivation of
the energy increment could have been accomplished since 1836, when the Jacobi
integral formalism became available; for historical details, see Shevchenko (2011b).
This formalism is used below to demonstrate how the map is derived.
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Modern domains of applications of the Kepler map and its generalizations in
the dynamical astronomy include: studies in the dynamics of a passively gravitating
particle in highly eccentric orbits in the planar restricted three-body problem without
crossings of planetary orbits (Petrosky 1986; Petrosky and Broucke 1988), in
the non-planar restricted three-body and four-body problems with crossings of
planetary orbits (Chirikov and Vecheslavov 1986; Vecheslavov and Chirikov 1988;
Chirikov and Vecheslavov 1989), studies of dynamical chaos in the perturbed
highly-eccentric motion (Petrosky 1986; Malyshkin and Tremaine 1999; Pan and
Sari 2004), chaotic diffusion in the dynamics of comets and meteor streams
(Emelyanenko 1990, 1992; Liu and Sun 1994; Zhou and Sun 2001; Zhou et al. 2000,
2002; Malyshkin and Tremaine 1999), studies in the Sitnikov problem (Urminsky
and Heggie 2008), exploration of dynamical environments of rotating contact
binaries, such as cometary nuclei, trans-Neptunian objects, and other similar-shaped
small bodies of the Solar system (Lages et al. 2017, 2018b).

Modern domains of developments and applications of the Kepler map in physics
include studies in classical chaotic ionization processes in hydrogen atoms in
microwave fields (Gontis and Kaulakys 1987; Casati et al. 1988; Jensen et al.
1988, 1991), generalizations of the Kepler map for cases of multi-frequency fields
(Kaulakys and Vilutis 1999), studies in physics of hydrogen atoms driven by
microwaves with arbitrary polarization (Pakoński and Zakrzewski 2001), elabo-
ration of synchronized Kepler maps (Nauenberg 1990; Pakoński and Zakrzewski
2001).

Note that the encounter map, considered above in Sect. 11.1.3, and the Kepler
map, considered here, are self-complementary: the first one describes the motion
of a particle in trajectories that are low-eccentric prograde near-coorbital with the
perturber (say, a planet), and the second one describes highly-eccentric dynamics of
particles in circumbinary orbits.

The Kepler map, including analytical formulae for its parameter, can be derived
by quite elementary methods (Shevchenko 2011b; Lages et al. 2018a). Let us
consider the motion of a passively gravitating particle in the planar circular restricted
three-body problem, say, a star–planet–comet problem, in an inertial Cartesian
frame with the origin at the barycentre. For the distance unit, we take the constant
star–planet distance, for the mass unit—the sum of the star’s and planet’s masses,
and for the time unit—the 1/(2π)th part of the planet’s orbital period.

The particle’s motion in the (x, y) coordinates is described by the differential
equations

ẍ = ν
xS − x
r3

13

+ μxJ − x
r3

23

,

ÿ = ν
yS − y
r3

13

+ μyJ − y
r3

23

(11.54)
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(see, for example, Szebehely 1967), where

r2
13 = (xS − x)2 + (yS − y)2,
r2

23 = (xJ − x)2 + (yJ − y)2, (11.55)

xS = −μ cos(t − t0),
yS = −μ sin(t − t0), (11.56)

xJ = ν cos(t − t0),
yJ = ν sin(t − t0), (11.57)

where r13 and r23 are, respectively, the star–comet and planet–comet distances;
(xS, yS) and (xJ, yJ) are the coordinates of the star and planet (say, Jupiter),
respectively; μ is the planet’s mass, ν = 1 − μ is the star’s mass.

Expanding the right-hand sides of Eqs. (11.54) in power series of μ and retaining
the first-order terms, one has

ẍ = − x

r3 + μF(x, y, t, t0),

ÿ = − y

r3 + μG(x, y, t, t0), (11.58)

where r = (x2 + y2)1/2,

F(x, y, t, t0) = [x − cos(t − t0)]r−3 + 3x[x cos(t − t0)+ y sin(t − t0)]r−5 +
+ [cos(t − t0)− x]{[x − cos(t − t0)]2 + [y − sin(t − t0)]2}−3/2, (11.59)

G(x, y, t, t0) = [y − sin(t − t0)]r−3 + 3y[x cos(t − t0)+ y sin(t − t0)]r−5 +
+ [sin(t − t0)− y]{[x − cos(t − t0)]2 + [y − sin(t − t0)]2}−3/2; (11.60)

see, for example, Liu and Sun (1994), Zhou et al. (2000). The initial epoch t0 is
chosen in such a way that the comet is at the pericentre when t = 0. Let the planet’s
phase at t = 0 be designated as g = g0, then t0 = −g; see Fig. 11.4.

The energy E of the unperturbed particle’s motion is

E = 1

2
(ẋ2 + ẏ2)− 1

r
= − 1

2a
, (11.61)

where a is the semimajor axis of the cometary orbit. If the planetary perturbation is
switched on, the energy is no more conserved and is given by

E = 1

2
(ẋ2 + ẏ2)− 1 − μ

r13
− μ

r23
= − 1

2a
(11.62)
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(Szebehely 1967). Equations (11.58) give

Ė = μ[ẋ(t)F (x(t), y(t), t, t0)+ ẏ(t)G(x(t), y(t), t, t0)]. (11.63)

The increment of E per one cometary orbital revolution is equal to the integral

�E = μ

∫ +∞

−∞
[ẋ(t)F (t, g)+ ẏ(t)G(t, g)]dt, (11.64)

where g = −t0. The integral is analogous to the Melnikov–Arnold integral in the
separatrix map theory, see Sect. 1.6 and Appendix C. The function �E(gk) is 2π-
periodic and anti-symmetric with respect to g = π .

In our inertial frame with the origin at the barycentre, the Jacobi integral is given
by

ẋ2 + ẏ2 − 2(1 − μ)
r13

− 2μ

r23
− 2(xẏ − yẋ) = E −D = const (11.65)

(Szebehely 1967), whereD is the angular momentum (note that, in our unit system,
the planet’s orbital frequency is set to unity). For the time derivatives of E and D
we arrive at the equality

Ė = Ḋ.

Therefore, the increments in E and D are equal. In the following, we derive the
increment in D, because in case of E the analytical calculation is much more
complicated. However, the result should be the same. The angular momentum is

D = xẏ − yẋ, (11.66)

and its time derivative

Ḋ = xÿ − yẍ. (11.67)

Using expressions (11.54) for ÿ and ẍ, one has

Ḋ = ν
xyS − xSy

r3
13

+ μxyJ − xJy

r3
23

, (11.68)

where

r2
13 = μ2 + r2 − 2(xSx + ySy),

r2
23 = ν2 + r2 − 2(xJx + yJy). (11.69)
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Thus, Ḋ is the sum of four terms:

Ḋ = A + B + C + D, (11.70)

where

A = ν
xyS

r3
13

, B = −ν xSy

r3
13

, C = μ
xyJ

r3
23

, D = −μxJy

r3
23

. (11.71)

It is sufficient to evaluate A and B, because

C = −A(ν → −μ), D = −B(ν → −μ). (11.72)

The motion on the unperturbed parabolic separatrix is described by

r = q(1 + u2), x = q (1 − u) , y = 2qu, t = κ

(
u+ u3

3

)
, (11.73)

where

u =
(
τ + (1 + τ 2)1/2

)1/3 +
(
τ − (1 + τ 2)1/2

)1/3
, τ = 3

2κ
t (11.74)

(see, e.g., Petrosky 1986), where

κ = (2q3)1/2,

the eccentric anomaly

u = tan
f

2
,

and q and f are the pericentric distance and the true anomaly, respectively. Note
that we consider the prograde orbits here; the retrograde case can be analysed in a
similar way.

Using formulas for the unperturbed separatrices, we follow a standard
approach for estimating the Melnikov–Arnold integrals (Chirikov 1979). Inserting
Eqs. (11.73) in Eqs. (11.71), we find

A = −μνq
(1 − u2) sin

[
κ
(
u+ u3

3

)
− t0

]

r3
13

,

B = 2μνq
u cos

[
κ
(
u+ u3

3

)
− t0

]

r3
13

. (11.75)
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Combining Eqs. (11.69), (11.56), and (11.57) and inserting Eqs. (11.73), one finds

r2
13 = μ2 + q2(1 + u2)2 + 2μq

{
(1 − u2) cos

[
κ

(
u+ u3

3

)
− t0

]

+2u sin

[
κ

(
u+ u3

3

)
− t0

]}
. (11.76)

Substituting for r13 in the denominators in Eqs. (11.75) and expanding its right-hand
sides in power series in μ, at q � 1 in the first order of μ one has

A + C = − 3μ

2q4

(1 − u2) sin
[
κ
(
u+ u3

3

)
− t0

]

(1 + u2)5
,

B + D = 3μ

q4

u cos
[
κ
(
u+ u3

3

)
− t0

]

(1 + u2)5
. (11.77)

The energy increment (equal to the angular momentum increment) is given by the
integral

�E = κ

∫ +∞

−∞
(A + B + C + D)(1 + u2)du. (11.78)

To evaluate it, it is suitable to beforehand define the following functions

I 0
n (x) =

∫ +∞

−∞
1

(1 + u2)n
cos

[
x

(
u+ u3

3

)]
du,

I 1
n (x) =

∫ +∞

−∞
u

(1 + u2)n
sin

[
x

(
u+ u3

3

)]
du,

I 2
n (x) =

∫ +∞

−∞
u2

(1 + u2)n
cos

[
x

(
u+ u3

3

)]
du.

(11.79)

These functions satisfy the recurrent relations

I 1
n+1(x) = x

2n
I 0
n−1(x),

2nI 0
n+1(x) = (2n− 1)I 0

n (x)+ xI 1
n−1(x),

I 2
n (x) = I 0

n−1(x)− I 0
n (x),
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dI 0
n (x)

dx
= −2

3
I 1
n (x)−

1

3
I 1
n−1(x),

dI 1
n (x)

dx
= −2

3
I 0
n (x)+

1

3
I 0
n−1(x)+

1

3
I 0
n−2(x) (11.80)

(Petrosky and Broucke 1988; Shevchenko 2011b). Equation (11.78) then gives

�E = W(q) sin t0, (11.81)

where

W(q) = 3μ

21/2q5/2
[I 0

4 (κ)+ 2I 1
4 (κ)− I 2

4 (κ)] =

= 3μ

21/2q5/2 [2I 0
4 (κ)+ 2I 1

4 (κ)− I 0
3 (κ)], (11.82)

and κ = (2q3)1/2.
Some of the terms in Eq. (11.82) can be expressed through modified Bessel

functions and the Airy functions, because

I 0
0 (x) = 3−1/2K1/3

(
2

3
x

)
= πx−1/3Ai

(
x2/3

)
, I 1

0 (x) = 3−1/2K2/3

(
2

3
x

)
,

(11.83)

where

Kν(x) = sec

(
1

2
νπ

)∫ ∞

0
cos(x sinh t) cosh(νt)dt,

Ai(x) = 1

π

∫ ∞

0
cos

(
xt + t3

3

)
dt (11.84)

by definition, see Abramowitz and Stegun (1970), Petrosky and Broucke (1988),
Shevchenko (2011b).

With the help of recurrent relations (11.80), Eq. (11.82) is reduced to

W(q) = 3μ

21/2q5/2κ

[
2I 0

6 (κ)+ 36I 1
6 (κ)− 18I 2

6 (κ)+ 24
dI 0

6 (κ)

dκ

]
. (11.85)

Asymptotic expressions for In6 (x) (n = 0, 1, 2) at x → ∞ were derived in Heggie
(1975), Roy and Haddow (2003):

I 0
6 (x) � I 1

6 (x) � −I 2
6 (x) � π1/2

120
x5/2 exp

(
−2

3
x

)
. (11.86)
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Finally, we arrive at

W(q) � 21/4π1/2μq−1/4 exp

(
− (2q)

3/2

3

)
, (11.87)

in accord with findings of Petrosky and Broucke (1988).
If one writes down the expression (11.81) for the energy increment together with

the expression for the increment of the planet’s phase g (following from Kepler’s
third law) per one orbital revolution of the particle, then one obtains the Kepler
map:

Ei+1 = Ei +W(q) sin gi,

gi+1 = gi + 2π |2Ei+1|−3/2, (11.88)

where the subscript i denotes the current number of the pericentre passage, gi =
−t0. The coefficientW(q) is given by Eq. (11.87), if μ � 1 and q � 1.

From the derivation of the Kepler map, it follows that the increments in energy
and time per orbital revolution are taken in this map non-simultaneously: in
energy, the increment is taken as accumulated between two consecutive apocentre
passages, and in time it is taken as accumulated between two consecutive pericentre
passages. In atomic physics, this difference was pointed out by Nauenberg (1990).
A complicated “synchronized” version of the Kepler map can be constructed
(Nauenberg 1990). The asynchronism can be as well removed by using a procedure
of synchronization, at each step of the original map; for the classical separatrix map,
the synchronization procedure is described in Sect. 1.8.

By replacing E = Wy, g = x, map (11.88) is reducible to form (8.35), where

λ = 2−1/2πW−3/2. (11.89)

Both forms of the Kepler map, (11.88) and (8.35), depend on a single parameter,W
or λ, respectively, but the advantage of (8.35) over (11.88) is that the λ parameter is
an analogue of the adiabaticity parameter for the classical separatrix map. Therefore,
by its value, one can judge whether chaos is adiabatic (if λ � 1) or not (if λ �
1). The term “adiabatic chaos” concerns conservation of an adiabatic invariant; at
low values of λ, it is conserved on long time intervals between crossings of the
separatrix; see Chirikov and Vecheslavov (2000a), Shevchenko (2008b).

At q � 1, one has W � 1 (see Eq. (11.87)); therefore, λ � 1. This means
that chaos in the motion of particles is non-adiabatic (Shevchenko 2007a), and
therefore the Kepler map can be locally approximated by the standard map with
good accuracy (Shevchenko 2010, 2011b).

If q > 1, as in the case considered above, then the particle does not cross
the planet’s orbit. If q < 1, the planet’s orbit is crossed, and �E as a function
of g has two singularities with |�E| → ∞; see Zhou et al. (2000, 2002). The
Kepler map can be generalized by introducing a multi-harmonic Kepler map, in
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which the energy increment is represented by a truncated Fourier series in the phase
variable (Liu and Sun 1994). In the planar circular restricted three-body problem
“Sun–planet–comet,” Liu and Sun (1994), Zhou et al. (2000) derived and developed
a multi-harmonic Kepler map describing the chaotic dynamics of comets in near-
parabolic orbits perturbed by a planet, even when q < 1. If q � 1, the higher order
harmonics in �E are exponentially small with q with respect to the first harmonic
(Petrosky and Broucke 1988).

The Kepler map is applicable if the particle’s pericentric distance q is constant.
Indeed, the Kepler map is derived in the assumption that q is constant. Why q may
play the role of a quasi-constant of the motion in the given problem? Based on the
Jacobi constant formalism, Shevchenko (2015) argued that the condition q � 1
naturally provides the approximate constancy of q . Indeed, in the planar circular
restricted three-body problem, the Tisserand relation (which is derived from the
expression for the Jacobi constant) is given by

1

a
+ 2

[
(1 − e2)a

]1/2 ≈ const, (11.90)

where a is the particle’s semimajor axis, measured in units of the perturber’s
semimajor axis a′, e is the particle’s eccentricity; see Eq. (11.33). If a � a′, and
e ∼ 1, one has

1

a
+ 2 [(1 + e)q]1/2 ≈ 23/2q1/2 ≈ const. (11.91)

Therefore, q is approximately conserved.
Finally, it is important to outline that, if the initial conditions are inside

the chaotic layer, the Kepler map is formally not defined on the infinite time
interval, because sooner or later the particle escapes from the chaotic layer, due
to an encounter with the separatrix. However, one easily overcomes this technical
difficulty by changing the sign of the energy each time the separatrix is crossed;
thus, the trajectory does not leave the layer, and one may explore the statistics of the
chaotic motion on time intervals that are arbitrarily long.

The Kepler map can be straightforwardly used to find analytically the width of a
chaotic band in the vicinity of the perturbed parabolic orbit. Consider the planar
circular restricted three-body problem. For the highly-eccentric particle’s orbits,
in the sequence of the p/1 resonances, the resonances start to overlap sooner or
later with increasing p (this increase means approaching the separatrix), because
the widths of the resonances do not decrease fast enough, with increasing p; for a
scheme of the emerging chaotic layer, see Fig. 11.5. Petrosky (1986), based on an
analysis of the Kepler map, showed that the energy width of the chaotic layer scales
as the power 2/5 of the mass parameter μ = m2/(m1 +m2):

�Ecr ∝ μ2/5. (11.92)
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Fig. 11.5 The chaotic layer at the parabolic separatrix (Figure 3 from Petrosky 1986, with
permission from Elsevier)

The particles with E within the interval −�Ecr < E < 0 move chaotically. Due to
the diffusion in E they escape from this zone sooner or later.

Let us calculate the coefficient at the power law in Eq. (11.92). We use the Kepler
map in form (8.35), where W(q) is given by Eq. (11.87). By linearizing the Kepler
map (11.88) near its fixed point at the border of the map’s chaotic layer, one finds
ycr = (3λ/(2KG))

2/5 (Shevchenko 2007a). Using the formulas for λ and W , we
arrive at

�Ecr � Aμ2/5q−1/10 exp
(
−Bq3/2

)
, (11.93)

where

A = 2−1/232/5π3/5K
−2/5
G = 2.2061 . . . , B = 25/2/15 = 0.3771 . . . ,

andKG = 0.971635406 . . . ; see Sect. 1.5.
We consider only prograde orbits here; the analysis for the retrograde ones is

completely analogous, resulting in a slightly different formula for the coefficient A
and a different power of q , namely q−7/10 instead of q−1/10, before the exponent.

We define the critical eccentricity ecr using the relation

�Ecr = −Ecr = 1

2acr
= 1 − ecr

2q
,

i.e.,

ecr = 1 − 2q�Ecr, (11.94)
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where �Ecr is given by Eq. (11.93), and the pericentric distance q is assumed to be
conserved in the given problem. The orbits with e > ecr for a given q are chaotic.

To be able to analytically estimate Lyapunov timescales of the motion described
by the Kepler map, it is useful to know its Chirikov’s constant, as shown for
the ordinary separatrix map in Sect. 3.1. Chirikov’s constant Cgen

h for the general
separatrix map (1.45) with an arbitrary value of γ is introduced analogously, as
the least upper bound for the maximum Lyapunov exponent of the motion in the
separatrix chaotic layer.

By linearizing the map (1.45) in y it is straightforward to find out that the y
value corresponding to the critical value of the stochasticity parameter K = KG =
0.9716 . . . of the approximating standard map is

yb =
(
γ λ

KG

) 1
γ+1

,

and the y value corresponding to K = 4 is

y4 =
(
γ λ

4

) 1
γ+1

.

The layer’s border is situated at y = yb, and any significant regular islands seize to
exist inside the layer at y = y4.

Integrating over the layer, one has

C
gen
h (γ ) = K

1
γ+1

G

(γ + 1)σ (γ )

∞∫

KG

L(K)μ(K)
dK

K
γ+2
γ+1

, (11.95)

where

σ(γ ) = K
1
γ+1

G

γ + 1

∞∫

KG

μ(K)
dK

K
γ+2
γ+1

(11.96)

(Shevchenko 2004a; Shevchenko 2007a). Here the L(K) and μ(K) functions
are, respectively, the K dependences of the maximum Lyapunov exponent of the
standard map and the measure of the chaotic component in phase space of the
standard map. They were computed in Shevchenko (2004a). By estimating the
integral (11.95) numerically, one obtains Chirikov’s constant

CK ≡ C
gen
h (γ = 3/2) = 2.21 . . . .
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Note that the ratio

yb

y4
≈ 4

1
γ+1 ;

hence, the layer’s “porous” (containing regular islands) component measure tends
to zero with γ increasing. Since the contribution of the porous component to the
integrated value of Chirikov’s constant is comparatively uncertain, the integrated
constant (11.95) for the map (1.45) with γ = 3/2 (generally, with γ > 0) can be
estimated with a greater precision, in comparison to the case of map (1.31).

The value of CK ≈ 2.21 can be verified versus a direct computation of the
maximum Lyapunov exponentL in the chaotic layer of the map (8.35). In Fig. 8.24,
the L value is plotted as a function of λ. The limit of L at λ → ∞ gives Chirikov’s
constant. The computed dependence is in accord with the estimate CK ≈ 2.21: the
numerical estimates are all below this limit. The dependence is described by the
fitting function

LK(λ) = CK − 3

λ
, (11.97)

where CK = 2.15. Therefore, CK ≈ 2.2.
The corresponding Lyapunov time is given by

TL ≈ Torb

LK(λ)
, (11.98)

where Torb is the average orbital period of the tertiary (particle). Its lower bound is
just

TL ≈ Torb

CK
. (11.99)

This value of TL corresponds to the motion with λ� 1.

11.1.6 Hill’s Criterion: The μ1/3 Law

In the framework of the hierarchical three-body problem, the Hill sphere can be
defined as the secondary’s spherical neighbourhood inside which the secondary can
host satellites (tertiaries) in stable orbits.

The Hill radius (i.e., the Hill sphere radius) RH can be heuristically estimated
from a consideration of orbital timescales of the motion around the primary and
the secondary; equating these two timescales, in the circular restricted three-body
problem, one just gets RH ∼ μ1/3apl, where μ is the mass parameter and apl is the
radius of the planet’s orbit.
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More precisely, the Hill sphere is delimited by the L1 and L3 Lagrange libration
points. In the circular restricted three-body problem, the Hill radius is given by

RH ≈
(μ

3

)1/3
apl ≈ 0.693μ1/3apl, (11.100)

see, for example, Murray and Dermott (1999).
If the secondary’s orbit is non-circular, then the radius of the stability zone is

estimated as equal to the Hill radius calculated at the secondary’s pericentre:

RH ≈ (μ/3)1/3apl(1 − epl), (11.101)

where epl is the planet’s orbital eccentricity. This formula renders the so-called Hill
sphere at pericentre scaling (Hamilton and Burns 1992).

However note that the chaos borders, delimiting the zone of stability around
the secondary, are not at all smooth surfaces, as it may seem judging from
the form of these analytical approximations. In the “tertiary’s semimajor axis—
secondary’s eccentricity” diagrams, constructed in Mudryk and Wu (2006), the
borders clearly demonstrate a ragged fractal structure, conditioned by interaction
and overlap of mean-motion resonances in the three-body system. Tantalizingly, the
Hill criterion, although stemming from a very different theory (namely, the Jacobi
integral formalism), provides the stability border that coincides with the smoothed
border of the overlapped resonances (Mudryk and Wu 2006).

The Hill criterion is asymptotical, as it is valid in the limit μ � 1. In applications
with μ ∼ 0.01–0.5, more precise estimates can be achieved by exploiting
numerical-experimental fitting formulas, presented in the next subsection.

11.1.7 The Holman–Wiegert Criteria

By performing massive numerical experiments, Holman and Wiegert (1999)
obtained fitting formulas allowing one to estimate the radial sizes of major zones of
stability and instability of the tertiary’s motion in hierarchical three-body systems. In
the framework of the planar elliptic restricted three-body problem, they showed that
the radius acr of the circum-companion stability zone (around the secondary) of the
initially circular prograde orbits of a massless particle is well described (providing
the precision with at least two significant digits) by the fitting polynomial function

acr/ab = 0.464−0.380μ−0.631eb+0.150e2
b+0.586μeb−0.198μe2

b, (11.102)

where μ = m2/(m1 + m2) is the primary binary’s mass parameter, ab and eb are
the binary’s semimajor axis and eccentricity. The fitting is valid at 0.0 ≤ eb ≤ 0.7
and 0.1 ≤ μ ≤ 0.9. For an equal-mass circular-orbit binary one has acr/ab =
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0.464 − 0.380 · 0.5 = 0.274. At μ < 0.1 one may use formulas for the Hill radius,
presented in the previous section.

For the circumbinary zone of instability, the fitting relation, obtained by Holman
and Wiegert (1999), is

acr/ab = 1.60 + 4.12μ+ 5.10eb − 5.09μ2 − 2.22e2
b − 4.27μeb + 4.61μ2e2

b.

(11.103)

The fitting is valid at 0.0 ≤ eb ≤ 0.8 and 0.1 ≤ μ ≤ 0.5. For an equal-mass
circular-orbit binary one has acr/ab = 1.60 + 4.12 · 0.5 − 5.09 · 0.25 = 2.39.

At μ � 0.05 the circumbinary zone of chaos does not form; a more precise
estimate for this threshold is considered on theoretical grounds in Sect. 14.2.3.

For the description of the global instability borders, the Holman–Wiegert criteria
utilize polynomial fits over numerical data in ab and eb; these fits are given by
smooth functions. However note that these borders are, in reality, fractal; examples
of their “ragged” appearance will be given below.

11.1.8 Lyapunov and Escape Times: Linear and Quadratic
Relationships

When the first results of calculations of Lyapunov exponents were obtained in
celestial mechanics in 1980s, it was soon conjectured in a number of works that
the Lyapunov timescale TL of any celestial body’s orbit is somehow related to its
characteristic time of transport Tr, i.e., to the time needed for the orbit to change
its character qualitatively (e.g., the time needed for a particle to escape). In this
framework, power-law dependences of the transport timescales on the Lyapunov
times were numerically revealed (Soper et al. 1990; Lecar et al. 1992; Murison et al.
1994; Levison and Duncan 1993; Ferraz-Mello 1997; Shevchenko 1998a; Tsiganis
et al. 2005). These power-law relationships were interpreted in Shevchenko (1998a,
1999b) as a phenomenon of critical dynamics; this phenomenon is immanent to
the motion near chaos borders in the divided phase space of Hamiltonian systems.
Generally speaking, the observed relationships mostly arise due to the second kind
Hamiltonian intermittency. Conversely, the first kind Hamiltonian intermittency
leads to the quasilinear TL–Tr relationship (Shevchenko 2010).

As follows from the second equation of the Kepler map (8.35), the length of a
Poincaré recurrence in real (original) time units is

T (ru)r =
n∑

i=1

�xi = λ

n∑

i=1

|yi|−3/2, (11.104)
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where n = Tr is the recurrence duration in the map time units, i.e., iterations; the
time increment per recurrence is�xi = xi−xi−1, and the recurrence is started with
iteration i = 1.

The finite-time (corresponding to the time interval of any performed numeri-
cal integration) maximum Lyapunov exponent of the original dynamical system
referred to a recurrence in original time units is calculated as the map’s finite-time
maximum Lyapunov exponentL divided by the averaged (on the recurrence) length
of the map iterations in real time units:

〈P (ru)map 〉 = T (ru)r /Tr.

Hereafter, 〈P (ru)map 〉 is denoted by q:

q = T
(ru)
r

Tr
= 1

n

n∑

i=1

�xi = λ

n

n∑

i=1

|yi |−3/2. (11.105)

The maximum Lyapunov exponent referred to real time units is

L(ru) = L

q
, (11.106)

and for the Lyapunov time one has

T
(ru)

L = qTL. (11.107)

On the other hand,

T (ru)r = qTr. (11.108)

The quantity q = T
(ru)

r /Tr is the ratio of two random variables. If the y value hits
close to the separatrix, then, according to Eq. (11.104), there is a jump in T (ru)r ,
but there is no jump in Tr. If the magnitude of the jumps is large enough, then the
relationship in real time units is spread, due to the jumps, in the direction TL = Tr
in the (Tr, TL) plane. Therefore, when TL are Tr are expressed in real time units and
Lévy flights of the first kind (LF1s) dominate over Lévy flights of the second kind
(LF2s) (see Sect. 8.3.2), then the TL–Tr relationship becomes quasilinear.

This inference is valid when LF1s dominate. For the classical separatrix map
(1.44) and general maps (1.45) with γ < γcrit, where the singularity is weaker,
LF2s dominate if λ is large enough, and the generic relationship is not spread in
the TL = Tr direction. This is the cause why the close-to-quadratic relationships
(Soper et al. 1990; Lecar et al. 1992; Murison et al. 1994; Levison and Duncan
1993; Ferraz-Mello 1997; Shevchenko 1998a; Tsiganis et al. 2005), and not the
quasilinear one, were observed to be present in the dynamics of minor Solar system
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Fig. 11.6 A statistical “log10 TL − log10 Tr” relationship, where TL and Tr are expressed in the
Kepler map’s time units; λ = 5. Straight dotted line: the quadratic dependence. (Reprinted Figure 7
with permission from Shevchenko 2010. © 2010 by the American Physical Society)

bodies near resonances, where the classical separatrix map, but not the Kepler map,
describes the relevant interacting non-linear resonances.

In Figs. 11.6 and 11.7, the TL–Tr relationships are presented for the Kepler map
with λ = 5, separately in the map’s time units (iterations) and in the time units of
the original system. For the both plots, the finite-time maximum Lyapunov exponent
was computed for a recurrence; the total number of iterations nit = 107 in the both
cases.

In Fig. 11.6, one may see that, judging by the general slope in the log-log scale,
the dependence is far from being linear. Its slope is much steeper: the power law
index ∼1.5–2, as predicted. The same dependence is shown in Fig. 11.7, but in
real time units. Here the relationship looks obviously linear. One may even see
how the “spreading” mechanism operates. Indeed, the cloud of points has a “V”
shape, with the left wing being much shorter than the right one. This wing is
nothing but a remnant (produced by spreading by the LF1s) of the generic close-to-
quadratic relationship. Therefore, the general “composite” appearance of the TL–Tr
relationship in this Figure mimics the general character of the TL–Tr relationships
revealed in computations of the disruption process in three-body systems, such as
presented in Figures 2 and 3 in Mikkola and Tanikawa (2007) and in Figures 3 and
7 in Urminsky and Heggie (2008).
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Fig. 11.7 The same as Fig. 11.6, but the recurrence times are expressed in real time units. Straight
dotted line: the linear dependence. (Reprinted Figure 8 with permission from Shevchenko 2010.
© 2010 by the American Physical Society)

The plot in Fig. 11.6 looks rather irregular, in comparison with Fig. 11.7. The
nature of this irregularity can be clarified by means of construction of a spectrum
of winding numbers (Shevchenko 1996, 2010). The winding number Q can be
formally defined, for a recurrence, as Q = �x/n, where n is the recurrence
length measured in the map’s iterations, n = Tr, and �x is the total variation in x
between crossings of the separatrix. The spectrum of winding numbers graphically
demonstrates which of the resonant chains of islands produce the longest sticking
events; see (Shevchenko 2010, Figure 9). The resonances produce obvious peaks
and, therefore, are easily identified. The irregular structure of the cloud of points
in Fig. 11.6 is produced by an overlay of individual relationships corresponding to
several sticky island chains, corresponding to the peaks in the spectrum.

For the slope indices of the asymptotic power-law distributions of the Poincaré
recurrence lengths Tr, already considered above in Sects. 4.3 and 8.3.2, there
exists a sharp difference between the two kinds of Hamiltonian intermittency.
This theoretical difference explains the emergence of the observed difference in
the power-law indices of the distribution laws reported for chaotic transport times
for Solar system minor bodies. Dones et al. (1996) reported on algebraic tails of
the integral distributions, ∝ T −α

r , with the slope index α = 0.8 ± 0.2, whereas
Shevchenko and Scholl (1996, 1997) reported on the tails with α ≈ 1.5. In
Dones et al. (1996), the escape times in the highly-eccentric chaotic cometary
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dynamics in the Solar system were studied (with the perturbations from the four
giant planets taken into account), whereas in Shevchenko and Scholl (1996, 1997)
the subject was the low-eccentricity intervals between the eccentricity jumps in
the chaotic asteroidal dynamics in the Sun–Jupiter–asteroid restricted three-body
problem. Judging by the values of the power-law index, the former statistics
correspond to the Hamiltonian intermittency of the first kind, whereas the latter one
to that of the second kind. The statistics are LF1-dominated and LF2-dominated,
respectively, and the predicted α indices are equal to 2/3 and ≈3/2, respectively. The
evident inverse symmetry of the indices is a property of the gravitational dynamics,
described by the Kepler map. For the general separatrix map (1.46) with γ > 0,
the predicted α indices are equal to 1/γ and ≈3/2, respectively; see Shevchenko
(2010) for details.

Concerning the TL–Tr relationship, the power-law index β in formula (4.15)
changes from ≈2 to ≈1, in comparison with the numerical results of Soper et al.
(1990), Lecar et al. (1992), Murison et al. (1994), Levison and Duncan (1993),
Ferraz-Mello (1997), Shevchenko (1998a), Tsiganis et al. (2005). This change
emerges because the singularity at crossing the separatrix is much stronger in the
considered problem, which is described by the Kepler map instead of the classical
separatrix map. Therefore, the first kind Hamiltonian intermittency dominates over
the second kind Hamiltonian intermittency, and this domination defines the TL–Tr
relationship and the transport time distribution.

Generally, the typical way of disruption of a hierarchical three-body system, as
described by the Kepler map, appears as a “Lévy unfolding” of the system in both
time and space: at the edge of the system’s disruption, the escaping body exhibits
Lévy flights in its orbital period and semimajor axis, and in the course of this random
process the orbital period and semimajor axis become arbitrarily large until the
separatrix separating the bound and unbound states of the motion is crossed and
the body escapes (Shevchenko 2010).

The considered statistics appear to be also valid in a more general “hierarchical
resonant scattering” (Heggie 1975; Hut 1993) setting for a three-body interaction,
in which the masses of three “stars” are arbitrary. Hut (1993) derived an heuristic
T

−2/3
r law for the time decay of the system’s survival probability, and showed it to

describe well the tails of numerically found distributions. It is important to mention
that the heavy-tailed character of the distribution is in accord with an early finding
by Agekian et al. (1983) that the mean lifetime of a general isolated three-body
system is infinite.

As we have seen above in Sect. 8.3.2, two basic conditions are necessary to
be satisfied for the T −2/3

r law to be valid; namely, (1) the distribution of ejection
energies should be smooth in the neighbourhood of the energy threshold E = 0,
and (2) the asymptotic decay of the survival probability should be the same as the
tail of the distribution of the escaping body orbital periods. These two assumptions
look rather plausible even in the general three-body problem. Therefore, the T −2/3

r
decay might be ubiquitous.
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These theoretical asymptotics were indeed confirmed in numerical simulations
in the equal-mass three-body problem (Orlov et al. 2010), as well as in the restricted
three-body problem (Shevchenko 2010; Orlov et al. 2010). In Orlov et al. (2010),
the statistics of the decay process in the equal-mass three-body problem with
randomized initial conditions were investigated in extensive numerical experiments.
The lifetime distributions obtained in Orlov et al. (2010) turned out to be heavy-
tailed, i.e., algebraic. The calculated power-law index α for the integral distribution
was found to be within a narrow range, from ≈0.4 to ≈0.7, depending on the virial
coefficient; see Orlov et al. (2010). The theoretical value α = 2/3 is within this
narrow range.

Results of Orlov et al. (2010) were confirmed in Bogomolov et al. (2011),
who studied triple systems with various mass ratios. Recall that for the first kind
intermittency, the T −2/3

r law is for the integral distribution, and the T −5/3
r law is

for the differential one. For the second kind intermittency, the T −3/2
r law is for

the integral distribution, and the T −5/2
r law is for the differential one. The values

of the power-law indices found in Bogomolov et al. (2011) for the decay time
distribution tails fit in the range between the two theoretical values for the two kinds
of Hamiltonian intermittency. These two values are 5/3 (1st kind) and 5/2 (2nd kind)
for the differential distributions, and, respectively, 2/3 and 3/2 for the integral ones.
The data on γ ≡ α+ 1 in Bogomolov et al. (2011) are generally much closer to 1.7
(characteristic to the 1st kind Hamiltonian intermittency), than to 2.5 (characteristic
to the 2nd kind Hamiltonian intermittency); see Figures 2 and 3 and Table 1 in
Bogomolov et al. (2011).

The proximity of the theoretical quasilinear TL–Tr relationship to the numerical
results by Mikkola and Tanikawa (2007) (obtained for an equal-mass three-body
system) can be also naturally interpreted: the system just before disruption is
hierarchical, with the outer body exhibiting final Lévy flights.

Concluding, there is no wonder that a simple one-parameter two-dimensional
map, such as the Kepler map, is able to describe the essential dynamics of disruption
of a system with several degrees of freedom (Shevchenko 2010). The matter is that
we consider a specific stage of a three-body system evolution in a model subject to
serious limitations: the orbit of the escaping body is assumed to be highly eccentric
and its pericentre distance much greater than the size of the main binary. Generally
speaking, the introduction of the Kepler map as a dynamical model is similar
to the introduction of the separatrix map to describe a near-separatrix motion in
general Hamiltonian systems. An important difference, however, is that the ordinary
separatrix map has two parameters, and cannot be rendered, in contrast to the Kepler
map case, in a one-parameter form.
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11.2 Packing and Ranging Criteria

The heavens themselves, the planets, and this centre,
Observe degree, priority, and place

William Shakespeare,
Troilus and Cressida, I, iii (1602)

The packing criteria for the stability and structural properties of planetary systems
are based on a simple idea that planetary orbits cannot be “packed” (placed with
plausible radial intervals) too densely, because mutual perturbations may disrupt
the system if the separations are not large enough. The critical separations can be
derived either on a basis of the Hill criterion, considered above in Sect. 11.1.6, or
employing Wisdom’s notion of the close-to-coorbital band of instability, discussed
above in Sect. 11.1.2.

11.2.1 Historical Background: Kepler’s Goblet

The idea of packing was first ever introduced solely on the basis of geometrical
harmony, as understood and interpreted by Johannes Kepler in 1593. Kepler’s goblet
represents a sequence of principal polyhedra inscribed into spherical surfaces with
the radii approximately equal to the orbital radii of five planets known in Kepler’s
times; see Chap. 6 and Fig. 6.2. Although inadequate from the modern science
viewpoint, Kepler’s goblet was the first ever and therefore important landmark in
the long-term and not yet finalized quest for understanding the architecture of our
Solar system.

11.2.2 Dynamical Completeness

The dynamical completeness and ranging criteria stem from a common idea of
hierarchy, namely, the idea that a hierarchical order should be initially set for any
system to be stable, whatever the system may be.

In fact, the idea of hierarchy lies in the basis of the heuristic Titius–Bode “law,”
which played a major historical heuristic role in former studies of the Solar system
architecture, long before exoplanets were discovered. However, nowadays this
heuristic law is regarded as statistically insignificant, see arguments and discussion
in Murray and Dermott (1999).

On the other hand, indeed, planetary orbits in any planetary system cannot be
packed too densely, because, generally speaking, mutual perturbations may disrupt
the system if the separations are not large enough. If two neighbouring planets
strongly differ in masses, their critical separation can be approximately derived
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employing Wisdom’s notion of the close-to-coorbital band of instability, Eq. (11.5),
which we discussed above in Sect. 11.1.2.

The critical separations can be as well derived on the basis of the Hill criterion,
considered in Sect. 11.1.6; this approach can be called the “mutual” Hill’s criterion.
By measuring the radial space between each two neighbouring planets in a planetary
system in units called the “mutual Hill sphere” (see Pu and Wu 2015, Equation (1)),
one may heuristically estimate the dynamical completeness of the system, i.e.,
whether the system possesses any free radial space for more planets, not yet
observationally discovered.

On the other hand, resonant planetary systems can be hyper-closely packed, and
it is not obligatory for them to obey simple packing or ranging criteria. For example,
a large planet may possess “Trojan” smaller planets in 1/1 orbital resonance,
obviously violating any literally applied “mutual” Hill’s criterion.

In realistic cosmogonical situations, planets migrating in a primordial disc with a
central circumstellar clearing eventually form and maintain a chain of mean motion
resonances “anchored” at the disc inner edge. The cause of this phenomenon is
clear: the innermost planet that is first to reach the edge is stalled there, because
there is no more material to cause the migration, whereas all other (outer) planets
continue to migrate inward and are eventually caught in the most pronounced (first-
order) resonances with the inner bodies (Snellgrove et al. 2001; Lee and Peale
2002). In this way, a chain of mean motion resonances is “invariably organized”
(Raymond et al. 2018). This process may provide formation of the known closely
packed resonant exoplanet systems, such as Kepler-60 (Goździewski et al. 2016) or
Kepler-223 (Lissauer et al. 2011a); see Sect. 10.4 for more details.

11.2.3 The Moriwaki–Nakagawa Criterion

Moriwaki and Nakagawa (2004) derived an analytical criterion for the possibility of
effective planetesimal accretion in a circumbinary disc. If relative velocities between
planetesimals exceed the escape velocity from the surface of a typical planetesimal,
then it is impossible for planetesimals to accumulate and form planets. It follows
then that the forced eccentricities of planetesimals must be small enough.

As shown on these grounds by Moriwaki and Nakagawa (2004), the inner
boundary radius of the planetesimal accretion zone is given by

aacc �
[

5

2
(1 − 2μ)abeb

]2/3 ( 3M3

32πm2ρ

)1/9

,

where μ = m2/(m1 + m2) is the binary’s mass parameter;M = m1 + m2; ab and
eb are the binary’s semimajor axis and eccentricity; and the typical planetesimal has
mass m and internal density ρ.



Chapter 12
Effects of Chaotic Clearing in Planetary
Systems

In this Chapter, major types of the chaotic clearing effects in planetary systems are
considered. Generally, the clearing effects consist in forming of orbital zones free
from low-mass material (e.g., planetesimals, asteroids, particles, fragments), due to
the dynamical chaotization in presence of perturbations. Among them, the following
effects are known and well-studied:

1. Close-to-coorbital clearing—the forming of a ring-like clearance in the planetes-
imal disc (around a single or a binary star), due to accumulation and overlap of
the “particle–planet” orbital (mean-motion) resonances of the first order in the
radial neighbourhood of a planetary orbit (Wisdom 1980; Duncan et al. 1989;
Morrison and Malhotra 2015; Demidova and Shevchenko 2016).

2. Circumbinary clearing—the forming of a total circular clearance in the planetes-
imal disc around a binary star, due to overlap of the “particle–binary” integer
orbital resonances accumulating to the separatrix corresponding to the parabolic
motion (Shevchenko 2015).

3. Circumnuclear clearing—the forming of a total circular clearance in the cloud of
particles and fragments around a rotating irregularly-shaped body (e.g., a contact
binary, such as cometary nuclei, many objects in the Kuiper belt, and asteroids),
due to overlap of the “particle–body” integer orbital resonances, accumulating to
the separatrix corresponding to the parabolic motion (Lages et al. 2018b).

4. Inner disintegration—the long-term chaotic decay of the inner “low-mass” region
of a planetary system, due to overlap of secular resonances (Lithwick and Wu
2011; Batygin et al. 2015).

In this Chapter, analytical approaches that serve to characterize these effects, in
particular, serve to estimate the cleared zone sizes and the clearing timescales, are
described and discussed.

© Springer Nature Switzerland AG 2020
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12.1 Close-to-Coorbital Clearing

The differential distributions (histograms) of known exoplanet systems in ratios
of planetary periods, presented in Fig. 10.4, provide a graphical insight in the
close-to-coorbital clearing effect. The histograms make evident that the planets
avoid vicinities of the 1/1 resonance, i.e., they elude being close-to-coorbital.
This avoidance is similar to what is observed in the asteroidal statistics in the
Solar system, considered above in Sect. 8.2. However, in contrast to the asteroids,
there are no observed “Trojan planets,” i.e., any bodies residing in the exact 1/1
resonance. For the both classes, asteroids and exoplanets, the absence of objects
(apart from the horseshoe and tadpole librators, which are in the exact 1/1 resonance
with the perturber)1 in orbits close to the perturber manifests one and the same
dynamical effect, namely, that of the close-to-coorbital clearing. This demonstrates
the robustness of the planet definition approved by IAU General Assembly (2006);
see Sect. 10.2. This definition, in its point (c), is based on rigorous dynamical
grounds, both theoretical and numerical-experimental; it states that any object that
is called a planet should clear its orbital neighbourhood from low-mass material,
e.g., planetesimals.

The formation of close-to-coorbital clearings was demonstrated in many massive
numerical simulations on the dynamics of planetary systems with planetesimal
discs. The motion of planets inside a planetesimal disc may produce patterns that
are stable on secular time scales.

Prominent types of such patterns are revealed in a work by Demidova and
Shevchenko (2016). In this research, the discs are modelled for two mass ratios of
stars in the central binary: a circular binary with massesm1 = M� andm2 = 0.2M�
(model 1) and a circular binary with masses m1 = m2 = M� (model 2). Also a
model with a single central star with mass m = 1.2M� (model 3) is considered.
The orbital periods of the binaries in models 1 and 2 are both set to Pb = 0.2 yr.
The planet of Jovian mass is put initially in a circular orbit around the system’s
barycentre. Its orbital radius corresponds to mean motion resonances with the
binary. The ratios of the orbital periods of the planet and the binary are set equal
to 5/1, 11/2, 6/1, 13/2, 7/1, 15/2, and 8/1. These locations are chosen because
actual Kepler circumbinary planets are mostly located in resonance cells at the outer
border of the chaotic region around the central binary (see Popova and Shevchenko
2013, 2016a; in particular, Table 3 in Popova and Shevchenko 2016a). In model 3,
in which the host star is single, the planet’s orbit is started at the same grid of
radial distances as in model 1. In each model, the disc consists of 20,000 massless
(passively gravitating) planetesimals initially distributed from 0.3 to 5.3 AU in radial
distance r from the barycentre in such a way that the surface density decreases with
radial distance as ∝ r−1.

1The horseshoe and tadpole types of orbits are considered and discussed in detail in Murray and
Dermott (1999).
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The disc’s surface density distribution along the radius from the barycentre is
found by subdividing the planetesimal disc in a set of annular bands with a radial
step 0.02 AU. The local surface density is thus found as a function of the radial
distance by calculating the number of particles in each band and dividing this
number by the band area.

The simulations make evident emerging ring-shaped patterns coorbital with the
planet; see Fig. 12.1, where the case of the 8/1 planet resonance with the central
binary is illustrated. The patterns are most pronounced in models 1 and 2. For a
single host star (as in model 3), similar coorbital patterns were revealed by Ozernoy
et al. (2000), Quillen and Thorndike (2002), and Küchner and Holman (2003). The
patterns are formed by planetesimals in tadpole and horseshoe orbits.

The radial half-width �acr of the Wisdom gap is given by Eq. (11.5). On the
other hand, the radial half-width �aH of the coorbital (with the planet) band of
the stable horseshoe and tadpole orbits is approximately equal to the Hill sphere’s
radius RH, as illustrated in Figure 3.28 in Murray and Dermott (1999). In the planar
circular restricted three-body problem the Hill radius is given by Eq. (11.100). From
Eqs. (11.5) and (11.100) one has

�acr

�aH
≈ 2.26μ−1/21. (12.1)

From this formula it is clear that the ratio �acr/�aH is virtually insensitive to the
mass parameter μ variations, in a broad range of μ.

The central one third part (in radial extent) of the Wisdom gap may thus contain
stable horseshoe and tadpole material. From the theoretical viewpoint, therefore,
the emergence of a ring-like pattern, surrounding the orbit of a planet embedded
in a planetesimal disc, is natural. The pattern consists of at least three lanes: the
populated central one and two components of the broader Wisdom gap. They are all
illustrated in Fig. 12.1.

Modern astronomical observational techniques allow one to identify clearance
patterns in actual systems with discs. The ALMA telescope provided images of

Fig. 12.1 Time-evolved distributions of planetesimals in models 1, 2, and 3 (from left to right)
(Figure 1 from Demidova and Shevchenko (2016), by permission from © Oxford University Press)
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the disc of HL Tau, where multiple clearings of resonant nature are obvious;
see Fig. 12.2. The numerical-experimental resonant patterns (Fig. 12.1) and the
observed structures (Fig. 12.2) look rather similar.

Various aspects of the theory of Wisdom’s close-to-coorbital chaotic gap, along
with results of massive numerical experiments on the close-to-coorbital chaotic
dynamics, were considered in Wisdom (1980), Duncan et al. (1989), Murray and
Holman (1997), Malhotra (1998, 2012), Murray and Dermott (1999), Quillen and
Faber (2006), Mustill and Wyatt (2012), Deck et al. (2013), Ramos et al. (2015),
Petit et al. (2017), and Morrison and Malhotra (2015). The phenomenon of the
close-to-coorbital chaotic clearing was revealed: planets open coorbital gaps, free
from low-mass material (Duncan et al. 1989; Murray and Holman 1997; Murray
and Dermott 1999; Morbidelli 2002; Morrison and Malhotra 2015).

In the planetary chaotic zone, the chaotic diffusion in the particle’s eccentricity
and semimajor axis eventually leads the particle to escape, or to collide with the
planet (Duncan et al. 1989; Murray and Holman 1997; Murray and Dermott 1999;
Morbidelli 2002; Morrison and Malhotra 2015). In such a way the particle-free gap
coorbital with the planet is formed. This is a manifestation of the physical reality:
in such a way, the perturber cleans up the radial neighbourhood of its orbit from any
low-mass material.

Characteristic timescales of opening the close-to-coorbital gap, as a function of
the mass parameter μ, were numerically estimated in simulations by Morrison and
Malhotra (2015). The simulations were performed at three fixed values of the ratio
Rpl/RH, where Rpl is the planet physical radius and RH is its Hill radius. The test
particles were regarded as removed if they either reached large values of their orbital
semimajor axes (more than two times the planet’s orbit radius) or collided with
the finite-size planet. The resulting μ dependences of the removal timescale Tr are
presented in Fig. 12.3.

To describe the μ–Tr relationships observed in the numerical experiments,
Morrison and Malhotra (2015) adopted an empirical fitting composite function in

Fig. 12.2 The disc of HL Tau (Figure 1 from Carrasco-González et al. (2016), by permission of
IOP Publishing/AAS)
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Fig. 12.3 The μ dependences of the clearing (removal) timescale Tr, at three fixed values of
Rpl/RH. The timescale Tr is in units of the planet’s orbit period. Dashed: the best-fit func-
tions (12.2) (Figure 7 from Morrison and Malhotra (2015), by permission of IOP Publishing/AAS)

the form of two power laws conjugated at some transition μ value (designated as
μb); namely,

Tr(μ) = 2Tb
[
(μ/μb)

−α1 + (μ/μb)
−α2

]−1
, (12.2)

where Tb is the Tr transition value: if μ = μb, then Tr = Tb. Asymptotic
dependences at μ � μb and μ � μb are represented by the power laws Tr(μ) =
2Tb(μ/μb)

α1 and Tr(μ) = 2Tb(μ/μb)
α2 (where α1 < 0, α2 < 0), respectively. The

power-law index α1 turned out to be in the range from −0.37 to −0.34, and α2 in
the range from −1.59 to −1.48.

The power-law index approximately equal to −1/3 is expected in the particle-
planet collisional regime, and it naturally takes place at smaller μ values. At larger
μ values, the scattering regime starts to statistically dominate. When the particle’s
eccentricity is inflated to high values, the chaotic diffusion in the semimajor axis
can be described by the Kepler map (8.35), and a semi-analytical Kepler-map result
for the diffusion timescale can be used:

Tr ∝ μ−2 (12.3)
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(Shevchenko 2020). The scaling (12.3) seems to be in general accord with the data
in Fig. 12.3 at μ > 10−4–10−3; indeed, at the smallest planet size adopted in the
simulations (Rpl/RH = 1/1000), Morrison and Malhotra (2015) found that α2 =
−1.59 ± 0.18. This is not far from the theoretical inverse-quadratic slope.

12.2 Circumbinary Clearing

More than a half of the main-sequence stars in our Galaxy belong to multiple, mostly
binary, star systems (Duquennoy and Mayor 1991; Mathieu et al. 2000). To date,
planets have been discovered to be present in more than a hundred multiple, mostly
binary, stars. Most of the planets discovered in binary systems are the so-called S-
type planets (satellite-type, i.e., orbiting one of the components of a stellar binary),
and others are P-type planets (planet-type, i.e., orbiting around the both components
of a binary); see Fig. 12.4. The S-type planets are also called inner or circumstellar
planets, and the P-type planets are called outer or circumbinary planets.

Theoretical studies of the stability of hypothetical planetary systems in binary
stellar systems had been initiated already in sixties of the twentieth century (Huang
1960), long in advance of the first discoveries of planets in binary star systems. The
theory was thoroughly developed in the eighties, in application to some binary stars
in the Solar neighbourhood (Benest 1988a,b, 1989).

The problem of stability of planetary orbits in binary and multiple stellar systems
is important first of all due to its relevance to the problem of potential habitability of
planets in such systems. Indeed, at a first glance, it may seem that multiple stars

Fig. 12.4 Orbital schemes of planetary systems of binary stars: S-type systems (left panel) and
P-type systems (right panel) (Figure 2 from Martin (2018), by permission from Springer Nature,
© 2018)
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are less suitable (in comparison with single stars) for hosting habitable planets,
because their dynamical environments seem to be generally unstable. Combined
with some observational data that Solar-like stars are formed mostly in pairs, this
argument, among others, even served to validate the concept of practical uniqueness
of our technological civilization in the Galaxy (Shklovsky 1979). Nowadays, based
on modern theoretical and observational data, one may argue quite conversely that
circumbinary planetary systems might be even much more suitable for life than
systems of single stars; for details see Shevchenko (2017b) and references therein.

Certain conditions must be satisfied for a planet to be potentially habitable. First
of all, the insolation level of its surface should be appropriate, long-term stable,
and does not vary too much in amplitude (Huang 1960). Observational data on
sizes of orbits of actual circumbinary planets of main-sequence binaries, combined
with numerical-experimental estimates of sizes of the chaotic zones around the host
binaries (see Sect. 11.1.7), show that these actual planets are orbiting close to the
chaotic zone outer boundary (Doyle et al. 2011; Welsh et al. 2012, 2014; Popova
and Shevchenko 2013). What is more, their orbits are either inside or quite close to
the potential habitability zone (Welsh et al. 2014).

For a circumbinary planet, the stability zone starts at some large enough distance
from the host binary’s barycenter; see Sect. 11.1.7. The habitability zone, where
the insolation level allows water on planetary surfaces to be in liquid state, is not
at all obliged to overlap with the circumbinary stability zone. However, in the
known circumbinary planetary systems they mostly overlap (Welsh et al. 2014).
Apart from the binaries with known planets, a number of binaries in the Solar
neighbourhood are identified (e.g., EZ Aqr) that have the circumbinary zones of
stability and potential habitability overlapping (Popova and Shevchenko 2016a;
Shevchenko et al. 2019).

It is curious that notwithstanding the former scientific doubts on the suitability of
binary stars for hosting habitable worlds, circumbinary habitable planets had long
ago emerged in fiction (most notably in Solaris, written by Stanisław Lem in 1959)
and also in cinema and painting. Due to the popularity of the Star Wars saga, the
newly-discovered circumbinary planets of Solar-like stars, such as their prototype
Kepler-16b, discovered in 2011, are nicknamed tatooines; see Paardekooper et al.
(2012).

A relevant painting, The world of two Suns by Andrey Sokolov, is reproduced
in Fig. 12.5. Note that the depicted world is obviously circumbinary. The painting
exists also in a version named The world of three Suns, where a circumtriple world
is depicted. In the latter case, the stability of the world (not to mention the stability
of the non-hierarchical stellar triple) is indeed questionable.

Generally, planetary formation scenarios and observed planetary dynamics (often
at the “brink of stability”) in binary star systems present a number of theoretical
challenges, especially concerning circumbinary systems (Meschiari 2012, 2014;
Paardekooper et al. 2012).

Until the launch of the Kepler space observatory mission, a few circumbinary
planetary systems had been known to exist (belonging to the binary stars HW Vir,
NN Ser, UZ For, DP Leo, FS Aur, SZ Her, among others). However, none of them
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Fig. 12.5 Andrey Sokolov’s picture The world of two Suns, on a Cuban postal stamp issued in
1974

belonged to a main-sequence star. Due to the Kepler mission, several circumbinary
planetary systems of main-sequence stars were first ever discovered: Kepler-16, 34,
35, 38, and 47 (Doyle et al. 2011; Welsh et al. 2012; Orosz et al. 2012a,b). Among
them, the Kepler-47 system is multiplanet, as it has at least two discovered planets.

The planets in the Kepler circumbinary systems are all coplanar with the parent
binaries; but this does not say anything on the real inclination statistics, because the
planets were discovered using the transit method, implying the practical coplanarity
of the orbits of the eclipsing stellar binary and the transiting planet. Kepler-16
represents a paradigmatic example of circumbinary systems, sketched in Fig. 12.4
(right panel). The orbital parameters of the Kepler-16b planet are exhaustively
retrieved by the TTV analysis; i.e., we know its current dynamics almost completely.

A characteristic feature of almost all known circumbinary systems of main-
sequence stars is that they possess planets orbiting on the brink of stability, within
15% of the border of the chaotic zone around the central binary. The existence of
the central zone of instability around a gravitating binary was earlier revealed by
Holman and Wiegert (1999) in massive numerical experiments; for the zone radial
size, see Eq. (11.103). From this formula one may easily estimate, setting m1 = m2
and eb = 0, that the radius of the chaotic zone around a twin circular binary is about
2.4 times greater than the binary size.

A MEGNO chart of global dynamics of the Kepler-413 planetary system is
shown in Fig. 12.6. In this diagram, constructed by Kostov et al. (2014) in the (a,
e) (semimajor axis – eccentricity) space of initial conditions, dark (purple) regions
correspond to stable dynamics, whereas light (yellow) regions correspond to chaos.
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Fig. 12.6 A MEGNO chart for the Kepler-413 circumbinary system, in the plane of initial values
of the planetary semimajor axis and eccentricity, with all other initial orbital elements fixed. The
lower panel is a close-up of the upper panel. Yellow colour corresponds to chaos. The actual
location of planet Kepler-413b is shown by a white circle (Figure 12 from Kostov et al. (2014), by
permission of IOP Publishing/AAS)

The actual location of planet Kepler-413b is shown by a white circle. Since the
planet is deeply in the purple region, its motion is stable (Kostov et al. 2014).

An interplay of clearing effects in circumbinary systems is graphically illustrated
in Fig. 12.1, where the circumbinary clearings, Wisdom gaps, and, in contrast, horse-
show coorbital accumulations, are all clearly visible.
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12.3 Resonant Clearings

Clearing effects first of all manifest themselves in the phase space of motion. Any
clearance present in the phase space does not necessarily appear in the config-
uration space. Accordingly, clearings are not always visible in directly obtained
astronomical images, but may manifest themselves in especially built graphs and
diagrams. Such “indirect” clearing effects include, among others, the clearings in
discs due to mean motion resonances of higher orders with planets and due to secular
resonances.

Therefore, the history of chaotic clearing effects starts already in sixties of the
nineteenth century, when Daniel Kirkwood discovered gaps in the main asteroid belt
(Kirkwood 1867), now called the Kirkwood gaps; see Sect. 8.2.1. He considered a
sample of about 100 asteroids; today, the number of discovered asteroids is about a
million; therefore, the histogram can be built with much greater resolution. It reveals
many gaps, corresponding to various two-body resonances; see Fig. 8.5.

Apart from the spectacular gaps and peaks, Kirkwood’s histogram has another
prominent feature: the complete absence of asteroids in the neighbourhood of
Jupiter’s orbit (see Fig. 8.5), apart from the Trojans, which are in exact 1/1 resonance
with Jupiter. As we have seen in Sect. 11.1.2, this is nothing but the close-to-
coorbital clearing, namely, the Wisdom gap.

Nowadays, when thousands of exoplanet systems are known, it is straightforward
to construct analogous “Kirkwood histograms” for the sample of all known
two-planet configurations, taking into account also star-planet configurations in
planetary systems of binary stars. These histograms were presented above in
Sect. 10.5. In Fig. 10.4, the lower panel is an analogue of the main belt histogram,
and the upper panel is an analogue of the Kuiper belt histogram. The both histograms
show a characteristic resonant structure, representing an interplay of peaks and
troughs. Whether any feature (peak or trough) is due in reality to a resonance can
be verified only by analysing the time behaviour of the corresponding resonant
arguments.

12.4 Inner Disintegration

Our Sun is on the half-way of its main-sequence evolution: its age is about 4.5 Gyr,
while about 5 Gyr is left until it leaves the main sequence and becomes a red giant;
see, e.g., Ribas (2010). This metamorphosis will have catastrophic consequences
for the inner zone of the Solar system, because the atmosphere of the red giant
will partly engulf it, possibly up to the Earth’s orbit, and, what is more, the Sun’s
luminosity will rise hundreds of times, disastrously affecting even those planets that
will not be engulfed by the Solar atmosphere. In Fig. 12.7, the luminosity, radius,
and effective temperature of the Sun are shown as functions of time, during the time
interval of 12 Gyr, starting with the Sun’s birth. The rapid transformation of the Sun
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Fig. 12.7 Luminosity, radius, and effective temperature of the Sun, as functions of time (Figure 1
from Ribas (2010), by permission from © Cambridge University Press)

at ∼5 Gyr from present is evident. Therefore, any analysis of the future dynamical
evolution of the inner Solar system on any timescales greater than ∼5 Gyr has but a
solely academical interest

However, the finite lifetime of the inner Solar system is not necessarily condi-
tioned by the Sun’s evolution: there exists a chance that the inner rocky-planet zone,
including the “habitable” annular band, will be already cleared from any planets
when the red-giant epoch arrives. First of all, this concerns the fate of Mercury: it
may escape the first. Mercury’s possible escape signalled itself already in a number
of numerical experiments performed in nineties of the twentieth century (Laskar
1994); and the most spectacular demonstration of its vagabond fate was performed
by Laskar and Gastineau (2009).

What is more, Laskar and Gastineau (2009) showed that not only Mercury may
escape, but there also exist future mutually-collisional trajectories of Venus, Earth,
and Mars. In other words, in a few Gigayears the whole inner Solar system may
disintegrate.

In Fig. 12.8, Mercury’s eccentricity is shown as a function of time, over 5 Gyr
from present, for a large set of possible initial conditions (shown in colour
gradation), differing by tiny shifts in initial semimajor axis. In the lower panel, the
relativistic and Lunar corrections are taken into account in the integrations, and
in the upper panel, they are ignored. It turns out that the general relativity greatly
enhances Mercury’s stability, while the Lunar corrections are not so important.
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Fig. 12.8 Mercury’s eccentricity, as a function of time, over 5 Gyr from present. Upper panel:
the relativistic and Lunar corrections are ignored; ≈200 orbits are shown; they differ in the initial
semimajor axis by tiny deviations ≈4 cm. Lower panel: the relativistic and Lunar corrections are
taken into account; ≈2000 orbits are shown; they differ in the initial semimajor axis by ≈0.4 mm
(Figure 1 from Laskar and Gastineau (2009), by permission from Springer Nature, © 2009)

To construct these plots, direct numerical integrations of the non-averaged
equations of motion were performed (Laskar and Gastineau 2009). The integration
model comprised eight major planets and Pluto and optionally included relativistic
and averaged Lunar corrections. A symplectic integrator was used with the step size
of 0.025 yr, which was decreased (conserving the integration accuracy) when the
eccentricity of the planets raised above 0.4.

Figure 12.9 demonstrates a possibility of collisional trajectories of the Earth with
Venus and Mars at ∼3 Gyr from present (Laskar and Gastineau 2009). In panels
(a) and (b), the evolution of semimajor axes and eccentricities of all four inner
planets is shown. Panel (c) shows the evolution of the Earth–Mars (green) and the
Earth–Venus (violet) minimum distances (computed over 1000 yr consecutive time
intervals); the critical (collisional) distance values are depicted as horizontal lines
of the same colour. Panel (d) verifies the conservation of the system’s total energy
during the integrations.
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Fig. 12.9 Collisional trajectories: Earth with Venus and Earth with Mars at ∼3 Gyr from present
(Figure 3 from Laskar and Gastineau (2009), by permission from Springer Nature, © 2009)

The pumping of Mercury’s eccentricity to a planet-crossing value is due to its
eventual entrance into the ν5 secular resonance, as revealed numerically in Laskar
(2008). Recall that in the ν5 resonance, the difference of Mercury’s and Jupiter’s
longitudes of pericentre should librate. This is just the behaviour found in the
integrations.

In Fig. 12.10, lower panel, Mercury’s eccentricity is shown as a function of time,
over 400 Myr (Boué et al. 2012). The corresponding Poincaré section, also presented
in the Figure in its upper panel, demonstrates a typical chaotic pattern tracing the
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Fig. 12.10 Mercury’s eccentricity, as a function of time over 400 Myr from present (lower panel)
and the corresponding Poincaré section (upper panel) (Figure 6 from Boué et al. (2012), reproduced
with permission © ESO)

perturbed separatrices of a non-linear resonance in the second fundamental model;
see Sect. 1.2. Hamiltonian intermittency is evident in the eccentricity graph; this is
its second kind, see classification in Sect. 4.4.

In a semi-analytical way, the future fate of Mercury was studied in Batygin
et al. (2015). The authors succeeded in deriving a Hamiltonian model with 2 and
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Fig. 12.11 Mercury’s eccentricity (left panel) and inclination (right panel), as functions of time,
over 6 Gyr from present, in two models of Batygin et al. (2015): the 2 degree of freedom system
(red curve) and the 2 and 1/2 degree of freedom system (blue curve) (Figure 3 from Batygin et al.
(2015), by permission of IOP Publishing/AAS)

1/2 degrees of freedom, perfectly representing the already numerically revealed
qualitative behaviour of Mercury. In two models, an autonomous (with 2 degrees
of freedom) one and a non-autonomous (with 2 and 1/2 degrees of freedom) one,
Mercury’s eccentricity and inclination, as functions of time on Gigayear scales,
behave differently. A slow diffusion in the Hamiltonian value turns out to be the
main factor leading to the orbit’s entrance into a violent mode at time 4–5 Gyr from
present (Fig. 12.11).

Two precession frequencies associated with the eccentricity and inclination of
Mercury’s orbit are close (within 25%) to two fundamental frequencies of the Solar
system. These two latter eigenfrequencies are associated with Jupiter’s eccentricity
and Venus’s inclination; therefore, at least two secular resonances may eventually
arise. According to Lithwick and Wu (2011), this is just an eventual diffusive
entrance of Mercury in a regime of overlap of these resonances that would cause
Mercury’s violent chaos.

The inner disintegration of a similar kind can be typical in many single-star
planetary systems, in which rocky planets are in the system inner zone and giant
planets are in the outer zone, as in our Solar system. In Fig. 12.12, it is demonstrated
in a simplest model how secular resonances of a “particle” with two outer giant
planets may interact and overlap, depending on parameters characterizing the
overall architecture of the system (Lithwick and Wu 2011).

For an inner small planet’s secular evolution, the Hamiltonian, in its lowest-order
expansion, is given by

H = −GmmJ

aJ

[
f
(1)
e,2 e

2 + f (2)e,2 eeJ cos(� −�J)+ f (1)i,2 + f (2)i,2 ssJ cos(
−
J)
]
,

(12.4)

as rendered in orbital elements, see Murray and Dermott (1999) and Batygin et al.
(2015). Here m is mass, and a, e, i, � , and 
 are semimajor axis, eccentricity,
inclination, longitude of pericentre, and longitude of ascending node, respectively;
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Fig. 12.12 Secular resonances and their interaction. No resonance (left upper panel), single
resonance (right upper panel), two interacting resonances (left lower panel), two overlapping
resonances (right lower panel) (Figures 1 and 2 from Lithwick and Wu (2011), by permission
of IOP Publishing/AAS)

s = sin(i/2); the coefficients f are functions of α = a/aJ < 1. The mass and
orbital elements of the particle are non-indexed; for the perturber, they are indexed
by “J” (a paradigmatic “Jupiter”).

A model Hamiltonian of a single secular resonance, when the inclination terms
are ignored, can be written down in the form

H

γ
= −p

2

4
+� · p − 2εJp

1/2 cosϕ, (12.5)
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where ϕ = � − gJt; and � is the particle’s longitude of pericentre, gJ is the
perturber’s fundamental frequency (approximately the rate of precession of the
perturber’s apsidal line); � is a detuning parameter; εJ characterizes the strength
of perturbation. The constant γ is the particle’s apsidal rate of precession forced by
the perturber. The action-like variable p is conjugated to the angle ϕ.

In the y axis of Fig. 12.12, y ≈ e2. In case of secular resonances with two planets
(“J” and “S”, for paradigmatic Jupiter and Saturn), a second resonance cell emerges
in the phase space section. The phase space section (lower panel of Fig. 12.12) is
taken at exp[i(gJ − gS)t] = 1; here i is the imaginary unit.

Generally, as presented in Fig. 12.12, in this three-planet planar model four
basic dynamical situations may take place: no resonance (left upper panel), sin-
gle resonance (right upper panel), two interacting resonances (left lower panel),
two overlapping resonances (right lower panel). In the last case, global chaos
is present, signalling an eventual destabilization of the system. This theoretical
example demonstrates the intrinsic importance of secular resonances in defining the
dynamical architectures of planetary systems; for more examples, see Barnes and
Greenberg (2006) and Wu and Lithwick (2011).



Chapter 13
Multiplanet Systems of Single Stars

In planetary systems of single stars, mean motion resonances are possible if the
system comprises two or more planets, i.e., if it is multiplanet. In this chapter, we
consider secular, resonant, and chaotic dynamics of multiplanet systems of single
stars. Location and interaction of resonances are characterized in various dynamical
models, in particular, if the perturber is in an outer orbit in the system, and if it is in
an inner orbit. We discuss actual resonant and formally chaotic exoplanet systems.

13.1 Secular Planetary Dynamics

In a hierarchical setting of the planar elliptic restricted three-body problem (R3BP),
Heppenheimer (1978) derived a secular perturbation theory, providing analytical
formulas for the time variation of the forced eccentricity e and the longitude of
periastron� of a passively gravitating body (tertiary) put initially in a circular orbit
around one of the components of the primary binary (say, a star with a planet). In the
hierarchical setting, the primary binary size is assumed to be much greater than the
tertiary’s orbit; in a more rigorous formulation, the perturbing companion’s orbital
pericentric distance, in astrocentric coordinates, is assumed to be much greater than
the tertiary’s apocentric distance. This problem setting can be called the circum-
companion version of the hierarchical planar elliptic R3BP. The version can be
either circumprimary or circumsecondary.

In Heppenheimer’s (1978) equations, the leading terms in the powers of the
semimajor axes ratio of the system bodies are kept, and higher order terms
are neglected. The theory was initially intended for analytical descriptions of
circumstellar planetesimal disc dynamics in binary star systems; therefore, it is
useful in various exoplanetary applications, especially in systems with discs, and
also in systems with a planet whose mass can be neglected with respect to the
perturbing body. Whitmire et al. (1998) and Thébault et al. (2006) applied this

© Springer Nature Switzerland AG 2020
I. I. Shevchenko, Dynamical Chaos in Planetary Systems, Astrophysics
and Space Science Library 463, https://doi.org/10.1007/978-3-030-52144-8_13

291

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52144-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-52144-8_13


292 13 Multiplanet Systems of Single Stars

secular perturbation theory to analytically describe a stirring of the circumstellar
disc of a young star by a distant stellar companion.

An alternative formulation of the R3BP hierarchical setting is the circumbinary
one, in which the primary binary size is assumed to be much smaller than the
tertiary’s pericentric distance, in barycentric coordinates. Roughly speaking, the
primary binary size is assumed to be much smaller than the tertiary’s orbit; therefore,
the tertiary moves around the primary binary in a weakly perturbed circumbinary
orbit.

Moriwaki and Nakagawa (2004) considered this R3BP setting and derived
equations of the secular circumbinary motion, keeping the leading terms in the
powers of the semimajor axes ratio and powers of the eccentricities of the system
bodies.

Demidova and Shevchenko (2015) combined the approaches of Heppenheimer
(1978) and Moriwaki and Nakagawa (2004) and derived explicit analytical formulas
for the secular evolution of the tertiary’s eccentricity and longitude of pericentre in
the both problem settings, the circum-companion and circumbinary ones.

Here we consider first the circumbinary setting. In fact, it is superfluous to
consider a non-hierarchical setting, because, as we show further on in Sect. 14.2.3,
the central chaotic circumbinary zone exists at all eccentricities of the tertiary if
μ � 0.05, where μ = m2/(m1 + m2) is the mass parameter of the primary
binary and m1 ≥ m2 are the masses of the primary binary components. This
mass threshold has an important physical meaning (Shevchenko 2015): above it, the
tertiary can diffuse, even starting from small eccentricities, following the sequence
of the overlapping integer p/1 mean motion resonances between the primary binary
and the particle, up to ejection from the system; any close encounters with other
bodies of the system are not required to provide the escape. Note that, in the
alternative circum-companion case, the motion inside the secondary’s Hill sphere
is generally stable.

We adopt the barycentric frame and the following designations: ab and eb are
the primary binary’s semimajor axis and eccentricity, respectively; a and e are the
semimajor axis and eccentricity of the tertiary’s orbit. All masses are measured in
Solar units, distances in astronomical units (AU), and time in years. In this unit
system, the gravitational constant G is equal to 4π2.

The averaged perturbing function in the circumbinary case is given in Moriwaki
and Nakagawa (2004) in the form of a truncated power-law series in the ratio of
the primary binary’s and the tertiary’s semimajor axes and in the eccentricities.
The corresponding equations of the secular motion (Moriwaki and Nakagawa 2004,
Equations (A7)) can be readily analytically integrated (Demidova and Shevchenko
2015) to provide formulas for the secular time evolution of the circumbinary
tertiary’s eccentricity e and longitude of pericentre� :

e = emax

∣∣∣∣ sin
ut

2

∣∣∣∣ , (13.1)

tan� = − sinut

1 − cosut
, (13.2)
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where t is time,

u = 3π

2

m1m2

(m1 +m2)3/2

a2
b

a7/2

(
1 + 3

2
e2

b

)
, (13.3)

and

emax = 2ef, (13.4)

where the forced eccentricity

ef = 5

4

(m1 −m2)

(m1 +m2)

ab

a
eb

(
1 + 3

4e
2
b

)

(
1 + 3

2e
2
b

) . (13.5)

By introducing the variable y = ut/2, Eq. (13.2) can written down as

if y ≥ −π and y ≤ −π
2
, then� = y + 5

π

2
;

if y ≥ −π
2

and y ≤ 0, then� = y + π

2
;

if y ≥ 0 and y ≤ π

2
, then� = y + 3

π

2
;

if y ≥ π

2
and y ≤ π, then� = y − π

2
. (13.6)

In some sense, the u quantity can be regarded as a precession rate of the tertiary’s
line of apsides.

Numerical model integrations of the dynamical stirring of planetesimal discs
on secular timescales, performed in Moriwaki and Nakagawa (2004), Meschiari
(2012, 2014), and Paardekooper et al. (2012) for various sets of the problem
parameters, provide plots of the eccentricity e and the longitude of pericentre� of a
circumbinary body in dependence on its semimajor axis a. The numerically obtained
dependences are perfectly reproduced by the described above secular theory; see
Demidova and Shevchenko (2015).

In their form, Eqs. (13.1) and (13.2) turn out to be rather similar to formulas
derived in Heppenheimer (1978) for the same quantities (but in the circumbinary
case the motion is described in the barycentric frame instead of the astrocentric one)
in the circum-companion hierarchical setting of the problem. In the circumprimary
case, the quantities are also given by Eqs. (13.1), (13.2), and (13.6), but the u and
ef parameters are expressed differently; see Heppenheimer (1978), Whitmire et al.
(1998), and Thébault et al. (2006). With our notations, they are

u = 3π

2

m2

m
1/2
1

a3/2

a3
b

(
1 − e2

b

)−3/2
(13.7)
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and

ef = 5

4

a

ab

eb(
1 − e2

b

) . (13.8)

In the given circum-companion case, m1 is the primary mass (around which the
massless tertiary orbits) and m2 is the secondary (perturbing) mass; m1 > m2.

13.2 Location and Interaction of Resonances

13.2.1 The Outer Perturber Case

Let us consider the circum-companion case: the perturber moves in an outer orbit
with respect to the particle; i.e., the tertiary orbits around one of the components
of the primary binary. Circum-companion mean motion resonances correspond to
commensurabilities between the orbital frequencies of the particle and the outer
perturber.

An approximate Hamiltonian of the particle’s motion around the primary, in the
vicinity of the (k + j)/k mean motion resonance (where k ≥ 1 and j ≥ 1 are
integers) with the primary binary, in the planar elliptic restricted three-body problem
is given by

H = 1

2
β�2 −

j∑

p=0

φk+j,k+p,k cos(ψ + p�) (13.9)

(Holman and Murray 1996; Murray and Holman 1997), where β = 3k2/a2, � =
 −  res,  = (μ1a)

1/2/k,  res = (μ2
1/(k

2(k + j)nb))
1/3, μ1 = 1 − μ, μ =

m2/(m1 +m2) (we set m1 > m2);� is the longitude of the particle’s pericentre; a
and e are the particle’s semimajor axis and eccentricity; ψ = kl − (j + k)lb, where
l and lb are the mean longitudes of the particle and the primary binary, respectively.

Here the units are chosen in such a way that the gravitational constant, the total
mass of the primary binary, the binary’s semimajor axis ab are all equal to one. The
binary’s mean longitude lb = nbt , and the binary’s mean motion nb = 1, i.e., the
time unit is the 1

2π th part of the binary’s orbital period.
Equation (13.9) demonstrates that any resonance (k+ j)/k is split in a cluster of

j + 1 subresonances with p = 0, 1, . . . , j . For each of them, the resonant argument
is

φ = ψ + p� = kl − (j + k)lb + p�, (13.10)



13.2 Location and Interaction of Resonances 295

where p = 0, 1, . . . , j . The coefficients of the resonant terms are given by

|φk+j,k+p,k| ≈ μ

jπab

(
j

p

)(ε
2

)p (εb

2

)j−p
, (13.11)

where ε = eab/|a − ab| and εb = ebab/|a − ab|.
The model (13.9) is intended for description of resonances of relatively high

order, j ≥ 2, and the approximation (13.11) is adequate if εj < 1 (Holman and
Murray 1996).

The frequency of small-amplitude oscillations on subresonance p is

ω0 = (β|φk+j,k+p,k|)1/2 ≈ ab

|a − ab|nb

[
μ1μ

4j

3π

(
j

p

)(
a

ab

)(ε
2

)p (εb

2

)j−p]1/2

(13.12)

and for the perturbation frequency (the apsidal precession rate) one has


 = �̇ ≈ −μ1μ

2π
nb

(
a

ab

)1/2 (
ab

a − ab

)2

. (13.13)

13.2.2 The Inner Perturber Case

Consider the circumbinary case (in otherwise the same setting of the three-body
problem): a particle orbits around the primary binary. Circumbinary mean motion
resonances correspond to commensurabilities between the orbital frequencies of the
central primary binary and the particle.

Using an analysis presented in Holman and Murray (1996); Murray and Holman
(1997), the Hamiltonian of the circumbinary motion of a tertiary in the vicinity of
a mean motion resonance in the planar elliptic restricted three-body problem can be
written down as

H = 1

2
β�2 −

j∑

p=0

φk+j,k+p,k cos(ψ + p�), (13.14)

where the designations are the same as in the previous Sect. 13.2.1. The variable
ψ = kl − (j + k)lb, where l and lb are the mean longitudes of the particle and the
primary binary.

For the circumbinary motion, one has a > ab and j is negative and p non-
positive. The (k + j)/k = (k − |j |)/k resonance is split in a cluster of |j | + 1
subresonances with p = 0,−1,−2, . . . , j . For each of them, the resonant argument
is

φ = ψ + p� = kl − (j + k)lb + p� = kl − (k − |j |)lb − |p|�, (13.15)

where p = 0,−1,−2, . . . , j .
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For k ≥ 2 and j = 1 − k, one has resonances 1/k, each split in a cluster of k
subresonances with the resonant arguments

φ = kl − lb + p� (13.16)

where p = 0,−1,−2, . . . , 1 − k.
The coefficients of the resonant terms are

|φk+j,k+p,k| ≈ μ

|j |πa
(|j |

|p|
)(ε

2

)|p| (εb

2

)|j |−|p|
, (13.17)

where ε = ea/|a − ab|, εb = eba/|a − ab|.
As in the described above model (13.9), the model (13.14) is intended for descrip-

tion of resonances of relatively high order, |j | ≥ 2. The approximation (13.11) is
adequate, if ε|j | < 1 (Holman and Murray 1996).

The frequency of small-amplitude oscillations on subresonance |p| is given by

ω0 = (β|φk+j,k+p,k |)1/2 ≈ a

|a − ab|nb

[
μ1μ

4|j |
3π

(|j |
|p|
)(

a

ab

)( ε
2

)|p| ( εb
2

)|j |−|p|]1/2
.

(13.18)

The perturbation frequency 
 is considered further on. In the pendulum model, the
half-width of any subresonance is equal to 2ω0.

In the hierarchical planar general three-body problem, an analytical description
of resonant terms can be found in Mardling (2008a, Equations (3.51), (3.60), and
(3.61)).

There is a number of mechanisms that may cause apsidal precession, among them
the general relativity. Recall the famous case of apsidal precession of the innermost
planet, Mercury, in our Solar system. The rate of Mercury’s apsidal precession
due to the perturbations from all planets beginning with Venus is equal to 532′′
per century, and the general relativity adds 43′′ per century; see Clemence (1947).
The Solar oblateness and tidal effects are known to be negligible. The classical
perturbations from planets, therefore, dominate in summoning Mercury’s apsidal
precession.

The secular evolution in the circumbinary and circum-companion cases is
described above in Sect. 13.1. In each of these two cases, the classical non-
relativistic apsidal precession rate is given by individual expressions. In the
circumbinary hierarchical setting of the circular (eb = 0) restricted three-body prob-
lem, where the barycentric frame is naturally adopted, for the classical precession
rate one has

ωcl ≡ �̇ ≈ 3π

2

m1m2

(m1 +m2)3/2

a2
b

a7/2 = 3π

2

m1m2

(m1 +m2)3/2

a2
b(1 − e)7/2
q7/2 , (13.19)

in radians per year. Here, the masses are measured in Solar units, distances in
astronomical units, and time in years; the gravitational constant G is therefore
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equal to 4π2. As adopted above, m1 ≥ m2 are the masses of the primary binary
components, ab and eb are the binary’s semimajor axis and eccentricity, a, q , and e
are the particle’s semimajor axis, pericentric distance, and eccentricity, respectively.

It is convenient to express the particle’s apsidal precession rate in ratio to the
particle’s mean motion n:

ωcl

n
≈ 3

4

m1m2

(m1 +m2)2

(ab

a

)2 = 3

4
μ(1 − μ)

(
ab

q

)2

(1 − e)2, (13.20)

where μ = m2/(m1 +m2).

13.3 Resonant and Formally Chaotic Exoplanet Systems

Mean motion resonances may emerge in systems of single stars that have two or
more planets, as well as in systems of binary stars that have one or more planets.
About one third of all discovered exoplanets belong to multiplanet systems (Rein
2012). Orbital resonances seem to be ubiquitous in planetary systems, as confirmed
in computations of the behaviour of resonant arguments. However, orbital and
physical parameters of the observed systems are usually not well-constrained, and
this circumstance does not allow one to judge definitely whether any given resonant
argument librates or circulates; perhaps solely in case of three-body resonances
some definite conclusions can be made (Pichierri et al. 2019).

The current data on planetary masses and orbital elements indeed suffer from
observational uncertainties; however, the occurrence of low-order resonances (such
as 2/1 and 3/2) seems to be statistically significant (Wright et al. 2011; Fabrycky
et al. 2012), especially in pairs of planets with similar masses. Modern classifica-
tions usually attribute any planetary system exhibiting a mean motion resonance
to the first basic dynamical class of planetary systems (Ollivier et al. 2009). In
application to exoplanetary systems, in the context of the unrestricted three-body
problem, the planetary resonances are analysed and discussed by Batygin and
Morbidelli (2013a).

The most widespread planetary resonances or close-to-resonance states in two-
planet configurations correspond to the 2/1 and 3/2 orbital frequency commensura-
bilities, see Fig. 10.4. It is a natural outcome of the primordial dynamical evolution
of planets migrating in primordial discs, as numerical simulations show; see Wang
et al. (2012), Davies et al. (2014), Pichierri et al. (2019), and references therein. The
migration may lead to either resonant or non-resonant final orbital configurations, in
which the lines of apsides are aligned. This phenomenon is observed in a number of
actual planetary systems and, therefore, serves as a confirmation that the migration
took place indeed.

Three-body mean motion resonances may generate prominent chaos, due to
overlap of subresonances in subresonance supermultiplets. There exist examples
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of such overlap in dynamics of the Solar system bodies, including giant planets,
see Sect. 9.1; chaos due to three-body mean motion resonances in case of asteroids
was considered above in Sect. 8.2.1. In exoplanetary studies, with the number of
discovered multiplanet systems increasing, planetary three-body resonances became
a perspective subject of analytical and numerical analysis (Quillen 2011; Pichierri
et al. 2019).

Apart from the mean motion resonances, a major role in the dynamical evolution
of exoplanet systems is played by secular resonances, as in our Solar system.
Some systems are likely to exhibit both apsidal and mean motion resonances; a
prototype (though not yet confirmed) is the planetary system of the star HD 12661
(Goździewski 2003).

Several outstanding examples of mean-motion resonant and close-to-resonant
multiplanet systems are presented in what follows. Note that an interested reader
may compare the main physical and orbital parameters of planets in the discussed
exoplanetary systems with the analogous parameters of planetary class prototypes
present in our Solar system; some of the latter ones are listed in Appendix B.

13.3.1 The Kepler-223 System

Kepler-223 (initially designated as KOI-730, where “KOI” means Kepler’s Object
of Interest) is a G5V dwarf star around which four super-Earth planets revolve.
The physical radii of the four planets b, c, d, and e are equal to 1.8, 2.1, 2.8, and
2.4 REarth, respectively.1 They were all identified by means of the TTV technique.
As described above in Sect. 10.1, this technique provides virtually complete and
accurate information on planetary orbital parameters and masses.

The Kepler-223 system is considered nowadays to be the most remarkable
example of a closely packed resonant system. The orbital periods of its planets
are equal to 7.4, 9.8, 14.8, and 19.7 days, forming pairs close to mutual integer
commensurabilities; and the planetary quartet was indeed confirmed, by analysing
the time behaviour of the corresponding resonant arguments, to reside in the multi-
body mean motion resonance 8:6:4:3.

Lissauer et al. (2011a) state that “This resonant chain is potentially the missing
link that explains how planets that are subject to migration in a gas or planetesimal
disc can avoid close encounters with each other, being brought to a very closely
packed, yet stable, configuration.”

1Note that the literal nomenclature of planets in any exoplanetary system starts with letter “b,” the
letter “a” being implicitly attributed to the host star.
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Fig. 13.1 Kepler-11, a triple transit. Artist’s impression (Credits: NASA/Tim Pyle)

13.3.2 The Kepler-11 System

Kepler-11 is a Sun-like G6V dwarf star. It possesses a compact (with all planets’
semimajor axes a < 0.5 AU) system of six low-mass transiting planets (Lissauer
et al. 2011b, 2013); see an illustration in Fig. 13.1. The planets from b to f have
densities 0.5–2.0 g cm−3 and masses from 2 to 8 MEarth. Such masses are typical
for super-Earths, see Sect. 10.3.2, although the planets’ densities are Saturn-like and
Neptune-like. Five inner planets in this system orbit very close to the host star; the
radial distances between their orbits are small both in relative (with respect to the
inner planet’s orbit size) and in absolute units. The orbit of the outermost 6th planet
is only a little bit larger than the orbit of Mercury. The two innermost planets are
close to the 5/4 mean motion resonance. Outer non-transit planets, of course, can be
actually present, although they are non-observed now.

This planetary system is super-coplanar: the current mutual inclinations of the
planetary orbits do not exceed ∼1◦ (Lissauer et al. 2011b; Migaszewski et al.
2012); for comparison, in our Solar system (with eight planets, Pluto excluded),
the planetary mutual inclinations have values up to ∼2.3◦.

Stability MEGNO-charts,2 constructed by Migaszewski et al. (2012) for neigh-
bourhoods of observationally allowed sets of planetary parameters and initial
conditions, demonstrate that the phase space of orbital dynamics of the Kepler-11
planetary system is mostly chaotic. Zones of regular motion in the diagrams are

2On the MEGNO technique, see Sect. 2.3.
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shallow. Migaszewski et al. (2012) explain the observed chaos as due to overlap of
three-body and four-body mean motion resonances, and argue that the Kepler-11
system can be stable and long-lived only if caught in particular three-body and four-
body resonances, in close-to-coplanar system configurations. Migaszewski et al.
(2012) conclude that the system is “extremely resonant,” residing in a number of
many-body resonances, and can therefore be long-term stable.

Concerning two-body resonances, Lissauer et al. (2011b) find that the system
is non-resonant, with only one planet pair being close to the 5/4 mean motion
resonance. Any presence of non-transiting giant planets in large outer orbits (if real
but not yet observationally revealed) may significantly modify the inferences on the
long-term dynamical behaviour of the Kepler-11 system.

13.3.3 The GJ-876 System

GJ-8763 is an M4V dwarf star, which has at least four planets, one super-Earth
(planet b), two Jupiters (planets c and d), and one Neptune (planet e). The masses
of the b, c, d, and e planets are 6.83 MEarth, 0.71 MJ, 2.28 MJ, and 14.6 MEarth,
respectively, and the orbital periods are, respectively, 1.9, 30, 61, and 124 days
(Rivera et al. 2010). Planets c, d, and e are involved in the 4:2:1 Laplace mean
motion resonance (Rivera et al. 2010). Along with the Io–Europa–Ganymede
subsystem of Jovian moons, it is the second currently known, to be present anywhere
in the Universe, case of the Laplace resonance.

A MEGNO chart for the d planet dynamics is shown in Fig. 13.2. The planet’s
location is marked with a black circle, situated in the green area at the border of
regular and chaotic zones. According to this MEGNO diagram, the d planet seems
to be located just at the chaos border.

13.3.4 The Kepler-36 System

Kepler-36 is a sub-giant G1IV star with radius R = 1.63RSun and mass M =
1.07MSun, hosting two super-Earths with masses 4.1 and 7.5 MEarth and orbital
periods 13.8 and 16.2 d, respectively (Carter et al. 2012). Thus, the planet system
has a close-to-coorbital compact configuration, with the planetary semimajor axes
a < 0.13 AU.

By means of massive direct numerical integrations on grids of observationally
allowed initial conditions, the long-term dynamics of the Kepler-36 system was
explored by Deck et al. (2012). The TTV technique provides strict bounds on the
planetary masses and possible domains of the initial conditions. Tantalizingly, most

3The “GJ” designation means that the star is from the Gliese–Jahreiss catalogue.
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Fig. 13.2 A MEGNO chart for the d planet in the GJ-876 system, in the “period ratio of d and
c planets—eccentricity” plane. An analytical stability limit (Gladman 1993) is shown by a white
curve. The locations of planets b and c are shown for reference (white circles); the d planet location
is marked with a black circle (Figure 2a from Martí et al. 2013, © Oxford University Press)

Fig. 13.3 Distributions of the Lyapunov times for Kepler-36, with respect to the planetary
mutual inclination. Higher initial mutual inclinations imply stronger dynamical chaos, i.e., shorter
Lyapunov times (Figure 1a from Deck et al. 2012, by permission of IOP Publishing/AAS)

of the allowed initial conditions (≈95%) turns out to imply chaotic behaviour with
extremely short Lyapunov times. The Lyapunov times can be as small as ∼10 yr; see
Fig. 13.3. From this diagram, it follows that any initial mutual planetary inclinations
higher than nominal ones imply stronger chaos (chaos with shorter Lyapunov
times).
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However, the remaining ≈5% of the possible initial conditions imply regular
long-lived orbits. The diagram in Fig. 13.3 provides an impressive example how
a stability analysis can radically refine limits for initial conditions (and also for
planetary masses) for any observed planetary system.

What is the cause for the dynamical chaos predominance on the plane of possible
initial conditions in the Kepler-36 system? Deck et al. (2012) argue that the chaos
originates due to interaction of the 7/6 first-order mean motion resonance with
the nearby (much weaker) 34/29 resonance. Conversely, one may observe that,
if the less massive planet were treated as a passively gravitating body in some
approximation, it would belong to the close-to-coorbital chaotic zone formed in
the radial vicinity of the massive planet. In other words, the less massive planet
moves inside the planetary chaotic zone (the Wisdom gap) of the larger planet; see
Sect. 11.1.2. Therefore, the dynamical chaos emergence here can be attributed to
the overlap of the (p + 1)/p first order mean motion resonances; the neighbouring
8/7, 7/6, and 6/5 mean motion resonances, among them.

13.3.5 The HD 12661 System

HD 12661 is a Solar-like G6V dwarf star with radius R = 1.10RSun and mass
M = 1.07MSun. It hosts a pair of Jupiters with masses m sin i = 2.3 and 1.56 MJ,
where i is the angle between the line of sight and the normal to the orbit plane; the
planets’ orbital periods P = 263.3 and 1444.5 days, and eccentricities e � 0.35
and 0.20, respectively (Goździewski 2003). (For different estimates of masses and
orbital parameters, see Wright et al. 2009.) The planets were discovered by the RV-
method; hence, only lower bounds for their masses are known. As follows from the
period ratio in the planetary pair, this two-planet system is close to the 11/2 mean
motion resonance.

Goździewski (2003) explored the stability of the HD 12661 two-planet system in
massive numerical N-body simulations; a MEGNO chart is presented in Fig. 13.4.
For the given above nominal orbital initial conditions, the Lyapunov time turns out
to be about 1300 yr (Goździewski 2003), i.e., the planetary system is nominally
chaotic.



13.3 Resonant and Formally Chaotic Exoplanet Systems 303

Fig. 13.4 A MEGNO chart of the HD 12661 system in the “semimajor axis—eccentricity” plane
for the outer planet c, which is less massive than planet b. Planet c is nominally situated at the
intersection of the black solid lines (Figure 6a from Goździewski 2003, reproduced with permission
© ESO)



Chapter 14
Planetary Systems of Multiple Stars

Mean motion resonances, apart from their general significance, evoke several
important effects specific to the hierarchical circum-companion and circumbinary
planetary systems of binary stars. In the circumbinary case, their overlap is
responsible for the formation of a continuous chaotic zone around the stellar binary,
if the binary’s mass parameter is large enough. In the circum-companion case, their
overlap forms the outer cut-off of any circum-companion planetary system. Cir-
cumbinary planetary systems may contain planets captured in resonances with the
central stellar binary; such resonant planets may even form many-body resonance
sequences, “anchored” to the innermost resonance. The circumbinary resonances
may form observable patterns in circumbinary planetesimal discs, in case the disc is
present. Similar effects can be active in circum-companion systems. We consider
potential and actual examples of circum-companion systems and circumbinary
systems. Concepts of migration and chaos as system architects, chaotic orbital
zones, structure of chaos borders, and the mass parameter threshold for forming
the circumbinary chaotic zone are described and discussed. The presentation in this
chapter is partially based (in Sect. 14.2) on the papers by Popova and Shevchenko
(2013) and Shevchenko (2015).

14.1 Circum-Companion Systems

14.1.1 The α Centauri System

The α Centauri system, being the binary star closest to our Sun, naturally attracts a
lot of attention on the subject how stable planetary configurations in such a system
may look like (Benest 1988a; Popova and Shevchenko 2012; Quarles and Lissauer
2016; Quarles et al. 2018). According to Anosova et al. (1994), Proxima Centauri,
which is some 0.02 pc closer to us, is not gravitationally bound to the α Centauri
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Fig. 14.1 Stability diagrams in the “pericentric distance q – eccentricity e” plane of initial orbital
elements for hypothetical planets in the α Centauri A–B system. Areas of instability are shaded.
Left panel: outer (circumbinary) planetary orbits. Right panel: inner (circumstellar) planetary orbits
(Figures 2 and 8 from Popova and Shevchenko (2012). With permission from Pleiades Publishing
Inc.)

binary star; therefore, the planetary systems of the single star Proxima Centauri and
the binary star α Centauri A–B can be considered in isolation.

A numerical study, conducted in Popova and Shevchenko (2012) by means of
massive numerical integrations along with calculations of Lyapunov exponents,
in the planar problem, made it possible to identify zones of orbital stability of
hypothetical circumstellar and circumbinary planets in the α Centauri A–B system
in the space of planetary initial orbital elements (Fig. 14.1).

In the right panel of Fig. 14.1, the hypothetical (not yet confirmed) circumstellar
planet, reported by Dumusque et al. (2012), would have the q and e coordinates
close to the frame origin; therefore, the planet would be deeply inside the triangular
zone of stability in the panel. At the planet’s initial eccentricity equal to zero, the
outer boundary radius of the stability domain is ∼5 AU.

In case of the circumbinary planetary motion (Fig. 14.1, left panel), the outer
boundary radius (in the barycentric frame) of the circumbinary chaos zone is
∼80 AU. Planets with smaller barycentric radii of initially circular orbits cannot
survive.

In Fig. 14.1, left panel, the chaos boundaries obviously exhibit a “ragged” pattern,
which is explained by the emergence of major mean motion resonances with the
central stellar binary. An analogous resonant pattern is considered in detail in
Sect. 12.2 for the Kepler-16 circumbinary system.

According to Popova and Shevchenko (2012), for the chaotic circumbinary
motion of planets in the α Centauri A–B system, the Lyapunov times turn out
to be ∼500 yr; and for the chaotic circumstellar motion around any of the stellar
components, they are ∼60 yr.
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14.1.2 The υ Andromedae System

υ And (Upsilon Andromedae) is a binary star, comprising a yellow F8V dwarf and a
red M4.5V dwarf. The binary size is 750 AU. At least four giant planets orbit around
the yellow companion (Butler et al. 1999; McArthur et al. 2010; Ligi et al. 2012).
According to McArthur et al. (2010); Ligi et al. (2012), the b, c, and d planets’
masses are 0.62, 14.0, and 10.3 MJ, orbital semimajor axes are 0.060, 0.83, and
2.53 AU, and orbital periods are 4.6, 241, and 1290 d, respectively. The system is
not planar: the orbital planes of the c and d planets are mutually inclined by 30◦. The
c and d planets are super-Jupiters. The orbit of the fourth discovered planet (υ And
e) is larger than the orbits of the b, c, and d planets; its semimajor axis is 5.25 AU,
orbital period 3849 d, and mass 0.96MJ (Ligi et al. 2012).

The c and d planets are close to the mean motion 11/2 resonance; the four-
planet system as a whole is long-term stable (Michtchenko and Malhotra 2004).
The close-to-resonant configuration of the c–d pair is similar to that observed in the
circumbinary planetary system Kepler-16, which is considered below in Sect. 14.2.

14.1.3 The 55 Cancri System

The main (most massive) component of the 55 Cancri binary star is a yellow G8
dwarf star. It is orbited by at least five planets with masses ranging from 0.034 to
3.84MJ; their orbital periods range from 2.8 to 5200 days. Planets b and c are close
to the 3/1 mean motion resonance, or may even reside in it. The system as a whole
is long-term stable (Gayon et al. 2008). It may contain also other planets, since it is
far from being tightly packed.

Gayon et al. (2008) identified the 55 Cnc planetary system to probably reside in
a state of stable (bounded) chaos. Recall that there exist such chaotic objects in our
Solar system; notably, the asteroid Helga, see Sect. 8.2.3. However, in the 55 Cnc
planetary system, planetary masses and mutual inclinations of planets are not well
enough constrained observationally. Therefore, the conclusion on the presence of
chaos, bounded or not, in this system is still uncertain.

14.1.4 The 16 Cygni System

The Lidov-Kozai effect, considered in detail further on in Chap. 15, is often
present in hierarchical circum-companion systems. It can be regarded as a kind of
resonance, with the resonance argument (critical angle) equal to the argument of
the particle’s pericentre ω = � − 
, where � is the longitude of the particle’s
pericentre and
 is the longitude of the particle’s ascending node (Morbidelli 2002;
Shevchenko 2017a; Sidorenko 2018). The effect might be widespread in planetary
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systems of binary stars with highly inclined (with respect to the stellar binary’s
orbit plane) planetary orbits; in particular, it was shown to be possibly present in the
16 Cygni system (Holman et al. 1997) and in the γ Cephei system (Haghighipour
et al. 2010). Moreover, the Lidov-Kozai effect was invoked to provide a general
mechanism of production of hot Jupiters (Lithwick and Naoz 2011).

Holman et al. (1997) suggested that the motion of the planet 16 Cyg Bb orbiting
the B component of the star 16 Cyg A–B might be chaotic. This planet’s orbit is
prone to the Lidov–Kozai oscillations, and the amplitude of ω-libration (libration of
the argument of pericentre) turns out to be rather large. Consequently, the planet’s
motion might be close to the separatrix of the Lidov–Kozai resonance; see Fig. 14.2.

Conversely, Melnikov (2016) performed massive computations of the Lyapunov
exponents of the planetary motion in this system on representative sets of observa-
tionally allowed initial conditions, and showed that the presence of chaos is unlikely;
for chaos to emerge in this system, the planetary motion should take place closer to
the Lidov–Kozai separatrix. Indeed, in comparison with the Lidov–Kozai resonance
size, the near-separatrix chaotic layer in the Lidov–Kozai diagram (Fig. 14.2) is very
narrow.

In more detail, chaotic implications of the Lidov–Kozai effect in exoplanetary
systems are considered in Chap. 15.

Fig. 14.2 The long-term Lidov–Kozai oscillations (dotted curves) in the motion of the planet
16 Cyg Bb. The integral curves and the Lidov–Kozai separatrix are superimposed (solid curves)
(Figure 3 from Holman et al. 1997, by permission from Springer Nature, © 1997)
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14.2 Circumbinary Systems

I send two Sunsets –

Emily Dickinson, Poem 308 (1862)

Amongst a couple of hundreds of exoplanets discovered up to now in systems
of multiple stars, about two dozens are circumbinary ones, that is, they orbit
around stellar binaries. Most (more than a half) of the circumbinary planets are
hosted by evolved stellar binaries, consisting of white and red dwarfs in very close
configurations. Conversely, the other half is formed by the circumbinary planets
belonging to main-sequence binaries, whose components are Sun-like dwarfs; the
first ever known such planets were discovered by the Kepler team in 2011–2012
(Doyle et al. 2011; Orosz et al. 2012a,b; Welsh et al. 2012).

14.2.1 Kepler’s Circumbinary Planets

The Neptune-like planet Kepler-16b is known to follow a circumbinary orbit around
a system of two main-sequence stars (Doyle et al. 2011; Welsh et al. 2012). The TTV
analysis allowed one to specify all orbital parameters of the planet with remarkable
accuracy, see Table 14.1.

The empirical numerical-experimental criterion (11.103) for the stability of
planetary circumbinary orbits identifies this system as stable, although not far (�10–
20% in the orbital radius) from the outer border of the circumbinary chaotic zone.
This estimate was confirmed in Doyle et al. (2011); Welsh et al. (2012) in long-term
numerical integrations of the Kepler-16b’s orbit.

Table 14.1 presents data on ten Kepler’s circumbinary planetary systems. The
data is compiled from Doyle et al. (2011), Welsh et al. (2012), Orosz et al. (2012b),
Orosz et al. (2012a), Schwamb et al. (2013), Kostov et al. (2013), Kostov et al.

Table 14.1 Kepler’s circumbinary planets

System m1, MSun m2, MSun mpl, MJ ab, AU eb apl, AU epl

Kepler-16 0.69 0.20 0.33 0.22 0.16 0.71 0.007

Kepler-34 1.05 1.02 0.22 0.23 0.52 1.09 0.18

Kepler-35 0.89 0.81 0.13 0.18 0.14 0.60 0.042

Kepler-38 0.95 0.25 0.38 0.15 0.10 0.46 <0.03

Kepler-47(b) 1.04 0.36 – 0.08 0.02 0.30 <0.04

Kepler-47(c) 1.04 0.36 – 0.08 0.02 0.99 –

Kepler-64 1.53 0.41 0.53 0.16 0.22 0.63 0.054

Kepler-413 0.82 0.54 0.21 0.10 0.04 0.36 0.12

Kepler-453 0.94 0.20 0.20 0.19 0.05 0.79 0.04

Kepler-1647 1.21 0.98 1.52 0.13 0.16 2.72 0.06
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(2014), Welsh (2015), and Kostov et al. (2016). The masses of the stars are given in
Solar units, and the masses of planets in Jovian units.

In Popova and Shevchenko (2013), stability charts for Kepler-16 in the “peri-
centric distance—eccentricity” plane were constructed, using a general approach
analogous to that described in Sect. 14.1.1 on the α Centauri system; i.e., the
planetary orbits were numerically integrated on a fine grid of initial values of the
orbital pericentric distance and eccentricity, while other orbital elements were fixed
at their values for a particular epoch. To assess the stability, two criteria were used.
The first one is the value of the maximum Lyapunov exponent, and the second one
is as follows: the orbit is stable if the planet does not escape (passing to hyperbolic
orbit) from the system, or does not encounter with any of the two host stars. The
resulting stability charts are shown in Fig. 14.3.

A direct inspection of Fig. 14.3b demonstrates that the Lyapunov exponent
criterion provides a more clear-cut picture of the chaotic domain borders, in
comparison with the escape-collision criterion, when equal time intervals of the
integrations are used. To identify chaotic orbits at high pericentric distances and
eccentricity, the escape-collision criterion can be used only if the time intervals of
integration are appropriately increased.

The actual position of the Kepler-16b planet is marked in Fig. 14.3 by a dot. The
planet turns out to reside almost at the edge of the chaos domain, in a hazardous
vicinity to it, just between the instability “teeth.” Linear extrapolation of these
“teeth” to the e = 0 axis reveals that they are conditioned by integer resonances
between the orbital periods of the planet and the central stellar binary. The two

Fig. 14.3 Stability charts for Kepler-16b. (a) Left panel: the Lyapunov exponent criterion is used.
(b) Right panel: both the Lyapunov exponent and escape-collision criteria are used. The initial
conditions resulting in regular orbits are left white, those resulting in chaos are shown in blue
colour, and those resulting in chaos and escapes and collisions are shown in green colour. The dot
marks the location of Kepler-16b (Figure 2 from Popova and Shevchenko 2013, by permission of
IOP Publishing/AAS)
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teeth that closely surround Kepler-16b correspond to the 5/1 and 6/1 resonances.
The smaller teeth centred between the “integer” teeth correspond to half-integer
resonances.

Although in a dangerous vicinity to the chaos zone around the central binary,
the Kepler-16b planet survives, because its orbit is deeply inside the cell between
the chaotic bands conditioned by the mentioned integer resonances with the central
binary (Popova and Shevchenko 2013). In fact, the planet is close to the half-integer
11/2 orbital resonance (which is stable at such large distance from the barycentre):
the resonant tooth almost pointing at Kepler-16b corresponds to this resonance.
However, there is no chaos where Kepler-16b resides, whereas the neighbouring
“integer” teeth extend down to the e = 0 axis.

The resonant argument for a circumbinary mean motion resonance is defined by
the formula

σ = (k + q)λpl − kλs − l�pl (14.1)

(Murray and Dermott 1999; Morbidelli 2002), where λs and λpl are the mean
longitudes of the secondary and the tertiary, respectively; �pl is the longitude of
pericentre of the tertiary; here k, q and l are integer numbers (q is the resonance
order). For the resonance, the ratio of orbital periods of a planet and the central
binary is equal to (k + q)/k. In Eq. (14.1), the longitude of pericentre of the
secondary is ignored, because it is practically constant.

Mean motion resonances split in multiplets of subresonances, corresponding to
the l integer sequence. The coefficients of the subresonant terms in the perturbing
function expansion are proportional to the orbital eccentricities of the particle and
perturber in some powers depending on q; in particular, the coefficients of the first
and last subresonant terms in the multiplet are proportional, respectively, to the
eccentricities of the perturber and particle in the power equal to q , see Sect. 13.2.2.
In the subresonance pendulum model, the subresonance width is proportional to
the square root of this coefficient (Chirikov 1979; Holman and Murray 1996).
Therefore, the resonance order q controls the subresonance width.

Consider two neighbouring outer integer resonances (q + 1)/1 and (q + 2)/1;
their orders are q and q+1, respectively. The half-integer resonance between them is
(2q+3)/2, and its order is 2q+1. We see that, in comparison with its neighbouring
integer resonances, a high-order half-integer resonance have the power-law indices
in the subresonant term coefficients much greater. Therefore, the strengths of the
subresonances are accordingly much less, and their interaction is much weaker. On
increasing e, the subresonances start to overlap much later than in the neighbouring
integer resonances. This explains why the 11/2 resonance at the diagram location of
Kepler-16b is stable, whereas the neighbouring 5/1 and 6/1 resonances are unstable.
Thus, the planet is safe inside the resonance cell bounded by the unstable 5/1 and
6/1 resonances.

In the Solar system, this phenomenon is analogous to the survival of Pluto and
Plutinos (Popova and Shevchenko 2013). They are in the 3/2 outer orbital resonance
with Neptune; therefore, the order of the occupied high-integer resonance is much
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smaller than in the Kepler-16 system. The mass parameter μ of the Sun–Neptune
binary is much less and, therefore, the chaos border in the stability diagram radically
shifts to smaller pericentric distances.

The resonant structure of the Kuiper belt was discussed above in Sect. 8.2.2.
One may see that the analogy with the case of resonant trans-Neptunian objects is
striking. According to Gladman et al. (2012), the population of TNOs in the next
half-integer resonance (5/2) with Neptune is estimated to be as large as in the 3/2
resonance, or even greater, whereas other (non-half-integer) resonant populations
are radically smaller.

14.2.2 Migration and Chaos as System Architects

It might seem from the dynamical chart in Fig. 14.3 that no radial migration was
possible for Kepler-16b since its formation epoch, because otherwise it would cross
several chaotic bands corresponding to integer resonances with the central binary,
and, therefore, it could be removed. On the other hand, any in situ formation of
Kepler-16b is a theoretical challenge (Meschiari 2012; Paardekooper et al. 2012).

However, the presence of zones of instability on the migration path does not
necessarily mean catastrophic consequences. From Sect. 7.1.1, one may recall
that the planetary satellites in the Solar system are known to be slowly tidally
despun, until they reach the 1/1 synchronous spin-orbit resonance. In the course
of despinning, the satellites cross a number of chaotic layers in the phase space of
motion (Wisdom 1987a); the broadest layer is at the separatrix of the synchronous
resonance. Nevertheless, all tidally-evolved satellites (with a possible exception
of no more than three of them, see Kouprianov and Shevchenko 2005; Melnikov
and Shevchenko 2010) at present reside in the final stable synchronous resonance,
as the Moon does. Clearly, most of the satellites were able to cross the chaotic
layers without being caught in chaos forever. The cause is that the timescales
for developing the gross instability are usually much longer in comparison with
the times needed for crossing the chaotic zones (Wisdom 1987a; Kouprianov and
Shevchenko 2005). In the given planetary migration case, the interplay of timescales
can be analogous (Popova and Shevchenko 2013).

The currently favoured scenario for the formation of circumbinary planets, within
the planet accretion framework, is as follows: the planetary core forms farther out in
the protoplanetary disc (in its accretion-friendly zone) and then migrates inward,
until the migration is stalled at the border of the disc’s inner cavity cleared by
the central stellar binary (Pierens and Nelson 2007; Meschiari 2012; Paardekooper
et al. 2012). The cavity is comparable in size to the circumbinary chaos zone.
Paardekooper et al. (2012) estimate the final locations of Kepler-16b, 34b and 35b
to be close to the truncation radii of the gas discs. Although the in situ formation
of Kepler-16b is still not ruled out (Meschiari 2012), it is less likely, owing to the
hostile conditions for planetesimal accretion in such close vicinities to the stellar
binary. The hostile conditions comprise, in particular, high encounter velocities of
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planetesimals and low planetesimal spatial density (Meschiari 2012; Paardekooper
et al. 2012).

An important role of orbital resonances in the formation scenarios was outlined
in Moriwaki and Nakagawa (2004) and Pierens and Nelson (2007, 2008). Moriwaki
and Nakagawa (2004) pointed out that the pumped eccentricities of planetesimals,
as a function of the semimajor axis, show “interesting behaviour such as somewhat
resonant features;” see Figure 1 in Moriwaki and Nakagawa (2004). Such reso-
nances with the central binary as the 5/1 resonance affect the formation and orbital
evolution of giant Saturn-mass planets embedded in a circumbinary disc, as data of
hydrodynamic simulations by Pierens and Nelson (2007, 2008) show.

At least two astrophysical processes are known to date that may lead to
matter being trapped in high-order outer resonances in circumbinary systems. In a
dynamical (e.g., any planetary) system, whose parameters are slowly (adiabatically)
varying, captures in resonances may occur; in particular, Plutinos are believed to
have been trapped in the 3/2 resonance with Neptune in the Kuiper belt due to the
outward migration of this planet. Generally, the outward migration of a planet may
lead to capture of outer particles in circumbinary mean motion resonances with the
inner star-planet binary; see Quillen (2006) and references therein. Another relevant
astrophysical process takes place in dusty debris discs around stars with planets:
when, due to dissipation forces, dust spirals inward, it can be efficiently captured in
resonances; see Deller and Maddison (2005); Quillen (2006) and references therein.

Deller and Maddison (2005) performed simulations of the debris disc evolution
in the Fomalhaut system with a hypothetical giant planet; notable examples of
matter trapping in high-order circumbinary resonances were demonstrated: see, for
example, Figure 14 in Deller and Maddison (2005), where integer (such as 4/1 and
5/1) and half-integer (5/2, 7/2, and 9/2) resonances dominate or are prominent in the
“semimajor axis—resonance occupation” plot.

Why there is only one sole resonance cell in the Kepler-16 system that is
occupied by a planet? At least for the cells neighbouring to the Kepler-16b
planet the answer is straightforward (Popova and Shevchenko 2013). Again, it
concerns resonances and their interaction, but the resonances are different from
those considered above: these are the first-order orbital resonances (p + 1)/p
of the test particles with the planet. Equation (11.5) gives the radial half-size of
the planetary chaotic zone emerging due to overlap of these resonances. Using
Eq. (11.5) and data on apl and masses from Doyle et al. (2011), and setting the total
stellar mass Ms = M1 +M2, one finds μpl = 3.56 · 10−4 and �acr ≈ 0.095 AU
for the Kepler-16b’s planetary chaotic zone. Therefore, at least two neighbouring
resonance cells, namely those centred at the 9/2 and 13/2 circumbinary resonances,
are purged by Kepler-16b, residing in the 11/2 resonance cell, because these two
resonances are within the �a ≈ 0.1 AU radial distance; see Fig. 14.3.

Dynamical properties of circumbinary planets in the Kepler-34 and 35 sys-
tems are qualitatively similar to those of the Kepler-16 system; see Popova and
Shevchenko (2013). The multiplanet circumbinary system Kepler-47 has at least
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two planets, with the planet c moving in a much larger orbit than the planet b. The
ratios of the orbital periods of the innermost planet and the binary star, as follows
from data given in Orosz et al. (2012a,b), are equal to 5.62 and 6.65 in the systems
Kepler-38 and Kepler-47, respectively. Therefore, the over-all planetary dynamical
configurations and states (including planets not yet discovered) in these systems
might be similar to those in the Kepler-16 and Kepler-35 systems, where the period
ratios are 5.57 and 6.34, respectively.

14.2.3 Chaotic Zones

Zones of orbital instability are known to exist around binary stars. In particular,
such zones are known to be present in circumbinary protoplanetary discs. The
latter may contain planetesimals, dust, and gas. Gas is present during the initial
stages of the disc evolution; it dissipates later on. Numerical simulations show that,
irrespective of the gas content, a free-from-matter central cavity always forms in
the planetesimal disc around a gravitationally bound pair of stars, whose masses are
comparable; see Moriwaki and Nakagawa (2004), Pierens and Nelson (2007, 2008),
Meschiari (2012), and Paardekooper et al. (2012).

The existence and possible characteristics of central cavities in gaseous circumbi-
nary discs were first ever considered theoretically in Artymowicz and Lubow (1994,
1996), in view of the observational data on the discs around stars of GW Ori type.
Artymowicz and Lubow outlined the role of Lindblad resonances in the cavity
formation.

In a quite separate field of study, namely, on the dynamics of triple stars, it is
well known that the stability of hierarchical triple stars is mostly determined by
the pericentric distance of the tertiary (Mikkola 2008; Valtonen et al. 2008; Saito
et al. 2012, 2013): if this distance can decrease below a critical value, the system
is unstable. A number of heuristic semi-analytical criteria for the critical pericentric
distance were proposed; see reviews by Mikkola (2008) and Valtonen et al. (2008).
Most of these criteria do not appeal to resonant phenomena, with a few exceptions.

Mudryk and Wu (2006) explored local chaos borders in the phase space of motion
of planets in binary star systems, and revealed the overlap of subresonances of
mean motion resonances, responsible for the borders’ emergence. In the general
three-body problem framework, Mardling (2008a) considered the role of overlap of
mean motion resonances for the stability of triples and developed an algorithm for
constructing the chaos composite border as an envelope of a set of local resonance
borders. For hierarchical triples, Mardling (2008a) revealed the major role (for the
border formation) of the overlap of orbital resonances p/1 (where p is integer)
between the tertiary and the central binary.

If the masses of the gravitating binary components are not comparable, i.e., one
of them is much less than the other one, then a narrow annular chaotic band exists,
surrounding the orbit of the secondary, with the radial width ∝ μ2/7, see Eq. (11.5).
Extrapolating the validity range of formula (11.5) from small values of the mass
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parameter μ to μ = 1/2 (the equal-mass case), one finds �acr/a
′ ∼ 1.3, i.e.,

the zone inside the binary is expected to be totally continuously chaotic, and the
outer border of this continuous chaotic zone is expected to be situated at ∼(0.5 +
1.3)a′ ≈ 1.8a′ from the barycentre. Further on we shall see that the actual size of the
chaos zone is severely underestimated here; in reality, it is ≈2.8a′. The cause for the
discrepancy is not just a numerical uncertainty of the extrapolation. It is conceptual:
the class of resonances responsible for the formation of the circumbinary chaotic
zone is different from that responsible for the formation of the annular chaotic band.
To show this, we use the Kepler map theory (Shevchenko 2015).

As discussed above in connection with Eq. (11.92), the energy width of a one-
sided chaotic band in the vicinity of the perturbed parabolic orbit scales as the power
2/5 of the mass parameter:

�Ecr = |Ecr| = −Ecr ∝ μ2/5, (14.2)

if μ � 1. The particles with E ∈ (−�Ecr, 0) move chaotically.
It is curious that the power-law index in the scaling RH ∝ μ1/3 for the radius

of the regular zone (the Hill sphere, see Sect. 11.1.6) around the secondary is
intermediate between the indices in the Wisdom and “Kepler-map” scalings, given
by Eqs. (11.5) and (11.92), respectively. Thus, the indices form the “2/5, 2/6, 2/7”
sequence.

We linearize the Kepler map (8.35) in the y variable near the fixed point at
the border of the map’s chaotic layer. In this way, the Kepler map is locally
approximated by the standard map, which represents a mathematical model of a
multiplet of equally-spaced equally-sized resonances, see Sect. 3.4. Then, for the
layer’s border location, one finds

ycr =
(

3λ

2KG

)2/5

, (14.3)

where KG = 0.971635406 . . . , see Sect. 1.5. Using Eqs. (11.87) and (11.89) for
the map parameters W and λ, one arrives at Eqs. (11.93) and (11.94) (Shevchenko
2007a).

What if μ ≈ 1/2, i.e., the binary is approximately equal-mass? This is quite
common in stellar binaries. According to (Roy and Haddow 2003, formula (26)),
the energy increment in the μ = 1/2 case in the restricted three-body problem limit
is given by

δE � −27/4π1/2q3/4 exp

(
−25/2q3/2

3

)
sin 2gi. (14.4)

The possibility to use the Kepler map at moderate and high values of μ (i.e., at
μ ∼ 1/2) was discussed in Shevchenko (2010). Note that, in Eq. (11.88), the
harmonic term in the first line (∝ sin gi) is just the first most prominent one in the
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Fourier expansion of the energy increment, if μ � 1 (Petrosky 1986; Shevchenko
2011b). If one increases μ, the second harmonic (∝ sin 2gi) becomes more and
more important. If μ = 1/2, the first harmonic (∝ sin gi ) disappears, whereas
the second one (∝ sin 2gi) becomes the largest one, in amplitude, in the series
expansion. Indeed, due to the equality of the primaries’ masses, the perturbation
frequency is effectively doubled. Thus, the Kepler map, formally, takes the form

Ei+1 = Ei +W1/2 sin 2gi,

gi+1 = gi + 2π |2Ei+1|−3/2 (14.5)

(Shevchenko 2015), where W1/2 = δE, given by formula (14.4). By substituting
E = W1/2y and g = x/2, map (14.5) is reducible to map (8.35) with

λ = 21/2πW
−3/2
1/2 . (14.6)

The critical ycr is given by Eq. (14.3). Therefore, in the given μ = 1/2 case one has

�Ecr = ∣∣W1/2ycr
∣∣ � A1/2q

3/10 exp
(
−B1/2q

3/2
)
, (14.7)

where

A1/2 = 21/232/5π3/5K
−2/5
G = 4.4122 . . . , B1/2 = 27/2/15 = 0.7542 . . .

and KG = 0.971635406 . . ., see Sect. 1.5. The critical eccentricity ecr is given by
formula (11.94).

Naturally, the critical curve given by Eq. (14.7) is different from the limiting
curve that results from extrapolating Eq. (11.93) from small μ values to μ → 1/2,
although they are rather similar. This difference is due to the fact that the actual
energy increment, in the both cases, is not given by a single harmonic term, but
represents a Fourier series of harmonic terms (Petrosky 1986; Liu and Sun 1994),
while we took only the leading terms of these series. These are the terms ∝ sin gi
(in case of μ � 1) and ∝ sin 2gi (in case of μ ≈ 1/2). Other harmonic terms can
be no less important, when q is close to unity (Liu and Sun 1994); leaving apart the
case of crossing orbits.

In Fig. 14.4, theoretical “pericentric distance q—critical eccentricity ecr” rela-
tionships are graphically presented for several values of the mass parameter μ. The
just derived formulas for the critical curves are used. In these plots, any theoretical
curve with a fixed μ separates the chaos domain (situated to the left of the curve)
from the regular domain (situated to the right of the curve), at the given μ value.

Extrapolating the critical curves to the e = 0 axis, one may see that, if μ = 0.1,
the curve hits the horizontal axis at q = 2.3, and, from Kepler’s third law, this
corresponds to the ratio ≈3.5 between the orbital periods of the tertiary and the
central binary. Another relevant value, q = 2.8, where the critical curve with
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Fig. 14.4 Critical curves,
given by Eq. (11.94), for
several values of the mass
parameter μ. The curves
separate the chaotic and
regular zones; the chaotic
zone is on the left.
Extrapolations are dashed.
The pericentric distance is
measured in the units of the
central binary’s semimajor
axis, abbreviated as “b. s. a.”
at the horizontal axis caption
(Figure 1 from Shevchenko
2015, by permission of IOP
Publishing/AAS)

μ = 0.5 hits the horizontal axis, corresponds to the ratio ≈4.7. Therefore, the
extrapolation of the critical curve to the e = 0 axis gives q values that are rather
insensitive to μ, if the latter’s value is in the range 0.1–0.5, typical for stellar
binaries. We see that if μ is in this range, then the border of the circumbinary chaotic
zone corresponds to the circumbinary resonances from 7/2 to 5/1 with the central
binary. In units of the central binary’s semimajor axis, the chaotic zone radial size is
≈3 at moderate eccentricities, and ≈2.3–2.8 at zero eccentricities of the tertiaries;
see Fig. 14.4.

To emphasize the extrapolative character of the critical curves at low eccentric-
ities, in Fig. 14.4 they are dashed, if e < 0.5. The validity of the extrapolation
is justified here post factum: the curves corresponding to μ ∼ 0.1–0.5 hit the
e = 0 axis at high enough values of q , at which the higher-order harmonics in
the Fourier expansion of the energy increment are relatively unimportant, because
these harmonics are exponentially small with the harmonic order j , as they are
proportional to exp[−4jq3/2/(21/23)] (Petrosky 1986; Petrosky and Broucke 1988).

At e = 0, the estimates for the chaotic zone size can be compared to that
given by the numerical-experimental criterion of Holman and Wiegert (1999); see
formula (11.103). Since formula (11.103) was proposed in Holman and Wiegert
(1999) for the mass parameter interval μ ≥ 0.1, the comparisons can be made
also solely at μ ≥ 0.1. Setting eb = 0 in Eq. (11.103), at μ = 0.1 and 0.5 one
obtains acr/ab = 2.0 and 2.4, respectively, whereas Fig. 14.4 gives acr/ab = 2.3
and 2.8. Taking into account the “ragged” character of the global chaos border (see,
for example, Fig. 14.3), one may state that the agreement is quite plausible.

The critical borders at e = 0 can be also compared to semi-analytical data
of Szebehely (1980) and Szebehely and McKenzie (1981), who employed com-
putations of the topology of the zero-velocity curves in the circular restricted
three-body problem. At μ = 0.1, 0.24, and 0.5, Szebehely (1980) and Szebehely
and McKenzie (1981) obtained acr/ab ≈ 2.24, 2.4, and 2.17, whereas, from the
presented above theoretical formulas, one has acr/ab ≈ 2.29, 2.91, and 2.79,
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respectively. At μ = 0.1 the agreement is perfect, and it is even better than that
with the data of Holman and Wiegert (1999). A comparison of the data of Szebehely
and McKenzie (1981) with formula (11.103) is discussed in Holman and Wiegert
(1999).

On increasing μ, the critical curves in Fig. 14.4 start to hit the e = 0 axis when
μ ≈ 0.0547 ∼ 0.05. This μ value thus represents the threshold at which the central
continuous chaotic zone starts to be present at all eccentricities of the tertiary.

This μ threshold has a clear-cut dynamical sense: above it, the tertiary’s orbit,
even starting from a small eccentricity, can diffuse, following the staircase of the
overlapping p/1 resonances with the central binary, up to e ∼ 1, i.e., up to ejection
from the system; close encounters with other bodies are not required for the escape.

Let us see how Holman–Wiegert’s and Wisdom’s μ dependences, Eqs. (11.103)
and (11.5), can be related. If one extrapolates the polynomial fit (11.103) to zero μ,
in the circular problem (eb = 0), then one gets acr/ab = 1.6, whereas in reality
in this limit there is no circumbinary chaotic zone at all, and, as follows from
Eq. (11.5), the width of the planetary chaotic band is zero. Therefore, the transition
between Holman–Wiegert’s and Wisdom’s dependences takes place somewhere in
the interval 0.001 � μ � 0.1. Indeed, Wisdom’s law was verified in numerical
experiments at least up to μ = 0.001 (Murray and Dermott 1999; Quillen and Faber
2006); and Holman and Wiegert (1999) obtained fit (11.103) at μ ≥ 0.1.

The junction of the two relationships is illustrated in Fig. 14.5, where the
“mass parameter–critical semimajor axis” analytical relationships are presented

Fig. 14.5 The “mass parameter—critical semimajor axis” analytical relationships. Curve “W”:
Wisdom’s law, given by Eq. (11.5). Curves “HW”: Holman–Wiegert’s empirical relation, given
by Eq. (11.103), at two values of the central binary eccentricity. Extrapolations are dashed.
The vertical dashed (magenta) line shows the theoretical threshold μ = 0.05 (Figure 2 from
Shevchenko 2015, by permission of IOP Publishing/AAS)
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graphically. Wisdom’s law is valid, as originally derived, at eb = 0; Holman–
Wiegert’s curve, drawn for eb = 0, joins Wisdom’s curve at μ ≈ 0.05 rather
smoothly.

As pointed out in Quillen and Faber (2006), at μ ≤ 0.001 and eb < 0.3 the
chaotic zone size is virtually independent of eb and is described by Wisdom’s law.
Therefore, it is adequate to compare how Wisdom’s and Holman–Wiegert’s relations
join, if eb = 0.3. From Fig. 14.5, it is evident that a jump or a sharp rise should be
definitely present in the “uncertainty interval” around μ ≈ 0.05, i.e., the chaotic
zone size rises sharply somewhere in the interval. Therefore, in the eccentric case,
the transition from the chaos originating due to the overlap of (p+ 1)/p resonances
to the chaos originating due to the overlap of p/1 resonances results not only in the
change of the diffusion character, but also in the sharp change of the chaotic zone
size.

Tantalizingly, the μ ≈ 0.05 threshold roughly corresponds to the μ value at
which the loss of stability of the triangular Lagrangian points L4 and L5 takes place;
the latter value is ≈0.04, see Szebehely (1967). Dynamically, this coincidence looks
natural, because the transition to global chaos, originating due to the overlap of p/1
resonances, leaves no place for regular islands in the motion phase space around the
triangular libration points.

The μ threshold existence seems to explain an old numerical-experimental
result by Nacozy (1976) that the Sun–Jupiter–Saturn system becomes unstable if
μ is increased ≈29 times, i.e., up to ∼0.03. This is rather close to 0.05, taking
into account that the problem differs from the restricted one. Kholshevnikov and
Kuznetsov (2011) obtained an even smaller numerical-experimental threshold μ
value for the system gross instability upsurge, namely, μ ∼ 0.02.

Further on, in Sect. 14.2.5, the theoretical prediction for the μ threshold is
compared directly with relevant observational data on exoplanetary systems.

14.2.4 Structure of Chaos Border

Analytical approaches, proposed by Mudryk and Wu (2006), Mardling (2008a),
Mardling (2008b) in the three-body problem framework, allows one to describe
borders of chaotic domains in dynamical charts of various kinds by considering
separatrices of individual mean-motion resonances, whose overlap forms the chaos
global border.

Within the framework of the hierarchical three-body problem in the circumbinary
case, Mardling (2008a,b) analytically represented the chaos global border as a
combination of the borders (separatrices) of separate integer mean motion resonance
cells. The circumbinary resonances form the sequence nb/npl = 1, 2, 3, . . .,
where nb are npl are the mean motions of the inner stellar binary and the planet,
respectively.
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According to Mardling (2008a,b), the function describing the separatrices of any
resonance with nb/npl � 3 from this sequence is given by

σ(eout) = k ± 2|Ak(eout)|1/2, (14.8)

in units of the ratio of the mean motions of the central binary and the tertiary, k � 3
are integers, and

Ak(eout) = −9

2
S(ein)Fk(eout)

(
Min +Moutk

2/3
)
, (14.9)

S(ein) ≈ −3ein + 13

8
e3

in + 5

192
e5

in − 227

3072
e7

in, (14.10)

Fk(eout) = 4

3(2π)1/2
· (1 − e2

out)
3/4k3/2

e2
out exp [kξ(eout)]

, (14.11)

Min = m3

m1 +m2 +m3
, (14.12)

Mout = m1m2

(m1 +m2)2

(
m1 +m2

m1 +m2 +m3
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, (14.13)

ξ(eout) = cosh−1
(
e−1

out

)
−
(

1 − e2
out

)1/2
, (14.14)

where m1 ≥ m2 are the masses of the binary’s components, m3 � m2 is the mass
of the planet, ein and eout are the eccentricities of the central binary’s orbit and the
planet’s orbit, respectively.

Series of analytical separatrices σ(eout) are presented, as black thin curves, in
Figs. 14.6 and 14.7 for the Kepler-16 and Kepler-47 systems. The nominal positions
of integer mean motion resonances are shown by ref dashed lines. One may see
that the theoretical borders, formed by the separatrices in total, are in an adequate
agreement with numerical-experimental data also presented in the diagrams.

Note that the separatrices of any individual mean motion resonance are actually
split due to interaction with neighbouring mean motion resonances, that is why the
theoretical unperturbed separatrices describe the local chaotic borders in the stability
charts.

The thick green solid curve describes the location of the averaged chaos border,
as predicted by the Kepler map theory, Eq. (11.94). The thick black dotted curve
is described by the same Equation, but for the border defined at the approximating
standard map stochasticity parameter K = 4 instead of K = KG. The latter curve,
therefore, gives the border to the left of which any large regular islands are predicted
to be absent, because the approximating standard map lacks any significant regular



14.2 Circumbinary Systems 321

Fig. 14.6 The stability chart for Kepler-16. Blue shaded area: the chaos domain, as identified
numerically in Popova and Shevchenko (2016b). Red dot: actual position of the planet. Black
triangle: the critical semimajor axis, given by formula (11.103). For an explanation of the
theoretical (green solid and black dotted) curves see the text (Figure 2 from Popova and
Shevchenko 2016b. With permission from Pleiades Publishing Inc.)

component at K > 4, as the integer resonances bifurcate at this value of the
stochasticity parameter.

Why the chaotic resonant bands in the stability charts for Kepler-16 (Fig. 14.6)
look prominent, whereas for Kepler-47 (Fig. 14.7) the chaos border is not so
ragged? The chaos inside the resonant bands is caused by interaction and overlap of
subresonances of mean motion resonances, see Eqs. (13.14) and (13.17). However,
as follows from these Equations, the splitting into subresonances occurs only
when the central binary in non-circular. Indeed, only one term in the subresonance
multiplet has a non-zero coefficient if eb = 0. Therefore, any pronounced chaotic
resonant bands in the stability diagrams are expected only if the central binary is
eccentric.

For circular binaries, the separatrices of any individual mean motion resonance
are split due to interaction with neighbouring mean motion resonances, and, in the
stability diagrams, they look chaotic mostly at locations not far from the global
chaos averaged border.

These qualitative considerations agree well with numerical data; indeed, for the
systems with close-to-circular host stellar binaries, such as, e.g., Kepler-47 with
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Fig. 14.7 Same as Fig. 14.6, but for Kepler-47 (Figure 4 from Popova and Shevchenko 2016b.
With permission from Pleiades Publishing Inc.)

eb = 0.02 or Kepler-413 with eb = 0.04 (see Table 14.1), the “raggedness” of the
global chaos border in the stability charts is significantly suppressed; see Figs. 14.7
and 12.6.

14.2.5 The Mass Parameter Threshold

The mass parameter threshold μ ≈ 0.05, introduced above in Sect. 14.2.3,
essentially manifests itself in the diversity of the observed orbital configurations
of exoplanet systems. To demonstrate this, let us consider an empirical relationship
between the mass parameter μ of the primary binary and the ratio of the tertiary’s
and secondary’s orbital periods, Tout/Tin (Shevchenko 2015).

Two classes of exoplanet systems are directly relevant: two-planet (a single star
with two planets) and circumbinary (a binary star plus a planet in an orbit around it).
In the first case, it is required that the planet in the outermost orbit have the smallest
mass in the system.



14.2 Circumbinary Systems 323

Fig. 14.8 The “mass parameter—orbital period ratio” relationship for two-planet systems of
single stars and one-planet circumbinary systems. Dots: observational data from Exoplanet
Encyclopedia (exoplanet.eu). The vertical dashed (magenta) line marks the theoretical threshold
μ = 0.05. The vertical dotted (cyan) line corresponds to μ = 0.02, see the text (Figure 4 from
Shevchenko 2015, by permission of IOP Publishing/AAS)

The resulting diagram is shown in Fig. 14.8. The actually observed two-planet
configurations all turn out to reside to the left of two theoretical (vertical dashed
and vertical dotted) lines, whereas the circumbinary systems are all situated to the
right of them. The vertical dashed (magenta) line indicates the theoretical threshold
μ = 0.05 for the emergence of the circumbinary chaotic zone. The dotted (cyan) line
at μ = 0.02 marks the numerical-experimental threshold that signals the upsurge of
instability of the Sun–Jupiter–Saturn system on raising the system mass parameter,
as estimated in Nacozy (1976) and Kholshevnikov and Kuznetsov (2011).

In Fig. 14.8, the total absence of exoplanet systems with Tout/Tin < 5 at μ >
0.05 is evident, in agreement with the theoretical prediction that, at μ > 0.05, there
exists the circumbinary continuous chaotic zone, in which all particles are eventually
ejected from the system.

Two comments are in order (Shevchenko 2015). First, a certain gap in μ exists
between the two classes of exoplanet systems comprising the sample. Indeed, in
case of multiplanet systems of single stars, the mass ratio of a “Solar–Jovian” star–
planet binary is ∼0.001; and, in case of planetary systems of binary stars, the mass
parameter μ of the typical main-sequence binary is ∼1/2. The gap can be filled in
the future, when more relevant exoplanet systems are identified, such as systems in
which the central star–planet pair is composed of a brown dwarf and a Jovian-type
planet, or such as systems in which the host stellar binaries are composed of a main-
sequence star and a brown dwarf. A prototype of the latter system is the HD 202206
system (with μ ≈ 0.014), in which the star-orbiting inner planet has mass ≈17.4
in Jovian units; thus, it is most likely not a planet but a brown dwarf (Correia et al.
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2005). In Fig. 14.8, the dot marking this system is the closest one to the vertical cyan
line corresponding to μ = 0.02.

Second, as follows from Fig. 14.8, many exoplanet systems with μ < 0.01 are
clustered close to the 2/1 orbital resonance; whereas the systems with μ > 0.1 do
not seem to prefer any integer resonance, but rather half-integer ones. This in accord
with an observation that the known circumbinary planets survive, although they are
at the brink of circumbinary chaos, because they are safe inside resonance cells
whose borders are formed by unstable integer resonances; see Sect. 14.2.1.



Chapter 15
The Lidov–Kozai Effect: Chaotic
Implications

Une telle orbite sera sous certaines conditions
bouleversée par la planète perturbatrice.

Hugo von Zeipel (1910)

(Astron. Nachr., Bd. 183, Nr. 4390–92, 22.)

In this chapter, we consider the potential role of the Lidov–Kozai effect in evoking
dynamical chaos in multiplanet systems and planetary systems of binary stars. The
Lidov–Kozai effect reveals itself in coupled periodic variations (which can be very
large) of the inclination and eccentricity of an orbiting body in presence of an
inclined perturber. The effect is known to be important in the motion of many
asteroids and planetary satellites. What is more, now it attracts more and more
interest in the astronomical and astrophysical community due to its relevance to
dynamics of many exoplanetary systems. The presentation in this chapter is partially
based on the material of Section 8.6 in Shevchenko (2017a), by permission from
Springer Nature, © 2017. The effect itself and its modern applications are described
in detail in Shevchenko (2017a).

Highly-eccentric circumstellar orbits are observed in planetary systems of some
stellar binaries, in particular, in the 16 Cygni and γ Cephei systems; this can be
explained in the Lidov–Kozai effect framework (Holman et al. 1997; Innanen et al.
1997; Mazeh et al. 1997; Takeda and Rasio 2005; Haghighipour et al. 2010). The
Lidov–Kozai effect can be active in planetary systems of binary stars, as well as
in multiplanet systems of single stars, or acted in previous epochs of their long-
term dynamical evolution, imprinting modern orbital configurations. Free-floating
planets can be produced partly due to the Lidov–Kozai effect, because the effect is
able to push planets to extreme apocentric distances, thus providing conditions for
the planetary escape.

The Lidov–Kozai effect may have profound importance for theories of planet
formation. In young binary stars that contain planetesimal discs around one of the
stellar companions, the effect may excite orbital eccentricities of the planetesimals.
Therefore, if the perturber’s orbit is inclined enough with respect to the disc, the
planet formation can be hindered (Marzari and Barbieri 2007; Fragner et al. 2011).
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The discovery of a qualitative multitude of orbital behaviours in exoplanetary
systems boosted celestial-mechanical studies of their secular dynamics (see Lee
and Peale (2003), Greenberg and Van Laerhoven (2012) and references therein),
based on earlier theoretical works on secular dynamics of triple stars (Marchal 1990;
Ford et al. 2000). As an essential constituent of the dynamical exoplanetary studies,
the Lidov–Kozai effect theory was extended and refined (Libert and Henrard 2007;
Lithwick and Naoz 2011).

As we have already seen in Sect. 14.1.4 on the example of the 16 Cyg system,
the Lidov–Kozai effect may cause dynamical chaos, if the planetary orbit is close
enough to the separatrix of the Lidov–Kozai resonance. In this chapter, we consider
the dynamical chaos due to the Lidov–Kozai effect in a general framework.

15.1 Multiplanet Systems

Already in the nineties, Innanen et al. (1997) showed that, in the presence of a distant
stellar companion, the Lidov–Kozai oscillations of the eccentricity and inclination
in exoplanetary systems may evoke planet-planet scattering. A planet orbiting one
of the binary star components may attain, during the Lidov–Kozai oscillations, an
eccentricity high enough for its encounters with other planets to become possible.
If so, the planetary system of the component is eventually disrupted. In clusters
of young stars, newly-born planets can be thus torn away from their host stars
(Malmberg et al. 2007), to enrich the population of the free-floating planets. The
same mechanism may work in multiplanet systems of single stars.

The Lidov–Kozai effect manifestations in systems of quadruple stars and triple
stars with a planet can be even more pronounced (Beust and Dutrey 2006; Marzari
and Barbieri 2007).

The Lidov–Kozai effect can be active in configuring binary planets in exoplane-
tary systems. Indeed, there exists an analogy with binary asteroids and binary TNOs
in our Solar system. For the binary minor bodies, Perets and Naoz (2009) and Fang
and Margot (2012) showed that the Lidov–Kozai effect may control the long-term
inner dynamical evolution of such objects, as they are perturbed by the distant Sun.

Such binary systems as the binary asteroids and TNOs secularly evolve due
to encounters with other bodies, mutual tides, and the Sun-induced Lidov–Kozai
effect; this evolution has resulted in the observed almost isotropic distribution of the
inclinations of the binary systems’ planes with respect to the planes of their orbits
around the Sun; the inclinations are therefore typically high (Naoz et al. 2010).
For close enough binaries, the Lidov–Kozai effect in concert with the tidal friction
may produce circularized short-period binaries and may force the components in
the binaries to coalescence (Perets and Naoz 2009). These inferences on the binary
minor bodies, after rescaling, might be applicable to assess statistics of orbital
properties of binary planets in exoplanet systems.

If the system is in the Lidov–Kozai resonance, the secular variations in the
eccentricity e and inclination i are coupled: they are in antiphase, if i < π/2,
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and in phase, if i > π/2 (see Shevchenko 2017a). If the initial inclination i0 (of
the inner binary with respect to the outer perturber’s orbital plane) is greater than a
critical value, then the maximum eccentricity achieved by the inner binary during
the Lidov–Kozai cycle is insensitive to e0 (if e0 � 0.1) and is given by

emax ≈
(

1 − 5

3
cos2 i0

)1/2

(15.1)

(Holman et al. 1997; Innanen et al. 1997). At the centre of the Lidov–Kozai
resonance, the period of oscillations in the eccentricity and inclination is

PLK ≈ P1
(m0 +m1)

m2

(
a2

a1

)3

(1 − e2
2)

3/2 (15.2)

(Mazeh and Shaham 1979; Holman et al. 1997), where P1, m0, m1, and a1 are,
respectively, the orbital period, masses and semimajor axis of the inner binary;
P2, m2, and e2 are, respectively, the orbital period, mass, and eccentricity of the
outer perturber.

If the amplitude of ω-libration (libration of the argument of pericentre) is not too
large, i.e., the system is not too close to the separatrix of the Lidov–Kozai resonance,
then the libration period can be estimated by the same formula (15.2). In a slightly
different version derived by Kiseleva et al. (1998), the formula reads

PLK ≈ 2

3π

P 2
pert

P1

(m0 +m1 +mpert)

mpert
(1 − e2

pert)
3/2. (15.3)

If the Lidov–Kozai effect generic conditions are satisfied, then the number of the
Lidov–Kozai oscillations in any typical exoplanetary system may exceed hundreds
or even thousands, while the parent star stays on the main sequence (Kiseleva et al.
1998; Ford et al. 2000). For the Solar-like stars, the latter timescale is ∼10 Gyr.

15.2 Planetary Systems of Binary Stars

As follows from formula (15.3), the Lidov–Kozai oscillation period sharply rises
with increasing the relative size of the outer perturber orbit. Therefore, the Lidov–
Kozai effect in wide stellar binaries is much less significant than in close binaries.
However, even in the wide binaries, the Lidov–Kozai oscillation timescale can be
sufficiently small to make the planetary orbit highly eccentric in realistic times.

The presence of the Lidov–Kozai oscillations in a number of planetary systems
of binary stars is confirmed by observational data statistics, which show that planets
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with extreme orbital eccentricities mostly orbit around stars with distant stellar
companions (Naoz et al. 2011).

In exoplanetary studies, the Lidov–Kozai effect was first invoked to explain a
highly-eccentric orbit of an exoplanet in the 16 Cyg B system, as already discussed
above in Sect. 14.1.4.

The 16 Cyg A–B system is a binary consisting of two Solar-like (G1.5V and
G2.5V) stars, separated from each other by ∼ 103 AU. The 16 Cyg A has a
minor stellar companion, an M-dwarf 16 Cyg C, whose orbit around 16 Cyg A has
radius ≈73 AU. Radial-velocity measurements showed that the binary component
16 Cyg B has a Jovian-mass planet, now designated 16 Cyg Bb (Cochran et al.
1997). According to Plávalová and Solovaya (2013), the planet’s mass, semimajor
axis, orbital period, and eccentricity are 2.38 MJ, 1.693 AU, 799.5 d, and 0.689,
respectively. Such a large eccentricity, e ≈ 0.7, looks rather unexpected for a giant
planet, judging from the behaviour of giant planets in our Solar system; besides,
the planets are believed to form in protoplanetary discs in which the planetesimal
motions are circularized.

The planet’s orbit around 16 Cyg B is subject to perturbations from 16 Cyg A,
the distant companion of the host star. Holman et al. (1997) and Mazeh et al.
(1997) put forward a hypothesis that the planet’s large eccentricity is excited by an
inclined outer stellar perturber, by the Lidov–Kozai mechanism. In this system, the
perturber is 16 Cyg A. However, as pointed out by Holman et al. (1997), the general
relativity may suppress the Lidov–Kozai effect. For the suppression to happen, the
inequality a2q2 � 3·105 must hold, where the stellar binary’s semimajor axis a2 and
pericentric distance q2 are measured in AU. This inequality is derived by combining
analytical expressions for the Lidov–Kozai and relativistic timescales; see Holman
et al. (1997).

Holman et al. (1997) showed that, given a small initial eccentricity and the
initial inclination in the range 45–135◦, the planet may suffer secular eccentricity
variations up to 0.8, being in the high-eccentricity (e > 0.6) state up to 35%
of its lifetime. The amplitudes of changes in the eccentricity and inclination are
independent of the stellar binary’s a2 and q2; these two quantities only affect
the Lidov–Kozai oscillation timescale. On the other hand, the relativistic apsidal
precession of 16 Cyg Bb may have the period as low as 70 mln years.

In Fig. 14.2, the contour plot is shown as built by Holman et al. (1997) to describe
the secular dynamics of 16 Cyg Bb. This is a vivid example, though a strictly model
one, demonstrating the pronounced Lidov–Kozai resonant pattern in the (ω, x)
plane. Here ω is the argument of pericentre, x = 1 − e2, e is eccentricity; the
motion constant

c1 = (1 − e2) cos2 i,

where i is inclination, is set to 0.25.
In the diagram, results of a direct numerical integration of the non-averaged

equations of motion are superimposed on the contour plot. The initial conditions for
the integration are chosen to be near the separatrix of the Lidov–Kozai resonance;
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therefore, the model motion is chaotic and the resulting curve on the graph is
irregular.

15.3 Chaos Due to the Lidov–Kozai Effect

The double-averaged Hamiltonian of the elliptic restricted three-body problem can
be written explicitly in terms of canonical variables. Namely, the expansion of the
Hamiltonian in a power series of a1/apert up to the second (quadrupole) and third
(octupole) orders is given by

H = Hquad + εoctHoct, (15.4)

where

Hquad = 1

2
(1 − J 2)− J 2

z

J 2 − 3(1 − J 2)J 2
z

2J 2 − 5

2

(1 − J 2)J 2

(J 2 − J 2
z )

cos 2ω, (15.5)

Hoct=− 5
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z
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(
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J
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z

J 3
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)

+
(
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J
− J 2
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J 2 − J 3
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J 3

)
cos(3ω +
)

]
(15.6)

(Li et al. 2014b; see also Lithwick and Naoz 2011, and Li et al. 2014a). Here (J, ω)
and (Jz, 
) are pairs of canonically conjugated variables, and

J = (1 − e2
1)

1/2

is the unitless (scaled) angular momentum of the inner orbit,

Jz = (1 − e2
1)

1/2 cos i1
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is the vertical component of the angular momentum; e1 and i1 are the eccentricity
and inclination of the inner orbit; ω and 
 are the argument of pericentre and the
longitude of ascending node of the inner orbit, respectively; εoct, by definition, is

εoct = a1

apert
· epert

(1 − e2
pert)

. (15.7)

In the general three-body problem, the role of the octupole terms can be estimated
by the value of the parameter

ε
gen
oct = (m0 −m1)

(m0 +m1)
· a1

apert
· epert

(1 − e2
pert)

, (15.8)

wherem0 > m1 are the masses of the star and its planet, a1 is the semimajor axis of
the planet’s orbit, apert and epert are the semimajor axis and eccentricity of the outer
perturber’s orbit (Shappee and Thompson 2013).

The time variable in the equations of motion can be made unitless by scaling
(dividing) it by the constant

tLK = 8

3
· m0

mpert

(
apert

a1

)3

· (1 − e2
pert)

3/2, (15.9)

where m0 and mpert are the masses of the host star and the outer perturber,
respectively. The Hamiltonian (15.6) is scaled accordingly.

Numerically built sections of the phase space of the Hamiltonian (15.4) at
several representative values of H and εoct are given in Li et al. (2014b). They are
reproduced here in Figs. 15.1 and 15.2. The chaotic layers around the separatrices of

Fig. 15.1 The (ω, J ) phase space sections, at εoct = 0.001 (upper panels) and εoct = 0.1 (lower
panels) (Figure 3 from Li et al. 2014b, by permission of IOP Publishing/AAS)
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Fig. 15.2 The (
, Jz) phase space sections, at the same values of εoct as in Fig. 15.1 (Figure 4
from Li et al. 2014b, by permission of IOP Publishing/AAS)

resonances are clearly identifiable in the both Figs. 15.1 and 15.2, namely, in their
panels corresponding to −0.5 ≤ H ≤ −0.1.

Analytical descriptions of the properties of motion in the chaotic layers of
the Lidov–Kozai resonance (widths of the layers, the Lyapunov and diffusion
timescales, etc.) represent a problem for future studies.



Chapter 16
Epilogue

Worlds scoop their Arcs –
And Firmaments – row –

Emily Dickinson, Poem 216 (1861)

“We are living in the new age of discovery”—by these words Murray and Dermott
(1999) start their book Solar System Dynamics. Indeed, in the last three decades
of the twentieth century, space probes and space telescopes made the Solar system
planets, comets, asteroids, and planetary satellites as just familiar to us, as, some
five hundred years ago, other continents became familiar to mankind thanks to sea-
farers. In this sense, our times are in no way less important and impressive than the
epoch of great geographical discoveries.

In view that thousands of planetary systems, far away from our Solar system,
have been discovered and explored in astronomical observations during the last three
decades, nowadays this citation acquires a novel broader meaning, and in 2020 one
may repeat it with even greater surety and emphasis. Ages of novel geographical or
planetary discoveries are rare in the history of mankind, and we are lucky to live in
such times.

Exoplanet discoveries trigger studies in relevant areas of fundamental sci-
ence, including non-linear dynamics and dynamical chaos theory. In the field of
numerical-experimental studies, fast and effective numerical tools, allowing one
to visualize global charts of chaotic transport, are being developed and improved.
Current and perspective studies of chaotic behaviour in exoplanetary systems
comprise investigations of various clearing effects and mechanisms, explaining how
the low-mass material in planetary systems is steadily removed from chaotic zones
due to chaotic diffusion in orbital elements. Developments of analytical criteria
of stability of planetary systems, in broad ranges of parameter values and initial
conditions, are warranted.

A lot of dynamical and statistical phenomena, newly found in observations of
exoplanet systems, are inherently related to various dynamical chaos effects. These
phenomena still await rigorous and complete theoretical explanation and interpreta-
tion, especially in conjunction with planetary formation theories. Among the actual
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subjects of studies in exoplanetary dynamics, there are: resonant and near-resonant
architectures of circumbinary systems, peculiarities in statistical distributions of
planet period ratios, prevalence of particular resonances in exoplanetary systems,
resonant architectures of closely packed exoplanet systems, circumbinary planetary
dynamics at the “edge of chaos,” “rapid dynamical chaos” and “bounded dynamical
chaos” in planetary systems, long-lived planetary systems with relatively short
Lyapunov times, and many others. After all, these studies help to understand our
own Solar system.



Appendix A
Basic Notations

In this Appendix, mathematical, astronomical and physical notations used in the
book are listed. Note that, in the book, some variations in symbol definitions, as
well as deviating notations, can be sometimes encountered. They were introduced
for convenience of reading, where appropriate.

Mathematical and Physical Quantities

• i is the imaginary unit
• ψ(z) = �′(z)

�(z)
is the digamma-function

• K(m) or K(k) (where m = k2) is the complete elliptic integral of the first kind
with modulus k

• E(m) or E(k) is the complete elliptic integral of the second kind
• x0 is the initial value of a variable x

Coordinates and Frames

• x, y, z are the Cartesian (orthogonal) coordinates
• r , φ, α are the spherical coordinates (radial distance, longitude, and latitude)

Orbital Elements and Corresponding Quantities

• a, e, i, ω, � , 
, M , l are, respectively the semimajor axis, eccentricity, incli-
nation, argument of pericentre, longitude of pericentre, longitude of ascending
node, mean anomaly, mean longitude of a test body

• q = a(1 − e) is the pericentric distance (the letter q is also used to designate
resonance order)

• Q = a(1 + e) is the apocentric distance
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• apert, epert, ipert, ωpert, �pert, 
pert, Mpert, lpert are, respectively the semimajor
axis, eccentricity, inclination, argument of pericentre, longitude of pericentre,
longitude of ascending node, mean anomaly, mean longitude of a perturber’s
orbit

• apl, epl are, respectively the semimajor axis and eccentricity of a planetary orbit
• ab, eb are, respectively the semimajor axis and eccentricity of a binary
• a1, a2 are the semimajor axes of the inner and outer binaries, respectively
• e1, e2 are the eccentricities of the inner and outer binaries, respectively
• α = a1/a2 is the ratio of semimajor axes of the inner and outer binaries
• ef is the forced eccentricity
• ei , �i , ii , and 
i are, respectively, the eccentricity, longitude of pericentre,

inclination, and longitude of ascending node of planet i
• n is the mean motion of a test body
• npert is the mean motion of a perturber
• P1 is the orbital period of the inner binary
• P2 is the orbital period of the outer binary
• τ is the time of a pericentre transit

Dynamical Definitions

• n is the number of degrees of freedom
• R is the perturbing function
• H is a Hamiltonian
• q is the vector of canonical coordinates
• p is the vector of conjugate canonical momenta
• l, g, h are the Delaunay canonical angles, corresponding to the mean anomaly
M , argument of pericentre ω, and longitude of ascending node 
, respectively

• L, G, H are the Delaunay canonical momenta, conjugate to the Delaunay
canonical angles

• ω ≡ � −
 is the argument of pericentre, the critical angle of the Lidov–Kozai
resonance

• gk and sk are the planetary frequencies, k = 1, 2, . . . , 8
• ν5 is a secular resonance
• ν6 is a secular resonance
• ν16 is a secular resonance
• K is the stochasticity parameter
• K = KG = 0.971635406 . . . is the critical (Greene’s) value of the stochasticity

parameter
• λ is the adiabaticity parameter

Physical Quantities

• m1 is the mass of the primary, the most massive body in a system
• m is the mass of a test body (an asteroid, a planet)
• mpert is the mass of a perturber
• μ = m2/(m1 +m2) is the mass parameter of a binary
• MSun is the mass of the Sun
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• mpl is the mass of a planet
• G is the gravitational constant
• c is the speed of light
• Rpl is the mean radius of a planet
• RSun is the radius of the Sun
• REarth is the mean radius of the Earth
• RMoon is the mean radius of the Moon
• RH is the Hill radius
• G is the module of the angular momentum
• H is the angular momentum vector’s vertical component
• 
 is the perturbation frequency
• τ is the phase angle of perturbation
• L is the maximum Lyapunov exponent
• TL ≡ L−1 is the Lyapunov time
• ω0 is the frequency of small-amplitude oscillations on a resonance
• CJ is the Jacobi integral, also called the Jacobi constant

List of Abbreviations

CBP Circumbinary planet
FA Frequency analysis
FLI Fast Lyapunov indicators
GJ Gliese–Jahreiss catalogue
HD Henry Draper catalogue
HQR “Householder transformation—QR-decomposition” method
IAU International Astronomical Union
KAM Kolmogorov–Arnold–Moser theory
KBO Kuiper belt object
LCE Lyapunov characteristic exponent
LF1 Lévy flights of the first kind
LF2 Lévy flights of the second kind
LKE Lidov–Kozai effect
MA Melnikov–Arnold integrals
MEGNO Mean exponential growth factor of nearby orbits
MEM Maximum eccentricity method
MS Main sequence
NEA Near-Earth asteroids
QR QR-decomposition, i.e., a decomposition of a matrix into a product of an orthogonal

matrix (Q) and an upper triangular matrix (R)
RV “Radial velocity” method
TNO Trans-Neptunian object
TTV “Transit timing variations” method



Appendix B
Astronomical Constants and Parameters

The astronomical constants and parameters are given in Table B.1 as adopted by the
16th General Assembly of the International Astronomical Union in 1976. Numerical
estimates presented in this book are usually based on these quantities.

Table B.1 Astronomical constants and parameters

Constant Value

Gravitational constant G 6.672 · 10−8 g−1cm3s−2

Speed of light c 2.997925 · 1010 cm/s

Astronomical unit (AU) 1.49600 · 1013 cm

Parsec 3.0857 · 1018 cm = 206265 AU

Solar mass MSun 1.989 · 1033 g

Solar radius RSun 6.960 · 1010 cm

Earth’s mass MEarth 5.977 · 1027 g

Mass ratio of Earth and Moon 81.30

Mass ratio of Sun and Earth 332958

Earth’s equatorial radius REarth 6.378140 · 108 cm

Earth’s mean radius 〈REarth〉 6.371032 · 108 cm

Jovian massMJ 1.898 · 1030 g = 1/1047 MSun = 317.8 MEarth

Neptune’s massMN 1.030 · 1029 g =1/19314 MSun = 17.25 MEarth

Jovian mean radius 〈RJ〉 0.70 · 1010 cm = 11.0 〈REarth〉
Neptune’s mean radius 〈RN〉 2.45 · 109 cm = 3.85 〈REarth〉

(continued)
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Table B.1 (continued)

Constant Value

Semimajor axes of planetary orbits in the Solar system

Mercury 0.3871 AU

Venus 0.7233 AU

Earth 1 AU

Mars 1.524 AU

Jupiter 5.204 AU

Saturn 9.583 AU

Uranus 19.22 AU

Neptune 30.11 AU

Pluto 39.48 AU

Planetary orbital periods in the Solar system

Mercury 0.2408 yr

Venus 0.6153 yr

Earth 1 yr

Mars 1.881 yr

Jupiter 11.86 yr

Saturn 29.46 yr

Uranus 84.02 yr

Neptune 164.8 yr

Pluto 248.0 yr



Appendix C
The Melnikov–Arnold Integrals

The Melnikov–Arnold integrals, as defined in (Chirikov 1977, 1979), are given by

An(λ) =
∫ ∞

−∞
cos

(n
2
φ(t)− λt

)
dt, (C.1)

where λ is any real, and n ≥ 0 is generally also real, but hereafter we assume n to
be integer; and

φ(t) = 4 arctan exp(t)− π. (C.2)

The functions can be recast as

An(λ) = 2
∫ ∞

0
cos(n arctan sinh(t)− λt) dt. (C.3)

Related functions, given by

Bn(λ) =
∫ ∞

0
sin(n arctan sinh(t)− λt) dt, (C.4)

are hereafter called the Melnikov–Arnold integrals of the second kind, wherebyAn
are called the Melnikov–Arnold integrals of the first kind. We also introduce

αcn(λ) = An(λ)+ An(−λ),
αsn(λ) = An(λ)− An(−λ),
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βcn(λ) = Bn(λ)+ Bn(−λ),
βsn(λ) = Bn(λ)− Bn(−λ). (C.5)

Equivalently

αcn(λ) = 4
∫ ∞

0
cos(n arctan sinh(t)) cos(λt) dt, (C.6)

αsn(λ) = 4
∫ ∞

0
sin(n arctan sinh(t)) sin(λt) dt, (C.7)

βcn(λ) = 2
∫ ∞

0
sin(n arctan sinh(t)) cos(λt) dt, (C.8)

βsn(λ) = −2
∫ ∞

0
cos(n arctan sinh(t)) sin(λt) dt . (C.9)

The upper indices c and s thus indicate the presence of the cosine or sine,
respectively, in the integrand.

As functions of t , the primitives of the integrand expressions in αcn, αsn, βcn, βsn,
An, and Bn oscillate, and, depending on the parity of n, in the limit t → +∞
the oscillation amplitude can be nonzero. As in Chirikov (1979), to determine
the Melnikov–Arnold integrals of both kinds, we average over these oscillations.
Therefore, in particular, A0 = 0.

In Chirikov (1979), An were estimated analytically at any real n by means of
the residue theory. For n natural, the both integrals An and Bn can be calculated by
induction.

Zhirov’s recurrent relation for An in terms of An−1 and An−2, where n ≥ 2, is
presented in (Chirikov 1979, Equation A.8). It specifies that, as soon as A0 and A1
are known, any An can be found by induction:

A0(λ) = 0,

A1(λ) = αc1(λ)+ αs1(λ)
2

,

· · ·
An(λ) = 2λ

n− 1
An−1(λ)− An−2(λ). (C.10)
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For Bn, a recurrent relation can be derived analogously (see Shevchenko 2000a),
and it is given by

B0(λ) = − 1

λ
,

B1(λ) = βc1(λ)+ βs1(λ)
2

,

· · ·
Bn(λ) = 2λ

n− 1
Bn−1(λ)− Bn−2(λ)+ 2

n− 1
. (C.11)

In the induction bases, A1 and B1 are expressed through αc1, αs1, βc1, and βs1, which
themselves can be expressed through known integrals contained in Gradshtein and
Ryzhik (1962) or Beitmen and Erdeii (1969); one has

αc1(λ) = 2π

cosh πλ2
, (C.12)

αs1(λ) = 2π

sinh πλ2
, (C.13)

βc1(λ) = 2 Re

(
ψ

(
i
λ

2

)
− ψ

(
i
λ

4

))
− 2 ln 2, (C.14)

βs1(λ) = π tanh
πλ

2
− 2 Im ψ

(
1 + iλ

4

)
. (C.15)

Here i is the imaginary unit, and ψ(z) = �′(z)
�(z)

is the digamma-function. The real
part of the digamma-function of an imaginary argument is given by

Re ψ(iy) = − C + y2
∞∑

n=1

1

n(n2 + y2)
(C.16)

(Abramowitz and Stegun 1970), where y is any real, C ≈ 0.577216 is Euler’s
constant.

Equations (C.11), (C.14) and (C.15) allows one to calculate the Melnikov–
Arnold integrals of the second kind of any order n in terms of special functions.
For algorithms of effective numerical estimating the Melnikov–Arnold integrals see
Shevchenko (2000a).
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