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Preface

The last ten years have witnessed the fact that geometry, topology, and algorithms
form a potent mix of disciplines with many applications inside and outside academia.
We aim at bringing these developments to a larger audience. This book has been
written to be taught, and it is based on notes developed during courses delivered
at Duke University and at the Berlin Mathematical School, primarily to students
of computer science and mathematics. The organization into chapters, sections,
and exercises reflects the teaching style we practice. Each chapter develops a major
topic and provides material for about two weeks. The chapters are divided into
sections, each a lecture of one and a quarter hours. An interesting challenge is the
mixed background of the audience. How do we teach topology to students with a
limited background in mathematics, and how do we convey algorithms to students
with a limited background in computer science? Assuming no prior knowledge and
appealing to the intelligence of the listener are good first steps. Motivating the
material by relating it to situations in different walks of life is helpful in building
up intuition that can cut through otherwise necessary formalism. Exposing central
ideas with simple means helps, and so does minimizing the necessary amount of
technical detail.

The material in this book is a combination of topics in geometry, topology, and
algorithms. Far from getting diluted, we find that the fields benefit from each other.
Geometry gives a concrete face to topological structures, and algorithms offer a
means to construct them at a level of complexity that passes the threshold necessary
for practical applications. As always, algorithms have to be fast because time is the
one fundamental resource humankind has not yet learned to manipulate for its selfish
purposes. Beyond these obvious relationships, there is a symbiotic affinity between
algorithms and the algebra used to capture topological information. It is telling that
both fields trace their names back to the writing of the same Persian mathematician,
al-Khwarizmi, working in Baghdad during the ninth century after Christ. Besides
living in the triangle spanned by geometry, topology, and algorithms, we find it
useful to contemplate the place of the material in the tension between extremes
such as local vs. global, discrete vs. continuous, abstract vs. concrete, and intrinsic
vs. extrinsic. Global insights are often obtained by a meaningful integration of local
information. This is how we proceed in many fields, taking on bigger challenges after
mastering the small ones. But small things are big from up close, and big things
are small from afar. Indeed, the question of scale lurking behind this thought is the

xi
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driving force for much of the development described in this book. The dichotomy
between discrete and continuous structures is driven by opposing goals: machine
computation and human understanding. The tension between the abstract and the
concrete as well as between the intrinsic and the extrinsic has everything to do
with the human approach to knowledge. An example close to home is the step
from geometry to topology in which we remove the burdens of size to focus on the
phenomenon of connectivity. The more abstract the context the more general the
insight. Now, generality is good, but it is not a substitute for the concrete steps that
have to be taken to build bridges to applications. Zooming in and out of generality
leads to unifying viewpoints and suggests meaningful integrations where they exist.

While these thoughts have certainly influenced us in the selection of the material
and in its presentation, there is a long way to the concrete instantiation we call this
book. It consists of three parts and nine chapters. Part A is a gentle introduction
to topological thought. Discussing graphs in Chapter I, surfaces in Chapter II, and
complexes in Chapter III, we gradually build up topological sophistication, always
in combination with geometric and algorithmic ideas. Part B presents classical ma-
terial from topology. We focus on what we deem useful and efficiently computable.
The material on homology in Chapter IV and duality in Chapter V is exclusively
algebraic. In the discussion of Morse theory in Chapter VI, we build a bridge to
differential concepts in topology. Part C is novel and the reason for why we wrote
this book. The main new concept is persistence, introduced in Chapter VII, and its
stability, discussed in Chapter VIII. Finally, we discuss applications in Chapter IX.

In a project like writing this book, there are many who contribute, directly or
indirectly. We want to thank all, but we don’t know where to begin. Above all, we
thank our colleagues in academia and industry, our students, and our postdoctoral
fellows for their ideas, criticism, and encouragement, and most of all for the sense
of purpose they instilled. We thank Duke University and IST Austria for provid-
ing the facilities and intellectual environment that allowed us to engage in the line
of research leading to this book. We thank the computer science and the math-
ematics departments at Duke University and the Berlin Mathematical School for
the opportunity to teach computational topology to their students. These courses
provided the motivation to develop the notes that turned into this book. We are
grateful to the funding agencies for nurturing the research that led to this book.
The National Science Foundation and the National Institute of Health generously
supported our collaborations with biochemists and biologists. Most of all, we thank
our program manager at the Defense Advanced Research Projects Agency, Ben-
jamin Mann, for his continued support and his enthusiasm for our research. Last
but not least, we thank Ina Mette for believing in this project and the staff at the
American Mathematical Society for making the steps toward the final product an
enjoyable experience.

Herbert Edelsbrunner and John L. Harer
Durham, North Carolina, 2009
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Chapter I

Graphs

In topology we think of a graph as a 1-dimensional geometric object, vertices being
points and edges being curves connecting these points in pairs. This view is dif-
ferent from but compatible with the interpretation of a graph common in discrete
mathematics where the vertices are abstract elements and the edges are pairs of
these elements. In more than one way, this book lives in the tension between the
discrete and the continuous, and graphs are just one example of this phenomenon.
We begin with the discussion of an intrinsic property, namely whether a graph is
connected or not. Indeed, this does not depend on where we draw the graph, on
paper or in the air. Following are extrinsic considerations about curves and graphs
in the plane and in 3-dimensional space. While the extrinsic questions are natural
to most people, the mathematician usually favors the intrinsic point of view since
it tends to lead to more fundamental insights of more general validity.

I.1 Connected Components

A theme that goes through this entire book is the exchange between discrete and
continuous models of reality. In this first section, we compare the notion of con-
nectedness in discrete graphs and continuous spaces.

Simple graphs. An abstract graph is a pair G = (V, E) consisting of a set of
vertices, V , and a set of edges, E, each a pair of vertices. We draw the vertices as
points or little circles and the edges as line segments or curves connecting the points.
The graph is simple if the edge set is a subset of the set of unordered pairs, E ⊆

(V
2

)
,

which means that no two edges connect the same two vertices and no edge joins a
vertex to itself. For n = card V vertices, the number of edges is m = card E ≤

(n
2

)
.

Every simple graph with n vertices is a subgraph of the complete graph, Kn, that
contains an edge for every pair of vertices; see Figure I.1.

3



4 I Graphs

Figure I.1: The complete graph with five vertices, K5. It has ten edges which
form five crossings if drawn as sides and diagonals of a convex pentagon. The
four thick edges connect the same five vertices and form a spanning tree of the
complete graph.

In a simple graph, a path between vertices u and v can be described by a sequence
of vertices, u = u0, u1, u2, . . . , uk = v, with an edge between ui and ui+1 for each
0 ≤ i ≤ k−1. The length of this path is its number of edges, k. Vertices can repeat,
allowing the path to cross itself or backtrack. The path is simple if the vertices in
the sequence are distinct, that is, ui ̸= uj whenever i ̸= j.

Definition. A simple graph is connected if there is a path between every pair of
vertices.

A (connected) component is a maximal subgraph that be connected. The smallest
connected graphs are the trees, which are characterized by having a unique simple
path between every pair of vertices. Removing any one edge disconnects the tree.
A spanning tree of G = (V, E) is a tree (V, T ) with T ⊆ E; see Figure I.1. It has
the same vertex set as the graph and uses a minimal set of edges necessary to be
connected. This requires that the graph be connected to begin with. Indeed, a
graph is connected iff it has a spanning tree. An alternative characterization of a
connected graph can then be based on the impossibility to cut it in two.

Definition. A separation is a non-trivial partition of the vertices; that is, V =
U ∪̇ W with U, W ̸= ∅, such that no edge connects a vertex in U with a vertex in
W . A simple graph is connected if it has no separation.

Topological spaces. We now switch to a continuous model of reality, the topo-
logical space. There are similarities to graphs, in particular if our interest is limited
to questions of connectedness. Starting with a point set, we consider a topology,
which is a way to define which points are near without specifying how near they
are from each other. Think of it as an abstraction of Euclidean space in which
neighborhoods are open balls around points. Concretely, a topology on a point set
X is a collection U of subsets of X, called open sets, such that
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(i) X is open and the empty set ∅ is open;

(ii) if U1 and U2 are open, then U1 ∩ U2 is open;

(iii) if Ui is open for all i in some possibly infinite, possibly uncountable, index set,
then the union of all the Ui is open.

The pair (X, U) is called a topological space, but we will usually tacitly assume that U
is understood and refer to X as a topological space. Since we can repeat the pairwise
intersection, condition (ii) is equivalent to requiring that common intersections of
finitely many open sets be open.

To build interesting topologies, we start with some initial notion of which sets
might be open and then form appropriate combinations of these until the three
conditions are satisfied. A basis of a topology on a point set X is a collection
B of subsets of X, called basis elements, such that each x ∈ X is contained in
at least one B ∈ B and x ∈ B1 ∩ B2 implies there is a third basis element with
x ∈ B3 ⊆ B1 ∩ B2. The topology U generated by B consists of all sets U ⊆ X for
which x ∈ U implies there is a basis element x ∈ B ⊆ U . This topology can be
constructed explicitly by taking all possible unions of all possible finite intersections
of basis sets. As an example consider the real line, X = R, and let B be the collection
of open intervals. This defines the usual topology of the real line. Note that the
intersection of the intervals (− 1

k , + 1
k ), for the infinitely many integers k ≥ 1, is the

point 0. This is not an open set, which illustrates the need for the restriction to
finite intersections.

We often encounter sets inside other sets, Y ⊆ X, and in these cases we can
borrow the topology of the latter for the former. Specifically, if U is a topology
of X, then the collection of sets Y ∩ U , for U ∈ U , is the subspace topology of Y.
As an example consider the closed interval [0, 1] ⊆ R. We have seen that the open
intervals form a basis for a topology of the real line. The intersections of open
intervals with [0, 1] form the basis of the subspace topology of the closed interval.
Note that the interval (1/2, 1] is considered an open set in [0, 1], but it is not open
when considered as a set in R.

Continuity, paths, and connectedness. A function from one topological space
to another is continuous if the preimage of every open set is open. This is derived
from the concept of continuity familiar from calculus; for example the function
f : R → R that maps (−∞, 0] to 0 and (0,∞) to 1 is not continuous because for
any 0 < ε < 1, (−ε, ε) is open, but f−1((−ε, ε)) is not.

A path is a continuous function from the unit interval, γ : [0, 1] → X. It connects
the point γ(0) to the point γ(1) in X. Similar to paths in graphs, we allow for self-
intersections, that is, values s ̸= t in the unit interval for which γ(s) = γ(t). If there
are no self-intersections, then the function is injective and the path is simple. Now
we are ready to adapt our first definition of connectedness to topological spaces.

Definition. A topological space is path-connected if every pair of points is con-
nected by a path.
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There is also a counterpart of our second definition of connectedness. We formulate
it using open sets, and there is an equivalent formulation in terms of closed sets
which, by definition, are complements of open sets.

Definition. A separation of a topological space X is a partition X = U ∪̇ W
into two non-empty, open subsets. A topological space is connected if it has no
separation.

It turns out connectedness is strictly weaker than path-connectedness, although for
most spaces we will encounter they are the same. An example of a space that
is connected but not path-connected is the comb with a single tooth deleted. It
is constructed by gluing vertical teeth to a horizontal bar and finally deleting the
interior of the last tooth: taking the union of [0, 1] × 0, 0 × [0, 1], 1

k × [0, 1], for all
positive integers k, we finally delete 0× (0, 1). To construct a topology, we take the
collection of open disks as the basis of a topology on R2 and we use the subspace
topology for the comb. This space is connected because it is the union of a path-
connected set and a limit point. It is not path-connected because no path from
anywhere else can reach 0 × 1.

Disjoint set systems. We return to graphs and consider the algorithmic question
of deciding connectedness. There are many approaches, and we present a solution
based on maintaining a disjoint set system. This particular algorithm has various
other applications, some of which will be discussed in later chapters of this book.
Using the integers from 1 to n as the names of the vertices, we store each component
of the graph as a subset of [n] = {1, 2, . . . , n}. Adding the edges one at a time and
maintaining the system of sets representing the components, we find that the graph
is connected iff in the end there is only one set left, namely [n]. Formulated as an
abstract data type, we have two operations manipulating the system:

Find(i): return the name of the set that contains i;

Union(i, j): assuming i and j belong to different sets in the system, replace the
two sets by their union.

We need the find operation to test whether i and j indeed belong to different sets.
Each successful union operation reduces the number of sets in the system by one.
Starting with n singleton sets, it therefore takes n− 1 union operations to get to a
single set. Since trees connecting the n vertices can be generated this way, we thus
have a proof that every tree with n vertices has m = n − 1 edges.

A standard data structure implementing a disjoint set system stores each set as
a tree embedded in a linear array, V [1..n]. Each node in the tree is equipped with a
pointer to its parent, except for the root which has no parent; see Figure I.2. Who
is parent of whom is not important as long as the vertices are connected in a single
tree. We implement the find operation by traversing the tree upward until we reach
the root, reporting the root as the name of the set.
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Figure I.2: Top: two trees representing two disjoint sets. Bottom: storing the
two trees in a linear array using an arbitrary ordering of the nodes.

int Find(i)
if V [i].parent ̸= null then return Find(V [i].parent)

else return i
endif.

If i is not the root, then we find the root recursively and finally return it. Otherwise,
we return i as the root. We implement the union operation by linking one root to
the other.

void Union(i, j)
x = Find(i); y = Find(j);
if x ̸= y then V [x].parent = y endif.

After making sure that the two sets are different, we assign one root as the parent
of the other.

Improving the running time. The above implementation is not very efficient,
in particular if we have long paths that are repeatedly traversed. To prevent this
from happening, we always link the smaller to the larger tree.
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void Union(i, j)
x = Find(i); y = Find(j);
if x ̸= y then
if V [x].size > V [y].size then x ↔ y endif;
V [x].parent = y

endif.

Now a tree of k nodes cannot have paths longer than log2 k edges since the size of
the subtree grows by at least a factor of two each time we pass to the parent. To
further improve the efficiency, we compress paths whenever we traverse them. Here
it is convenient to assume that roots are identified by pointing to themselves.

int Find(i)
if V [i].parent ̸= i then
return V [i].parent = Find(V [i].parent)

endif;
return i.

If i is not the root, then the function recursively finds the root, makes the root the
parent of i, reports the root, and exits. Otherwise, the function reports i as the
root and exits.

In analyzing the algorithm, we are interested in the running time for executing
a sequence of m union and find operations. Finding tight bounds turns out to
be a difficult problem, and we limit ourselves to stating the result. Specifically,
if n is the number of vertices, then the running time is never more than some
constant times mα(n), where α(n) is the notoriously slow growing inverse of the
Ackermann function. Eventually, α(n) goes to infinity, but to reach even beyond
five, we need an astronomically large number of vertices, more than the estimated
number of electrons in our Universe. In other words, for all practical purposes the
algorithm takes constant average time per operation, but theoretically this is not a
true statement.

Bibliographic notes. Graphs are ubiquitous objects and appear in most disci-
plines. Within mathematics, the theory of graphs is considered part of combina-
torics. There are many good books on the subject, including the one by Tutte [142].
The basic topological notions of connectedness are treated in books on point-set or
general topology, including the text by Munkres [115]. The computational problem
of maintaining a system of disjoint sets, often referred to as the union-find problem,
is a classic topic in the field of algorithms. Solutions to it are known as union-find
data structures, and the most efficient of all is the up-tree representation main-
tained through weighted union and path-compression as explained in this section.
A complete description of the non-trivial analysis of the algorithm can be found in
the text by Tarjan [140].
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I.2 Curves in the Plane

In the previous section, we used paths to merge points into connected components.
To capture aspects of connectivity that go beyond components, we need different
maps.

Closed curves. We distinguish primarily between two kinds of (connected)
curves, paths and closed curves. As defined in the previous section, paths are
continuous maps from [0, 1] to X. Sometimes, a closed curve is defined as a path in
which 0 and 1 map to the same point. Usually, we will define a closed curve to be a
map from the unit circle, γ : S1 → X, where S1 = {x ∈ R2 | ∥x∥ = 1}. This second
version emphasizes the important fact that paths and closed curves capture differ-
ent properties of topological spaces, since the interval and the circle are different
topological spaces. To make this precise, we call two topological spaces homeo-
morphic or topologically equivalent if there exists a continuous bijection from one
space to the other whose inverse is also continuous. A map with these properties is
called a homeomorphism. Notice that a homeomorphism between two spaces gives
a bijection between their open sets. The unit interval and the unit circle are not
homeomorphic. Indeed, removing the midpoint decomposes the interval into two
components while removing any point leaves the circle connected. This contradicts
the existence of a bijection that is continuous in both directions.

Figure I.3: The shaded inside and the white outside of a simple closed curve
in the plane.

Considering maps into the Euclidean plane, X = R2, it makes sense to distinguish
curves with and without self-intersections. A simple closed curve is a curve without
self-intersections, that is, a continuous injection γ : S1 → R2. Interestingly, every
such curve decomposes the plane into two pieces, one on each side of the curve, as
in Figure I.3.

Jordan Curve Theorem. Removing the image of a simple closed curve from R2

leaves two connected components, the bounded inside and the unbounded outside.
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The inside together with the image of the curve is in fact homeomorphic to a closed
disk.

This may seem obvious, but proving it is challenged by the generality of the claim
which is formulated for all and not just smooth or piecewise linear simple closed
curves. There are reasons to believe that there is no simple proof for such a general
claim. The fact that the inside together with the curve is homeomorphic to the
closed disk, B2 = {x ∈ R2 | ∥x∥ ≤ 1}, is known as the Schönflies Theorem. The
Jordan Curve Theorem remains valid if we replace the plane by the sphere, S2 =
{x ∈ R3 | ∥x∥ = 1}, but not if we replace it by the torus. The Schöflies Theorem
as stated is false in dimension higher than two.

Parity algorithm. Given a simple closed curve in the plane, a fundamental com-
putational question asks whether a given query point x ∈ R2 lies inside, on, or
outside the curve. To write an algorithm answering this question, we assume a fi-
nite approximation of the curve. For example, we may specify γ at a finite number
of points and interpolate linearly between them. The result is a closed polygon; see
Figure I.4. It is simple if it is a closed curve itself. To decide whether the point x

x

Figure I.4: Approximation of the simple closed curve in Figure I.3 by a simple
closed polygon. The point x lies inside the polygon and the half-line crosses
the polygon an odd number of times.

lies inside such a simple closed polygon, we draw a half-line emanating from x and
count how often it crosses the polygon. Assuming x does not lie on the polygon, it
lies inside if the number of crossings is odd and outside if that number is even, hence
the name Parity Algorithm. In the implementation of this idea, we let x = (x1, x2)
be the query point and a = (a1, a2), b = (b1, b2) the endpoints of an edge of the
polygon. We assume the generic case in which no three points are collinear and no
two lie on a common vertical or horizontal line. To simplify the code, we choose
the horizontal half-line leaving x toward the right and we assume that a is below
b, that is, a2 < b2. We first make sure that the entire horizontal line crosses the
edge, which we do by testing a2 < x2 < b2. If it does, then we test whether the
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crossing lies to the left or the right of the query point. To this end we compute the
determinant of the matrix

∆(x, a, b) =

⎡

⎣
1 x1 x2

1 a1 a2

1 b1 b2

⎤

⎦ ,

which is positive iff the sequence of points x, a, b forms a left-turn. To see this, we
verify the claim for x = (0, 0), a = (1, 0), b = (0, 1) and then notice that the sign of
the determinant switches exactly when the three points become collinear. We use
this fact to decide whether the half-line crosses the edge:

boolean doesCross(x, a, b)
if not a2 < x2 < b2 then return false endif;
return det∆(x, a, b) > 0.

Now we run this test for all edges and this way count the crossings. The trouble with
this implementation is the non-generic cases. We finesse them using two infinitesi-
mally small, positive numbers 0 < ε1 ≪ ε2 and substituting x′ = (x1 + ε1, x2 + ε2)
for x. A generic case for x is generic for x′, and we get the same decision for both
points. A non-generic case for x is generic for x′, and we use the decision for x′.

Polygon triangulation. Sometimes it is useful to have a more structured repre-
sentation of the inside of the polygon, for example for navigation to find the exit
out of a maze. The most common such structural representation is a triangulation
which is a decomposition into triangles. Here we require that the triangles use the
vertices of the polygon but do not introduce new ones. Furthermore, they use the
edges of the polygon together with diagonals, which are new edges that connect
non-adjacent vertices of the polygon. The diagonals are required to pass through
the inside and not cross any other diagonals and any polygon edges; see Figure I.5.

Figure I.5: A triangulation of the polygon in Figure I.4. Each diagonal passes
from one side of the inside to the other.
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To prove that a triangulation always exists, we just need to show that there is
at least one diagonal, unless the number of edges in the polygon is n = 3. Indeed,
we may consider the leftmost vertex, b, of the polygon. Either we can connect its
two neighbors, a and c, or we can connect b to the leftmost vertex u that lies inside
the triangular region abc. Drawing this diagonal decomposes the n-gon into two, an
n1-gon and an n2-gon. We have n1 + n2 = n + 2, and since both are at least three,
we also have n1, n2 < n. We can thus use induction to complete the proof. The
same inductive argument shows that there are n − 3 diagonals and n− 2 triangles,
no matter how we triangulate. This is suggestive. Indeed, we can think of the
triangles as the nodes and the diagonals as the arcs of a tree. Since every tree with
n− 2 ≥ 2 nodes has at least one leaf, that is, a node with only one neighbor, every
triangulation has an ear, that is, a triangle formed by one diagonal and two polygon
edges. Incidentally, this is another property that does not generalize to tetrahedral
decompositions in R3.

Winding number. We return to a general, not necessarily simple, closed curve
γ : S1 → R2. Let x be a point not in the image of the curve. Suppose we traverse γ
and view the moving point from x. Specifically, we let s go once around the circle
and observe the unit vector (γ(s)−x)/∥γ(s) − x∥ rotate about the origin. When the
vector completes a full turn, we count +1 or −1 depending on whether this turn is
counterclockwise or clockwise. The sum of these numbers is the winding number of
γ and x, denoted as W (γ, x). It is necessarily an integer and gives the net number
of counterclockwise turns we observe. If γ is simple, then the points inside the curve
all have the same winding number, −1 or +1. To reduce this to one case, we may
reorient the curve, e.g. by reflecting the unit circle along the horizontal coordinate
axis, and get

W (γ, x) =

{
+1 if x is inside;

0 if x is outside.

However, for non-simple curves we can get winding numbers of absolute value larger
than one; see Figure I.6. Suppose we move x in the plane. As long as it does
not cross the curve, the winding number does not change. Crossing the curve
changes the winding number, namely by −1 if we cross from left to right and by
+1 if we cross from right to left. But this implies that at least two regions in
the decomposition defined by γ have their boundary arcs consistently oriented.
Specifically, the neighbors of a region with locally maximum winding number all
have winding number one less, so the region lies to the left of all its boundary arcs.
Similarly, a region with locally minimal winding number lies to the right of all its
boundary arcs.

Bibliographic notes. The Jordan Curve Theorem is well known also beyond
topology, in part because it seems so obvious but at the same time is difficult to
prove. The theorem is named after Camille Jordan, who was the first to present a
proof in 1882. This proof was later found to be incorrect, and the first satisfactory
proof is due to Veblen [145]. We refer to [151] for a more recent discussion of the
result.
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Figure I.6: An oriented non-simple closed curve with regions distinguished by
the winding number of their points.

The difficulties encountered in the implementation of the Parity Algorithm for
locating a point inside or outside a closed polygon have been voiced in [71]. A
provably correct implementation can be achieved with exact arithmetic and sym-
bolic perturbation as described in [62]. Triangulations of simple closed polygons
in the plane have been studied in computational geometry. Constructing such a
triangulation in time proportional to the number of vertices seems rather difficult
and the algorithm by Chazelle [32] that achieves this feat is not recommended for
implementation.

I.3 Knots and Links

In this section, we study closed curves in 3-dimensional Euclidean space and ques-
tions how they relate to each other and to themselves.

Knots. A closed curve embedded in R3 does not decompose the space, but it
can be tangled up in inescapable ways. The field of mathematics that studies
such tangles is knot theory. Its prime subject is a knot which is an embedding
κ : S1 → R3, that is, an injective, continuous function that is a homeomorphism
onto its image. It turns out that any injective, continuous function from S1 to R3 is
an embedding, but this is not true for general domains. Another knot is equivalent
to κ if it can be continuously deformed into κ without crossing itself during this
process. Equivalent knots are considered the same. The simplest knot is the unknot,
also known as the trivial knot, which can be deformed to a geometric circle in R3.
Two other and only slightly tangled up knots are the trefoil knot and the figure-
eight knot, both illustrated in Figure I.7. A subtlety in the definition of equivalence
is that deformations in which knotted parts disappear in the limit are not allowed.
It is therefore useful to think of knots as curves with small but positive thickness,
similar to shoelaces and ropes.
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Figure I.7: From left to right: the unknot, the trefoil knot, and the figure-eight
knot. The trefoil knot is tricolored.

Reidemeister moves. Let us follow a deformation of a knot by drawing its pro-
jections to a plane, keeping track of the underpasses and overpasses at crossings.
We are primarily interested in generic projections defined by the absence of any
violations to injectivity, other than a discrete collection of double points where the
curve crosses itself in the plane. In a generic deformation, we observe three types of
non-generic projections that transition between generic projections, which are illus-
trated in Figure I.8. It is plausible and also true that any two generic projections
of the same knot can be transformed into each other by Reidemeister moves.

Figure I.8: The three types of Reidemeister moves.

It seems clear that the trefoil knot is not equivalent to the unknot, and there is
indeed an elementary proof using Reidemeister moves. Call a piece of the knot from
one underpass to the next a strand. A tricoloring of a generic projection colors each
strand with one of three colors such that

(i) at each crossing either three colors or only one color come together;

(ii) at least two colors are used.

Figure I.7 shows that the standard projection of the trefoil knot is tricolorable. A
useful property of Reidemeister moves is that they preserve tricolorability; that is,
the projection before the move is tricolorable iff the projection after the move is
tricolorable.

Type I. Going from left to right in Figure I.8, we use the same one color, and going
from right to left, we observe that we have only one color coming together at
the crossing.

Type II. From left to right we have two possibilities, either using only one color
or going from two to three colors. The reverse direction is symmetric.
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Figure I.9: The different cases in the proof that the Type III Reidemeister
move preserves tricolorability. In each case there is only one new strand whose
color can be chosen anew.

Type III. There are five cases to be checked, all shown in Figure I.9.

The trefoil knot is tricolorable and the unknot is not tricolorable. It follows that
the two are not equivalent. It is not difficult to see that the figure-eight knot is
not tricolorable. This implies that the trefoil knot and the figure-eight knot are
different, but the method is not powerful enough to distinguish the figure-eight
from the unknot.

Links. A link is a collection of two or more disjoint knots. Equivalence between
links is defined the same way as between knots, and Reidemeister moves again
suffice to go from one generic projection to another. A disjoint plane splits a link if
there are knots on both sides. A link is splittable if an equivalent link has a splitting
plane. The unlink or trivial link of size two consists of two unknots that can be
split, like the two circles in Figure I.10 on the left. The easiest non-splittable link
consisting of two unknots is the Hopf link, which is shown in Figure I.10 in the
middle. We can again use tricolorability to prove that the Hopf link is different

Figure I.10: From left to right: the unlink, the Hopf link, and the Whitehead link.

from the unlink. Alternatively, we may count the crossings between the two knots,
κ and λ, counting with a sign. Specifically, we orient each knot arbitrarily and we
look at each crossing locally. If the underpass goes from the left of the overpass to
its right, then we count +1, and otherwise we count −1. Letting x be a crossing
and sign(x) be plus or minus 1 as explained, the linking number is half the sum of



16 I Graphs

these numbers over all crossings:

Lk(κ,λ) =
1

2

∑

x

sign(x).

Changing the orientation of one knot but not the other has the effect of reversing
the sign of the linking number. Clearly, Reidemeister moves do not affect the linking
number. Since the linking number of the unlink is zero and that of the Hopf link
is plus or minus 1, we have another proof that the two links are different. An easy
link that is not splittable but has vanishing linking number is the Whitehead link
in Figure I.10. It consists of two unknots but cannot be tricolored, which implies
that it is not splittable.

Writhing number. Next we introduce a number that measures how contorted
the curve is in space. Let κ : R1 → R3 be a knot and assume that it is smooth
and its tangent vector κ̇(s) is non-zero for every s. Projecting along a direction
u ∈ S2, we get a closed curve in the plane. Assuming the projection is generic,
we distinguish underpass from overpasses and count each crossing plus or minus 1
time, as before. However, different from the case of the linking number, we count
crossings that the curve makes with itself and we do not divide by two. The sum of
these numbers is the directional writhing number, DWr(κ, u). The writhing number
is the average over all directions. This is the integral of the directional writhing
number over all directions divided by the area of the unit sphere:

Wr(κ) =
1

4π

∫

u∈S2

DWr(κ, u) du.

The directions with non-generic projections form only a measure zero subset of the
sphere. We therefore make no mistake when we average only over all generic pro-
jections. In contrast to the linking number, the writhing number is not necessarily
an integer and it depends on the exact shape of the curve. Besides the shape it also
captures topological information, as we will see shortly.

A good motivation for studying the writhing number comes from molecular biol-
ogy and, more specifically, the shape of DNA within the cell. Modeling its double-
helix structure with a constant width ribbon, we are interested in the writhing
number of the center axis, κ. The boundary of the ribbon consists of two closed
curves. We need only one, λ : S1 → R3. In the case of DNA, λ twists and turns
around κ. Intuitively, the twisting number is the average motion of λ relative to
κ. To formalize this idea, we assume that the center axis and the boundary curve
are one unit of length apart and parametrized such that λ(s)−κ(s) has unit length
and is normal to the center axis. We construct a frame of mutually orthogonal
unit vectors consisting of the tangent vector at s, T (s) = κ̇(s)/∥κ̇(s)∥, the normal
vector connecting the two curves, N(s) = λ(s) − κ(s), and the binormal vector,
B(s) = T (s) × N(s). Using this frame, the twisting number is the average length
of the projection of the derivative of the normal vector onto the binormal vector:

Tw(κ,λ) =
1

2π

∫

s∈S1

⟨Ṅ(s), B(s)⟩ds.
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This number may be interpreted as the number of local crossings between κ and λ,
counted with a sign and averaged over all directions u ∈ S2. To make sense of the
idea of a local crossing, we use a limit process in which the distance between κ and
λ goes to zero. Details are omitted. Similarly, the writhing number of κ may be
interpreted as the number of global crossings between κ and λ, again counted with
a sign, averaged over all directions, and in the limit when the separation between
the knots goes to zero. Since the linking number counts all crossings, we get a
relationship between the three measures, which we state without formal proof.

Călugăreanu-White Formula. Let κ be a smooth closed curve in R3 and λ
one of the two boundary curves of a ribbon centered along κ. Then Lk(κ,λ) =
Tw(κ,λ) + Wr(κ).

Relation to winding number. The writhing number of a space curve is related
to the winding number of the curve of critical directions. It is defined such that the
directional writhing number remains unchanged as long as we move u on the sphere
of directions without crossing the curve and it changes as soon as we cross the curve.
The only Reidemeister move that affects the directional writhing number is Type
I. The curve of critical directions is therefore traced out by the unit tangent vector
and its negative, T,−T : S1 → S2. In other words, we have two curves decomposing
the sphere into maximal faces of invariant directional writhing number. It will be
convenient to identify antipodal points on the sphere and think of a direction as
a pair (u,−u). Formally, this means we replace the sphere by the 2-dimensional
projective plane, but we don’t have to be this formal yet. The pair (u,−u) crosses
the curve T iff u crosses T or −T .

T

u
u′

Figure I.11: The change of the viewpoint from u to u′ is indicated on the
sphere of directions. On the left, this removes a positive crossing, and on the
right, this adds a negative crossing. The effect is the same, namely a decrease
in the directional writhing number by one. It remains the same even if the
curves change their orientation.

Recall that the winding number is defined for a closed curve and a point in the
plane. Here we have a closed curve and an antipodal point pair on the sphere.
Assuming u and −u are not on the curve, we let the winding number be the net
number of counterclockwise turns formed by T around the directed line defined by
u. We use the same notation as in the plane, denoting this number by W (T, u).
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Here we define counterclockwise as seen by looking in the direction u. Figure
I.11 illustrates the situation in which −u crosses T from its left to its right. The
winding number of T and (u,−u) thus decreases by 1, as the directional writhing
number. Indeed, the two change in synchrony in all cases, and we have DWr(κ, u0)−
DWr(κ, u) = W (T, u0) − W (T, u) for all u0, u ∈ S2. As a consequence, the average
winding number differs from the average directional writhing number by an integer.
Integrating the above relation over all directions of the sphere gives DWr(κ, u0)
minus Wr(κ) on the left and W (κ, u0) minus the average winding number on the
right. Hence,

Wr(κ) = DWr(κ, u0) − W (κ, u0) +
1

4π

∫

u∈S2

W (κ, u) du.

Bibliographic notes. Knots and links have been studied for centuries, and there
are a number of excellent books on the subject, including the text by Adams [2].
Motivation for studying the writhing number of a space curve and the twisting num-
ber of a ribbon is derived from the double-helix structure of DNA whose discovery
is comparably recent [154]. These numbers measure how wound up, locally and
globally, DNA is within the cell [15]. The noteworthy relation between writhing,
twisting, and linking numbers has been discovered independently by Călugăreanu
[25], Fuller [74], Pohl [119], and White [156]. The relationship to the winding num-
ber has been described in [4] and has been used to give an algorithm that computes
the writhing number of a closed space polygon in subquadratic time.

I.4 Planar Graphs

Only graphs with relatively few edges can be drawn without crossings in the plane.
We consider properties that distinguish such graphs from others. We also prove
Tutte’s Theorem which implies that every graph that can be drawn without crossing
can also be drawn this way with straight edges.

Embeddings. Let G = (V, E) be a simple, undirected graph. A drawing maps
every vertex u ∈ V to a point f(u) in R2, and it maps every edge uv ∈ E to a
path with endpoints f(u) and f(v). The drawing is an embedding if the points
are distinct, the paths are simple and do not cross each other, and incidences are
limited to endpoints. It is a straight-line embedding if, in addition, all edges are
straight line segments. Not every graph can be drawn without crossings. The graph
is planar if it has an embedding in the plane. As illustrated in Figure I.12 for the
complete graph of four vertices, there are many drawings of a planar graph, some
with and some without crossings. A face of an embedding is a component in the
defined decomposition of the plane. We write n = card V , m = card E, and ℓ for
the number of faces. Euler’s formula is a linear relation between these numbers.

Euler Relation for Planar Graphs. Every embedding of a connected
graph in the plane satisfies n − m + ℓ = 2.
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Figure I.12: Three drawings of K4. From left to right: a drawing that is
not an embedding, an embedding with one curved edge, and a straight-line
embedding.

Proof. Choose a spanning tree of G = (V, E). It has n vertices, n − 1 edges, and
one face. We have n − (n − 1) + 1 = 2, which proves the formula if G is a tree.
Otherwise, draw the remaining edges, one at a time. Each edge decomposes one
face into two, thus maintaining the relation by increasing both the number of edges
and the number of faces by one.

If the graph has more than one connected component, then the right-hand side
of the equation is replaced by one plus that number. Note that the Euler Relation
implies that the number of faces is the same for all embeddings and is therefore a
property of the graph. We get bounds on the number of edges and faces, in terms of
the number of vertices, by considering maximally connected planar graphs for which
adding any one edge would violate planarity. Every face of a maximally connected
planar graph with three or more vertices is necessarily a triangle, for if there is a
face with more than three edges, we can add a path that crosses none of the earlier
paths. Let n ≥ 3 be the number of vertices, as before. Since every face has three
edges and every edge belongs to two triangles, we have 3ℓ = 2m. We use this
relation to rewrite the Euler Relation: n−m+ 2m

3 = 2 and n− 3ℓ
2 +ℓ = 2 and hence

m = 3n − 6 and ℓ = 2n − 4. Every planar graph can be completed to a maximally
connected planar graph, which implies that it has at most these numbers of edges
and faces.

Non-planarity. We can use the Euler Relation to prove that the complete graph
of five vertices and the complete bipartite graph of three plus three vertices are not
planar. Consider first K5, which is drawn in Figure I.13, left. It has n = 5 vertices
and m = 10 edges, contradicting the upper bound of at most 3n − 6 = 9 edges

Figure I.13: K5 on the left and K3,3 on the right, each drawn with the un-
avoidable one crossing.
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for maximally connected planar graphs. Consider second K3,3, which is drawn in
Figure I.13, right. It has n = 6 vertices and m = 9 edges. Each cycle has even
length, which implies that each face of a hypothetical embedding has four or more
edges. We get 4ℓ ≤ 2m and m ≤ 2n − 4 = 8 after plugging the inequality into the
Euler Relation, again a contradiction.

In a sense, K5 and K3,3 are the quintessential non-planar graphs. Two graphs are
homeomorphic if one can be obtained from the other by a sequence of operations,
each deleting a degree-2 vertex and merging their two edges into one or doing the
inverse.

Kuratowski Theorem. A simple graph is planar iff no subgraph is homeomor-
phic to K5 or to K3,3.

The proof of this result is omitted. The remainder of this section focuses on straight-
line embeddings of planar graphs.

Convex combinations. Two points a0 ̸= a1 define a unique line that passes
through both. Each point on this line can be written as x = (1 − t)a0 + ta1, for
some t ∈ R. For t = 0 we get x = a0, for t = 1 we get x = a1, and for 0 < t < 1 we
get a point in between. If we have more than two points, we repeat the construction
by adding all points y = (1− t)x+ ta2 for which 0 ≤ t ≤ 1, and so on, as illustrated
in Figure I.14. Given k+1 points a0, a1, . . . , ak, we can do the same construction in

Figure I.14: From left to right: the construction of the convex hull of five
points by adding one point at a time.

one step, calling a point x =
∑k

i=0 tiai a convex combination of the ai if
∑k

i=0 ti = 1
and ti ≥ 0 for all 0 ≤ i ≤ k. The set of convex combinations is the convex hull of
the ai.

We are interested in graphs that arise as edge-skeletons of triangulations of the
disk, like the one in Figure I.15. Letting G = (V, E) be such a graph, we distinguish
edges and vertices on the boundary from the ones in the interior of the disk. When
we embed G in R2, we make sure that the boundary edges and vertices map to
the boundary of the outer face. Since we only consider straight-line embeddings, it
suffices to study mappings of the vertex set into the plane. We call f : V → R2 a
strictly convex combination mapping if for every interior vertex u ∈ V there are real
numbers tuv > 0 with

∑
v tuv = 1 and f(u) =

∑
v tuvf(v), where both sums are over

all neighbors v of u. In words, every interior vertex maps to a point in the interior of
the convex hull of the images of its neighbors. We will repeatedly use this mapping
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in combination with a linear function h : R2 → R defined by h(x) = ⟨x, p⟩ + c,
where p ∈ R2 is a non-zero vector and c is a real number. Composing f with h, we
get h(f(u)) =

∑
v tuvh(f(v)). In words, the value we get for u is the same strictly

convex combination of the values for its neighbors.

Straight-line embeddings. Suppose we have a straight-line embedding of G in
which the boundary edges map to the boundary of the outer face. Then every
interior vertex lies inside the cycle connecting its neighbors. It follows that this
embedding defines a strictly convex combination mapping. We now show that the
reverse is also true provided the boundary vertices map to the corners of a strictly
convex polygon.

Tutte’s Theorem. Let G = (V, E) be the edge-skeleton of a triangulation of
the disk and f : V → R2 a strictly convex combination mapping that maps the
boundary vertices to the corners of a strictly convex polygon. Then drawing straight
edges between the images of the vertices gives a straight-line embedding.

We will give the proof in three steps, which we now prepare with two observations.
A separating edge of G is an interior edge that connects two boundary vertices. It is
convenient to assume that G has no separating edge, but if it does, we can split the
graph into two and do the argument for each piece. Call a path in G interior if all
its vertices are interior except possibly the first and the last. Under the assumption
of no separating edge, every interior vertex u can be connected to every boundary
vertex by an interior path. Indeed, we can find an interior path that connects u to
a first boundary vertex w. Let w0 and w1 be the neighboring boundary vertices.
Since none of the edges separate, the neighbors of w form a unique interior path
connecting w0 to w1. It follows that there is an interior path connecting u to w0.
By repeating the argument, substituting w0 for w, we eventually see that u has
interior paths to all boundary vertices.

Secondly, suppose that h ◦ f takes its maximum at an interior vertex, u. Since
h ◦ f(u) is a strictly convex combination of the values the neighbors, we conclude
that h ◦ f(v) = h ◦ f(u) for all neighbors v of u. We can iterate and because of the
mentioned interior path property we eventually reach every vertex. It thus follows
that h ◦ f has the same value at all vertices of G. We refer to this observation as
the maximum principle and to its symmetric version as the minimum principle.

Proof of Tutte’s Theorem. We now present the proof in three steps. First, all
interior vertices u of V map to the interior of the strictly convex polygon whose
corners are the images of the boundary vertices. To see this, choose p ∈ R2 and
c ∈ R such that the line h−1(0) defined by h(x) = ⟨x, p⟩+c contains a boundary edge
and h(f(w)) > 0 for all boundary vertices other than the endpoints of that edge.
Then h(f(u)) > 0; otherwise, the minimum principle would imply h(f(v)) = 0 for
all vertices. Repeating this argument for all edges of the convex polygon implies
that all interior vertices u have f(u) in the interior of the polygon. This implies in
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particular that each triangle incident to a boundary edge is non-degenerate, that
is, its three vertices are not collinear.

Second, letting yuv and zuv be the two triangles sharing the interior edge uv
in G, the points f(y) and f(z) lie on opposite sides of the line h−1(0) that passes
through f(u) and f(v). To see this, assume h(f(y)) > 0 and find a strictly rising
path connecting y to the boundary. It exists because h(f(y)) > h(f(u)), so one of
the neighbors of y has strictly larger function value, and the same is true for the
next vertex on the path, and so on. Since h(f(y)) > 0, both u and v have neighbors
for which h ◦ f is negative. So we can find a strictly falling path connecting u to
the boundary and the same for v, as illustrated in Figure I.15. The rising path

u

v
y

z

Figure I.15: One strictly rising and two strictly falling paths connecting y, u,
and v to the boundary.

does not cross the falling paths, but the two falling paths may share a vertex, as in
Figure I.15. In either case, we get a piece of the triangulation bounded by vertices
with non-positive function values. Other than u and v, all other vertices in this
boundary have strictly negative function values. If z belongs to the boundary of
this piece, then it has strictly negative function value simply because it differs from
u and v. Otherwise, it belongs to the interior of the piece, and we have h(f(z)) < 0
by the maximum principle. We note that this argument uses h(f(y)) > 0 in an
essential manner. To show that this assumption is justified, we connect yuv by a
sequence of triangles until we reach a boundary edge. In this sequence, any two
contiguous triangles share an edge. As observed in the first step, the image of the
last triangle is non-degenerate. Going backward, this implies that the image of the
second to the last triangle is non-degenerate, and so on. Finally, the image of yuv
is non-degenerate, as required.

Third, no two of the edges cross. To get a contradiction, assume x is a point in
the common interiors of two edges, uv and u′v′. Choose a half-line that emanates
from x and avoids the images of all vertices. Since the vertices y and z that form
triangles with uv map to opposite sides of the line passing through f(u) and f(v),
the half-line intersects exactly one of the edges yu, yv, zu, zv. Continuing along the
half-line, we get a sequence of edges starting with uv and ending with a boundary
edge. Similarly, the half-line defines another sequence of edges starting with u′v′
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and ending with the same boundary edge. Going back in both sequences, we pass
from one edge to an unambiguously defined preceding edge. Since we start with
the same boundary edge, we get uv = u′v′. This completes the proof of Tutte’s
Theorem.

Constructing straight-line embeddings. Tutte’s Theorem leads to a simple
algorithm for constructing a straight-line embedding of a planar graph. For sim-
plicity, we assume that it is the edge-skeleton of a triangulation of the disk and that
none of its edges separates. We reindex such that u1 to uk are ordered along the
boundary of the outer face and uk+1 to un are the interior vertices of the graph.
First, we set f(ui) = (cos(2iπ/k), sin(2iπ/k)), for 1 ≤ i ≤ k, to place the bound-
ary vertices in order on the unit circle in the plane. They form the corners of a
strictly convex polygon, as required. Expressing the image of each interior vertex
as a strictly convex combination of the images of its neighbors, we write

f(uj) =
1

dj

∑
f(v),

for each k+1 ≤ j ≤ n, where dj is the degree of ui and the sum is over all neighbors
v of uj in the graph. We get a system of n− k linear equations in n− k unknowns,
the images of the interior vertices. Writing the system in matrix form, we get one
non-zero coefficient for each interior vertex and two more for each edge connecting
two interior vertices. By the Euler Relation, the number of edges is less than
3n. If follows that the system is sparse with fewer than 7n non-zero coefficients.
It thus permits efficient methods to find the solution, which by Tutte’s Theorem
corresponds to a straight-line embedding of the graph.

Bibliographic notes. Graphs that can be drawn in the plane without crossings
arise in a number of applications, including geometric modeling, geographic infor-
mation systems, and others. We refer to [117] for a collection of mathematical and
algorithmic results specific to planar graphs. The fact that all planar graphs have
straight-line embeddings has been known long before Tutte’s Theorem. Early last
century, Steinitz showed that every 3-connected planar graph is the edge-skeleton
of a convex polytope in R3 [137]. This skeleton can be projected to R2 to give a
straight-line embedding. In the 1930s, Koebe proved that every planar graph is the
intersection graph of a collection of possibly touching but not otherwise overlapping
closed disks in R2 [95]. We get a straight-line embedding by connecting the centers
of the touching disks. The original theorem by Tutte is for coefficients tuv equal to
one over the degree of u [141]. The more general version and the proof presented
in this section are fashioned after the more recent paper by Floater [68]. Efficient
numerical methods for solving systems of linear equations can be found in the linear
algebra text by Strang [139].
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Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical ques-
tion can be answered using knowledge of the material combined with some thought
and analysis.

1. Deciding connectivity (two credits). Given a simple graph with n vertices
and m edges, the disjoint set system takes time proportional to (n + m)α(n)
to decide whether or not the graph is connected.

(i) Describe a different algorithm that makes the same decision in time pro-
portional to n + m.

(ii) Modify the algorithm so it computes the connected components in time
proportional to n + m.

2. Shelling disks (two credits). Consider a triangulation of a simple closed poly-
gon in the plane, but one that may have interior vertices inside the polygon. A
shelling is a total order of the triangles such that the union of the triangles in
any initial sequence is homeomorphic to a closed disk. Prove that every such
triangulation has a shelling.

3. Jordan curve (one credit). Recall the Jordan Curve Theorem, which says that
every simple closed curve in the plane decomposes R2 into two components.

(i) Show the same is true for a simple closed curve on the sphere, S2 = {x ∈
R2 | ∥x∥ = 1}.

(ii) Give an example that shows the result does not hold for simple closed
curves on the torus.

4. Homeomorphisms (one credit). Give explicit homeomorphisms to show that
the following spaces with topologies inherited from the respective Euclidean
spaces that contain them are homeomorphic:

• R1 = R , the real line;

• (0, 1), the open interval;

• S1 − {(0, 1)}, the circle with one point removed.

Generalize your homeomorphisms to show the same for the Euclidean plane,
the open disk, and the sphere with one point removed.

5. Splitting a link (two credits). Prove that the Borromean rings shown in Figure
I.16 on the left are not splittable.

6. Deforming a link (two credits). Use Reidemeister moves to demonstrate that
the two links in Figure I.16 in the middle and on the right are equivalent.

7. Planar graph coloring (two credits). Recall that every planar graph has a
vertex of degree at most five. We can use this fact to show that every planar
graph has a vertex 6-coloring, that is, a coloring of each vertex with one of six
colors such that any two adjacent vertices have different colors. Indeed, after
removing a vertex with fewer than six neighbors we use induction to 6-color
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Figure I.16: Left: any two of the three knots of the Borromean rings can be
split but are held together by the third knot. Right: two generic projections
of the Whitehead link.

the remaining graph, and when we put the vertex back, we choose a color that
differs from the colors of its neighbors. Refine the argument to prove that every
planar graph has a vertex 5-coloring.

8. Edge coloring (three credits). We color each edge of a maximally connected
planar graph with one of three colors such that each face (triangle) has all three
colors in its boundary.

(i) Show that a 4-coloring of the vertices implies a 3-coloring of the edges.

(ii) Show that a 3-coloring of the edges implies a 4-coloring of the vertices.

In other words, proving that every planar graph has a vertex 4-coloring is
equivalent to proving that every triangulation in the plane has an edge 3-
coloring.





Chapter II

Surfaces

The most common 2-dimensional spaces are 2-manifolds, or surfaces, which come
in two varieties: with and without boundary. We usually envision them put into
3-dimensional space, sometimes with and preferably without self-intersections. Not
all surfaces can be embedded in 3-dimensional Euclidean space and self-intersections
are unavoidable, but often they are accidental. Indeed, choosing a nice embedding
of a surface in space is an interesting computational problem. We address this
question for surfaces made out of triangles.

II.1 2-dimensional Manifolds

In our physical world, the use of the term surface usually implies a 3-dimensional,
solid shape of which this surface is the boundary. In mathematics, the solid shape
is not assumed, and we discuss surfaces in their own right. Indeed, there are closed
surfaces that are not the boundary of any solid shape. They are non-orientable and
do not embed into 3-dimensional Euclidean space, which is why our intuition for
them is lacking.

Topological 2-manifolds. Consider the open disk of points at distance less than
one from the origin, D = {x ∈ R2 | ∥x∥ < 1}. It is homeomorphic to R2, as
for example established by the homeomorphism f : D → R2 defined by f(x) =
x/(1−∥x∥). We will call any subset of a topological space that is homeomorphic to
D an open disk. A 2-manifold (without boundary) is a topological space M whose
points all lie in open disks. Intuitively, this means that M looks locally like the
plane.

M is compact if for every covering of M by open sets, called an open cover, we
can find a finite number of the sets that cover M. We say that the open cover
always has finite subcover. Examples of non-compact 2-manifolds are R2 itself
and open subsets of R2. Examples of compact 2-manifolds are shown in Figure

27
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II.1, top row. We get 2-manifolds with boundary by removing open disks from 2-
manifolds without boundary. Alternatively, we could require that each point have a
neighborhood homeomorphic to either D or D+, the half-disk obtained by removing
all points with negative second coordinate from D. The boundary of a 2-manifold
with boundary consists of all points x whose neighborhoods are homeomorphic to
D+. Within the boundary, the neighborhood of every point x is an open interval,
which is the defining property of a 1-manifold, or curve. There is only one type of
connected, compact 1-manifold, namely the closed curve. Following the practice of
considering topologically equivalent spaces the same, we will therefore often refer
to a closed curve as a circle. If M is compact, this implies that its boundary is a
collection of circles. Examples of 2-manifolds with boundary are the (closed) disk,
the cylinder, and the Möbius strip, all illustrated in Figure II.1, bottom row.

Figure II.1: Top from left to right: the sphere, S2, the torus, T2, the double
torus, T2#T2. Bottom from left to right: the disk, the cylinder, the Möbius
strip.

We get new 2-manifolds from old ones by gluing them to each other. Specifically,
remove an open disk from each of two 2-manifolds, M and N, find a homeomorphism
between the two boundary circles, and identify corresponding points. The result is
the connected sum of the two manifolds, denoted as M#N. Forming the connected
sum with the sphere does not change the manifold since it just means replacing one
disk by another. Adding the torus is the same as attaching the cylinder at both
boundary circles after removing two open disks.

Orientability. Of the examples we have seen so far, the Möbius strip has the
curious property that it seems to have two sides locally at every interior point
but there is only one side globally. To express this property intrinsically, that is,
without reference to the embedding in R3, we consider a small, oriented circle inside
the strip. We move it around without altering its orientation, like a clock whose
fingers keep turning in the same direction. However, if we slide the clock once
around the strip, its orientation is the reverse of what it used to be, and we call the
path of its center an orientation-reversing closed curve. There are also orientation-
preserving closed curves in the Möbius strip, such as the one that goes around the
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Figure II.2: Left: the projective plane, P2, obtained by gluing a disk to a
Möbius strip. Right: the Klein bottle obtained by gluing two Möbius strips
together. The vertical lines are self-intersections that we ignore.

strip twice following along close to the boundary. If all closed curves in a 2-manifold
are orientation-preserving, then the 2-manifold is orientable; otherwise, it is non-
orientable. The curves drawn on the projective plane and the Klein bottle in Figure
II.2 are all orientation-preserving. We leave finding orientation-reversing curves on
the same two surfaces as an instructive exercise for the reader.

Note that the boundary of the Möbius strip is a single circle. We can therefore
glue the strip to a sphere or a torus after removing an open disk from the latter.
This operation is often referred to as adding a cross-cap to the sphere or torus.
The result is homeomorphic to the surface obtained by identifying antipodal points
on the circle where the disk was removed. In the case of the sphere, we get the
projective plane, the sphere with one cross-cap, and in the case of the torus, we get
the Klein bottle, the sphere with two cross-caps. Both cannot be embedded in R3,
so we have to draw them with self-intersections, but these should be ignored when
we think about these surfaces.

Classification. As it turns out, we have seen examples of each major kind of
compact 2-manifold. They were completely classified about a century ago by cutting
and gluing to arrive at a unique representation for each type. This representation is
a convex polygon whose edges are glued in pairs, called a polygonal schema. Figure
II.3 shows that the sphere, the torus, the projective plane, and the Klein bottle can
all be constructed from the square. More generally, we have a 4g-gon for a sphere
with g tubes and a 2g-gon for a sphere with g cross-caps attached to it. The gluing
pattern is shown in the second row of Figure II.3. Note that the square of the torus
is in standard form but that of the Klein bottle is not.

Classification Theorem for Compact 2-manifolds. The two infinite fam-
ilies S2, T2, T2#T2, . . . and P2, P2#P2, . . . exhaust the compact 2-manifolds with-
out boundary.

The first family of orientable, compact 2-manifolds consists of the sphere, the torus,
the double torus, and so on. The second family of non-orientable, compact 2-
manifolds consists of the projective plane, the Klein bottle, the triple projective
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Figure II.3: Top from left to right: the sphere, the torus, the projective plane,
and the Klein bottle. After removing the (darker) Möbius strip from the last
two, we are left with a disk in the case of the projective plane and another
Möbius strip in the case of the Klein bottle. Bottom: the polygonal schema
in standard form for the double torus on the left and the double Klein bottle
on the right.

plane, and so on. To get a classification of the connected, compact 2-manifolds
with boundary, we can take one without boundary and make h holes by removing
the same number of open disks. Each starting compact 2-manifold and each h ≥ 1
give a different surface, and they exhaust all possibilities.

Triangulations. To triangulate a 2-manifold, we decompose it into triangular
regions, each a disk whose boundary circle is cut at three points into three paths.
We may think of the region and its boundary as the homeomorphic image of a
triangle. By taking a geometric triangle for each region and arranging them so
they share vertices and edges the same way as the regions, we obtain a piecewise
linear model which is a triangulation if it is homeomorphic to the 2-manifold. See
Figure II.4 for a triangulation of the sphere. Since the triangles are geometric, the
condition of homeomorphism requires that any two either be disjoint, share an edge,
or share a vertex. Sharing two edges is not permitted for then the two triangles
would be the same. It is also not permitted that two vertices of a triangle be the
same. To illustrate these conditions, we note that the triangulation of the first
square in Figure II.3 is not a valid triangulation of the sphere, but the triangulation
of the second square is a valid triangulation of the torus.

Given a triangulation of a 2-manifold M, we may orient each triangle. Two tri-
angles sharing an edge are consistently oriented if they induce opposite orientations
on the shared edge, as in Figure II.4. Then M is orientable iff the triangles can be
oriented in such a way that every adjacent pair is consistently oriented.
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Figure II.4: The sphere is homeomorphic to the surface of an octahedron,
which is a triangulation of the sphere.

Euler characteristic. Recall that a triangulation is a collection of triangles,
edges, and vertices. We are only interested in finite triangulations. Letting n,
m, and ℓ be the numbers of vertices, edges, and triangles, as in the previous chap-
ter, the Euler characteristic is their alternating sum, χ = n−m + ℓ. We have seen
that the Euler characteristic of the sphere is χ = 2, no matter how we triangulate.
More generally, the Euler characteristic is independent of the triangulation for every
2-manifold.

Euler Characteristic of Compact 2-manifolds. A sphere with g tubes
has χ = 2 − 2g and a sphere with g cross-caps has χ = 2 − g.

The number g is the genus of M; it is the maximum number of disjoint closed
curves along which we can cut without disconnecting M. To see this result, we may
triangulate the polygonal schema of M. For a sphere with g tubes we have ℓ = 1
region, m = 2g edges, and n = 1 vertex. Further decomposing the edges and regions
does not change the alternating sum, so we have χ = 2 − 2g. For a sphere with g
cross-caps we have ℓ = 1 region, m = g edges, and n = 1 vertex giving χ = 2 − g.

Observe that adding a tube decreases the Euler characteristic by two, while adding
a cross-cap decreases it by only one. Indeed, we can substitute k handles for 2k
cross-caps and obtain the g-fold projective plane from the k-fold torus by gluing
g−2k cross-caps, provided g > 2k. Note that non-orientability cannot be cancelled
by the connected sum. Hence, this operation can get us from the orientable to the
non-orientable manifolds but not back.

Doubling. The compact, non-orientable 2-manifolds can be obtained from the
orientable 2-manifolds by identifying points in pairs. For example, if we identify
opposite (antipodal) points of the sphere, we get the projective plane. We can also go
in the other direction, constructing orientable manifolds from non-orientable ones;
see Figure II.5. Imagine a triangulation of a connected, compact, non-orientable
2-manifold N in R3, drawn with self-intersections, which we ignore. Make two
copies of each triangle, edge, and vertex offsetting them slightly, one on either side
of the manifold. Here sidedness is local and therefore well defined. The triangles
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Figure II.5: Doubling the Klein bottle produces the torus.

fit together locally, and because N is connected and non-orientable, they form the
triangulation of a connected 2-manifold, M. It is orientable because one side is
consistently facing N. Since all triangles, edges, and vertices are doubled, we have
χ(M) = 2χ(N). Using the relation between genus and Euler characteristic, we have
χ(N) = 2 − g(N) and therefore χ(M) = 4 − 2g(N) = 2 − 2g(M). It follows that
M has g(M) = g(N) − 1 tubes. As listed in Table II.1, the doubling operation
constructs the sphere from the projective plane, the torus from the Klein bottle,
etc. The result of the doubling operation is sometimes called the double cover, since
the reverse operation of re-identifying doubled regions maps M to N, covering it
twice.

χ(N) g(N) N M g(M) χ(M)
1 1 P2 S2 0 2
0 2 P2#P2 T2 1 0
−1 3 P2#P2#P T2#T2 2 −2
. . . . . . . . . . . . . . . . . .

Table II.1: Doubling turns the non-orientable 2-manifold on the left into the
orientable 2-manifold on the right.

Bibliographic notes. The confusing aspects of non-orientable 2-manifolds have
been captured in a delightful novel about the life within such a surface [1]. The
classification of compact 2-manifolds is sometimes credited to Brahana [20] and at
other times to Dehn and Heegard [43]. The classification of 3-manifolds, on the other
hand, is an ongoing project within mathematics. With the proof of the Poincaré
conjecture by Perelman, there is new hope that the classification of 3-manifolds
can be accomplished soon. In contrast, recognizing whether two triangulated 4-
manifolds are homeomorphic is undecidable [104]. The classification of manifolds
from first principles beyond dimension three is therefore a hopeless undertaking.
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II.2 Searching a Triangulation

Many algorithms benefit from a convenient data structure that represents a surface
by storing its triangulation. In this section, we describe such a data structure and
show how to use it to determine the topological type of a surface.

Ordered triangles. We begin with the description of the core piece of the data
structure, which is a representation of the symmetry group of the standard triangle.
Its main function will be to keep track of direction and orientation when we navigate
the triangulation. This group is isomorphic to the group of permutations of three
elements, the vertices of the triangle. We call each permutation an ordered triangle
and use cyclic shifts and transpositions to move between them. As illustrated in
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Figure II.6: The symmetry group of the standard triangle consists of six or-
dered versions. The cyclic shifts partition the group into two orientations, each
consisting of three ordered triangles.

Figure II.6, the cyclic shift from abc to bca corresponds to advancing the leading
directed edge to the next position, from ab to bc. The transposition of the leading
two vertices corresponds to reversing the direction of the lead edge while keeping
the third vertex fixed.

We store each triangle in a single node of the data structure, to be described
shortly. A reference to the triangle consists of a pointer to this node, µ, together
with a three-bit integer, ι, identifying the ordered version of the triangle. Using
the first bit to identify the orientation, we represent abc, bca, cab, bac, cba, acb by
ι = 0, 1, 2, 4, 5, 6, in this sequence. Moving between different ordered versions of the
same triangle can be done with simple arithmetic operations on ι. To advance the
lead edge, we increment using modulo arithmetic.
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ordTri enext(µ, ι)
if ι ≤ 2 then return (µ, (ι + 1) mod 3)

else return (µ, (ι + 1) mod 3 + 4)
endif.

To reverse the direction of the lead edge, we flip the first bit.

ordTri sym(µ, ι)
return (µ, (ι + 4) mod 8).

We see that encoding the symmetry group requires very little overhead, just a few
bits whenever we point to a triangle.

Data structure. We are now ready to describe the data structure representing
the triangulation K of a connected, compact, 2-manifold without boundary. We
store the vertices of K in a linear array, V [1..n]. We store the triangles in the nodes
of a graph, by which we mean a data structure consisting of memory locations with
pointers referring to each other. The arcs connect nodes of neighboring triangles
defined by shared edges. Since every triangle has exactly three neighbors, the degree
of every node is three. Inside a node, we store pointers to the three neighbors as
well as to the three vertices, which are indices into V .

ba

c zy

x

Figure II.7: The triangle abc with its three neighbors. The arrowheads identify
the directed lead edges.

Let abc be a triangle and x, y, z the respective third vertices of the neighbor
triangles. Each ordered version of the triangle points to its lead vertex and the
ordered neighbor triangle that shares the directed lead edge. To describe this in
an example, we assume the nodes µ, µx, µy, µz store the four triangles with ι = 0
corresponding to the ordered versions abc, abx, ayc, zbc, as drawn in Figure II.7.
Assuming a is stored at positions i in V and observing that ab is the lead edge of
abx, the ordered triangle abc stores pointers (µ, 0).org = i and (µ, 0).fnext = (µx, 0).
Assuming furthermore that b and c are stored at positions j and k of the vertex
array, the other five ordered triangles in µ store pointers to the positions j, k, j,
k, i and to the ordered triangles (µz, 1), (µy, 2), (µx, 4), (µz, 5), (µy, 6), in this
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sequence. To move around in the triangulation, we use simple functions to retrieve
this information.

ordTri fnext(µ, ι)
return (µ, ι).fnext .

int org(µ, ι)
return (µ, ι).org.

There is clearly redundancy left in the proposed data structure, but we resist further
optimizations to keep the implementation transparent.

Depth-first Search. A common operation is visiting all triangles of the trian-
gulation. This corresponds to searching the entire representing graph. Two of the
most popular strategies are Breadth-first Search and Depth-first Search. As sug-
gested by the name, Breadth-first Search proceeds along an advancing front that
expands around an initial node. In contrast, Depth-first Search ventures directly
into the unknown and covers the neighborhood only after returning from the ad-
venture. We implement the latter strategy using a recursive function. Assuming
all nodes are initially unmarked, we start the search by calling that function for an
arbitrary first node µ0.

void Visit(µ)
if µ is unmarked then mark µ; P1;

forall neighbors ν of µ do
Visit(ν)

endfor; P2
else P3

endif.

The search proceeds along a spanning tree of the graph defined by calling a neigh-
boring node ν a child of µ if the first visit to ν originates from µ. The root of
this tree is µ0. To customize the function, we would add instructions at the three
indicated places:

P1: steps to be executed the first time the node is visited;

P2: steps to be executed after all children have been processed;

P3: steps to be executed each time the node is revisited.

We will see examples of such customizations shortly. After searching the graph
once, we will typically search it once more to remove all the marks and prepare the
graph for further processing. Without accounting for the additional instructions,
the running time of Depth-first Search is linear in n + m, the number of nodes and
arcs in the graph. Indeed, each arc is traversed exactly twice, once in each direction.
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Orientability. We use Depth-first Search to decide whether a connected, compact
2-manifold without boundary given by a triangulation K is orientable. We do this
by orienting all triangles in a consistent manner and report non-orientability if the
attempt fails. In other words, we choose one of two orientations for each triangle
such that the shared edges between neighboring triangles are directed in opposite
ways. Assuming none of the orientations are yet chosen, we start the process by
calling the function for an arbitrary first ordered triangle (µ0, ι0).

boolean isOrientable(µ, ι)
if µ is unmarked then mark µ and choose orientation containing ι;

bx = isOrientable(fnext(sym(µ, ι)));
by = isOrientable(fnext(enext(sym(µ, ι))));
bz = isOrientable(fnext(enext2(sym(µ, ι))));
return bx and by and bz

else return [orientation of µ contains ι]
endif.

Here we orient µ at P1, we unwind the for-loop, and we return a boolean value at
P2 and another at P3. The latter value indicates whether or not we have consis-
tent orientations in spite of the triangle µ having been oriented prior to the current
visit. The boolean value returned at P2 indicates whether or not we have found a
contradiction to orientability. A single value of false anywhere during the com-
putation is propagated to the root of the search tree, telling us that the surface is
non-orientable. Since each triangle has only three neighbors, the running time of
the algorithm is linear in the number of triangles.

Classification. Recall from the preceding section that the type of a connected,
compact 2-manifold without boundary is uniquely determined by its genus and
whether or not it is orientable. Since every triangle has three edges and every edge
belongs to two triangles, we have 3ℓ = 2m and therefore 2n − ℓ = 4 − 4g in the
orientable case and 2n − ℓ = 4 − 2g in the non-orientable case. Assuming we know
the number of vertices from the size of the array, we just need to count the triangles,
which we do again by Depth-first Search.

int #Triangles(µ, ι)
if µ is unmarked then mark µ;

ℓx = #Triangles(fnext(µ, ι));
ℓy = #Triangles(fnext(enext(µ, ι)));
ℓz = #Triangles(fnext(enext2(µ, ι)));
return ℓx + ℓy + ℓz + 1

else return 0
endif.

Combining the information, it is now easy to determine the genus.
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int Genus(µ, ι)
ℓ = #Triangles(µ, ι);
if isOrientable(µ, ι) then return (ℓ− 2n + 4)/4

else return (ℓ− 2n + 4)/2
endif.

In summary, we can decide the topological type of a triangulated, compact 2-
manifold without boundary in time linear in the number of triangles. Clearly,
we cannot do it faster since the entire triangulation must be searched; otherwise,
we could alter the type by a small modification. By adding another search counting
the boundaries, we can extend this result to compact 2-manifolds with boundary.

Bibliographic notes. Data structures for storing triangulated 2-manifolds have
been described in the computer science literature since Baumgart [16]; see also
the doubly-linked edge lists in [124] and the quad-edge structure in [80]. These
data structures differ in their details from the graph representation described in
this section but are functionally very similar. Extensions to storing 3- and higher-
dimensional complexes can be found in [51] and in [21]. Searching graphs is a core
topic in computer science, and descriptions of Depth-first Search can be found in
most algorithms texts, including [6] and [41].

II.3 Self-intersections

Since non-orientable, compact 2-manifolds without boundary cannot be embed-
ded in 3-dimensional Euclidean space, all their models in that space occur with
self-intersections. In contrast, all orientable, compact 2-manifolds have embed-
dings, but their models may have accidental self-intersections. Removing these
self-intersections is a core topic in repairing surface models of solid shapes.

Mapping into space. Let M be a compact 2-manifold without boundary. We
want to say what it means for M to be smooth and for a continuous map f : M → R3

to be a smooth mapping. We define a coordinate chart, (U,φ), to be an open set,
U ⊂ M, together with a continuous map, φ : U → R2, that is a homeomorphism
onto its image. Two coordinate charts, (U,φ) and (V,ψ), are compatible if U and
V are disjoint, or the map

φ ◦ ψ−1 : ψ(U ∩ V ) → φ(U ∩ V )

extends to a smooth map from R2 to R2. The class of such functions is often referred
to as C∞, indicating that the functions are infinitely often differentiable. We define
a smooth structure on M to be a maximal collection of compatible coordinate charts,
and call M smooth if it has a smooth structure. A continuous function f : M → R
is smooth if for each coordinate chart (U,φ) the composition f ◦ φ−1 is smooth. A
mapping f : M → R3 is smooth if all component functions fi = πi ◦ f are smooth,
where πi denotes projection onto the i-th factor.
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For the time being, we assume that M and f are smooth. If we choose a coordinate
chart, we get a local parametrization of M with two variables, s1 and s2. Collecting
the gradients of the coordinate functions in a matrix, we get the Jacobian of f :

J =

⎡

⎢⎢⎢⎢⎢⎣

∂f1

∂s1

∂f1

∂s2

∂f2

∂s1

∂f2

∂s2

∂f3

∂s1

∂f3

∂s2

⎤

⎥⎥⎥⎥⎥⎦
.

While this Jacobian matrix depends on the choice of local coordinates, its rank does
not. Notice that the rank of the Jacobian is at most two. The mapping f is an
immersion if the Jacobian has full rank two at all points of M. It is an embedding if
f is a homeomorphism onto its image. An embedding is necessarily an immersion,
but not vice versa. For smooth mappings, there are three types of generic self-
intersections, all illustrated in Figure II.8. The most interesting of the three is the

x x

x

Figure II.8: From left to right: a double point, a triple point, a branch point.

branch point, which comes in several guises. We can construct it by cutting a disk
from two sides toward the center, folding it, and re-gluing the sides as shown in
Figure II.9. Embeddings have no self-intersections at all, and immersions have only
the first two types and no branch points.

Figure II.9: Constructing the Whitney umbrella from a disk.
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The piecewise linear case. The classification of generic self-intersections is sim-
ilar in the piecewise linear case in which M is given by a finite triangulation, K.
However, in contrast to the smooth case, the enumeration of the generic types is
elementary. Since M is a 2-manifold, the triangles that contain a vertex form a
disk. It is not difficult to see that imposing this condition on the vertices suffices to
guarantee that K triangulates a 2-manifold without boundary. On the other hand,
requiring that each edge belong to exactly two triangles is not sufficient.

Figure II.10: The three ways that two triangles whose vertices are in general
position in R3 can cross each other.

We put K into space by mapping each vertex to a point in R3. The edges and
triangles are mapped to the convex hulls of the images of their vertices. This
mapping is an embedding iff any two triangles are either disjoint or they share
a vertex or they share an edge. Any other type of intersection is improper and
is referred to as a crossing. It is convenient to assume that the points are in
general position, that is, no three are collinear and no four are coplanar. Under this
assumption, there are only three types of crossings possible between two triangles,
all shown in Figure II.10. Each crossing is a line segment common to two triangles.
In the first case, one of the endpoints of the line segment coincides with the image of
a vertex, which necessarily belongs to both crossing triangles. In the other two cases,
each endpoint of the line segment lies on the images of an edge in the triangulation.

Recognizing crossings. We reduce the recognition problem from two triangles
to an edge and a triangle and further to four points in space. Writing a1, a2, a3 for
the coordinates of the point a in space and similarly for the points x, y, and z, we
say the sequence axyz has positive orientation if the matrix

∆(a, x, y, z) =

⎡

⎢⎢⎣

1 a1 a2 a3

1 x1 x2 x3

1 y1 y2 y3

1 z1 z2 z3

⎤

⎥⎥⎦

has positive determinant. We observe that this corresponds to the case in which
a sees xyz make a right turn in space. The four points lie in a common plane
iff the determinant vanishes. Finally, we say axyz has negative orientation if
det∆(a, x, y, z) < 0.

Using the ability to decide the orientation of a sequence of four points, we now
turn to the next more complicated problem given by five points, a, b, x, y, z in R3.
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We say the edge ab stabs the triangle xyz if the two have an improper intersection.
Assuming the five points are distinct and in general position, we have only two
cases, namely either the intersection is empty or there is a point in the common
interior of the edge and the triangle. Thus, ab stabs xyz iff a and b lie on different
sides of the plane spanned by xyz and ab forms the same orientation with the three
directed edges xy, yz, and zx.

boolean doesStab(a, b, x, y, z)
return sign(det∆(a, x, y, z)) ̸= sign(det∆(b, x, y, z)) and

sign(det∆(a, b, x, y)) = sign(det∆(a, b, y, z)) = sign(det∆(a, b, z, x)).

We finally return to the original recognition problem formulated for two triangles,
abc and xyz. First, we consider the case in which they share one of the points,
a = x. Then we have a crossing iff one of the respective opposite edges stabs the
other triangle. Second, we consider the case in which the six points are distinct.
Then the triangles are disjoint iff none of the six edges stabs the other triangle,
and the triangles cross iff exactly two edges stab the other triangle. Assuming
general position, there are no other cases. If the two stabbing edges belong to the
same triangle, we have the case in the middle of Figure II.10, and if they belong to
different triangles, we have the case on the right.

Curves and preimages. Returning to the case on the left in Figure II.10, we see
that one endpoint of the line segment lies on the image of an edge in the triangula-
tion; that is, it is not a vertex. There is a unique triangle on the other side of that
edge that continues the intersections. Similarly, there are unique continuations of
the intersection in the middle case and the right case. Starting at a crossing, we
can therefore trace the intersection triangle by triangle, adding a line segment at a
time. Since we only have finitely many triangles, the curve must either end or close
up by coming back to where it started. These are the only two possibilities:

• a path that starts at the image of a vertex and ends at the image of another
vertex;

• a closed curve that avoids the images of all vertices in the triangulation.

The first possibility involves two instances of the left case in Figure II.10; the second
involves none. Almost all points of such a path or closed curve are double points.
Exceptions are triple points at which the curves intersect each other or themselves.
The number of triple points is at most the number of ways we can choose three
triangles, which is finite, and generically there are no points that belong to more
than three triangles.

When we trace a path or a closed curve in space, we can, at the same time, trace
its preimage under the mapping f . In the case of a path, we get two arcs starting at
a common vertex and ending at another common vertex of the triangulation. In the
case of the closed curve, we get either two loops or one loop whose image covers the
curve twice. The three cases are illustrated in Figure II.11. The most interesting
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f f f

Figure II.11: The preimage of an intersection curve. From left to right: two
arcs with common endpoints, two loops, one loop covering the closed curve
twice.

case is the double-covering loop. Such a loop is necessarily orientation-reversing.
To see this, we may again trace the closed curve, its image in R3, and this time
draw parallel curves to the left and the right on one of the two intersecting sheets.
At the time we come back to where we started, the parallel curves have moved to
the other sheet. There is either a clockwise or a counterclockwise rotation of the
first sheet to the second that maps each curve locally to itself. If the rotation is
clockwise, as seen by looking in the direction of the curve, then it is clockwise at
all points of the curve. The same is true for the counterclockwise rotation. This
implies that after another round we map the first sheet to itself but with reversed
orientation. The double-covering loop can thus only happen if M is non-orientable.
No conclusion can be drawn if the preimage consists of two loops.

To construct an example of a double-covering loop, we sweep the midpoint of a
rod (a line segment) along a circle in space. The rod is normal to the circle at all
times, but it may rotate within the normal plane as we sweep along. If there is no
rotation, then the rod sweeps out a cylinder, and if the rotation is π after one time
around, then we get a Möbius strip. However, if the rotation is π

2 , we need a second
time around to complete the surface. We thus get a Möbius strip that crosses itself
along the center circle, which is covered twice.

Immersions of the Klein bottle. We have seen a first picture of the Klein bottle
in Figure II.2. The surface in that drawing intersects itself along a path which ends
at two branch points. In the smooth case, we get rank-deficient Jacobians at the
branch points, implying that this is not the image of an immersion. However, the
Klein bottle can also be mapped without branch points, and we conclude this section
with the description of two such mappings.

In the first immersion, the neck of the bottle extends and turns back to the body,
like a sleeping Flamingo, but then continues and passes through the surface, as
sketched in Figure II.12 on the left. The closed intersection curve is the common
image of two orientation-preserving loops. The second immersion is obtained by
sweeping the cross point of a figure-eight curve along a circle in space. Similar to
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Figure II.12: Two immersions of the Klein bottle. Both models intersect them-
selves in a closed curve whose preimage is two loops. On the left, these loops
are orientation-preserving, and on the right, they are orientation-reversing.

the rod example above, we keep the figure-eight normal to the circle at all times, but
we rotate within the normal plane. Turning the figure-eight upside down during
one time around, we exchange the lobes and form a surface that intersects itself
along the circle, as sketched in Figure II.12 on the right. The preimage of the circle
consists of two loops, both of which are orientation-reversing.

Bibliographic notes. The way surfaces in 3-dimensional space intersect each
other and themselves is discussed in length and with many illustrations by Carter
[28]. In the generic case, a smooth mapping to R3 has only three types of sin-
gularities: double points, triple points, and branch points [13]. Whitney proved
that every d-manifold has an immersion in R2d−1 [158]. This implies that every 2-
manifold can be immersed in R3. For the projective plane, we must have a branch
point or a triple point, which implies that every immersion has a triple point [13].
Whitney also proved that every d-manifold can be embedded in R2d [157], implying
that every 2-manifold can be embedded in R4.

II.4 Surface Simplification

In applications, it is often necessary to simplify the data or its representation. One
reason is measurement noise,
features, which we look for at various levels of resolution. In this section, we study
edge contractions used in simplifying triangulated surface models of solid shapes.

Edge contraction. Suppose K is a triangulation of a 2-manifold without bound-
ary. We recall that this means that edges are shared by pairs of triangles and vertices
by rings of triangles, as depicted in Figure II.13. Let a and b be two vertices and
ab the connecting edge in K. By the contraction of ab we mean the operation that

isAnother reasonwhich we would like to eliminate.
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identifies a with b and removes duplicates from the triangulation. Calling the new
vertex c, we get the new triangulation L from K by

• removing ab, abx, and aby;

• substituting c for a and for b wherever they occur in the remaining set of
vertices, edges, and triangles;

• removing resulting duplications making sure L is a set.

As a consequence of the operation, there are new incidences between edges and
triangles that did not exist in K; see Figure II.13.

x x

y y

a b c

Figure II.13: To contract ab, we remove the two dark triangles and repair the
hole by gluing their two left edges to their two right edges.

Algorithm. To simplify a triangulation, we iterate the edge contraction opera-
tion. In the abstract setting, any edge is as good as any other. In a practical
situation, we will want to prioritize the edges so that contractions that preserve the
shape of the manifold are preferred. To give meaning to this statement, we will
define shape to mean the topological type of the surface as well as the geometric
form we get when we embed the triangulation in R3. We will discuss the latter
meaning later and for now assume we have a function that assigns to each edge
ab a non-negative real number Error(ab) assessing the damage the contraction
of ab causes to the geometric form. Small numbers will mean little damage. To
write the algorithm, we assume a priority queue storing all edges ordered by the
mentioned numerical error assessment. This is a data structure that supports the
operations of returning the top priority edge as well as of inserting and deleting
an edge, each in time at most logarithmic in the number of edges in the queue.
Specifically, we assume a function isEmpty that tests whether or not the priority
queue still contains edges and a function MinExtract that removes the edge with
minimum error from the priority queue and returns it. Furthermore, we assume the
availability of a boolean test isSafe that decides whether or not the contraction of
an edge preserves the topological type of the surface.
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while not isEmpty do ab = MinExtract;
if isSafe(ab) then contract ab endif

endwhile.

Some modifications are necessary to recognize edges that no longer belong to the
triangulation and to put edges back into the priority queue when they become safe
for contraction. Details are omitted. The running time of the algorithm depends
on the size of local neighborhoods in the triangulation and on the data structure we
maintain to represent it. Under reasonable assumptions, the most time-consuming
step is the maintenance of the priority queue, which for each step is only logarithmic
in the number of edges.

Topological type. We consider the question of whether or not the contraction
of an edge preserves the topological type. Define the link of an edge ab as the set
of vertices that span triangles with ab, and define the link of a vertex a as the set
of vertices that span edges with a and the set of edges that span triangles with a:

Lk ab = {x ∈ K | abx ∈ K};

Lk a = {x, xy ∈ K | ax, axy ∈ K}.

Since the topological type of K is that of a 2-manifold without boundary, each edge
link is a pair of vertices and each vertex link is a closed curve made up of edges and
vertices in K. Let L be obtained from K by contracting the edge ab. We show that
the contraction of the edge ab preserves the topological type of the surface iff the
links of the endpoints, a and b, meet in exactly two points, namely in the vertices x
and y in the link of ab, as in Figure II.13. We will simplify the language by blurring
the difference between a triangulation and the topological space it triangulates.

Link Condition Lemma. The triangulations K and L have the same topological
type iff Lk ab = Lk a ∩ Lk b.

Proof. We have Lk ab ⊆ Lk a, Lk b, by definition. The only possible violation to
the link condition is therefore an extra edge or vertex in the intersection of the two
vertex links. If Lk a and Lk b share an edge, then the contraction of ab creates an
edge that belongs to three triangles, contradicting the fact that L triangulates a
2-manifold. Similarly, if the two vertex links share no edge but a vertex z ̸∈ Lk ab,
then the contraction of ab creates an edge cz that belongs to four triangles, again
contradicting the fact that L triangulates a 2-manifold.

To prove the other direction, we draw the link of c in L as a convex polygon
in R2; see Figure II.14. Using Tutte’s Theorem from the previous chapter, we
can decompose the polygon by drawing the triangles incident to c in L. Similarly,
we can decompose the polygon by drawing the triangles incident to a and b in
K. We superimpose the two triangulations and refine to get a new triangulation,
if necessary. The result is mapped back to K and to L, effectively refining the
neighborhoods of a and b in K and that of c in L. The link of c and everything
outside that link is untouched by the contraction. Hence, on and outside the link, K
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a b
c

Figure II.14: Mapping the neighborhood of c in L to a triangulated polygon
in the plane and overlaying it with a similar mapping of the neighborhoods of
a and b in K.

and L are the same, and inside the link, K and L are now isomorphic by refinement.
It follows that K and L are isomorphic and therefore have the same topological type.

Squared distance. To discuss the geometric meaning of shape, we now assume
that K is embedded in R3, with straight edges and flat triangles. To develop an
error measure, we use the planes spanned by the triangles. Letting u ∈ S2 be the
unit normal of a plane h and δ ∈ R its offset, we can write h as the set of points
y ∈ R3 for which ⟨y, u⟩ = −δ. Using matrix notation for the scalar product, the
signed distance of a point x ∈ R3 from h is

d(x, h) = (x − y)T · u = xT · u + δ,

where y is any point in the plane. Defining xT = (xT , 1) and uT = (uT , δ), we can
write this as a 4-dimensional scalar product, xT ·u. We use this to express the sum
of squared distances from a set of planes in matrix form. Letting H be a finite set
of planes, this gives a function EH : R3 → R defined by

EH(x) =
∑

hi∈H

d2(x, hi)

=
∑

hi∈H

(xT · ui)(u
T
i · x)

= xT ·
(

∑

hi∈H

ui · uT
i

)
· x.

Hence EH(x) = xT · Q · x, where

Q =
∑

hi∈H

(ui · uT
i ) =

⎡

⎢⎢⎣

A P Q U
P B R V
Q R C W
U V W Z

⎤

⎥⎥⎦
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is a symmetric, four-by-four matrix that we refer to as the fundamental quadric of
the map EH . Writing xT = (x1, x2, x3), we get

EH(x) = Ax2
1 + Bx2

2 + Cx2
3 + 2(Px1x2 + Qx1x3 + Rx2x3)

+ 2(Ux1 + V x2 + Wx3) + Z.

We see that EH is a quadratic map that is non-negative and unbounded.

Error assessment. In the application, we are interested in measuring the dam-
age to the geometric form caused by contracting the edge ab to the new vertex c.
We think of the operation as a map between vertices, ϕ : Vert K → VertL, defined
by ϕ(a) = ϕ(b) = c and ϕ(x) = x for all x ̸= a, b. Letting K0 be the initial triangu-
lation, we obtain L by a sequence of edge contractions giving rise to a composition
of vertex maps, which is again a vertex map, ϕ0 : VertK0 → VertL. The vertices
in Vc = ϕ−1

0 (c) ⊆ Vert K0 all map to c, and we let H be the set of planes spanned
by triangles in K0 incident to at least one vertex in Vc. Finally, we define the error
of the contraction of ab as the minimum, over all possible placements of c as a point
in R3, of the sum of squared distances from the planes:

Error(ab) = min
c∈R3

EH(c).

For generic sets of planes, this minimum is unique and easy to compute. The
gradient of E = EH at a point x is the vector of steepest increase, ∇E(x) =
( ∂E
∂x1

(x), ∂E
∂x2

(x), ∂E
∂x3

(x)). It is zero iff x minimizes E. The derivative with respect
to xi can be computed using the multiplication rule

∂E

∂xi
=

∂xT

∂xi
· Q · x + xT · Q · ∂x

∂xi

= Q[i]T · x + xT · Q[i],

where Q[i] is the i-th column and Q[i]T is the i-th row of Q. The point c ∈ R3

that minimizes E can thus be computed by setting ∂E
∂xi

to zero, for i = 1, 2, 3, and
solving the resulting system of three linear equations.

Maintenance of the error measure. It can be expensive to compute the fun-
damental quadric from scratch but relatively inexpensive to maintain it throughout
the algorithm. When we contract an edge ab, we associate the new vertex with the
union of the two plane sets, Hc = Ha ∪ Hb. Unfortunately, this is not a disjoint
union, and we cannot just add the two quadrics. Instead, we use inclusion-exclusion
and subtract the quadric of Hab = Ha ∩ Hb, which we store with the contracted
edge. We describe how this works from the beginning.

Starting with the initial complex, K0, we store a quadric with every vertex, every
edge, and every triangle. For a triangle abx, we store the quadric Qabx defined by
the one plane that contains the triangle. An edge, ab, is shared by two triangles,
abx and aby, and we store the quadric defined by the two corresponding planes,
Qab = Qabx + Qaby. A vertex, a, is shared by the ring of triangles in its star, and
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we initialize its quadric, Qa, to the sum of the quadrics of these triangles. Note that
the triangles that share the edge ab are precisely the ones that share both endpoints,
a and b. This gives rise to a simple relationship between the sets of planes.

Invariant. Let abx be a triangle in the surface triangulation, with edges ab, ax,
ay and vertices a, b, x. Then Hab = Ha ∩ Hb and Habx = Hax ∩ Hbx.

To maintain these two relations past an edge contraction, it is important that we
limit ourselves to those that satisfy the Link Condition Lemma and therefore the
topological type of the surface. The relations are therefore indeed invariants of the
algorithm. Now consider the contraction of the edge ab. By the Invariant, the set of
planes associated with the edge is the intersection of those of the endpoints. Hence
we can compute the quadric of the new vertex as Qc = Qa +Qb −Qab. We also get
two new edges, cx and cy, and to maintain the Invariant, we associate each with
the union of plane sets of the corresponding old edges. By the Invariant, these two
sets overlap in the plane set of the shared triangle, which consists of a single plane.
Hence, we get Qcx = Qax + Qbx − Qabx and Qcy = Qay + Qby − Qaby.

Bibliographic notes. The algorithm described in this section is essentially the
surface simplification algorithm by Garland and Heckbert [75]. They combine edge
contractions with the error measure remembering the original form through accu-
mulated quadrics. However, instead of maintaining the quadric through inclusion-
exclusion, they take a short-cut and compute the quadric of the new vertex as the
sum of quadrics of the endpoints of the contracted edge, without removing dupli-
cates. In practice, this makes little difference because planes contribute at most in
triplicates. The test for maintaining the topological type has been added later and
more general versions of the Link Condition Lemma can be found in [48]. Priority
queues are standard tools in computer science, and implementations are described
in most texts on algorithms, including the third volume of Knuth’s pioneering series
on computer programming [94].

Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical ques-
tion can be answered using knowledge of the material combined with some thought
and analysis.

1. Classifying 2-manifolds (two credits). Characterize the two surfaces depicted
in Figure II.15 in terms of genus, boundary, and orientability.

2. 2-coloring (two credits). Let K be a triangulation of an orientable 2-manifold
without boundary. Construct L by decomposing each edge into two edges and
each triangle into six triangles. To do this, we add a new vertex in the interior
of each edge. Similarly, we add a new vertex in the interior of each triangle,
connecting it to the six vertices in the boundary of the triangle. The resulting
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Figure II.15: Left: a 2-manifold without boundary obtained by adding tunnels
inside the sphere. We see four tunnel openings and one tunnel passing though
a fork of the other. Right: a 2-manifold with boundary obtained by thickening
a graph.

structure is the same as the barycentric subdivision of K, which we will define
in Chapter III.

(i) Show that the vertices of L can be 3-colored such that no two neighboring
vertices receive the same color.

(ii) Prove that the triangles of L can be 2-colored such that no two triangles
sharing an edge receive the same color.

3. Klein bottle (two credits). Cut and paste the standard polygonal schema for
the Klein bottle (a, a, b, b) to obtain the polygonal schema in which opposite
edges of a square are identified (a, b, a−1, b); see Figure II.3.

4. Triangulation of a 2-manifold (two credits). Let V = {1, 2, . . . , n} be a set
of n vertices and F ⊆

(V
3

)
a set of ℓ = card F triangles. Give an algorithm that

takes time at most proportional to n + ℓ for the following tasks:

(i) decide whether or not every edge is shared by exactly two triangles;

(ii) decide whether or not every vertex belongs to a set of triangles whose
union is a disk.

5. Intersection tests in R3 (two credits). Let a, b, c ∈ R3 and u, v, w ∈ R3 be
the vertices of two triangles in space. Write numerical tests for the following
questions:

(i) Does u see a, b, c form a left turn or a right turn?

(ii) Does the line segment with endpoints u and v cross the plane that passes
through a, b, c?

(iii) Are the boundaries of the two triangles linked in R3?

6. Irreducible triangulations (two credits). An irreducible triangulation is one
in which every edge contraction changes its topological type. Prove that the
only irreducible triangulation of S2 is the boundary of the tetrahedron, which
consists of four triangles sharing six edges and four vertices.



Exercises 49

7. Graphs on the Möbius strip (one credit). Is every graph that can be em-
bedded on the Möbius strip planar?

8. Squared distance minimization (two credits). Let S be a finite set of points
in R3 and let f : R3 → R be defined by f(x) =

∑
p∈S ∥x − p∥2.

(i) Show that f is a quadratic function and has a unique minimum.

(ii) At which point does f attain its minimum?





Chapter III

Complexes

There are many ways to represent a topological space, one being a decomposition
into simple pieces. This decomposition qualifies to be called a complex if the pieces
are topologically simple and their common intersections are lower-dimensional pieces
of the same kind. Within these requirements, we still have a great deal of freedom.
Particularly attractive are the extreme choices: a few complicated or many simple
pieces. The former choice lends itself to hand calculations of topological invariants
but also to the design of aesthetically pleasing shapes, such as car bodies and the
like. The latter choice is preferred in computation and automation. Since we focus
on computational aspects of topology, we favor the latter extreme choice, of which
the simplicial complex is the prime example.

III.1 Simplicial Complexes

In this book, we use simplicial complexes as the prime data structure to represent
topological spaces. In this section, we introduce them in their geometric as well as
abstract forms. The main technical result is the existence of simplicial maps that
approximate continuous maps arbitrarily closely.

Simplices. Let u0, u1, . . . , uk be points in Rd. A point x =
∑k

i=0 λiui, with each
λi ∈ R, is an affine combination of the ui if the λi sum to 1. The affine hull is the
set of affine combinations. It is a k-plane if the k+1 points are affinely independent,
by which we mean that any two affine combinations, x =

∑
λiui and y =

∑
µiui,

are the same iff λi = µi for all i. The k + 1 points are affinely independent iff the
k vectors ui − u0, for 1 ≤ i ≤ k, are linearly independent. In Rd we can have at
most d linearly independent vectors and therefore at most d+1 affinely independent
points.

An affine combination, x =
∑

λiui, is a convex combination if all λi are non-
negative. The convex hull is the set of convex combinations. A k-simplex is the

51
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convex hull of k + 1 affinely independent points, σ = conv {u0, u1, . . . , uk}. We
sometimes say the ui span σ. Its dimension is dim σ = k. We use special names
for the first few dimensions: vertex for 0-simplex, edge for 1-simplex, triangle for
2-simplex, and tetrahedron for 3-simplex; see Figure III.1. Any subset of affinely

Figure III.1: From left to right: a vertex, an edge, a triangle, and a tetrahedron.
We note that an edge has two vertices, a triangle has three edges, and a
tetrahedron has four triangles as faces.

independent points is again affinely independent and therefore also defines a simplex.
A face of σ is the convex hull of a non-empty subset of the ui, and it is proper if
the subset is not the entire set. We sometimes write τ ≤ σ if τ is a face and τ < σ
if it is a proper face of σ. If τ is a (proper) face of σ, we call σ a (proper) coface
of τ . Since a set of size k + 1 has 2k+1 subsets, including the empty set, σ has
2k+1 − 1 faces, all of which are proper except for σ itself. The boundary of σ,
denoted as bdσ, is the union of all proper faces, and the interior is everything else,
int σ = σ−bdσ. A point x ∈ σ belongs to int σ iff all its coefficients λi are positive.
It follows that every point x ∈ σ belongs to the interior of exactly one face, namely
the one spanned by the points ui that correspond to positive coefficients λi.

Simplicial complexes. We are interested in sets of simplices that are closed
under taking faces and that have no improper intersections.

Definition. A simplicial complex is a finite collection of simplices K such that
σ ∈ K and τ ≤ σ implies τ ∈ K, and σ,σ0 ∈ K implies σ ∩ σ0 is either empty or a
face of both.

The dimension of K is the maximum dimension of any of its simplices. The under-
lying space, denoted as |K|, is the union of its simplices together with the topology
inherited from the ambient Euclidean space in which the simplices live. A polyhe-
dron is the underlying space of a simplicial complex. A triangulation of a topological
space X is a simplicial complex K together with a homeomorphism between X and
|K|. The topological space is triangulable if it has a triangulation. A subcomplex of
K is a simplicial complex L ⊆ K. It is full if it contains all simplices in K spanned
by vertices in L. A subcomplex of particular interest is the j-skeleton consisting of
all simplices of dimension j or less, K(j) = {σ ∈ K | dimσ ≤ j}. The 0-skeleton is
also referred to as the vertex set, Vert K = K(0). Skeleta are generally not full.

A subset of a simplicial complex useful when discussing local neighborhoods is
the star of a simplex τ consisting of all cofaces of τ , St τ = {σ ∈ K | τ ≤ σ}.
Generally, the star is not closed under taking faces. We can make it into a complex
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by adding all missing faces. The result is the closed star, St τ , which is the smallest
subcomplex that contains the star. The link consists of all simplices in the closed
star that are disjoint from τ , Lk τ = {υ ∈ St τ | υ ∩ τ = ∅}. If τ is a vertex, then
the link is just the difference between the closed star and the star. More generally,
it is the closed star minus the stars of all faces of τ . For example if K triangulates a
2-manifold without boundary, then the link of an edge is a pair of points, a 0-sphere,
and the link of a vertex is a cycle of edges and vertices, a 1-sphere.

Abstract simplicial complex. It is often easier to construct a complex ab-
stractly and worry about how to put it into Euclidean space later, if at all.

Definition. An abstract simplicial complex is a finite collection of sets A such
that α ∈ A and β ⊆ α implies β ∈ A.

The sets in A are its simplices. The dimension of a simplex is dimα = cardα− 1,
and the dimension of the complex is the maximum dimension of any of its simplices.
A face of α is a non-empty subset β ⊆ α, which is proper if β ̸= α. The vertex set
is the union of all simplices, Vert A =

⋃
A, that is, the set of all elements that lie in

at least one simplex α ∈ A. A subcomplex is an abstract simplicial complex B ⊆ A.
Two abstract simplicial complexes are isomorphic if there is a bijection b : Vert A →
VertB such that α ∈ A iff b(α) ∈ B. The largest abstract simplicial complex with
a vertex set of size n + 1 is the n-dimensional simplex with a total number of
2n+1 − 1 faces. Given a (geometric) simplicial complex K, we can construct an
abstract simplicial complex A by throwing away all simplices and retaining only
their sets of vertices. We call A a vertex scheme of K. Symmetrically, we call K a
geometric realization of A. Constructing geometric realizations is surprisingly easy
if the dimension of the ambient space is sufficiently high.

Geometric Realization Theorem. Every abstract simplicial complex of di-
mension d has a geometric realization in R2d+1.

Proof. Let f : VertA → R2d+1 be an injection whose image is a set of points
in general position. Specifically, any 2d + 2 or fewer of the points are affinely
independent. Let α and α0 be simplices in A with k = dimα and k0 = dimα0.
The union of the two has size card (α ∪ α0) = cardα + cardα0 − card (α ∩ α0) ≤
k + k0 + 2 ≤ 2d + 2. The points in α ∪ α0 are therefore affinely independent, which
implies that every convex combination x of points in α ∪ α0 is unique. Hence, x
belongs to σ = conv f(α) as well as to σ0 = conv f(α0) iff x is a convex combination
of α ∩ α0. This implies that the intersection of σ and σ0 is either empty or the
simplex conv f(α ∩ α0), as required.

Simplicial maps. The natural counterparts of continuous maps between topo-
logical spaces are simplicial maps between simplicial complexes, which we now
introduce. Let K be a simplicial complex with vertices u0, u1, . . . , un. Every
point x ∈ |K| belongs to the interior of exactly one simplex in K. For exam-

ple, if σ = conv {u0, u1, . . . , uk} is this simplex, then we have x =
∑k

i=0 λiui with
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∑k
i=0 λi = 1 and λi > 0 for all i. Setting bi(x) = λi for 0 ≤ i ≤ k and bi(x) = 0

for k + 1 ≤ i ≤ n, we have x =
∑n

i=0 bi(x)ui, and we call the bi(x) the barycentric
coordinates of x in K.

We use these coordinates to construct a piecewise linear, continuous map, starting
with a particular kind of map between the vertices of two simplicial complexes. A
vertex map is a function ϕ : Vert K → VertL with the property that the vertices of
every simplex in K map to vertices of a simplex in L. Then ϕ can be extended to
a continuous map f : |K| → |L| defined by

f(x) =
n∑

i=0

bi(x)ϕ(ui),

the simplicial map induced by ϕ. There is an alternative way to think of this
construction. Fix a vertex uj and consider the map bj : |K| → R which maps
each point x to its j-th barycentric coordinate. The graph of this map has the
shape of a hat, increasing from zero on and outside the link to one at uj . The map
bj is continuous and is sometimes referred to as a basis function. The simplicial
map is thus the weighted sum of the n + 1 basis functions. To emphasize that the
simplicial map is linear on every simplex, we usually drop the underlying space from
the notation and write f : K → L.

Figure III.2: A vertex map and its induced simplicial map from the square to
the torus.

As an example, we consider the simplicial map f : [0, 1]2 → T2 illustrated in
Figure III.2. Given the vertex map, the simplicial map is unique and glues the
simplices of the triangulation of the square to obtain a triangulation of the torus.
If the vertex map ϕ : VertK → VertL is bijective and ϕ−1 : VertL → VertK is
also a vertex map, then the induced simplicial map f is a homeomorphism. In this
case we call f a simplicial homeomorphism or an isomorphism between K and L.

Subdivisions. A simplicial complex L is a subdivision of another simplicial com-
plex K if |L| = |K| and every simplex in L is contained in a simplex in K. There
are many ways to construct subdivisions. A particular one is the barycentric subdi-
vision, L = SdK, illustrated in Figure III.3. A crucial concept in its construction
is the barycenter of a simplex, which is the average of its vertices. We proceed by
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Figure III.3: Left: a simplicial complex consisting of two triangles, six edges,
and five vertices. Middle and right: its first and second barycentric subdivi-
sions.

induction over the dimension. To get started, the barycentric subdivision of the
0-skeleton is the same, SdK(0) = K(0). Assuming we have the barycentric subdi-
vision of K(j−1), we construct SdK(j) by adding the barycenter of every j-simplex
as a new vertex and connecting it to the simplices that subdivide the boundary of
the j-simplex.

The diameter of a set in Euclidean space is the supremum over the distances
between its points. Since the simplices of K are point sets in Euclidean space, their
diameters are well defined. The mesh of K is the maximum diameter of any simplex
or, equivalently, the length of its longest edge.

Mesh Lemma. Letting δ be the mesh of the d-dimensional simplicial complex K,
the mesh of SdK is at most d

d+1δ.

Proof. Let τ and υ be complementary faces of a simplex σ ∈ K, that is, τ ∩ υ = ∅
and dim τ + dim υ = dim σ − 1. The line segment connecting the barycenters of
τ and υ has length at most δ. It splits into two edges in SdK at the barycenter
of σ. Writing the barycenter of σ as a weighted sum of the barycenters of τ and
υ, we see that the lengths have proportions 1 + dim υ to 1 + dim τ which are both
between 1

k+1 and k
k+1 , where k = dimσ. It follows that both edges have length at

most k
k+1 ≤ d

d+1 times δ.

By the Mesh Lemma, we can make the diameters of the simplices as small as we
like by iterating the subdivision operation. For n ≥ 1, define the n-th barycentric
subdivision of K to be SdnK = Sd(Sdn−1K). As n goes to infinity, the mesh of
SdnK goes to zero.

Simplicial approximations. It is sometimes convenient to think of a vertex star
as an open set of points. Formally, we define N(u) =

⋃
σ∈St u int σ. Let K and L be

simplicial complexes. A continuous map g : |K| → |L| satisfies the star condition if
the image of every vertex star in K is contained in a vertex star in L; that is, for
each vertex u ∈ K there is a vertex v ∈ L such that g(N(u)) ⊆ N(v). Note that
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we do not require, or even expect, v to be unique. Let ϕ : VertK → VertL map
u to a vertex ϕ(u) = v that exists by the star condition. To understand this new
function, we take a point x in the interior of a simplex σ in K. Its image, g(x), lies
in the interior of a unique simplex τ in L. It follows that the star of every vertex
u of σ maps into the star of a vertex v in L that contains the interior of τ . But
this implies that v is a vertex of τ . We conclude that each vertex u of σ maps to
a vertex ϕ(u) of τ . Hence, ϕ is a vertex map and thus induces a simplicial map
f : K → L. This map satisfies the condition of a simplicial approximation of g,
namely g(N(u)) ⊆ N(f(u)) for each vertex u of K.

Figure III.4: The circle on the left is mapped into the closed annulus by a
continuous map and a simplicial approximation of that map. Corresponding
vertices are labeled by the same letter.

We illustrated the definitions in Figure III.4. The image we have in mind is that
g and f are not too different. In particular, g(x) and f(x) belong to a common
simplex in L for every x ∈ |K|. Given a continuous map g : |K| → |L|, it is plausible
that we can subdivide K sufficiently finely so that a simplicial approximation exists.
To be sure, we prove this fact.

Simplicial Approximation Theorem. If g : |K| → |L| is continuous, then
there is a sufficiently large integer n such that g has a simplicial approximation
f : SdnK → L.

Proof. Cover |K| with open sets of the form g−1(N(v)), v ∈ VertL. Since |K| is
compact, there is a positive real number λ such that any set of diameter less than λ
is contained in one of the sets in the open cover. Choose n such that each simplex in
SdnK has diameter less than half of λ. Then each star in K has diameter less than
λ, implying it lies in one of the sets g−1(N(v)). Hence g satisfies the star condition,
implying the existence of a simplicial approximation.

Bibliographic notes. The terminology we use for abstract and geometric sim-
plicial complexes follows the one in Munkres [116]. The geometric realization of a
d-dimensional abstract simplicial complex in R2d+1 goes back to Karl Menger at the
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beginning of the last century. We have seen that 2d + 1 dimensions suffice for the
geometric realization of any d-dimensional abstract simplicial complex. Complexes
that require the full 2d + 1 dimensions have been described by Flores [70] and van
Kampen [143]. An example of such a complex is the d-skeleton of the (2d + 2)-
simplex, which does not embed in R2d. For d = 1 this is the complete graph of five
vertices, which does not embed in the plane, as discussed in Chapter I.

A stronger version of the Simplicial Approximation Theorem played an important
role in the development of combinatorial topology during the first half of the twen-
tieth century. Known as the Hauptvermutung (German for “main conjecture”), it
claimed that any two simplicial complexes that triangulate the same topological
space have isomorphic subdivisions. This turned out to be correct for simplicial
complexes of dimension 2 and 3 but not higher. The first counterexample found by
Milnor was a simplicial complex of dimension 7 [110]. We refer to the book edited
by Ranicki [125] for further information on the topic.

III.2 Convex Set Systems

Simplicial complexes often arise as intersection patterns of collections of sets. We
begin with two fundamental results for convex sets and then proceed to the special
case in which the sets are geometric balls.

Sets with common points. Let F be a finite collection of convex sets in Rd.
The smaller the dimension of the ambient Euclidean space, d, the more restrictive
are the intersection patterns we observe. For example, if d = 1 and we have three
intervals that intersect in pairs, then it is not possible that they do not intersect as
a triplet. This result generalizes to higher dimensions.

Helly’s Theorem. Let F be a finite collection of closed, convex sets in Rd.
Every d + 1 of the sets have a non-empty common intersection iff they all have a
non-empty common intersection.

Proof. We prove the non-obvious direction by induction over the dimension, d, and
the number of sets, n = card F . The implication is clearly true for d = 1 and all n,
as well as for n = d+1. Now suppose we have a minimal counterexample consisting
of n > d + 1 closed, convex sets in Rd, which we denote as X1, X2, . . . , Xn. By
minimality of the counterexample, the set Yn =

⋂n−1
i=1 Xi is non-empty and disjoint

from Xn. Because Yn and Xn are both closed and convex, we can find a (d − 1)-
dimensional plane h that separates and is disjoint from both sets, as in Figure III.5.
Let F ′ be the collection of sets Zi = Xi ∩ h, for 1 ≤ i ≤ n − 1, each a non-empty,
closed, convex set in Rd−1. By assumption, any d of the first n − 1 sets Xi have
a common intersection with Xn. It follows that the common intersection of the d
sets contains points on both sides of h, implying that any d of the sets Zi have a
non-empty common intersection. By minimality of the counterexample, this implies
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h
Xn

Yn

Figure III.5: The (d− 1)-plane separates the n-th set from the common inter-
section of the first n − 1 sets in F .

⋂
F ′ ̸= ∅. This intersection is

⋂
F ′ =

n−1⋂

i=1

(Xi ∩ h) = Yn ∩ h.

But this contradicts the choice of h as a (d − 1)-plane disjoint from Yn.

Convexity is a convenient but unnecessarily strong requirement in Helly’s Theo-
rem. Indeed, the conclusion holds if the sets in F are closed and all their non-empty
common intersections are contractible, a property we will define shortly.

Homotopy type. We prepare the next step by introducing a notion of equivalence
between topological spaces that is weaker than topological equivalence. We begin
by considering two continuous maps, f, g : X → Y. A homotopy between f and g is
another continuous map H : X × [0, 1] → Y that agrees with f for t = 0 and with
g for t = 1; that is, H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. We may
think of t ∈ [0, 1] as time and the homotopy as a time-series of functions ft : X → Y
defined by ft(x) = H(x, t). It starts at f0 = f and ends at f1 = g. Noting that this
defines an equivalence relation, we write f ≃ g and call f and g homotopic if there
is a homotopy between them.

This notion can be used to relate spaces. Beginning with a special case, we call
Y ⊆ X a retract of X if there is a continuous map r : X → Y with r(y) = y for all
y ∈ Y. The map r is called a retraction. We call Y a deformation retract and r
a deformation retraction if there is a homotopy between r and the identity on X,
r ≃ idX. We also say that X deformation retracts onto Y. Clearly, every deformation
retract is a retract but not the other way around. For example, a connected interval
in the circle is a retract but not a deformation retract of S1. We can also consider
maps in both directions. Specifically, we call two not necessarily nested topological
spaces, X and Y, homotopy equivalent if there are continuous maps f : X → Y
and g : Y → X such that g ◦ f ≃ idX and f ◦ g ≃ idY. This gives an equivalence
relation, and we write X ≃ Y and say they have the same homotopy type if they are
homotopy equivalent. The maps f and g are referred to as homotopy equivalences
of homotopy inverses of each other.

To see that having the same homotopy type indeed generalizes being a deforma-
tion retract, we note that if r : X → Y is a deformation retraction, then f = r and
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g, the inclusion of Y in X, are continuous maps that satisfy the conditions and thus
establish X ≃ Y. If Y is a single point, then X has the homotopy type of a point,
and we say X is contractible.

Nerves. We now return to our finite collection of sets, F . Without assuming the
sets are convex, we define the nerve to consist of all non-empty subcollections whose
sets have a non-empty common intersection:

Nrv F = {X ⊆ F |
⋂

X ̸= ∅}.

It is always an abstract simplicial complex, no matter what sets we have in F . In-
deed, if

⋂
X ̸= ∅ and Y ⊆ X, then

⋂
Y ̸= ∅. We can realize the nerve geometrically

in some Euclidean space, so it makes sense to talk about its topology type and
its homotopy type. We will sometimes do this without explicit construction of the
geometric realization. As an example, consider the collection of four sets in Figure
III.6 whose union is obviously not homotopy equivalent to the nerve. Nevertheless,
taking the nerve preserves the homotopy type if the sets in the collection are convex.
This is a fundamental result which we state formally but without proof.

Figure III.6: A collection of four sets whose union is a disk with three holes in
the plane. The nerve is the boundary complex of the tetrahedron which has
the homotopy type of a sphere.

Nerve Theorem. Let F be a finite collection of closed, convex sets in Euclidean
space. Then the nerve of F and the union of the sets in F have the same homotopy
type.

Similar to Helly’s Theorem, the requirement on the sets can be relaxed without
sacrificing the conclusion. Specifically, if

⋃
F is triangulable, all sets in F are closed,

and all non-empty common intersections are contractible, then Nrv F ≃
⋃

F . We
note that Helly’s Theorem can be interpreted as a constraint on the structure of
the nerve. Specifically, if the sets live in Rd, then a subcollection of k ≥ d + 1 sets
cannot have all

( k
d+1

)
d-simplices in the nerve without having the entire k-simplex

in the nerve.
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Čech complexes. We now consider the special case in which the convex sets are
closed geometric balls, all of the same radius, r. Let S be a finite set of points in
Rd and write Bx(r) = x + rBd for the closed ball with center x and radius r. The
Čech complex of S and r is the nerve of this collection of balls, but we substitute
the center for each ball, that is,

Čech(r) = {σ ⊆ S |
⋂

x∈σ

Bx(r) ̸= ∅}.

Clearly, a set of balls has a non-empty intersection iff their centers lie inside a
common ball of the same radius. Indeed, a point y belongs to all balls iff ∥x − y∥ ≤ r
for all centers x. An easy consequence of Helly’s Theorem is therefore that every
d + 1 points in S are contained in a common ball of radius r iff all points in S are.
This is Jung’s Theorem, which predates the more general theorem by Helly. The
Čech complex does not necessarily have a geometric realization in Rd, but it is fine
as an abstract simplicial complex; see Figure III.7. For larger radius, the disks are

Figure III.7: Nine points with pairwise intersections among the disks indicated
by straight edges connecting their centers. The Čech complex fills nine of
the ten possible triangles as well as the two tetrahedra. The only difference
between the Vietoris-Rips and the Čech complexes is the tenth triangle, which
belongs only to the former.

bigger and create more overlaps while retaining the ones for smaller radius. Hence
Čech(r0) ⊆ Čech(r) whenever r0 ≤ r. If we continuously increase the radius, from
0 to ∞, we get a discrete family of nested Čech complexes. We will come back to
this construction later.

Smallest enclosing balls. Beyond sets of two points, it seems cumbersome to
recognize the ones that form simplices in the Čech complex. Nevertheless, there is
a fast algorithm for this purpose.

Let σ ⊆ S be a subset of the given points. We have seen that deciding whether
or not σ belongs to Čech(r) is equivalent to deciding whether or not σ fits inside
a ball of radius r. Let the miniball of σ be the smallest closed ball that contains
σ, which we note is unique. The radius of the miniball is smaller than or equal to
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r iff σ ∈ Čech(r), so finding it solves our problem. Observe that the miniball is
already determined by a subset of k + 1 ≤ d + 1 of the points, which all lie on its
boundary. If we know this subset, then we can verify the miniball by testing that
it indeed contains all the other points. In a situation in which we have many more
points than dimensions, the chance that a point belongs to this subset is small and
discarding it is easy. This is the strategy of the Miniball Algorithm. It takes two
disjoint subsets τ and υ of σ and returns the miniball that contains all points of τ
in its interior and all points of υ on its boundary. To get the miniball of σ, we call
MiniBall(σ, ∅).

ball MiniBall(τ, υ)
if τ = ∅ then compute the miniball B of υ directly

else choose a random point u ∈ τ ;
B = MiniBall(τ − {u}, υ);
if u ̸∈ B then

B = MiniBall(τ − {u}, υ ∪ {u})
endif

endif; return B.

When τ is empty, we have a set υ of at most d + 1 points, which we know all lie
on the boundary. Assuming the dimension, d, is a constant, we can compute their
miniball directly and in constant time. To analyze the running time, we ask how
often we execute the test “u ̸∈ B”. Let tj(n) be the expected number of such tests
for calling MiniBall with n points in τ and j = d + 1 − card υ possibly open
positions on the boundary of the miniball. Obviously, tj(0) = 0, and it is reassuring
that the constant amount of work needed to compute the ball for the at most d + 1
points in υ is paid for by the test that initiated the call. Consider n > 0. We
have one call with parameters n − 1 and j, one test “u ̸∈ B”, and one call with
parameters n− 1 and j − 1. The probability that the second call indeed happens is
at most j out of n. Hence,

tj(n) ≤ tj(n − 1) + 1 +
j

n
· tj−1(n − 1).

Setting j = 0, we get t0(n) ≤ t0(n − 1) + 1 and therefore t0(n) ≤ n. Similarly,
t1(n) ≤ t1(n − 1) + 2 ≤ 2n. More generally, we get tj(n) ≤ (j + 1)!n, which is a
constant times n since j ≤ d + 1 is a constant. In summary, for constant dimension
the algorithm takes constant time per point in the expected case.

Vietoris-Rips complexes. Instead of checking all subcollections, we may just
check pairs and add 2- and higher-dimensional simplices whenever all their edges
are in the complex. This simplification leads to the Vietoris-Rips complex of S and
r consisting of all subsets of diameter at most 2r:

Vietoris-Rips(r) = {σ ⊆ S | diam σ ≤ 2r}.

Clearly, the edges in the Vietoris-Rips complex are the same as in the Čech complex.
Furthermore, Čech(r) ⊆ Vietoris-Rips(r) because the latter contains every simplex
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warranted by the given edges. We now prove that the containment relation can be
reversed if we are willing to increase the radius in the definition of the Čech complex
by a multiplicative constant.

Vietoris-Rips Lemma. Letting S be a finite set of points in some Euclidean
space and letting r ≥ 0, we have Vietoris-Rips(r) ⊆ Čech(

√
2r).

Proof. A simplex is regular if all its edges have the same length. A convenient
representation for dimension d is the standard d-simplex, ∆d, spanned by the end-
points of the unit coordinate vectors in Rd+1; see Figure III.8. Each edge of ∆d has

z

Figure III.8: The standard triangle connecting the unit coordinate vectors in R3.

length
√

2. By symmetry, the distance of the origin from the standard simplex is
its distance from the barycenter, the point z whose d + 1 coordinates are all equal
to 1

d+1 . That distance is therefore ∥z∥ = 1/
√

d + 1. The barycenter is also the

center of the smallest d-sphere that passes through the vertices of ∆d. Writing rd

for the radius of that sphere, we have r2
d = 1 − ∥z∥2 = d

d+1 . For dimension 1, this
is indeed half the length of the interval, and for dimension 2, it is the radius of
the equilateral triangle. As the dimension goes to infinity, the radius grows and
approaches 1 from below. Any set of d+1 or fewer points for which the same d-ball
of radius rd is the miniball has a pair at distance

√
2 or larger. It follows that every

simplex of diameter
√

2 or less belongs to Čech(rd). Multiplying with
√

2r, we get
Vietoris-Rips(r) ⊆ Čech(

√
2rrd). Since rd ≤ 1 for all d, the latter is a subcomplex

of Čech(
√

2r), which implies the claimed subcomplex relationship.

Bibliographic notes. Helly proved his theorem at the beginning of the last cen-
tury, first for convex sets and then for sets with contractible common intersections
[83, 84]. The concept of nerve was introduced at about the same time by Alexandrov
[9]. The Nerve Theorem goes back to Borsuk [19], Leray [102], and others. It has
a complicated literature, with versions differing in the generality of the assumption
and the strength of the conclusion. The Čech complexes are inspired by the theory
of Čech homology, from which they borrow their name. The Vietoris-Rips complex
appears in Vietoris [146] and in later work by Rips; see [79]. Algorithms for finding
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the smallest ball enclosing a finite set of points have been studied in computational
geometry, culminating in the randomized minidisk algorithm of Welzl which has
versions that are efficient even for large sets in high dimensions [155].

III.3 Delaunay Complexes

In this section, we introduce a geometric constructions that limits the dimension
of the simplices we get from a nerve. The main new structures are the Voronoi
diagram and the Delaunay complex of a finite set of points. We begin by studying
the inversion of space through a unit sphere.

Inversion. Recall that Sd is the d-dimensional sphere with center at the origin
and unit radius in Rd+1. To invert Rd+1, we map each point x ̸= 0 to the point on
the same half-line whose distance from the origin is the reciprocal of the distance
of x from 0. More formally, the inversion maps x to ι(x) = x/∥x∥2. It exchanges
inside with outside and leaves points on Sd fixed. Clearly, ι(ι(x)) = x. We construct
the image of a point x inside Sd by drawing right-angled triangles. First, we find
a point p ∈ Sd such that 0xp has a right angle at x. Second, we choose x′ on the
half-line of x such that 0px′ has a right angle at p. The angle at 0 is the same in
both so the two triangles are similar. Hence, ∥x∥ : ∥p∥ = ∥p∥ : ∥x′∥, which implies
∥x∥∥x′∥ = ∥p∥2 = 1 and thus x′ = ι(x). We use this construction to show that the
inversion maps spheres to spheres. We note, however, that it generally does not
map centers to centers.

z

x′ x 0 y′ y

z′

Figure III.9: The dotted circle represents the sphere Sd centered at the origin.
As z sweeps out the circle passing through x and y, its image, z′ = ι(z), sweeps
out the circle passing through x′ and y′.

Inversion Lemma. Let Σ be a d-sphere in Rd+1. If 0 ̸∈ Σ, then ι(Σ) is a d-
sphere, and if 0 ∈ Σ, then ι(Σ) is a d-plane.
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Proof. Consider first the case in which Σ does not pass through the origin, as in
Figure III.9. If 0 is the center of Σ, then the result is obvious, so assume 0 is not
the center. Draw the line passing through 0 and the center; it intersects Σ in points
x and y, which we invert to get points x′ = ι(x) and y′ = ι(y). Let z be another
point on Σ and let z′ = ι(z) be its inverse. Then ∥x∥∥x′∥ = ∥z∥∥z′∥ = 1, which
implies that the triangles 0xz and 0z′x′ are similar. By the same token, 0yz and
0z′y′ are similar. But xyz has a right angle at z, implying the angles at x′ and y′

inside x′y′z′ add up to a right angle. It follows that x′y′z′ has a right angle at z′.
As z travels on Σ, the sphere with diameter xy, the image z′ travels on ι(Σ), the
sphere with diameter x′y′. What happens when Σ passes through the origin, say
0 = x? Then the triangle 0y′z′ has a right angle at y′. Equivalently, the image of
Σ is the plane normal to the vector y and passing through the point y′.

The Inversion Lemma suggests that we think of a d-plane as a special kind of
d-sphere, namely one that passes through the point at infinity.

Stereographic projection. Inversion can be defined relative to any center z ∈
Rd+1 and any radius r > 0, that is, ιz,r(x) = r · ι(x−z

r ) + z. It is not difficult to
check that x and x′ = ιz,r(x) indeed lie on the same half-line emanating from z
and the product of their distances is ∥x − z∥∥x′ − z∥ = r2, as desired. We consider

N

Figure III.10: The stereographic projection maps a circle on the unit sphere
to a circle in the plane. If the circle on the sphere passes through the north
pole then its image is a line, that is, a circle that passes through the point at
infinity.

the special case in which the center is the point N = (0, . . . , 0, 1), the north pole
of Sd, and the radius is r =

√
2, the Euclidean distance between the north pole

and the equator. The image of Sd is the d-plane of points with vanishing (d + 1)-st
coordinates, which we denote as Rd. The stereographic projection is the restriction
of this particular inversion to the unit sphere, that is, ς : Sd − {N} → Rd defined
by ς(x) = ιN,

√
2(x), as sketched in Figure III.10. Similar to the inversion, the

stereographic projection preserves spheres.

Stereographic Projection Lemma. Let Σ′ be a (d − 1)-sphere on Sd. If
N ̸∈ Σ′, then ς(Σ′) is a (d− 1)-sphere, and if N ∈ Σ′, then ς(Σ′) is a (d− 1)-plane.
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Indeed, every (d − 1)-sphere considered in the lemma is the intersection of Sd with
another d-sphere. Its image is therefore the intersection of Rd with the image of the
d-sphere, which is either a d-sphere or a d-plane. The intersection is thus either a
(d− 1)-sphere or a (d− 1)-plane. As before, we consider a plane as a special sphere
that passes through the point at infinity.

Voronoi diagram. We will use stereographic projection and the more general
inversion to elucidate the construction of a particular simplicial complex, called the
Delaunay complex, from a finite set S ⊆ Rd. As a first step, we define the Voronoi
cell of a point u in S as the set of points for which u is the closest, Vu = {x ∈ Rd |
∥x − u∥ ≤ ∥x − v∥, v ∈ S}. It is the intersection of half-spaces of points at least

Figure III.11: The Voronoi diagram of nine points in the plane. By definition,
each vertex of the diagram is equally far from the points that generate the
incident Voronoi cells and further from all other points in S.

as close to u as to v, over all points v in S. Hence, Vu is a convex polyhedron in
Rd. Any two Voronoi cells meet at most in a common piece of their boundary, and
together the Voronoi cells cover the entire space, as illustrated in Figure III.11. The
Voronoi diagram of S is the collection of Voronoi cells of its points.

We will shortly use a generalization of the concept to points u with real weights
wu. The weighted squared distance, or power, of a point x ∈ Rd from u is πu(x) =
∥x − u∥2 − wu. For positive weight, we can interpret the weighted point as the
sphere with center u and square radius wu. For a point x outside this sphere, the
power is positive and equal to the square length of a tangent line segment from x to
the sphere. For x on the sphere the power vanishes, and for x inside the sphere the
power is negative. The bisector of two weighted points is the set of points with equal
power from both. Just as in the unweighted case, the bisector is a plane normal to
the line connecting the two points, except that it is not necessarily halfway between
them; see Figure III.12. Given a finite set of weighted points, we can thus define
the weighted Voronoi cell, or power cell, of u as the set of points x ∈ Rd with
πu(x) ≤ πv(x) for all weighted points v in the set. Finally, the weighted Voronoi
diagram, or power diagram, is the set of power cells of the weighted points.
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Figure III.12: The bisectors of pairs of weighted points. From left to right:
two disjoint circles side by side, two intersecting circles, and two nested circles.

Lifting. We get a different and perhaps more illuminating view of the Voronoi
diagram by lifting its cells to one higher dimension. Let S be a finite set of points
in Rd, as before, but draw them in Rd+1, adding zeros as (d + 1)-st coordinates.
Map each point u ∈ S to Sd using the inverse of stereographic projection, and let Πu

be the d-plane tangent to Sd touching the sphere in the point ς−1(u), as illustrated
in Figure III.13. Using inversion, we now map each d-plane Πu to the d-sphere

Πv

v

Σv

u

Σu

N

Πu

Figure III.13: We map the points u and v in R1 to the lines Πu and Πv tangent
to S1 and further to the circles Σu and Σv passing through N and tangent to
R1. The dashed line connecting N and the midpoint between u and v passes
through the intersection of the two circles and the intersection of the two lines.

Σu = ι(Πu). It passes through the north pole and is tangent to Rd, the preimage
of Sd. The arrangements of planes and of spheres are closely related to the Voronoi
diagram. We focus on the spheres first.

First Sphere Lemma. A point x ∈ Rd belongs to the Voronoi cell of u ∈ S iff
the first intersection of the directed line segment from x to N with the d-spheres
defined by the points in S is with Σu.
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Proof. Interpret the sphere Σu as a weighted point, namely its center with weight
equal to the square of its radius. The power of a point x is the squared length of
a tangent line segment, which is equal to ∥x − u∥2 if x ∈ Rd. It follows that the
weighted Voronoi cell of the weighted center intersects Rd in the Voronoi cell of u.
The claim follows because all bisectors of the weighted points pass through N .

Switching from spheres to planes, we get a similar characterization of the Voronoi
diagram in terms of tangent planes.

First Plane Lemma. A point x ∈ Rd belongs to the Voronoi cell of u ∈ S iff
the first intersection of the directed line segment from N to x with the d-planes
defined by the points in S is with Πu.

Delaunay triangulation. The Delaunay complex of a finite set S ⊆ Rd is iso-
morphic to the nerve of the Voronoi diagram:

Delaunay = {σ ⊆ S |
⋂

u∈σ

Vu ̸= ∅}.

We say the set S is in general position if no d + 2 of the points lie on a common
(d−1)-sphere. This assumption implies that no d+2 Voronoi cells have a non-empty
common intersection. Equivalently, the dimension of any simplex in the Delaunay
complex is at most d. Assuming general position, we get a geometric realization by
taking convex hulls of abstract simplices, as in Figure III.14. The result is often
referred to as the Delaunay triangulation of S. To see that this construction indeed

Figure III.14: The Delaunay triangulation superimposed on the Voronoi di-
agram. No four of the given points are cocircular implying the Delaunay
complex has simplices of dimension at most two and a canonical geometric
realization in R2.

gives a geometric realization of the Delaunay complex, we lift the points to the set
ς−1(S) on Sd. Similarly, we lift a general point x ∈ Rd to the d-plane Πx tangent
to Sd at the point ς−1(x). Keeping the same normal direction, we move this plane
toward N . This corresponds to growing a (d − 1)-sphere around x. The first point
encountered by the plane corresponds to the first point encountered by the sphere,
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which is therefore the nearest to x. This suggests we add N to the set of lifted
points and we take the convex hull in Rd+1. The boundary of the resulting convex
polytope consists of faces up to dimension d, some of which share N as a vertex. We
are interested in the other faces, since they are spanned by points that correspond to
Voronoi cells with a non-empty common intersection. Using the central projection
from N , we map these faces to Rd. By convexity of the polytope, the images of the
faces have no improper intersections. Indeed, we get the geometric realization of
the Delaunay complex, as promised.

Similar to the Voronoi diagram, we can generalize the Delaunay complex to a
finite set of points with real weights. Specifically, the weighted Delaunay complex
is the abstract simplicial complex that contains a subset of the weighted points iff
their weighted Voronoi cells have a non-empty common intersection. In contrast to
the unweighted case, the cell of a weighted point can be empty, a difference that
is sometimes overlooked. As a consequence, the vertex set of the weighted Delau-
nay triangulation is a subset and not necessarily the entire set of given weighted
points. Assuming general position, this complex can again be geometrically real-
ized by taking convex hulls of the abstract simplices. The appropriate notion of
general position is that no point of Rd has the same power from more than d + 1
of the weighted points. This property is satisfied with probability one, a necessary
requirement for a general position assumption.

Bibliographic notes. Voronoi diagrams are named after Georgy Voronoi [149,
150], and Delaunay triangulations are named after Boris Delaunay (also Delone)
[44]. Both structures had been studied centuries earlier by others, including Dirich-
let, Gauß, and Descartes. Weighted Voronoi diagrams are perhaps as old as the
unweighted ones and are known under a plethora of different names, including
Thiessen polygons, Dirichlet tessellations, and power diagrams; see the survey ar-
ticle by Aurenhammer [11]. Their dual weighted Delaunay triangulations are also
known under a variety of names, including regular triangulations and coherent tri-
angulations; see e.g. [76]. Algorithms for constructing Delaunay triangulations with
an emphasis on mesh generation applications can be found in [54].

III.4 Alpha Complexes

In this section, we use a radius constraint to introduce a family of subcomplexes
of the Delaunay complex. These complexes are similar to the Čech complexes but
differ from them by having canonical geometric realizations.

Union of balls. Let S be a finite set of points in Rd and r a non-negative real
number. As before, for each u ∈ S, we let Bu(r) = u + rBd be the closed ball with
center u and radius r. The union of these balls is the set of points at distance at
most r from at least one of the points in S. To decompose the union, we intersect
each ball with the corresponding Voronoi cell, Ru(r) = Bu(r) ∩ Vu. Since balls and
Voronoi cells are convex, the Ru(r) are also convex. Any two of them are disjoint
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or overlap along a common piece of their boundaries, and together the Ru(r) cover
the entire union, as in Figure III.15. The alpha complex is the nerve of this cover,
but we substitute the center for each ball, that is,

Alpha(r) = {σ ⊆ S |
⋂

u∈σ

Ru(r) ̸= ∅}.

Since Ru(r) ⊆ Vu, the alpha complex is a subcomplex of the Delaunay complex. It
follows that for a set S in general position, we get a geometric realization by taking
convex hulls of abstract simplices, just as in the previous section. Furthermore,
Ru(r) ⊆ Bu(r), which implies Alpha(r) ⊆ Čech(r). Since the Ru(r) are closed and
convex and together they cover the union, the Nerve Theorem implies that the union
of balls and Alpha(r) have the same homotopy type:

⋃
u∈S Bu(r) ≃ |Alpha(r)|.

Figure III.15: The union of disks is decomposed into convex regions by the
Voronoi diagram. The corresponding alpha complex is superimposed.

Weighted alpha complexes. For many applications, it is useful to permit balls
with different sizes. An example of significant importance is the modeling of
biomolecules, such as proteins, RNA, and DNA. Each atom is represented by a
ball whose radius reflects the range of its van der Waals interactions and thus de-
pends on the atom type. Therefore, let S be a finite set of points u with real weights
wu. As in the previous section, we think of u as a ball Bu with center u and squared
radius r2

u = wu. We again consider the union of the balls, which we decompose into
convex regions, now using weighted Voronoi cells, Ru = Bu ∩ Vu. This is illustrated
in Figure III.16. In analogy to the unweighted case, the weighted alpha complex of
S is the nerve of the collection of regions Ru, but we again substitute the points
for the regions. Equivalently, it is the set of abstract simplices σ ⊆ S such that⋂

u∈σ Ru ̸= ∅. The weighted alpha complex is a subcomplex of the weighted De-
launay complex. Assuming the weighted points are in general position, we again
get a geometric realization by taking convex hulls of abstract simplices. It will be
convenient to blur the difference, which we do by using the exact same notation
and dropping the term weighted unless it is essential.
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Figure III.16: Convex decomposition of a union of disks and the weighted
alpha complex superimposed.

Filtration. There is a free parameter, r, which we may vary to get smaller and
larger unions and smaller and larger alpha complexes. Sometimes, there is a best
choice of r, but more often there is not. Indeed, the more interesting object is the
family of alpha complexes, since it represents the data at different scales, if you will,
and it allows us to draw conclusions from comparisons between different complexes
in the same family.

We first explain the construction in the relatively straightforward unweighted
case. Given a finite set S ⊆ Rd, we continuously increase the radius and thus
get a 1-parameter family of nested unions. Correspondingly, we get a 1-parameter
family of nested alpha complexes, but because they are all subcomplexes of the
same Delaunay complex, which is finite, only finitely many of them are distinct.
Writing Ki for the i-th alpha complex in this sequence, we get

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Km,

which we call a filtration of Km = Delaunay. What we have here is a stepwise
assembly of the final complex in such a way that every set along the way is a
simplicial complex.

There is more than one way to generalize this construction to the weighted case.
For example, we could grow the corresponding balls uniformly. Starting with Bu,
which has radius

√
wu, we would increase the radius to

√
wu + r for r > 0. This

makes sense in many applications, including the modeling of biomolecules, but has
the complicating side effect that the Voronoi diagram of the set of balls for different
values of r are not necessarily the same. Hence, the resulting alpha complexes are
not necessarily nested. Instead, we let Bu(r) be the ball with center u and squared
radius wu + r2. The points x with equal power from Bu(r) and Bv(r) satisfy
∥x − u∥2 − (wu + r2) = ∥x − v∥2 − (wv + r2). The squared radius cancels, implying
that the same points x form the bisector for all choices of r. Hence, the union of
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balls are decomposed into convex sets by the same weighted Voronoi diagram for
any r. Similarly, the weighted alpha complexes are all subcomplexes of the weighted
Delaunay triangulation of the given points. More specifically, the alpha complex
for r0 is a subcomplex of that for r whenever r0 ≤ r, and we again get a filtration
that starts with the empty complex and ends with the entire weighted Delaunay
complex, as in the unweighted case.

The structure of a simplex. We are interested in the difference between two
contiguous complexes in the filtration, Ki+1 − Ki. For this purpose, we study the
structure of an abstract simplex, and not just because it arises as an element of
the alpha complex. Recall that an abstract d-simplex, α, is a set of d + 1 points.
It has 2d+1 subsets, including the empty set and α itself. In the Hasse diagram of
this set system, we draw a node for each subset of α and an arc for each subset
relation, avoiding arcs that are implied by transitivity. Drawing the containing sets
above the contained ones and keeping subsets of same cardinality in common rows,
we get a picture like the one in Figure III.17. It looks like the edge-skeleton of the

Figure III.17: The Hasse diagram of an abstract 3-simplex. Each containment
between faces is represented by a decreasing path connecting the nodes.

(d + 1)-dimensional cube, and not by coincidence. Indeed, we can construct the
Hasse diagram inductively, first drawing the Hasse diagram of a (d − 1)-face. By
inductive assumption, this is the edge-skeleton of a d-cube. When we add the last
point, ud, to the simplex, we get a new set β ∪ {ud} for each old set β. To update
the Hasse diagram, we add a second copy of the d-cube and connect corresponding
sets. This is precisely the recipe for drawing the (d + 1)-cube.

Another useful method for constructing the Hasse diagram is to add one pair of
adjacent nodes at a time. We describe this in the other direction, disassembling
the diagram one pair at a time. Specifically, we allowed ourselves to remove a
pair β0 ⊂ β if β is the only remaining set that properly contains β0. Note that
β is necessarily maximal and we have dim β0 = dim β − 1 because the operation
maintains the system as an abstract simplicial complex. It is easy to see that
disassembling the Hasse diagram of the d-simplex this way is possible, for example
by removing the pairs β0 ⊂ β0 ∪ {ud} in the order of decreasing dimension of β0.
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Collapses. Now suppose we have a geometric d-simplex, σ, and we consider the
Hasse diagram of its system of faces, to which we add the empty set to be consistent
with earlier assumptions. The operation of removing a pair β0 ⊂ β corresponds to
removing a pair of faces τ0 < τ . The condition is that τ is the only remaining
proper coface of τ0. The operation of removing the pair τ0 < τ is referred to as
an elementary collapse, or a (k, k + 1)-collapse when k = dim τ0. As illustrated in
Figure III.18, a d-simplex can be reduced to a single simplex by a sequence of 2d−1
elementary collapses. Since the elementary collapses maintain the set as a simplicial
complex, the remaining simplex is necessarily a vertex. We can apply elementary
collapses more generally to any simplicial complex, K. Letting L be the result of
the collapse, we note that there is a deformation retraction from |K| to |L|. This
implies that K and L have the same homotopy type. We call K collapsible if there is
a sequence of elementary collapses that reduces K to a single vertex. Since collapses
preserve the homotopy type, this is only possible if |K| is contractible. However,
it turns out that not every simplicial complex with contractible underlying space is
collapsible.

Figure III.18: From left to right: a tetrahedron, the three triangles left after a
(2, 3)-collapse, the three edges left after three additional (1, 2)-collapses, and
the vertex left after three additional (0, 1)-collapses.

It is convenient to extend the notion of collapse and consider pairs of simplices
τ < υ whose dimensions differ by one or more. Instead of requiring that υ be the
only proper coface of τ , we now require that all cofaces of τ be faces of υ. Letting
k = dim τ and ℓ = dim υ, we get

(ℓ−k
i

)
simplices of dimension i + k and therefore

a total of 2ℓ−k =
∑ℓ−k

i=0

(ℓ−k
i

)
simplices between τ and υ, including the two. The

Hasse diagram of this set of faces has the structure of an (ℓ − k − 1)-simplex,
which we have seen can be collapsed down to a vertex by a sequence of 2ℓ−k−1 − 1
elementary collapses. Each (i, i + 1)-collapse in this sequence corresponds to an
(i + k + 1, i + k + 2)-collapse in the sequence that removes the cofaces of τ . We
append a (k, k+1)-collapse which finally removes τ together with the last remaining
proper coface. We refer to this sequence of 2ℓ−k−1 elementary collapses as a (k, ℓ)-
collapse. Since elementary collapses preserve the homotopy type, so do the more
general collapses.

Critical and regular events. Let ri be the smallest radius such that Ki =
Alpha(ri). A simplex τ belongs to Ki+1 but not to Ki if the balls with radius
ri+1 have a non-empty common intersection with the corresponding intersection
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of Voronoi cells but the balls with radius ri do not; see Figure III.19. Assuming
general position and dim τ = k, the intersection of Voronoi cells, Vτ =

⋂
u∈τ Vu, is

a convex polyhedron of dimension d − k. By definition of ri+1, the balls Bu(ri+1)
intersect Vτ in a single point, x.

Figure III.19: Left: three points spanning an acute triangle. In the alpha
complex evolution, the three edges appear before a critical event adds the
triangle. Right: three points spanning an obtuse triangle. Two edges appear
before a regular event adds the triangle together with the third edge.

Consider first the case that x lies on the boundary of Vτ . Then there are other
Voronoi polyhedra for which x is the first contact with the union of balls. Assume
Vτ is the polyhedron with highest dimension in this collection and let Vυ be the
polyhedron with lowest dimension. Correspondingly, τ is the simplex with lowest
dimension in Ki+1 − Ki and υ is the simplex with highest dimension. The other
simplices in Ki+1 − Ki are the faces of υ that are cofaces of τ . In other words, we
obtain Ki from Ki+1 by a (k, ℓ)-collapse, where k = dim τ and ℓ = dim υ. We call
this collapse a regular event in the evolution of the alpha complex.

Consider second the case that x lies in the interior of Vτ and it is not the first
contact for any higher-dimensional Voronoi polyhedron. In other words, τ is the
only simplex in Ki+1 − Ki. We call the addition of τ a critical event because
it changes the homotopy type of the complex. Since the union of balls has the
homotopy type of the complex, we know that the union also changes its type when
the radius reaches ri+1.

Bibliographic notes. Alpha complexes were introduced for points in R2 by
Edelsbrunner, Kirkpatrick, and Seidel [59], extended to R3 in [63], and to weighted
points in general, fixed dimension in [53]. The 3-dimensional software written by
Ernst Mücke has been popular in many areas of science and engineering, including
structural molecular biology where alpha complexes serve as an efficient represen-
tation of proteins and other biomolecules. Alpha complexes were the starting point
of the work on persistent homology, to be discussed in Chapter VII. The difference
between critical and regular events in the evolution of the alpha complex reminds



74 III Complexes

us of the difference between critical and regular points of a Morse function, which
will be studied in Chapter VI. The connection is direct but is made technically dif-
ficult because Morse theory was developed principally for smooth functions [111].
A lesser known development of the same ideas for non-smooth functions is based on
the concept of a topological Morse function [114] of which the Euclidean distance
and power functions for a finite point set are examples.

Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical ques-
tion can be answered using knowledge of the material combined with some thought
and analysis.

1. Deciding isomorphism (three credits). What is the computational complexity
of recognizing isomorphic abstract simplicial complexes?

2. Order complex (two credits). A flag in a simplicial complex K in Rd is a
nested sequence of proper faces, σ0 < σ1 < . . . < σk. The collection of flags
forms an abstract simplicial complex A sometimes referred to as the order
complex of K. Prove that A has a geometric realization in Rd.

3. Barycentric subdivision (one credit). Let K consist of a d-simplex σ and its
faces.

(i) How many d-simplexes belong to the barycentric subdivision, SdK?

(ii) What is the d-dimensional volume of the individual d-simplices in SdK?

4. Covering a tree (one credit). Let P be a finite collection of closed paths that
cover a tree; that is, each node and each edge of the tree belongs to at least
one path.

(i) Prove that the nerve of P is contractible.

(ii) Is the nerve still contractible if we allow subtrees in the collection? What
about subforests?

5. Nerve of stars (one credit). Let K be a simplicial complex. Prove that K is
a geometric realization of the nerve of the collection of vertex stars in K.

6. Helly for boxes (two credits). A box in Rd is defined by pairs ai ≤ bi and
consists of all points x = (x1, x2, . . . , xd) satisfying ai ≤ xi ≤ bi for 1 ≤ i ≤ d.
Let F be a finite collection of boxes in Rd. Prove that if every pair of boxes has a
non-empty intersection, then the entire collection has a non-empty intersection.

7. Alpha complexes (two credits). Let S ⊆ Rd be a finite set of points in general
position. Recall that Čech(r) and Alpha(r) are the Čech and alpha complexes
for radius r ≥ 0. Is it true that Alpha(r) = Čech(r) ∩ Delaunay? If yes, prove
the following two subcomplex relations. If no, give examples to show which
subcomplex relations are not valid.



Exercises 75

(i) Alpha(r) ⊆ Čech(r) ∩ Delaunay.

(ii) Čech(r) ∩ Delaunay ⊆ Alpha(r).

8. Collapsibility (two credits). Call a simplicial complex collapsible if there is
a sequence of collapses that reduces the complex to a single vertex. The ex-
istence of such a sequence implies that the underlying space of the complex
is contractible. Describe a finite 2-dimensional simplicial complex that is not
collapsible although its underlying space is contractible.
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Chapter IV

Homology

Homology is a mathematical formalism for talking in a quantitative and unambigu-
ous manner about how a space is connected. Compared to most other, competing
formalisms, homology has faster algorithms but captures less of the topological in-
formation. We should keep in mind, however, that detailed classifications are not
within our computational reach in any case. Specifically, the question of whether
or not two triangulated 4-manifolds are homeomorphic or homotopy equivalent are
both undecidable. In practice, having fast algorithms is a definitive advantage and
being insensitive to some topological information is not necessarily a drawback.
More useful than knowing everything is being able to assess the importance of in-
formation and to rank it accordingly, a topic we will address directly in Chapter
VII. Before we get there, we need to learn the basics, which we do in this chapter.

IV.1 Homology Groups

Homology groups provide a mathematical language for the holes in a topological
space. Perhaps surprisingly, they capture holes indirectly, by focusing on what
surrounds them. Their main ingredients are group operations and maps that re-
late topologically meaningful subsets of a space to each other. In this section, we
introduce the various groups involved in the setup of homology.

Chain complexes. Let K be a simplicial complex and p a dimension. A p-chain
is a formal sum of p-simplices in K. The standard notation for this is c =

∑
aiσi,

where the σi are the p-simplices and the ai are the coefficients. In computational
topology, we mostly work with coefficients ai that are either 0 or 1, called modulo 2
coefficients. Coefficients can, however, be more complicated numbers like integers,
rational numbers, real numbers, elements of a field, or elements of a ring. Since we
work modulo 2, we can think of a chain as a set of p-simplices, namely those σi with
ai = 1. But when we do consider chains with other coefficient groups, this way of
thinking is more cumbersome, so we will use it sparingly.

79
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Two p-chains are added componentwise, like polynomials. Specifically, if c =∑
aiσi and c′ =

∑
biσi, then c + c′ =

∑
(ai + bi)σi, where the coefficients satisfy

1+1 = 0. In set notation, the sum of two p-chains is their symmetric difference. The
p-chains together with the addition operation form the group of p-chains denoted
as (Cp, +), or simply Cp = Cp(K) since the operation is understood. Associativity
follows from associativity of addition. The neutral element is 0 =

∑
0σi. The

inverse of c is −c = c since c+c = 0. Finally, Cp is abelian because addition modulo
2 is abelian. We have a group of p-chains for each integer p. For p less than zero
and greater than the dimension of K this group is trivial, consisting only of the
neutral element. To relate these groups, we define the boundary of a p-simplex as
the sum of its (p−1)-dimensional faces. Writing σ = [u0, u1, . . . , up] for the simplex
spanned by the listed vertices, its boundary is

∂pσ =
p∑

j=0

[u0, . . . , ûj , . . . , up],

where the hat indicates that uj is omitted. For a p-chain, c =
∑

aiσi, the boundary
is the sum of the boundaries of its simplices, ∂pc =

∑
ai∂pσi. Hence, taking the

boundary maps a p-chain to a (p − 1)-chain, and we write ∂p : Cp → Cp−1. Notice
also that taking the boundary commutes with addition, that is, ∂p(c + c′) = ∂pc +
∂pc′. This is the defining property of a homomorphism, which is a map between
groups that commutes with the group operation. Therefore, we refer to ∂p as the
boundary homomorphism or, for short, the boundary map for chains. The chain
complex is the sequence of chain groups connected by boundary homomorphisms,

. . .
∂p+2−→ Cp+1

∂p+1−→ Cp
∂p−→ Cp−1

∂p−1−→ . . . .

It will often be convenient to drop the index from the boundary homomorphism
since it is implied by the dimension of the chain it applies to.

Cycles and boundaries. We distinguish two particular types of chains and use
them to define homology groups. A p-cycle is a p-chain with empty boundary,
∂c = 0. Since ∂ commutes with addition, we have a group of p-cycles, denoted as
Zp = Zp(K), which is a subgroup of the group of p-chains. In other words, the group
of p-cycles is the kernel of the p-th boundary homomorphism, Zp = ker ∂p. Since
the chain groups are abelian, so are their cycle subgroups. Consider p = 0 as an
example. The boundary of every vertex is zero, C−1 = 0; hence Z0 = ker ∂0 = C0.
For p > 0, however, Zp is usually not all of Cp.

A p-boundary is a p-chain that is the boundary of a (p + 1)-chain, c = ∂d with
d ∈ Cp+1. Since ∂ commutes with addition, we have a group of p-boundaries,
denoted by Bp = Bp(K), which is again a subgroup of the p-chains. In other words,
the group of p-boundaries is the image of the (p + 1)-st boundary homomorphism,
Bp = im ∂p+1. Since the chain groups are abelian, so are their boundary subgroups.
Consider p = 0 as an example. Every 1-chain consists of some number of edges,
each with two endpoints. Taking the boundary cancels duplicate endpoints in pairs,
leaving an even number of distinct vertices. Now suppose the complex is connected.
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Then for any even number of vertices, we can find paths that connect them pairwise
and we can add the paths to get a 1-chain whose boundary consists of the given
vertices. Hence, every even set of vertices is a 0-boundary and every odd set of
vertices is not. If K is connected, this implies that exactly half the 0-cycles are
0-boundaries. The fundamental property that makes homology work is that the
boundary of a boundary is necessarily zero.

Fundamental Lemma of Homology. ∂p∂p+1d = 0 for every integer p and
every (p + 1)-chain d.

Proof. We just need to show that ∂p∂p+1τ = 0 for a (p + 1)-simplex τ . The
boundary, ∂p+1τ , consists of all p-faces of τ . Every (p − 1)-face of τ belongs to
exactly two p-faces, so ∂p(∂p+1τ ) = 0.

It follows that every p-boundary is also a p-cycle or, equivalently, that Bp is
a subgroup of Zp. Figure IV.1 illustrates the subgroup relations among the three
types of groups and their connection across dimensions established by the boundary
homomorphisms.

00 0

Cp+1

Zp+1 Zp Zp−1

Bp+1 Bp

Cp Cp−1

Bp−1

∂p∂p+1∂p+2 ∂p−1

Figure IV.1: The chain complex consisting of a linear sequence of chain, cycle,
and boundary groups connected by homomorphisms.

Homology groups. Since the boundaries form subgroups of the cycle groups, we
can take quotients. In other words, we can partition each cycle group into classes
of cycles that differ from each other by boundaries. This leads to the notion of
homology groups and their ranks, which we now define and discuss.

Definition. The p-th homology group is the p-th cycle group modulo the p-th
boundary group, Hp = Zp/Bp. The p-th Betti number is the rank of this group,
βp = rankHp.

Each element of Hp = Hp(K) is obtained by adding all p-boundaries to a given
p-cycle, c + Bp with c ∈ Zp. In group theory, c + Bp is called a coset of Bp in Zp.
If we take any other cycle c′ = c + c′′, with c′′ an element of Bp, we get the same
class, c′ + Bp = c + Bp, since c′′ + Bp = Bp. This class is thus a coset of Hp and is
referred to as a homology class. Any two cycles in the same homology class are said
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to be homologous, which is denoted as c ∼ c′. We may take c as the representative
of this class, but we could choose any other cycle in the class as well. Similarly,
addition of two classes, (c + Bp) + (c0 + Bp) = (c + c0) + Bp, is independent of the
representatives and is therefore well defined. We thus see that Hp is indeed a group,
and because Zp is abelian, so is Hp.

The cardinality of a group is called its order. Since we use modulo 2 coefficients,
a group with n generators has order 2n. For example, the base 2 logarithm of the
order of Cp is the number of p-dimensional simplices in the complex. Furthermore,
the group is isomorphic to Zn

2 , the group of bit-vectors of length n together with
the exclusive-or operation. This is an n-dimensional vector space generated by n
bit-vectors, for example the n unit vectors. The dimension is referred to as the
rank of the vector space, n = rank Zn

2 = log2 ord Zn
2 . The cycles and boundaries

exhibit the same vector space structure, except that their dimension is often less
than that of the chains. The number of cycles in each homology class is the order of
Bp; hence the number of classes in the homology group is ordHp = ord Zp/ord Bp.
Equivalently, the rank is the difference, βp = rankHp = rankZp − rank Bp. This

0

y

x

x + y

y

x

x + B1 y + B1

0 + B1

x + y + B1

Figure IV.2: The first homology group of the torus has order 4 and rank 2. In
the middle, the four elements are drawn as the cosets in the group of 1-cycles.
On the right, the four elements are the vertices of a square.

suggests two alternative methods for illustrating a homology group, as a partition
of the set of cycles or the hypercube of dimension βp. As an example consider the
torus in Figure IV.2. There are only four homology classes in H1, namely B1, x+B1,
y +B1, and (x+ y)+B1, where x and y are the non-bounding 1-cycles that go once
around the arm and the hole of the torus. The two corresponding cosets, x + B1

and y + B1, generate the first homology group.

The homology of a ball. We define a closed ball to be any triangulated topo-
logical space that is homeomorphic to Bk, the subset of points at a distance at most
one from the origin in Rk. What is the homology of a ball? Given our intuition
that homology should measure holes, it should be trivial. This almost turns out to
be true; actually if K triangulates a ball, then Hp(K) = 0 except when p = 0 where
it has rank 1. This is surprisingly hard to prove, however! It is usually done with
a lot of machinery like simplicial approximations and homotopy equivalences. For
now, let us at least see this directly when K is the set of faces of a single simplex
of dimension k. In this case, the p-chains of K have rank equal to the number of
p-faces, which is

(k+1
p+1

)
. Let the vertices be u0, u1, . . . , uk and consider a p-chain c

with simplices of the form [ui0 , ui1 , . . . , uip ]. The condition ∂c = 0 is equivalent to



IV.1 Homology Groups 83

every (p−1)-simplex occurring an even number of times as a face of p-simplices in c.
Assuming p > 0, we can construct a (p+1)-chain d with boundary ∂d = c. This will
imply that every p-cycle is also a p-boundary and, equivalently, that Hp is trivial.
Specifically, we let d be the set of (p+1)-simplices of the form [u0, ui0 , ui1 , . . . , uip ].
In words, d contains a (p + 1)-simplex for each p-simplex in c that does not have
u0 as a vertex. To see that c is the boundary of d, we distinguish three types of
p-faces of simplices in d. A p-simplex in c that does not contain u0 occurs exactly
once as a face of a (p + 1)-simplex in d and therefore belongs to ∂d. A p-simplex τ
not in c occurs an even number of times, namely once for each time the (p− 1)-face
σ obtained by dropping u0 occurs in the boundary of a simplex in c. By the same
argument, we get a p-simplex τ in c that contains u0 an odd number of times be-
cause one of the p-simplices in c that contains the (p − 1)-face σ does not give rise
to a (p + 1)-simplex in d, namely τ itself.

This covers all positive dimensions. For p = 0, we have already observed that
exactly half the cycles are boundaries. Hence, H0 = Z0/B0 is isomorphic to Z2 and
β0 = 1, as claimed.

Reduced homology. There is something dissatisfying about the 0-th homology
group behaving differently for the ball than the others. The reason for the difference
is that we have set up things so that β0 counts the components, but if there is one
component, there is no hole. More satisfying would be to count one when we have
two components, namely for the one gap between them. This is achieved by a small
but often useful modification of homology, namely adding the augmentation map
ϵ : C0 → Z2 defined by ϵ(u) = 1 for each vertex u. We thus get

. . .
∂2−→ C1

∂1−→ C0
ϵ−→ Z2

0−→ 0 −→ . . . .

Cycles and boundaries are defined as before, and the only difference we notice
is for Z0 which now requires that each 0-cycle have an even number of vertices.
This results in the reduced homology groups, H̃p, and the reduced Betti numbers,
β̃p = rank H̃p. Assuming K is non-empty, we have β̃p = βp for all p ≥ 1 and
β̃0 = β0 − 1. For K = ∅, we have β̃−1 = 1. This is because both elements of
Z2 belong to the kernel and are therefore (−1)-cycles, but only one belongs to the
image of the augmentation map and is therefore a (−1)-boundary.

Induced maps. A continuous map from one topological space to another maps
cycles to cycles and boundaries to boundaries. We can therefore use the images to
construct new homology groups. These are not necessarily the same as the ones of
the original space since cycles can become boundaries, for example trivial cycles.
We describe this more formally for two simplicial complexes and a simplicial map,
f : K → L, between them. Recall that f takes each simplex of K linearly to a
simplex of L. It induces a map from the chains of K to the chains of the same
dimension of L. Specifically, if c =

∑
aiσi is a p-chain in K, then f#(c) =

∑
aiτi,

where τi = f(σi) if it has dimension p and τi = 0 if f(σ) has dimension less than
p. Writing ∂K and ∂L for the boundary maps in the two complexes, we note that
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f# ◦ ∂K = ∂L ◦ f#, that is, the induced map commutes with the boundary maps.
This is obvious when f(σi) has dimension p, since then all (p − 1)-faces of σi map
to the corresponding (p− 1)-faces of τi. If, on the other hand, f(σi) has dimension
less than p, then the (p − 1)-faces of σi map to simplices of dimension less than
p−1, with the possible exception of exactly two (p−1)-faces whose images coincide
and cancel each other. So both f#(∂Kσi) and ∂Lf#(σ) are zero. Note that in
the case when f : K → L is the inclusion of one simplicial complex into another,
simplices always keep their dimension, so the induced map, f#, is a little easier to
understand.

The fact that the induced map commutes with the boundary map implies that
f# takes cycles to cycles, f#(Zp(K)) ⊆ f#(Zp(L)), and boundaries to boundaries,
f#(Bp(K)) ⊆ f#(Bp(L)). Therefore, it defines a map on the quotients, which
we call the induced map on homology, sometimes written f∗ : Hp(K) → Hp(L).
Note that the rank of the image is bounded from above by both Betti numbers,
rank f∗(Hp(K)) ≤ min{βp(K),βp(L)}.

Degree of a map. We now present a first application of the concept of induced
maps. We describe it for general continuous maps, appealing to the Simplicial
Approximation Theorem proved in Section III.1 when we need triangulations and
an approximating simplicial map. Let g : Sp → Sp be a continuous map and let c
be the unique generator of the p-th homology group of the p-sphere. Then g(c) is
either homologous to c or to 0. In other words, g(c) ∼ αc and α ∈ {0, 1} is called
the modulo 2 degree of g. If g is the identity, then α = 1. However, if g extends a
continuous map g0 : Bp+1 → Sp, then the induced map on homology, g∗ : Hp(Sp) →
Hp(Sp), is the composite of two induced maps, Hp(Sp) → Hp(Bp+1) → Hp(Sp),
where the first is induced by inclusion. The middle group is trivial; hence α = 0.
We are now ready to prove a classic result on fixed points of continuous maps.

Brouwer’s Fixed Point Theorem. A continuous map f : Bp+1 → Bp+1 has
at least one fixed point x = f(x).

Proof. Let A, B : Sp → Sp be maps defined by A(x) = (x− f(x))/∥x − f(x)∥ and
B(x) = x. Since B is the identity, its modulo 2 degree is 1. If f has no fixed point,
then A is well defined and has modulo 2 degree 0 because it extends a map from
the (p + 1)-ball to the p-sphere. We now construct H : Sp × [0, 1] → Sp by setting
H(x, t) = (x − tf(x))/∥x − tf(x)∥. For t = 1, we have x ̸= f(x) because there is
no fixed point, and for t < 1, we have x ̸= tf(x) because ∥x∥ = 1 > ∥tf(x)∥. We
conclude that H is a homotopy between A and B, which implies that the modulo
2 degree of the two are the same, a contradiction.

Bibliographic notes. Like many other concepts in topology, homology groups
were introduced by Henri Poincaré in one of a series of papers on “analysis situ”
[121]. He named the ranks of the homology groups after another mathematician,
Betti, who introduced a slightly different version years earlier. The field experienced
a rapid development during the twentieth century. There were many competing
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theories, simplicial and singular homology being just two examples, which have
been consolidated by axiomatizing the assumptions under which homology groups
exist [66]. Today we have a number of well-established textbooks in the field. We
refer to Giblin [78] for an intuitive introduction and to Hatcher [82], Munkres [116],
and Spanier [136] for more comprehensive sources. Brouwer’s Fixed Point Theorem
impresses by its generality and is popular outside of mathematics also. He proved
the 3-dimensional case in 1910 [22] and the general case in 1912 [23].

IV.2 Matrix Reduction

The homology groups of a triangulated space can be computed from the matrices
representing the boundary homomorphisms. Their reduced versions readily provide
the ranks of the cycle and boundary groups, and their differences give the Betti
numbers. Summing these same differences leads to a proof of the Euler-Poincaré
formula which generalizes the Euler relation for planar graphs.

Euler-Poincaré formula. Recall that the Euler characteristic of a simplicial
complex is the alternating sum of the number of simplices in each dimension. Also
recall that the rank of the p-th homology group is the rank of the p-th cycle group
minus the rank of the p-th boundary group. Writing zp = rank Zp and bp = rank Bp,
this can be stated as βp = zp−bp. Furthermore, writing np = rankCp for the number
of p-simplices in K, we know that np = zp + bp−1. This is the general fact that for
any linear transformation between vector spaces f : U → V , the dimension of U
equals the sum of the dimension of the kernel of f and the dimension of the image
of f . The Euler characteristic is the alternating sum of the np, which is therefore

χ =
∑

p≥0

(−1)p(zp + bp−1)

=
∑

p≥0

(−1)p(zp − bp)

=
∑

p≥0

(−1)pβp.

To appreciate the beauty of this result, we need to know that homology groups do
not depend on the triangulation chosen for a topological space. The technical proof
of this claim is difficult, and we refer the reader to more advanced texts. Even
the more general result that homotopy equivalent spaces have isomorphic homology
groups is plausible. For example, we can free ourselves from the triangulation
entirely and define chains in terms of continuous maps from the standard simplex
into the space X. This gives rise to singular homology, which can be shown to give
groups isomorphic to the ones we get by simplicial homology, the theory we describe
in this chapter. If we now have a continuous map f : X → Y, we can map the chains
from X to those of Y by simply composing. If f is a homotopy equivalence, then it
turns out that X and Y have isomorphic homology groups. This also implies that
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the Euler characteristic is an invariant of the space, that is, it does not depend on
the simplicial complex we use to triangulate it.

Euler-Poincaré Theorem. The Euler characteristic of a topological space is
the alternating sum of its Betti numbers, χ =

∑
p≥0(−1)pβp.

Boundary matrices. To compute homology, we combine information from two
sources, one representing the cycles and the other the boundaries, just as in the proof
of the Euler-Poincaré Theorem. Let K be a simplicial complex. Its p-th boundary
matrix represents the (p − 1)-simplices as rows and the p-simplices as columns.
Assuming an arbitrary but fixed ordering of the simplices, for each dimension, this
matrix is ∂p = [aj

i ], where i ranges from 1 to np−1, j ranges from 1 to np, and

aj
i = 1 if the i-th (p − 1)-simplex is a face of the j-th p-simplex and aj

i = 0,
otherwise. Given a p-chain, c =

∑
aiσi, the boundary, ∂pc, can be computed by

matrix multiplication:

⎡

⎢⎢⎢⎣

a1
1 a2

1 . . . a
np

1

a1
2 a2

2 . . . a
np

2
...

...
. . .

...
a1

np−1
a2

np−1
. . . a

np
np−1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

a1

a2
...

anp

⎤

⎥⎥⎥⎦
.

In words, a collection of columns represents a p-chain and the sum of these columns
gives its boundary. Similarly, a collection of rows represents a (p−1)-chain and the
sum of these rows gives its coboundary, a concept that will be defined in the next
chapter.

Row and column operations. The rows of the matrix ∂p form a basis of the
(p− 1)-st chain group, Cp−1, and the columns form a basis of the p-th chain group,
Cp. We use two types of column operations to modify the matrix without changing
its rank: exchanging columns k and l and adding column k to column l. Both can
be expressed by multiplying with a matrix V = [vj

i ] on the right. To exchange two
columns, we have vl

k = vk
l = 1 and vi

i = 1 for all i ̸= k, l. All other entries are

kk k l

l

k + l

Figure IV.3: The effect of a single off-diagonal one in the matrix V is the
addition of one column in the boundary matrix to another. The effect on the
basis of Cp is similar.
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zero. To add column k to column l, we have vl
k = 1 and vi

i = 1 for all i. All other
entries are zero. As indicated in Figure IV.3, the effect of the operation is that
the l-th column now represents the sum of the k-th and the l-th p-simplices, or the
sum of whatever the two columns represented prior to the operation. Similarly, we
have two row operations, one exchanging two rows and the other adding one row
to another. This translates to multiplication by a matrix U = [uj

i ] on the left. To
exchange two rows, we again have ul

k = uk
l = 1, ui

i = 1 for i ̸= k, l, and all other
entries zero. To add the k-th to the l-th row, we have uk

l = 1, ui
i = 1 for all i, and

all other entries zero, as in Figure IV.4. The effect of this operation is that the k-th

k

k

l

k + l

l l

=

Figure IV.4: The effect of a single off-diagonal one in the matrix U is the
addition of one row in the boundary matrix to another. The effect on the basis
of Cp−1 is that the row that was added now represents the sum of (p−1)-chains,
the opposite of a column operation.

row now represents the sum of the k-th and the l-th (p − 1)-simplices, or the sum
of whatever the two rows represented prior to the operation. Although the (p− 1)-
and p-chains represented by the rows and columns change as we perform row and
column operations, they always represent bases of the two chain groups.

Smith normal form. Using row and column operations, we can reduce the p-
th boundary matrix to Smith normal form. For modulo 2 arithmetic, this means
an initial segment of the diagonal is 1 and everything else is 0, as in Figure IV.5.
Recall that np = rankCp is the number of columns of the p-th boundary matrix.

rank Cp

rank Zp

rank Cp−1

rank Bp−1

Figure IV.5: The entries in the shaded, initial portion of the diagonal are 1
and all other entries are 0. The ranks of the boundary and cycle groups are
readily available as the numbers of non-zero and zero columns.

Let np = bp−1 + zp so that the leftmost bp−1 columns have ones in the diagonal and
the rightmost zp columns are zero. The former represent p-chains whose non-zero
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boundaries generate the group of (p − 1)-boundaries. The latter represent p-cycles
that generate Zp. Once we have all boundary matrices in normal form, we can
extract the Betti numbers as differences between ranks, βp = rankZp − rank Bp for
p ≥ 0. To get the bases of the boundary and cycle groups, we keep track of the
matrix products that represent the row and column operations. Writing Up−1 and
Vp for the left and right products, we get the normal form as Np = Up−1∂pVp. The
new basis for the cycle group is given in the last zp columns of Vp. Similarly, the
new basis for the boundary group is encoded in Up−1, and we get the basis vectors
from the first bp−1 columns of the inverse.

Reduction. To reduce ∂p, we proceed similarly to Gaussian elimination for solv-
ing a system of linear equations. In at most two exchange operations, we move
a 1 to the upper left corner, and with at most np−1 − 1 row and np − 1 column
additions, we zero out the rest of the first column and first row. We then recurse
for the submatrix obtained by removing the first row and first column. We start
the reduction by initializing the matrix to Np[i, j] = aj

i for all i and j and by calling
the function for x = 1, the position of the considered diagonal element.

void Reduce(x)
if there exist k ≥ x, l ≥ x with Np[k, l] = 1 then

exchange rows x and k; exchange columns x and l;
for i = x + 1 to np−1 do
if Np[i, x] = 1 then add row x to row i endif

endfor;
for j = x + 1 to np do
if Np[x, j] = 1 then add column x to column j endif

endfor;
Reduce(x + 1)

endif.

We have at most np−1 row and np column operations per recursive call and
hence at most (np−1 + np) min{np−1, np} row and column operations in total.
Multiplying with their lengths, we thus get a running time of a constant times
2np−1np min{np−1, np}. The amount of memory is at most some constant times
(np−1 + np)2 needed to store the matrices. In summary, we reduce the boundary
matrices in time at most cubic and in memory at most quadratic in the number of
simplices in K.

Example. To get a feeling for the algorithm, we use it to compute the reduced
homology group of the 3-ball triangulated by the faces of a single tetrahedron. We
do the computations one dimension at a time and this way get the reduced Betti
numbers of all skeleta of the complex as we go. The 0-skeleton consists of four
vertices, and its sole non-trivial boundary matrix is ∂0, consisting of a row of ones,
shown as part of the first equation in Figure IV.6. Three column operations remove
three of the four ones, and we get β̃0 = 3, the number of zero columns in N0.
Proceeding to the 1-skeleton, we add the six edges and consider the first boundary
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Figure IV.6: From top to bottom: the matrix equations Np = Up−1∂pVp

for reducing the zeroth, first, second, and third boundary matrices of the
tetrahedron. The ones are shaded, and the zeros are white. The bases are
indicated for both the boundary and the normal form matrices. For clarity,
no exchanges are performed.

matrix. After reduction, it has three ones in the diagonal, shown as part of the
second equation in Figure IV.6. Combining the information from N0 and N1, we
get β̃0 = 3−3 = 0, and counting the zero columns in N1, we get β̃1 = 3. Proceeding
to the 2-skeleton, we add the four triangles and thus get a triangulation of the 2-
sphere. After reduction, the boundary matrix again has three ones in the diagonal,
shown as part of the third equation in Figure IV.6. The triangles do not affect the
zeroth homology group, and we have β̃0 = 0, as before. Combining the information
from N1 and N2, we get β̃1 = 3−3 = 0, and counting the zero columns in N2, we get
β̃2 = 1. We finally get the triangulation of the 3-ball by adding the one tetrahedron.
After reduction, the boundary matrix has a single one in the diagonal, shown as
part of the fourth equation in Figure IV.6. The first two reduced Betti numbers
remain unaffected, and the other two also vanish, so we get β̃0 = β̃1 = β̃2 = β̃3 = 0,
as expected.
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Bibliographic notes. The generalization of the Euler relation for planar graphs
to the Euler-Poincaré Theorem has an interesting history, analyzed from a philo-
sophical viewpoint by Lakatos [99]. The Smith normal form for coefficient groups
other than Z2 is given in [134]. Already for integers, this complicates matters sig-
nificantly, and it is no longer straightforward to guarantee a running time that is
polynomial in the number of simplices [116]. However, improvements to polynomial
time are possible [88, 138].

IV.3 Relative Homology

We extend homology beyond closed spaces by considering nested pairs of closed
spaces and studying their difference. We use induced maps on homology to relate
the homology of such a pair to the homology of the individual closed spaces.

Relative homology groups. In this chapter, homology groups have been defined
for triangulated spaces, which are therefore necessarily closed. To extend them to
other spaces, we introduce homology groups for pairs of closed spaces. Let K be
a simplicial complex and K0 a subcomplex of K. The relative chain groups are
quotients of the chain groups of K and of K0; that is, Cp(K, K0) = Cp(K)/Cp(K0).
Taking this quotient partitions Cp(K) into cosets, c + Cp(K0), whose p-chains pos-
sibly differ in the p-simplices in K0 but not in the ones in K − K0. The boundary
map is induced by the one for K; that is, ∂p(c + Cp(K0)) = ∂pc + Cp−1(K0). As
before, ∂ commutes with addition, and taking the boundary twice gives zero. We
thus define relative cycle groups, relative boundary groups, and relative homology
groups as kernels, images, and quotients,

Zp(K, K0) = ker ∂p;

Bp(K, K0) = im ∂p+1;

Hp(K, K0) = ker ∂p/im ∂p+1,

just as before. Let c + Cp(K0) be a relative p-chain. It is a relative p-cycle iff
∂c is carried by K0, which includes the possibility that ∂c is zero. Furthermore,
it is a relative p-boundary if there is a (p + 1)-chain d of K such that c − ∂d is
carried by K0. As before, we call two relative cycles homologous if their difference
is a boundary. To distinguish the homology of a complex K from that of a pair
(K, K0), we sometimes refer to Hp(K) as the absolute homology of K and to its
elements as absolute classes.

Recall that continuous maps between spaces induce maps on homology. This idea
extends to relative homology. Suppose we have a simplicial map, f : K → L, and
subcomplexes K0 ⊆ K and L0 ⊆ L such that K0 maps into L0. Then we have an
induced map, f#, between the chains of (K, K0) and of (L, L0). Furthermore, f#

commutes with ∂, so it induces a map on homology, f∗ : Hp(K, K0) → Hp(L, L0).
A useful example of such an induced map on homology is from (K, ∅) to (K, K0),
as we will see next.



IV.3 Relative Homology 91

Examples. Relative homology is less intuitive than absolute homology. To help us
understand it better, it is useful to compare the two. The difference is described in
the algebra of the induced map on homology from Hp(K) = Hp(K, ∅) to Hp(K, K0).
Some classes of Hp(K) die entering Hp(K, K0), some survive, and some new ones
get born. We present examples to illustrate how these changes occur.

Let K triangulate the annulus, S1 × [0, 1]. In Figure IV.7 on the left, we assume
K0 triangulates the boundary of the annulus, which consists of the circles S1×0 and
S1 × 1. First notice that if u is a vertex of K, then either u lies in K0 or there is a
path from u to a vertex u0 in K0. In the second case, the 1-chain traced out by the
path has boundary equal to u + u0. It follows that any 0-chain in K is homologous
to one in K0, which implies that H0(K, K0) is trivial. Since H0(K) has rank one,
this is an example of how an absolute homology class dies in relative homology.
Next, suppose we have a relative 1-cycle, c. From the definition, we know that its

K0 K0

K K

Figure IV.7: The annulus triangulated by a complex K. Left: K0 ⊆ K
triangulates the boundary. The upper right path is a relative boundary and
the lower left path generates a non-trivial class in the first relative homology
group. Right: K0 ⊆ K triangulates the right half of the annulus. The core
circle generates a non-trivial class in the first absolute homology group as well
as the first relative homology group.

boundary, ∂c, is a sum of an even number of vertices in K0. In fact, c is a sum of
closed loops and of paths that connect two vertices in K0. Consider first the case
that c is a loop, that is, a 1-cycle in K. Then c is either homologous to zero or to
the core circle, S1× 1

2 . But the core circle is also homologous to S1×0, which lies in
K0. Thus, any absolute 1-cycle is trivial in relative homology; that is, the induced
map from H1(K) to H1(K, K0) is zero. The core circle therefore gives us another
example of an absolute class that dies in relative homology. Consider second the
case that c is a path whose endpoints, u0 and u1, lie in K0. If both points lie in
the same component, either the outer or the inner boundary circle, then there is a
2-chain whose boundary is c + c0, where c0 is a path in K0. On the other hand, if
u0 and u1 lie in different components, then no such 2-chain exists. Any two such
paths are homologous, however, so H1(K, K0) has rank one. The path connecting
the two components of K0 is therefore an example of a relative class that is not an
absolute class. Finally, H2(K) is 0, but H2(K, K0) has rank one. The new class is
the sum of all triangles in K, and its boundary is the sum of all edges in K0.
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A trivial example of a situation in which a class can be both absolute and relative
is given by taking K0 = ∅. For a more interesting example, let K0 triangulate half
the annulus, as illustrated in Figure IV.7 on the right. Here, the core circle generates
the sole non-trivial class in H1(K) as well as the one in H1(K, K0). In this case,
the zeroth and second relative homology groups are both zero and H1(K, K0) is the
only non-trivial relative homology group of the pair.

Excision. By construction, relative homology depends only on the part of K
outside K0 and ignores the part inside K0. Hence, we can remove simplices from
both complexes without changing the homology.

Excision Theorem. Let K0 ⊆ K and L0 ⊆ L be pairs of simplicial complexes
that satisfy L ⊆ K and L − L0 = K − K0. Then they have isomorphic relative
homology groups; that is, Hp(K, K0) ≃ Hp(L, L0) for all dimensions p.

Instead of giving a direct algebraic proof of this fact, we take a look at the Smith
normal form reduction for relative homology. Ordering the simplices in K0 before
the ones in K − K0, all the relevant information is contained in the lower right
submatrices that belong to rows and columns of simplices in K − K0. We reduce
these submatrices, ignoring the rows and columns of simplices in K0. As illustrated
in Figure IV.8, we get the ranks of the relative boundary and cycle groups by
counting the non-zero and zero columns in the submatrices. Using the same ordering
of simplices, we get the boundary matrices of L by removing rows and columns that
correspond to simplices in K−L. By definition of L and L0, these rows and columns
correspond to simplices in K0. The lower right submatrices defined by L − L0 are
therefore the same as before. This implies Hp(K, K0) ≃ Hp(L, L0) for all dimensions
p, as claimed in the Excision Theorem.

rank Cp(K, K0)
rank Zp(K, K0)

rank Bp−1(K, K0)

rank Cp−1(K, K0)

Figure IV.8: By ordering the simplices of K0 before the others, we get the
incidences between simplices in K − K0 in the lower right submatrix, which
we reduce to compute the homology of the pair (K, K0).

We could have deleted the rows and columns of simplices in K0 but chose to
keep them because they contain the information that relates the relative homology
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groups of (K, K0) with the (absolute) homology groups of K and K0. We need new
concepts to describe this connection.

Maps between vector spaces. Since we use modulo 2 arithmetic, the induced
map on homology is a linear transformation between vector spaces. In general, if
f : U → V is a linear transformation between vector spaces, the kernel, image, and
cokernel are defined as usual:

ker f = {u ∈ U | f(u) = 0 ∈ V};

im f = {v ∈ V | there exists u ∈ U with f(u) = v};

cok f = V/im f.

For example, if f is represented by a matrix, such as ∂, we can reduce to get
the kernel spanned by the zero columns, the image spanned by the non-zero rows,
and the cokernel spanned by the zero rows. All three are vector spaces in their own
right, so we can take direct sums, recalling that this is like taking Cartesian products
and using the group operations componentwise. A fundamental result from linear
algebra states that U and V are completely described by the three. Specifically, U
is isomorphic to the direct sum of the kernel and the image, and V is isomorphic to
the direct sum of the image and the cokernel:

U ≃ ker f ⊕ im f ;

V ≃ im f ⊕ cok f.

Again, this has obvious interpretations in terms of the reduced matrix representing
f . If we have three vector spaces and two linear transformations, f : U → V and
g : V → W, we say the sequence U → V → W is exact at V if im f = ker g; see
Figure IV.9. Note that this implies g ◦ f = 0; thus the sequence might be three
terms in a chain complex, and exactness would mean that the homology group at V
was 0. But we will use this concept in more general ways than that. If 0 → U → V

0 0 0 0 0

f g

U

V

W

Figure IV.9: A short exact sequence of vector spaces. It starts and ends with
zero and is exact at each of the three vector spaces between the two ends.

is a sequence, then exactness at U is equivalent to injectivity of U → V. Similarly,
for V → W → 0, exactness at W is equivalent to surjectivity of V → W. A short
exact sequence is a sequence of length five,

0 → U
f→ V

g→ W → 0,
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that starts and ends with the trivial vector space and is exact at U, V, and W. By
what we said above, f : U → V is injective and g : V → W is surjective. In this
situation, it is always true that the middle vector space is isomorphic to the direct
sum of the adjacent vector spaces, V ≃ U ⊕ W. Thus if we somehow already know
U and W, then we have calculated V.

Exact sequence of a pair. Sequences that are exact are a convenient means to
express otherwise cumbersome relationships between homology groups. Exception-
ally powerful are long exact sequences which are infinite sequences of vector spaces
that are exact at each term. A long exact sequence is like a chain complex, but with
trivial homology throughout. A particular example relates the relative homology
groups of a pair to the absolute homology groups of the spaces forming the pair.

Exact Sequence of a Pair Theorem. Let K be a simplicial complex and
K0 ⊆ K a subcomplex. Then there is a long exact sequence

. . . → Hp(K0) → Hp(K) → Hp(K, K0) → Hp−1(K0) → . . . .

The statement also holds if we substitute the reduced homology groups of K and
K0 for their non-reduced homology groups.

The next section will give a general method for constructing long exact sequences,
including that of a pair. Here, we will content ourselves with a brief description
of the maps between the groups. The map Hp(K0) → Hp(K) is just the map on
homology induced by the inclusion K0 ⊆ K. The map Hp(K) → Hp(K, K0) is
also induced by inclusion, K ⊆ K; that is, a class generated by a p-cycle c in K is
mapped to the relative class generated by c+Cp(K0). The third map, Hp(K, K0) →
Hp−1(K0), is called the connecting homomorphism and is the crucial piece of the
construction. To describe it, let c =

∑
aiσi generate a relative p-cycle; that is, ∂c ∈

Cp−1(K0). In K0, ∂2c = 0 implies that ∂c is also a cycle and therefore represents
a class in Hp−1(K0). This defines the connecting homomorphism, mapping the
relative homology class generated by c + Cp(K0) to the absolute homology class
generated by ∂c. Indeed, any cycle in the same relative class with c can be written
as c + c′ + c0, where c′ ∈ Bp(K) and c0 ∈ Cp(K0). But then ∂c′ = 0 and ∂c0 is a
boundary in K0. Hence, ∂(c + c′ + c0) = ∂c + ∂c0, which is homologous to ∂c as a
cycle in K0.

As an example, consider the pair (B3, S1), the 3-ball modulo its equator, trian-
gulated by (K, K0). We can use the exact homology sequence to figure out the
relative homology of this pair. Using reduced homology, all groups of B3 are zero.
Similarly, the only non-zero reduced homology group of S1 is the first one, which
has rank one. Except for dimension p = 2, we therefore have

. . . → 0 → Hp(B3, S1) → 0 → . . . ,

implying that Hp(B3, S1) itself is zero. For p = 2 we have the only non-trivial
portion of the long exact sequence,

. . . → 0 → H2(B3, S1) → H̃1(S1) → 0 → . . . .
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The map between the middle two groups is thus injective as well as surjective, which
implies it is an isomorphism so that H2(B3, S1) has rank one, the same as H̃1(S1).
Indeed, we have a single non-trivial relative homology class of dimension 2, namely
the one generated by the disk spanned by the equator circle. The connecting homo-
morphism maps this class to the absolute homology class of dimension 1 generated
by the circle itself.

Bibliographic notes. Relative homology groups were introduced in the 1920s
by Solomon Lefschetz for application to his fixed point theorem. They seem barely
more than an afterthought to absolute homology groups. Nevertheless, they have
many applications, including the study of the local homology of a space, see e.g.
[82, 116], and the computation of absolute homology groups via exact sequences.

IV.4 Exact Sequences

As we have seen above, long exact sequences are handy for deriving homology groups
from other homology groups. In this section, we introduce a general method for
constructing such sequences and use it to get a divide-and-conquer formulation of
homology, known as the Mayer-Vietoris sequence.

Chain complexes and chain maps. Freeing ourselves from the simplicial com-
plex background, we consider a sequence of vector spaces with homomorphisms
between them, U = (Up, up) with up : Up → Up−1. If upup+1 = 0 for every p, then
we call U a chain complex and the up its boundary maps. The vanishing of the
pairwise compositions of maps is all we need to define cycle groups, Zp(U) = ker up,
boundary groups, Bp(U) = im up+1, and homology groups, Hp(U) = kerup/im up+1,
in the usual way. Of course, our favorite example is the chain complex of a simplicial
complex, C(K) = (Cp(K), ∂d).

Letting V = (Vp, vp) be another chain complex, a chain map is a sequence of
homomorphisms φp : Up → Vp, one for each dimension p, that commute with
the boundary maps. Specifically, vpφp = φp−1up, for every p, but we will often
drop the indices and just write vφ = φu to express this property. Commutativity
guarantees that cycles go to cycles, φp(Zp(U)) ⊆ Zp(V), and boundaries go to
boundaries, φp(Bp(U)) ⊆ Bp(V). Just as in the case of the induced map defined in
the previous section, this implies that the chain map induces a map on homology,
(φp)∗ : Hp(U) → Hp(V), for every dimension p.

Letting W = (Wp, wp) be a third chain complex and the ψp : Vp → Wp a second
chain map, we call U → V → W exact at V if kerψp = imφp for every p. A short
exact sequence of chain complexes is a sequence of length five,

0 → U φ→ V ψ→ W → 0,

that begins and ends with the trivial chain complex and is exact at U , V , and W .
This means that we have a short exact sequence of vector spaces, 0 → Up → Vp →
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Wp → 0, for each dimension p. Recall that this implies that each φp is injective,
each ψp is surjective, and each Vp is isomorphic to the direct sum of Up and Wp,
although there is no natural choice for this isomorphism.

The snake or zig-zag. We are now ready to explain the general method for
constructing long exact sequences of homology groups from short exact sequences
of chain complexes.

Snake Lemma. Let 0 → U φ→ V ψ→ W → 0 be a short exact sequence of chain
complexes. Then there is a well-defined map D : Hp(W) → Hp−1(U), called the
connecting homomorphism, such that

. . . → Hp(U) → Hp(V) → Hp(W)
D→ Hp−1(U) → . . .

is a long exact sequence.

Other than the connecting homomorphism, the maps in the long exact sequence
are induced by the chain maps. Before looking at the algebraic details of the
construction, let us see how the Snake Lemma gives rise to the exact homology
sequence of a pair described in the previous section. We have a simplicial complex,
K, and a subcomplex, K0 ⊆ K. The inclusions of K0 in K and K in K induce a
short exact sequence of chain complexes,

0 → C(K0) → C(K) → C(K, K0) → 0,

where C(K) = (Cp(K), ∂p) with similar notation for K0 and (K, K0). Indeed,
C(K0) → C(K) is injective and C(K) → C(K, K0) is surjective. Finally, we have
exactness in the middle because a chain of K is carried by K0 iff it is zero in (K, K0).
The implied long exact sequence is the exact homology sequence of (K, K0):

. . . → Hp(K0) → Hp(K) → Hp(K, K0)
D→ Hp−1(K0) → . . . .

As always, the crucial piece of the sequence is the connecting homomorphism. We
now give a detailed description of its construction, in the general setting of the
Snake Lemma. We omit the proof that the long exact sequence is in fact exact,
leaving that as an exercise for the interested reader.

Connecting homomorphism. We construct D in four steps using the portion
of the short exact sequence of chain complexes shown below. The vertical arrows
are boundary maps, and the horizontal arrows are chain maps. To simplify the
discussion, we will frequently suppress the subscripts that indicate the dimensions
on the maps φ, ψ, u, v, w, or even the names of the maps themselves, as they can
be determined from the domain and the clutter they introduce is more confusing
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than it is helpful:

Vp+1 → Wp+1 → 0
↓ !3 ↓

0 → Up → Vp → Wp → 0
↓ !2 ↓ !0 ↓

0 → Up−1 → Vp−1 → Wp−1 → 0
↓ !1 ↓

0 → Up−2 → Vp−2.

Notice the labeled commutative squares in the diagram. We will refer to them
when we want to emphasize that the maps around their boundaries commute. For
example, the fact that !0 is a commutative square means that wψ = ψv as a
map from Vp to Wp−1. With this in mind, here are the steps in establishing the
connecting homomorphism.

Step 1: define γ. We begin with a cycle α ∈ Wp representing a class in Hp(W).
Since ψ is surjective, there exists a chain β ∈ Vp such that ψ(β) = α. Since α has
zero boundary and !0 is commutative, the boundary of β lies in the kernel of the
second chain map, v(β) ∈ kerψ. Exactness at Vp−1 then implies that there exists
a chain γ ∈ Up−1 whose image under the first chain map is the boundary of β,
φ(γ) = v(β). We summarize the situation by extracting the relevant piece of the
above diagram, and a little more:

β
ψ→ α

↓ !0 ↓
γ

φ→ v(β)
ψ→ 0

↓ !1 ↓
0

φ→ 0.

Step 2: show γ is a cycle. By commutativity of !1 and the fact that vv = 0,
we have φu(γ) = 0. But φ is injective, so this implies that u(γ) = 0, meaning γ is a
cycle; see the diagram above. Hence, γ represents a class in Hp−1(U), and this class
is the image of the class represented by α under the connecting homomorphism.
The map goes left, from α to β, then down to v(β), and then left, again, to γ. We
may draw this as a snake or a zig-zag cutting through the diagram, hence the name.
Notice, however, that we have made choices for α and β and we need to show that
our answer does not depend on them.

Step 3: show independence from the choice of β. Suppose first that we make
another choice for β, call it β0, and let γ0 be the unique element of Up−1 such
that φ(γ0) = v(β0). We again summarize the situation by extracting a piece of the
diagram:

µ
φ→ β,β0

ψ→ α
↓ !2 ↓ !0 ↓

γ, γ0
φ→ v(β), v(β0)

ψ→ 0.



98 IV Homology

We have ψ(β) = ψ(β0) = α and therefore β + β0 ∈ kerψ = imφ, so there exists a
chain µ ∈ Up with φ(µ) = β + β0. Since !2 commutes, φu(µ) = φ(γ) + φ(γ0). But
φ is injective, so u(µ) = γ + γ0. In words, γ and γ0 differ by a boundary, namely
u(µ), and therefore represent the same homology class.

Step 4: show independence from choice of α. Finally, we consider what happens
with a different choice of α, say α0. Let β0 and γ0 be defined from α0, the same
way β and γ are defined from α. Since α and α0 are two choices of representative
for the same homology class in Hp(W), there exists a chain ν in Wp+1 such that
w(ν) = α + α0. Since ψ is surjective, there exists a chain ϱ ∈ Vp+1 with ψ(ϱ) = ν.
The situation is again summarized in a portion of the diagram:

ϱ
ψ→ ν

↓ !3 ↓
µ′ φ→ v(ϱ),β,β0

ψ→ α,α0

↓ !2 ↓ !0 ↓
γ, γ0

φ→ 0, v(β), v(β0)
ψ→ 0.

By commutativity of !3, v(ϱ) and β + β0 both map to α + α0. This implies
that their sum lies in kerψ = imφ and there is a chain µ′ in Up with φ(µ′) =
v(ϱ)+β+β0. Using commutativity of !2 and vv = 0, we see that φu(µ′) = v(β+β0).
But injectivity of φ implies that the preimage of v(β + β0) is γ + γ0 and hence
u(µ′) = γ + γ0. We see that γ and γ0 differ by a boundary and thus represent the
same homology class, as required. This finishes the construction of the connecting
homomorphism, D.

Mayer-Vietoris sequence. We use the Snake Lemma to derive the divide-and-
conquer formulation of homology known as the Mayer-Vietoris sequence. Given
two spaces, it relates their homology to the homology of their union and their
intersection.

Mayer-Vietoris Sequence Theorem. Let K be a simplicial complex and
K ′, K ′′ subcomplexes such that K = K ′ ∪ K ′′. Let A = K ′ ∩ K ′′. Then there
exists a long exact sequence

. . . → Hp(A) → Hp(K
′) ⊕ Hp(K

′′) → Hp(K) → Hp−1(A) → . . .

and similarly for the reduced homology groups.

Proof. On the level of chains, Cp(A) is a subgroup of both Cp(K ′) and Cp(K ′′).
Forming the direct sums, Cp(K ′) ⊕ Cp(K ′′), for all dimensions p, we get a chain
complex C(K ′) ⊕ C(K ′′) with boundary map defined componentwise. We have two
copies of Cp(A) and can kill one off with the image of Cp(A) via the diagonal, and
the quotient is easily identified with Cp(K). Stated more formally, let i′ : A → K ′

and i′′ : A → K ′′ be the inclusions of A, and let j′ : K ′ → K and j′′ : K ′′ → K
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be the inclusions into K. Set i(a) = (i′(a), i′′(a)) and j(x, y) = j′(x) + j′′(y). Then
it is not difficult to see that we have a short exact sequence of chain complexes,
namely

0 → C(A)
i→ C(K ′) ⊕ C(K ′′)

j→ C(K) → 0.

The long exact sequence implied by the Snake Lemma is the Mayer-Vietoris se-
quence. The above is easily adapted to the reduced sequence as well.

Exactness of the Mayer-Vietoris sequence at Hp(K) tells us that this group is
isomorphic to the direct sum of the image of j∗ : Hp(K ′) ⊕ Hp(K ′′) → Hp(K) with
the kernel of i∗ : Hp−1(A) → Hp−1(K ′) ⊕ Hp−1(K ′′). This distinguishes two types
of homology classes in K. A class in im j∗ lives in K ′, in K ′′, or in both. A class
in ker i∗ corresponds to a (p − 1)-dimensional cycle γ ∈ A that bounds both in
K ′ and K ′′. If we write γ = ∂α′ = ∂α′′, with α′ a p-chain in K ′ and α′′ a p-
chain in K ′′, then α = α′ + α′′ is a cycle in K that represents this second type of
class; see Figure IV.10. It is useful to check through the four steps constructing

K ′ K ′′

α′ α′′

Figure IV.10: The 1-cycle α decomposes into 1-chains α′ in K ′ and α′′ in
K ′′. The common boundary of the two 1-chains is a pair of points, a reduced
0-cycle in A.

the connecting homomorphism, D. They take a class in Hp(K) and define one in
Hp−1(A) as follows. Represent the class by α, a p-cycle of K. As before, there exists
β, a p-chain in Cp(K ′) ⊕ Cp(K ′′), such that j(β) = α. In fact, there are several,
and we get them by writing α = α′ + α′′, with α′ in K ′, α′′ in K ′′, and setting
β = (α′,α′′). Different ways of decomposing α give different β, but note that any
two differ by something in A. Now take ∂β = (∂α′, ∂α′′). The fact that α is a cycle
tells us that ∂α′ = ∂α′′ and that it lies in A. Thus, the cycle γ in the construction
of D is ∂α′.

The sphere, Sd. To illustrate the utility of the Mayer-Vietoris sequence, we use
it to compute the homology of the d-dimensional sphere, Sd. Specifically, we show
that

β̃p(Sd) =

{
1 if p = d;
0 if p ̸= d.

Writing the sphere as the union of its upper and lower hemisphere, Sd = U ∪ L, we
get the equator as the intersection, A = U ∩ L. Each hemisphere is a ball, and the
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equator is a sphere of dimension d− 1. This allows us to compute the homology of
Sd inductively, using the reduced Mayer-Vietoris sequence:

. . . → H̃p(A) → H̃p(U) ⊕ H̃p(L) → H̃p(Sd) → H̃p−1(E) → . . . .

For d = 0, the sphere is two points, so its reduced homology has rank one in
dimension 0 and rank zero otherwise. This established the induction basis. For
general d, the sequence decomposes into pieces of the form

0 ⊕ 0 → H̃p(Sd) → H̃p−1(Sd−1) → 0 ⊕ 0,

where 0⊕0 is of course the zero element in the direct sum of the homology groups of
the two hemispheres. This implies that the rank of the p-th reduced homology group
of Sd is the same as the rank of the (p−1)-st reduced homology group of Sd−1, namely
one for p = d and zero otherwise, as claimed. Note that the generator of H̃d(Sd) is
the second type of class, consisting of two chains, one from each hemisphere, whose
boundary is the generating cycle of H̃d−1(Sd−1). In particular, it is represented by
the sum of all its d-dimensional simplices.

The real projective space, Pd. As another example, we consider the real pro-
jective d-dimensional space which is the quotient space of Sd by the antipodal map,
f(x) = −x. In other words, Pd is obtained by gluing Sd to itself by identifying
antipodal points in pairs. We show that its reduced Betti numbers are

β̃p(Pd) =

{
1 for 1 ≤ p ≤ d;
0 otherwise.

For dimensions d = 0, 1 we have familiar spaces, namely the point, P0, and the
circle, P1. We already know their homology and their reduced Betti numbers agree
with the claimed formula. This establishes the induction basis. For general d, we
decompose Sd into three subspaces by limiting the d-th coordinate to xd ≤ −1/2,
−1/2 ≤ xd ≤ 1/2, and 1/2 ≤ xd. The first and the last are identified by f and
give a single subspace B ⊆ Pd, which is a ball. The middle subspace becomes a
space M that is homotopy equivalent to the quotient space of the equator, where
xd = 0, which is in turn homeomorphic to Pd−1. The middle subspace intersects
the union of the other two in two spheres of dimension d − 1. Taking the quotient
identifies the two spheres, implying that B and M intersect in a single sphere of
dimension d− 1. Since the reduced homology of B vanishes in all dimensions p, the
Mayer-Vietoris sequence decomposes into pieces of the form

0 → 0 ⊕ H̃p(Pd−1) → H̃p(Pd) → 0,

for p < d − 1. By induction, this establishes β̃0(Pd) = 0 and β̃p(Pd) = 1 for
1 ≤ p ≤ d − 1. We still need to show that the d-th reduced Betti number is equal
to one. The piece of the Mayer-Vietoris sequence we use for this is

0 ⊕ 0 → H̃d(Pd)
D→ H̃d−1(Sd−1)

g∗→ 0 ⊕ H̃d−1(Pd−1) → H̃d−1(Pd) → 0.
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We claim that the map g∗ is 0. This implies that D is surjective, and since it is
also injective, β̃d(Pd) = 1, as required. To see that g∗ is zero, we use the inductive
assumption, namely that β̃d−1(Pd−1) = 1. The corresponding homology group has
a unique generator, namely the sum of all (d−1)-simplices triangulating Pd−1. The
map g takes each simplex in the triangulation of Sd−1 to its quotient, which means
each simplex in Pd−1 is counted twice. The top-dimensional simplices cancel in
pairs, which completes the calculation.

Bibliographic notes. The introduction of exact sequences is often attributed
to Eilenberg and sometimes to Lyndon, but see also [90]. The Snake Lemma is
a major achievement of algebraic topology, and the construction of the connecting
homomorphism is its critical piece. A complete proof can be found in many algebraic
topology texts, including [116]. The Mayer-Vietoris sequences are older than the
Snake Lemma and go back to the work by Mayer [108] and Vietoris [147].

Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical ques-
tion can be answered using knowledge of the material combined with some thought
and analysis.

1. Sperner Lemma (three credits). Let K be a triangulated triangular region as
in Figure IV.11. We 3-color the vertices such that

• the three corners receive three different colors;

• the vertices on each side of the region are 2-colored.

Prove that there is a triangle in K whose vertices receive three different colors.

Figure IV.11: Each vertex receives one of three colors: white, shaded, or black.

2. Isomorphic homology (one credit). Construct two topological spaces that
have isomorphic homology groups but are not homotopy equivalent.
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3. Fixed point (two credits). Let f : Bd → Bd be a continuous map with the
property that there is a δ < 1 such that ∥f(x) − f(y)∥ ≤ δ∥x − y∥ for all
points x, y ∈ Bd. In words, the distance between any two points diminishes by
at least a constant factor δ < 1 each time we apply f . Prove that such a map f
has a unique fixed point x = f(x). [On orientation maps, this point is usually
marked as “you are here”.]

4. Klein bottle (one credit). Show that the Betti numbers of the 2-dimensional
Klein bottle are β0 = 1, β1 = 2, β2 = 1. Which other 2-manifold has the same
Betti numbers?

5. Dunce cap (three credits). The dunce cap is constructed from a piece of cloth
in the shape of an equilateral triangle as follows. Orienting two edges away from
a common origin, we glue them to each other as prescribed by their orientation.
This gives a piece of a cone with a rim (the third edge) and a seam (the glued
first two edges). Now we orient the rim and glue it along the seam, again such
that orientations match. The result reminds us of the shell of a snail, perhaps.

(i) Give a triangulation of the dunce cap.

(ii) Show that the reduced Betti numbers of the dunce cap vanish in all di-
mensions.

(iii) Show that the dunce cap is contractible but any triangulation of it is not
collapsible.

6. 3-torus (three credits). Consider the 3-dimensional torus obtained from the
unit cube by gluing opposite faces in pairs, without twisting. That is, each
point (x, y, 0) is identified with (x, y, 1), (x, 0, z) with (x, 1, z), and (0, y, z)
with (1, y, z). Show that the Betti numbers of this space are β0 = β3 = 1 and
β1 = β2 = 3.

7. The Steenrod Five Lemma (two credits). Suppose we have a commutative
diagram of vector spaces and homomorphisms,

U1 → U2 → U3 → U4 → U5

↓ ↓ ↓ ↓ ↓
V1 → V2 → V3 → V4 → V5,

where the horizontal sequences are exact at the middle three vector spaces and
the first two and last two vertical arrows are isomorphisms. Prove that the
middle vertical arrow is then also an isomorphism.

8. Exact sequence of a triple (one credit). Let C be a simplicial complex with
subcomplexes A ⊆ B ⊆ C. Prove the existence of the following exact homology
sequence of the triple:

. . . → Hp(B, C) → Hp(A, C) → Hp(A, B) → Hp−1(B, C) → . . . .
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Duality

Instead of computing homology from a triangulation, we can also work with different
decompositions and get isomorphic groups. The alpha complex and the dual Voronoi
decomposition of a union of balls come to mind. Generalizing this geometric idea
beyond Euclidean space, and in particular beyond manifolds, runs into difficulty.
This is the motivation for taking the issue to the algebraic level, where it leads to
the concept of cohomology groups. For modulo 2 arithmetic, these are isomorphic
to the corresponding homology groups, but the isomorphisms are not natural. For
nice topological spaces, such as manifolds and manifolds with boundary, there are
relations between the homology and the cohomology groups that go beyond the
general relations. In this chapter, we will see three of them: Poincaré duality,
Lefschetz duality, and Alexander duality. The last of the three has algorithmic
ramifications for subsets of 3-dimensional Euclidean space.

V.1 Cohomology

In this section, we introduce cohomology groups. They are similar to homology
groups but less geometric and motivated primarily by algebraic considerations.
They belong to the standard tool set of an algebraic topologist and appear in
modern statements of the duality results discussed in the subsequent three sections.

Groups of maps. Let G = Z2, the group of two elements, 0 and 1, together
with addition modulo 2. All abelian groups we have encountered so far are vector
spaces isomorphic to Gn for some integer n. Let U be such a vector space and let
ϕ : U → G be a homomorphism. To define ϕ, it suffices to specify its values on
the generators of U. If ϕ0 is a second such homomorphism, their sum is defined by
(ϕ + ϕ0)(u) = ϕ(u) + ϕ0(u). This is again a homomorphism because

(ϕ + ϕ0)(u + v) = ϕ(u + v) + ϕ0(u + v)

= (ϕ + ϕ0)(u) + (ϕ + ϕ0)(v),

103
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It is easy to see that addition of homomorphisms is associative. We also have a
neutral element, the zero homomorphism that sends every u ∈ U to 0 ∈ G, and an
inverse, which for modulo 2 arithmetic is the identity, −ϕ = ϕ. We thus have a
group of homomorphisms from U to G, denoted as Hom(U, G). Think for example
of U as the group of p-chains of a simplicial complex and Hom(U, G) as the group
of labelings of the p-simplices by 0 and 1. The vector spaces U and Hom(U, G) are
isomorphic, although the isomorphism requires us to pick a basis of U. Specifically,
if U has the basis e1, e2, . . . , en, then Hom(U, G) has the basis f1, f2, . . . , fn, where
fi(ei) = 1 and fi(ej) = 0 whenever i ̸= j. The corresponding isomorphism is
defined by mapping ei to fi for all i. If we choose a different basis, the isomorphism
changes.

We give a specific example to emphasize this point. Take U = G2, with first basis
e1 = (1, 0) and e2 = (0, 1). An element w = (a, b) in U is written as ae1 + be2. The
isomorphism from U to Hom(U, G) thus takes w to the map fw = af1+bf2. Suppose
instead that we consider the basis e′1 = (1, 1) = e1 + e2 and e′2 = (0, 1) = e2. Then
w = (a, b) is written as ae′1 + (b − a)e′2. The new isomorphism takes w to the map
f ′

w = af ′
1 + (b − a)f ′

2. To see that fw and f ′
w are generally different, we evaluate

both at v = (x, y) in U, giving

fw(v) = af1(v) + bf2(v) = ax + by,

f ′
w(v) = af ′

1(v) + (b − a)f ′
2(v) = ax + (b − a)(y − x).

The two isomorphisms are thus indeed different. This is the reason for why coho-
mology is worth defining at all, because if there were a natural isomorphism between
U and Hom(U, G), the theories of homology and cohomology would be the same.

Given another vector space V and a homomorphism f : U → V, there is an
induced dual homomorphism, f∗ : Hom(V, G) → Hom(U, G), that maps ψ : V → G
to the composite f∗(ψ) = ψ ◦ f : U → G. The map f∗ is indeed a homomorphism
since

f∗(ψ + ψ0)(u) = (ψ + ψ0) ◦ f(u)

= ψ ◦ f(u) + ψ0 ◦ f(u)

= f∗(ψ)(u) + f∗(ψ0)(u)

for every u ∈ U. The group of homomorphisms and the dual homomorphism can be
defined for more general abelian groups U, V, and G, but this will not be necessary
for our purposes.

Simplicial cohomology. Let K be a simplicial complex. We construct cohomol-
ogy groups by turning chain groups into groups of homomorphisms and boundary
maps into their dual homomorphisms. To begin, we define a p-cochain as a ho-
momorphism ϕ : Cp → G, where G = Z2 as before. Given a p-chain, c ∈ Cp, the
cochain evaluates c by mapping it to 0 or 1. It is common to write this evaluation
like a scalar product, ϕ(c) = ⟨ϕ, c⟩. Letting ℓ be the number of p-simplices σ in c
with ϕ(σ) = 1, we have ⟨ϕ, c⟩ = 1 iff ℓ is odd. Considering chains and cochains as
sets, the evaluation thus distinguishes odd from even numbers of intersections.
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The p-dimensional cochains form the group of p-cochains, Cp = Hom(Cp, G).
Recall that the boundary map is a homomorphism ∂p : Cp → Cp−1. It thus defines
a dual homomorphism, the coboundary map

δp−1 : Hom(Cp−1, G) → Hom(Cp, G),

or simply δ : Cp−1 → Cp. It is worth looking at this construction in more detail. Let
ϕ be a (p−1)-cochain and ∂c a (p−1)-chain. By definition of dual homomorphism,
ϕ applied to ∂c is the same as δϕ applied to c; that is, ⟨ϕ, ∂c⟩ = ⟨δϕ, c⟩. Suppose
for example that ϕ evaluates a single (p − 1)-simplex to one and all others to zero.
Then δϕ evaluates all p-dimensional cofaces of this simplex to one and all others to
zero. This gives a concrete interpretation of the coboundary map, which will allow
us to construct more elaborate examples shortly. Since the coboundary map runs
in a direction opposite to the boundary map, it raises the dimension. Its kernel is
the group of cocycles, and its image is the group of coboundaries :

Zp = ker δp : Cp → Cp+1,

Bp = im δp−1 : Cp−1 → Cp.

Recall the Fundamental Lemma of Homology according to which ∂◦∂ : Cp+1 → Cp−1

is the zero homomorphism. We therefore have ⟨δδϕ, c⟩ = ⟨δϕ, ∂c⟩ = ⟨ϕ, ∂∂c⟩ = 0.
In other words, δ ◦ δ : Cp−1 → Cp+1 is also the zero homomorphism. Hence, the
coboundary groups are subgroups of the cocycle groups, and we have the familiar
picture, except that the maps now go from right to left, as in Figure V.1.

δp+1 δp

0 0 0

δp−1 δp−2

Zp+1 Zp

CpCp+1 Cp−1

Zp−1

Bp Bp−1Bp+1

Figure V.1: The cochain complex consisting of a linear sequence of cochain,
cocycle, and coboundary groups connected by coboundary homomorphisms.

Definition. The p-th cohomology group is the quotient of the p-th cocycle group
modulo the p-th coboundary group, Hp = Zp/Bp, for all p.

Reduced cohomology. Similar to homology, it is often useful to modify the
definition slightly and to define the reduced cohomology groups, denoted as H̃p.
Recall that for homology, this is done by introducing the augmentation map ϵ :
C0 → Z2 defined by ϵ(u) = 1 for each vertex u. The (−1)-st cochain group, C−1 =
Hom(Z2, G), has two elements, the map φ0 mapping 1 to 0 and the map φ1 mapping
1 to 1. The dual homomorphism of the augmentation map, ϵ∗ : Hom(Z2, G) → C0,
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maps φ0 to ψ0, which evaluates every vertex to zero, and φ1 to ψ1, which evaluates
every vertex to one. With this, we have

. . .
δ1

←− C1 δ0

←− C0 ϵ∗←− Hom(Z2, G)
0←− 0

0←− . . . .

Before the modification, the only 0-coboundary was the trivial 0-cochain, ψ0. Now
we have two 0-coboundaries, ψ0 and ψ1. The net effect of this modification is that
the rank of the zeroth cohomology group drops by one, similar to the rank of the
zeroth homology group when we add the augmentation map. As an exception to this
rule, the ranks of H0 and H̃0 are the same if C0 is trivial, in which case rank H̃−1 = 1,
similar to reduced homology.

An example. To get a better feeling for cohomology, let us consider the triangu-
lation of the annulus in Figure V.2. The 0-cochain that evaluates every vertex to
one is a 0-cocycle because every edge has exactly two vertices, which implies that
the coboundary of this particular 0-cochain is the zero homomorphism. This is the
only non-trivial 0-cocycle, and since for dimensional reasons there are no non-trivial
0-coboundaries, this implies that the zeroth cohomomology group, H0, has rank one.
Correspondingly, the zeroth reduced cohomology group is zero.

Figure V.2: The 1-cocycle is drawn by highlighting the edges it evaluates to
one. They all cross the “dual” closed curve. The 1-cocycle is a 1-coboundary
because it is the coboundary of the 0-cochain that evaluates a vertex to one
iff it lies in the shaded region inside the closed curve.

One dimension up, we consider a 1-cochain ϕ : C1 → G. Its coboundary is the
2-chain δϕ : C2 → G that evaluates a triangle to one iff it is the coface of an odd
number of edges evaluated to one by ϕ. Hence, ϕ is a 1-cocycle iff every triangle is
incident to an even number of edges evaluating to one. A 1-cocycle thus looks like a
picket fence; see Figure V.2. In this example, we can draw a closed curve such that
an edge evaluates to one iff it crosses the curve. It follows that a 1-chain is evaluated
to the parity of the number of times it crosses that curve. If the 1-chain is a 1-cycle,
then this number is necessarily even and the evaluation is zero. The 1-cocycle in
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Figure V.2 is also a 1-coboundary. To get a 1-cocycle that is not the image of
a 0-cochain, we construct a picket fence that starts with an outer boundary edge
of the annulus and ends with an inner boundary edge. All such picket fences are
cohomologous, and any one of them can be used as representative of the cohomology
class that generates the first cohomology group. The rank of H1 is therefore one.

Another dimension up, we have Z2 = C2 simply because every 2-cochain maps
to zero, the sole element of C3. We also have B2 = C2. To see this, note that
the 2-cochain that evaluates a single triangle to one and all others to zero is a 2-
coboundary. Indeed, we can draw three curves from a point in the interior of the
triangle to the boundary of the annulus and get a “dual” 1-cochain as the sum of
three picket fences, one for each curve, whose coboundary is the 2-cochain. Other
2-cochains are obtained as coboundaries of sums of such triplets of picket fences. It
follows that the second cohomology group, H2, has rank 0.

Observe that the ranks of the cohomology groups are the same as the ranks of
the corresponding homology groups. This is not a coincidence.

Coboundary matrix. Recall that we can get the rank of the p-th homology
group from two boundary matrices transformed into normal form by row and column
operations. Recall also that rank Hp = rank Zp − rank Bp. As illustrated in Figure
V.3, the right-hand side of this equation is the number of zero columns in the p-th
matrix minus the number of non-zero rows in the (p + 1)-st matrix; compare with
Figure IV.5. As we have seen earlier, a cochain evaluates a single p-simplex to one

rank Cp+1 = rank Cp+1
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Figure V.3: The p-th and (p + 1)-st boundary matrices in normal form. They
are also the coboundary matrices in normal form transposed.

and all others to zero iff its coboundary evaluates each (p+1)-coface of this p-simplex
to one and all other (p+1)-simplices to zero. It follows that the coboundary matrices
are the boundary matrices transposed. The normal form of the boundary matrices
thus already contains the information we need to get at the ranks of the cohomology
groups. Specifically, rank Hp = rankZp − rank Bp; the rank of the cocycle group is
the number of zero rows in the (p + 1)-st boundary matrix, and the rank of the
coboundary group is the number of non-zero columns in the p-th boundary matrix,
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both in normal form. The number of columns of the p-th matrix is the number of
rows of the (p + 1)-st matrix, and hence rank Bp + rank Zp = rankZp + rank Bp; see
Figure V.3. This implies

rankHp = rank Zp − rankBp

= rank Zp − rankBp = rank Hp.

Since homology and cohomology groups have the same rank, there is no concept of
co-Betti number. For modulo 2 arithmetic, the rank determines the group; hence
homology and cohomology groups are isomorphic: Hp ≃ Hp for all p. This is the
Z2-version of a standard result in algebraic topology. For more general coefficient
groups, it relates the free parts and torsion parts of the homology groups with
those of the cohomology groups. A more complete statement of the result for Z2-
coefficients is the following.

Universal Coefficient Theorem. Given a topological space, X, there are
maps Hp(X) → Hom(Hp(X), G) → Hp(X) in which the first map is a natural iso-
morphism and the second is an isomorphism that is not natural.

We saw at the beginning of this section that the second isomorphism depends on a
choice of basis and is therefore not natural. The first isomorphism does not depend
on such a choice. It is natural in the sense that if Y is another topological space
and f : X → Y is a continuous map, then the diagram

Hp(X) → Hom(Hp(X), G)
↑ ↑

Hp(Y) → Hom(Hp(Y), G)

of induced maps commutes. The fact that the isomorphism between Hp and
Hom(Hp, G) is natural is the reason for why there is no need to introduce a theory
of co-cohomology.

Bibliographic notes. Similar to homology, cohomology is an established topic
within algebraic topology today, but it took some time to become clearly estab-
lished. Cohomology has a long and complicated history with a variety of precursors
that go back to Poincaré, Alexander, Lefschetz, de Rham, Pontryagin, Kolmogorov,
Whitney, Čech, Eilenberg, Steenrod, Spanier, and others. All these approaches were
unified with the clear statement of a set of axioms that characterize homology and
cohomology theories [66]. The Universal Coefficient Theorem and the duality theo-
rems in the coming three sections were originally proven in more elementary forms
before being reformulated in terms of homology and cohomology as we describe
them here [116].

V.2 Poincaré Duality

For sufficiently nice topological spaces, there are relations between the homology
and cohomology groups that go beyond the ones we have already seen. These
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relationships go under the name of duality. The first and most important of these
is Poincaré duality, which we describe in this and the next section.

Combinatorial manifolds. In the rest of this chapter, we work only with trian-
gulations of manifolds that satisfy a condition on the topology of the links. Specif-
ically, a combinatorial d-manifold is a manifold of dimension d together with a
triangulation such that the link of every i-simplex triangulates the sphere of di-
mension d − i − 1. The condition implies that the closed star of every simplex has
the topology of the d-dimensional ball, Bd. To describe this in greater detail, we
introduce the join of two topological spaces, X and Y, which we denote as X ∗ Y.
Begin with the product X × [0, 1]× Y. For each x0 ∈ X identify all points (x0, 0, y)
together, and for each y0 ∈ Y identify all points (x, 1, y0) together. The quotient
space of these identifications is X ∗ Y. Also, X ∗ ∅ = X. Figure V.4 illustrates the
construction by showing the suspension of X, that is, the join with the 0-sphere,
denoted as ΣX = X ∗ S0. Geometrically, we can think of the join as a union of all
line segments connecting X to Y, which are kept disjoint except at their endpoint
in X and Y.

a

b

0

1

1

0

a

b

Figure V.4: Constructing the join of a line segment and a pair of points. Left:
the product of the two with the unit interval. Right: the suspension obtained
from the product by identification.

Returning to the definition of a combinatorial manifold, we recall that the star
of a simplex, σ, consists of all simplices τ that contain σ as a face. Besides σ,
each simplex in the star is the join of σ with a simplex in the link of σ. If σ is an
i-simplex, then Lkσ is a (d − i − 1)-sphere. Taking the join, we get a d-ball, as
mentioned earlier.

Exotic manifolds. Not every triangulation of a manifold satisfies the conditions
on the links given above. We describe the construction of a triangulation of the 5-
sphere that has a vertex whose link is not a 4-sphere. We begin with a triangulation,
P , of the Poincaré homology 3-sphere. This space is homologically the same as but
topologically different from the 3-sphere, S3. There are many ways to describe
it. A particularly convenient way uses three complex numbers to write a point in
R6. Letting x1, x2, . . . , x6 be the coordinates, we set x = x1 + ix2, y = x3 + ix4,
z = x5 + ix6 and recall that their conjugates are x̄ = x1 − ix2, ȳ = x3 − ix4,
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z̄ = x5 − ix6. Consider the following two equations:

xx̄ + yȳ + zz̄ = 1,

x2 + y3 + z5 = 0.

The first equation describes the 5-sphere. The second equation is really two equa-
tions, one for the real and the other for the imaginary parts, and it defines a
4-dimensional space whose points have neighborhoods homeomorphic to R4 except
at the origin, where the space is singular. The intersection of the two spaces is the
Poincaré homology 3-sphere. It is triangulable, and we let P be a triangulation of
this space. Next, we take two suspension steps to construct a triangulation of the
5-sphere. Writing this in terms of triangulations, wet get

ΣP = {a, b} ∪ {σ, a ∗ σ, b ∗ σ | σ ∈ P},

Σ2P = {u, v} ∪ {τ, u ∗ τ, v ∗ τ | τ ∈ ΣP}.

The shared link of the vertices a and b in ΣP is P , which is not a triangulation of
S3. It follows that a and b do not have neighborhoods homeomorphic to R3. Hence,
the underlying space of ΣP is not even a manifold. Taking the suspension twice is
the same as forming the join with a circle. Hence, Σ2P triangulates the join of the
Poincaré homology 3-sphere with S1. As it turns out, this join is homeomorphic
to S5. The proof of this fact is not easy and is omitted. But now we have a
triangulation of a 5-manifold, namely Σ2P , that violates the condition on the links.
Specifically, the shared link of the vertices u and v in Σ2P is ΣP , which is not even
a 4-manifold.

Dual blocks. Now let M be a compact, combinatorial d-manifold triangulated
by K. Recall that the barycentric subdivision, SdK, is obtained by connecting the
barycenters of the simplices in K; see Section III.1 for the definition and Figure V.5
for an illustration. It is not difficult to show that if K has the link property required
for a combinatorial manifold, then so does SdK. Label each vertex in SdK by the
dimension of the corresponding simplex in K and note that each simplex in SdK
has distinct labels on its vertices. The vertex with smallest label is therefore unique.
Letting u be the barycenter of σ in K, the dual block, denoted by σ̂, is the union of
the simplices in the barycentric subdivision for which u is the vertex with minimum
label; again see Figure V.5. We let B be the set of dual blocks and call it the dual
block decomposition of M. For example, in the case of a combinatorial 3-manifold,
the dual blocks to a vertex, edge, triangle, and tetrahedron are, respectively, a ball,
a disk, an interval, and a point. The relationship between K and B is much like that
between the Delaunay triangulation and its dual Voronoi diagram. In particular, if
the p-simplex σ is a face of the (p + 1)-simplex τ , then the dual block σ̂ contains
τ̂ in its boundary. In fact, the boundary of σ̂ is the union of dual blocks τ̂ over all
proper cofaces τ of σ. We denote this boundary by bd σ̂, noting that σ̂ is the join
of bd σ̂ with the barycenter of σ. Since we have a combinatorial manifold, bd σ̂ has
the topology of the (q − 1)-sphere, where p + q = d.

We construct a new chain complex from the dual block decomposition as follows.
Choosing complementary dimensions p + q = d, a block chain of dimension q is a
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Figure V.5: A small piece of a triangulation of the torus, the barycentric
subdivision, and the dual block decomposition.

formal sum
∑

aiσ̂i, where the σi are the p-simplices of K and the σ̂i are the dual
blocks of dimension q, with modulo 2 coefficients as usual. The collection of block
chains of dimension q forms an abelian group, Dq. The boundary homomorphism
connecting the q-th group to the (q − 1)-st group is defined by mapping σ̂i to
∂qσ̂i =

∑
τ̂j , where the sum is over all (p+1)-dimensional cofaces τj of σi. The full

boundary homomorphism, ∂q : Dq → Dq−1, is the linear extension to block chains.
It is easy to see that ∂q−1 ◦ ∂q = 0, so that (Dq, ∂q) is indeed a chain complex.

Blocks or simplices. We now have three ways to compute the homology of M:
using the simplices in K, using the simplices in SdK, or using the dual blocks
in B. We formally prove what is to be expected, namely that SdK and B give
the same homology. Write C = (Cp, ∂p) for the chain complex defined by SdK and
D = (Dp, ∂p) for the chain complex defined by B. Mapping each p-dimensional dual
block to the sum of p-simplices it contains, we get a homomorphism bp : Dp → Cp.
The maps bp commute with the boundary maps and thus form a chain map between
the two chain complexes, which we denote as b : D → C.

Block Complex Lemma. The chain map b : D → C induces b∗ : Hp(D) →
Hp(C), which is an isomorphism for each dimension p.

Proof. Let Xp be the subcomplex of SdK consisting of all simplices that lie in
blocks of dimension at most p. Clearly, X0 ⊆ X1 ⊆ . . . ⊆ Xd = SdK. The p-th
relative homology group of the pair (Xp, Xp−1) is isomorphic to Dp. More generally,

Hp(Xq, Xq−1) ≃
{

Dp if p = q;
0 if p ̸= q.

Indeed, each pair (σ̂, bd σ̂) has the homology of a ball relative to its boundary. Next,
consider the long exact sequence of the pair (Xq, Xq−1):

. . . → Hp+1(Xq, Xq−1) → Hp(Xq−1) → Hp(Xq) → Hp(Xq, Xq−1) → . . . .

The relative groups are all zero, except possibly Hq(Xq, Xq−1). Hence, the maps
from Hp(Xq−1) to Hp(Xq) are isomorphisms for p + 1 < q. Composing these iso-
morphisms for q from p + 2 to d implies that Hp(Xp+1) is isomorphic to Hp(SdK).



112 V Duality

The main tool in this proof is a 2-dimensional diagram connecting pieces of the
long exact sequences of the pairs (Xq, Xq−1) for q = p − 1, p, p + 1. We write this
diagram identifying Hq(Xq, Xq−1) with Dq:

Dp+1 0 = Hp−1(Xp−2)

↓e ↘ ↓

0 = Hp(Xp−1) −→ Hp(Xp)
f−→ Dp

g−→ Hp−1(Xp−1)

↓l ↘ ↓h

Hp(Xp+1) Dp−1

↓

0 = Hp(Xp+1, Xp).

We see that the long exact sequences for q = p + 1 and q = p − 1 run vertically,
connected by the long exact sequence for q = p, which runs horizontally. Within
this arrangement, the block chain complex runs diagonally, from the upper left to
the lower right, forming two commuting diagrams. As mentioned above, the relative
homology groups off the diagonal are zero, which explains the trivial group at the
bottom of the diagram. We also note that Hp(Xq) = 0 for all q < p simply because
the dimension of Xq is less than p. This gives two additional trivial groups in the
diagram. We are now ready for some diagram chasing, using the maps e, f, g, h, l as
labeled in the diagram. The subgroup of p-cycles in Dp is the kernel of ∂p = h ◦ g.
Since h is injective, this group is also the kernel of g. By exactness of the horizontal
sequence, we have ker g = im f , and since f is injective, this implies that Hp(Xp)
is isomorphic to the group of p-cycles. The subgroup of p-boundaries in Dp is the
image of ∂p+1 = f ◦ e. Since f is injective, this group is isomorphic to the image
of e. The p-th homology group is the quotient of the two, Hp(D) = Hp(Xp)/im e.
By exactness of the first vertical sequence, this is equal to Hp(Xp)/ker l. But l is
surjective, so this quotient is isomorphic to Hp(Xp+1) and therefore to Hp(SdK),
as required.

First form of Poincaré duality. There is a fairly direct translation between
chains formed by dual blocks and cochains formed by the corresponding simplices.
We have all the results lined up to prove the main result of this section.

Poincaré Duality Theorem (first form). Let M be a compact, combina-
torial d-manifold. Then there is an isomorphism between Hp(M) and Hq(M) for
every pair of complementary dimensions p + q = d.

Proof. Let K be a triangulation of M with the appropriate condition on the links
of its simplices, and let p + q = d be two complementary dimensions. For each
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p-simplex σ in K, we write σ∗ for the dual p-cochain defined by ⟨σ∗,σ⟩ = 1 and
⟨σ∗, τ ⟩ = 0 for all p-simplices τ different from σ. Recall that σ̂ is the dual block of
σ, which is q-dimensional. To formalize the correspondence between the dual block
and the dual cochain, we establish the map ϕq : Dq → Cp defined on the chain level
by setting ϕq(σ̂) = σ∗ and extending linearly. This is, of course, an isomorphism.
To prove Poincaré duality, we only need to show that the introduced maps commute
with the boundary and coboundary maps, that is, the diagram

Dq
∂q−→ Dq−1

↓ ϕq ↓ ϕq−1

Cp δp

−→ Cp+1

commutes. Going one way, we get ϕq−1 ◦ ∂q(σ̂), which is the (p + 1)-cochain that
evaluates all (p + 1)-dimensional cofaces of σ to 1 and all other (p + 1)-simplices to
0. Going the other way, we get δp ◦ ϕq(σ̂), which does the same.

Recall that the Universal Coefficient Theorem states that Hp(M) is isomorphic to
Hp(M). Together with the Poincaré Duality Theorem, we thus have Hp(M) ≃ Hq(M)
for all p + q = d.

Bibliographic notes. Poincaré mentioned a form of his duality in a paper in
1893, without giving a proof. He tried a proof in his 1895 “Analysis situ” paper [120]
based on intersection theory (see the next section), which he invented. Criticism
of his work by Poul Heegard led him to realize that his proof was flawed, and he
gave a new proof in two complements of the “Analysis situ” paper [121, 122], now
based on dual triangulations. Poincaré duality took on its modern form in the
1930s when Eduard Čech and Hassler Whitney invented the cup and cap products
of cohomology.

The proof of the Poincaré Duality Theorem presented in this section is fashioned
after that of Munkres [116], simplified by the assumption that we are working
with a combinatorial manifold. Not all triangulated manifolds are combinatorial,
as the exotic 5-sphere described in this section shows. The proof that Σ2P is
homeomorphic to S5 is due to Edwards [64]. See [125] for further exotic manifolds,
including manifolds for which all triangulations violate the condition on the links.
While the restriction to combinatorial manifolds is a loss of generality, the Poincaré
Duality Theorem nevertheless holds for arbitrary triangulated manifolds [116]. In
fact, if we use singular homology, Poincaré duality holds for arbitrary topological
manifolds and even for non-compact manifolds if we use what is called cohomology
with compact support. A nice proof of this can be found in [107, Chapter 20].
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V.3 Intersection Theory

There is a second version of Poincarè duality, stated purely in terms of homology.
It is based on an intersection pairing between homology classes of complementary
dimensions introduced in this section.

Counting intersections modulo 2. Let M be a combinatorial d-manifold with
triangulation K. Furthermore, let p and q be integers such that p + q = d. As
explained in Section V.2, if σ is a p-simplex in K, then its dual block, σ̂, is q-
dimensional. The two meet in a single point, the barycenter of σ. If τ is another
p-simplex, then σ ̸= τ implies that σ and τ̂ are disjoint. We therefore define

σ · τ̂ =

{
1 if σ = τ ;
0 if σ ̸= τ.

We are mainly interested in intersections of cycles. Suppose that c =
∑

i aiσi is a
p-cycle in K and d =

∑
j bj τ̂j is a q-cycle in the dual block decomposition. Then

the intersection number of the two cycles is

c · d =
∑

i,j

aibj(σi · τ̂j),

counting the intersections modulo 2. In other words, c · d = 0 if the two cycles are
disjoint or meet in an even number of points, and c · d = 1 if they meet in an odd
number of points. As an example, consider the center circle of the Möbius strip
and a pulled-off copy, that is, a nearby closed curve that meets the center circle in
a finite number of points, as sketched in Figure V.6. The topology of the Möbius

Figure V.6: The black center circle of the Möbius strip intersects the gray
pulled-off copy in three points.

strip forces an odd number of intersections. This is unlike the annulus, in which a
pulled-off closed curve always meets the original in an even number of points.

It is not difficult to show that if we replace c or d by a homologous cycle, then
the intersection number does not change. For example, if c ∼ c0, we consider the
intersection of d with a (p + 1)-chain γ in K for which ∂γ = c + c0. Let τ be a
(p+1)-simplex of γ and let σ̂ be a block of dimension q = d−p. The key observation
is that τ and σ̂ are disjoint unless σ is a face of τ , in which case they intersect in
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the edge connecting the barycenter of τ to the barycenter of σ. Completing the
intersection between γ and d, the edge extends to either a closed curve or a path
with two endpoints. These points lie either both on c, or both on c0, or one on c
and the other on c0. The total number of endpoints is even, which implies that the
intersection numbers are the same, that is, c · d = c0 · d.

Pairings. Since the intersection number is invariant under choosing different rep-
resentatives of a homology class, we have a map # : Hp(M) × Hq(M) → G defined
by #(γ, δ) = c · d, where c and d are representative cycles of γ and δ. We call this
map the intersection pairing of the homology groups, where p + q = d, as before.
Using the same notation as for simplices and cycles, we write γ · δ = #(γ, δ) and
call it the intersection number of γ ∈ Hp(M) and δ ∈ Hq(M). The pairing is bilinear
and symmetric; that is,

(aγ + a0γ0) · δ = a(γ · δ) + a0(γ0 · δ),
γ · (bδ + b0δ0) = b(γ · δ) + b0(γ · δ0),

γ · δ = δ · γ.

Since we work modulo 2, we do not have to worry about orientations of simplices
and manifolds. To define intersection theory over an arbitrary field, we would need
to deal with this issue, and the intersection number would be an element of the
field. In this case, bilinearity still holds, but symmetry as stated does not.

Pairings can be defined more generally. For example, let U and V be vector spaces
over G = Z2. A bilinear pairing # : U × V → G gives a natural homomorphism
φ# : V → Hom(U, G) defined by φ#(v) = fv, where fv(u) = u · v. The pairing is
perfect if for every non-zero u ∈ U there exists at least one v0 ∈ V with #(u, v0) = 1
and, symmetrically, for every non-zero v ∈ V there exists at least one u0 ∈ U with
#(u0, v) = 1.

Perfect Pairing Lemma. The pairing # : U×V → G is perfect iff the implied
natural homomorphism φ# : V → Hom(U, G) is an isomorphism.

Proof. Suppose first that φ# is an isomorphism. If we take v ̸= 0, then since
φ# is injective, fv ̸= 0, which means there is at least one u0 with #(u0, v) = 1.
Furthermore, if u ̸= 0, since φ# is surjective, there is a v0 ∈ V with φ#(v0) = u∗,
and this means that #(u, v0) = 1.

Conversely, suppose that the paring is perfect. The map φ# is injective because
if fv = 0, then #(u, v) = 0 for every u, so # perfect gives v = 0. Note that
this implies rank V ≤ rank Hom(U, G) = rank U. The similarly defined map from
U to Hom(V, G) is injective by the analogous argument, which implies rank U ≤
rankHom(V, G) = rank V. Thus φ# is an injective map between vector spaces of
the same dimension, which implies it is an isomorphism.

Since V and Hom(U, G) are isomorphic, this implies that U and V are isomorphic.
However, this isomorphism depends on a choice of basis.



116 V Duality

Intersection and cohomology. We can define the Poincaré duality map using
intersection numbers. Indeed, if σ is a p-simplex of K and σ̂ is its dual block of
dimension q, then ϕq(σ̂) = σ∗. That is, ϕq(σ̂) is the p-dimensional cochain for
which

⟨σ∗, τ ⟩ =

{
1 if σ = τ ;
0 if σ ̸= τ.

Since the same holds for intersection numbers, we have ⟨ϕq(σ̂), τ ⟩ = σ̂ · τ . By
linear extension, this formula holds for chains, and since it is the same for different
representatives of the same class, the formula also holds for the induced map on
homology, that is,

⟨ϕ∗(γ), δ⟩ = γ · δ.

Using this formula, there is a second version of Poincaré duality.

Poincaré Duality Theorem (second form). Let M be a compact, combi-
natorial d-manifold. Then the pairing # : Hp(M) × Hq(M) → G defined by
#(γ, δ) = γ · δ is perfect for all integers p + q = d.

The proof follows from the first form and is omitted.

The torus and the Klein bottle. To illustrate Poincaré duality formulated
in terms of intersection numbers, we now consider the two examples sketched in
Figure V.7. For the 2-dimensional torus, S1 × S1, the most interesting case is in

x

y

x

y

Figure V.7: The meridian and longitudinal curves of the torus on the left and
of the Klein bottle on the right.

dimension 1, for which the second form of Poincaré duality gives a perfect pairing
# : H1 × H1 → G. Natural generators of H1 are the meridian curve, x, which
bounds a disk in the solid region enclosed by the torus (but not on the torus), and
the longitudinal curve, y, which meets x in a single point and does not bound. The
intersection numbers are easy to compute. Pushing off x and y gives homologous
closed curves that are disjoint from the originals or meet them in an even number
of points. Hence, the intersection numbers between x and x and between y and y
vanish, and the intersection number between x and y is 1; see Table V.1 on the left.
Note that the determinant of the matrix of intersection numbers is one.
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The modulo 2 homology of the Klein bottle is the same as that of the torus.
However, the intersection pairing on H1 is different. As for the torus, we can take
two curves x and y that generate H1 with x · y = y ·x = 1 and x ·x = 0. However, a
neighborhood of the curve y is a Möbius strip, so pushing off y gives a closed curve
that intersects y an odd number of times, that is, y · y = 1. If we change the basis,
we still do not get the same matrix as that of the torus. Once again, the matrix of
intersection numbers, given in Table V.1 on the right, has determinant one.

x y x y

x 0 1 0 1
y 1 0 1 1

Table V.1: The intersection numbers of the meridian and the longitudinal
curves for the torus on the left and the Klein bottle on the right.

Euler characteristic. By the Euler-Poincaré Theorem, the Euler characteristic
of any space is the alternating sum of its Betti numbers. Letting M be a com-
pact, combinatorial d-manifold, the Poincaré Duality and the Universal Coefficient
Theorems imply βi = βd−i for all i. For odd d, this gives

χ(M) = β0 − β1 + . . . + βd−1 − βd,

which vanishes. For even d, this tells us that the terms above and below half the
dimension contribute equal amounts to the Euler characteristic. Writing d = 2k,
this gives

χ(M) = 2[β0 − β1 + . . . ± βk−1] ∓ βk.

It follows that the Euler characteristic is even iff βk is even. However, the group
Hk(M) is paired with itself and is therefore self-dual. If M is orientable, this can
be used to show that βk and the Euler characteristic are both even. In contrast,
homology and cohomology modulo 2 do not capture this subtlety.

Manifolds with boundary. If M is a manifold with boundary, Poincaré duality
does not hold. For example, if we take the ball, Bd, its 0-dimensional homology has
rank one while its d-dimensional homology vanishes. There is a form for manifolds
with boundary, however, called Lefschetz duality, which reduces to Poincaré duality
when the boundary is empty. It relates an absolute homology or cohomology group
to a relative one. Returning to our example, note that H0(Bd) and Hd(Bd, Sd−1)
both have rank one.

Lefschetz Duality Theorem (first form). Let M be a compact, combi-
natorial d-manifold with boundary ∂M. Then for every pair of complemen-
tary dimensions, p + q = d, there are isomorphisms Hp(M, ∂M) ≃ Hq(M) and
Hp(M) ≃ Hq(M, ∂M).
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Again this can be combined with the Universal Coefficient Theorem, Hp(M) ≃
Hp(M), to see that Hp(M, ∂M) ≃ Hq(M) for all p + q = d. The proof of the
Lefschetz Duality Theorem follows that of the Poincaré Duality Theorem exactly,
inserting relative chains and cochains where needed, so we omit the proof. There is
also a second version of Lefschetz duality based on the extension of the intersection
pairing to a pairing between absolute and relative classes. Again we omit the details
and the proof.

Lefschetz Duality Theorem (second form). Let M be a compact, com-
binatorial d-manifold with boundary ∂M. Then the intersection pairing # :
Hp(M) × Hq(M, ∂M) → G is perfect for all p + q = d.

We illustrate Lefschetz duality formulated in terms of intersection numbers for the
half torus sketched in Figure V.8. Being homeomorphic to the cylinder, the first
homology group has a single generator, the meridian curve of the full torus. Sim-
ilarly, the first relative homology group has a single generator, namely half the
longitudinal curve; see Figure V.8.

Figure V.8: The displayed generators of the first absolute and first relative
homology groups of the half torus meet in a single point.

Bibliographic Notes. Henri Poincaré invented intersection theory to prove his
duality theorem in 1895 [120], but this attempt failed. It is also said that Alexander
and Lefschetz founded the intersection theory of cycles on manifolds in the 1920s.
Their theory was one of the precursors of cohomology. The Lefschetz Duality The-
orem dates back to the 1920s when Solomon Lefschetz introduced it along with the
concept of relative homology [101]. The statements of the theorem given in this
section are limited to combinatorial manifolds. The sole reason is our desire to keep
the proof simple. Indeed, the theorem holds in more generality for manifolds with
boundary. A good modern account of the theorem can be found in [106].

V.4 Alexander Duality

Prisons in d-dimensional space are made of (d−1)-dimensional walls. This is because
a wall of lower dimension cannot separate space. The topic of this section is a formal
expression of a generalization of this statement and its use in the design of a fast
algorithm for homology.
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Separating water from land. The 2-sphere decomposes the 3-sphere into two
balls, both homologically trivial. Compare this with the torus decomposing the 3-
sphere into two solid tori, both with non-trivial first homology. The two examples
suggest a relationship between the homology of a subspace and its complement.
Such a relationship exists for any manifold, but the prettiest case is when the
manifold is a sphere. Let, therefore, K be a triangulation of Sd. To simplify the
technical discussions, we assume that the link of every simplex is a sphere of the
appropriate dimension. Let B be the dual block decomposition. We call N ⊆ K and
X ⊆ B complementary subcomplexes if a simplex σ ∈ K belongs to N iff its dual
block, σ̂ ∈ B, does not belong to X; see Figure V.9. Recall that the dual blocks are

Figure V.9: A portion of a triangulation of the 2-sphere. We see a subcom-
plex, N , consisting of five edges and five vertices. It is surrounded by the
complementary subcomplex of the dual block decomposition, X. The two are
separated by two curves in the 1-skeleton of the second barycentric subdivision.

defined as subcomplexes of the first barycentric subdivision, SdK. To separate N
from X, we subdivide once more, and we note that Sd2K contains subcomplexes N ′

and X ′ whose underlying spaces are the same as those of N and X. We enlarge both
by adding a layer of simplices, making sure we still have complexes. Specifically, let

N ′′ =
⋃

u∈N ′

Stu,

X ′′ =
⋃

v∈X′

St v;

see Figure V.9. Since each vertex in the first barycentric subdivision belongs to
either N ′ or to X ′, the complexes N ′′ and X ′′ exhaust the second barycentric
subdivision. Indeed, |N ′′| and |X ′′| are d-manifolds with disjoint interiors and
common boundary, ∂N ′′ = ∂X ′′ = N ′′ ∩ X ′′, which is a (d−1)-manifold separating
N and X. This motivates us to call X ′′ the exterior of the decomposition. Note
also that there are deformation retractions from |N ′′| to |N | and from |X ′′| to |X|.

The generalized prison wall theorem. Traditionally, the mentioned relation-
ship is stated in terms of the homology and cohomology groups of spaces N ⊆ Sd and
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X = Sd−N. If N is closed, then X is open. Since we did not define homology groups
for open sets, we state the relationship in terms of complementary subcomplexes.

Alexander Duality Theorem. Let Sd be a combinatorial d-sphere with tri-
angulation K, N a subcomplex of K, and X the complementary subcomplex of the
dual block decomposition. Then H̃p(N) ≃ H̃d−p−1(X) for all dimensions p.

Proof. We first consider the case p < d−1, by showing a sequence of isomorphisms:

H̃
d−p−1

(X) ≃ H̃
d−p−1

(X ′′) (V.1)

≃ Hd−p−1(X ′′) (V.2)

≃ Hp+1(X
′′, ∂X ′′) (V.3)

≃ H̃p+1(Sd2K, N ′′) (V.4)

≃ H̃p(N
′′) (V.5)

≃ H̃p(N). (V.6)

We get equation (V.1) because |X| is a deformation retract of |X ′′|, equation (V.2)
because cohomology and reduced cohomology are the same in dimension d−p−1 >
0, equation (V.3) by Lefschetz duality for X ′′, which is a d-manifold with boundary
∂X ′′, and equation (V.4) by excision. We get equation (V.5) by considering the
long exact sequence of the pair for reduced homology,

. . . → H̃p+1(Sd2K) → Hp+1(Sd2K, N ′′) → H̃p(N
′′) → H̃p(Sd2K) → . . . ,

and noticing that the p-th and (p + 1)-st homology groups of the sphere are trivial
because p + 1 < d. Finally, we get equation (V.6) because |N | is a deformation
retract of |N ′′|.

The case p = d − 1 is similar. We again have the sequence of six isomorphisms
and similar reasons for each. In equation (V.1), we have an extra copy of G on both
sides, which we lose in equation (V.2) because of the difference between ordinary
and reduced cohomology in dimension zero. We pick up the copy again in equation
(V.5) because the rank of H̃d(Sd2K) in the long exact sequence is one. This same
copy of G also appears in equation (V.6). Finally, for p = −1 or d, we have either
two trivial groups, which are therefore isomorphic, or two groups both isomorphic
to G, namely when N = ∅ or B = ∅.

The sole reason for limiting the theorem to the combinatorial d-sphere is the use
of the Lefschetz Duality Theorem in its proof. Since the latter holds for general
triangulations, so does the Alexander Duality Theorem. There are many applica-
tions of this theorem, including the application to knots in R3. We focus on the
computation of Betti numbers.

Adding a simplex. We begin by studying how the addition of a single simplex
affects the ranks of the homology groups. Let Ni−1 ⊆ Ni be simplicial complexes
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that differ by a single simplex, that is, Ni − Ni−1 = {σi}. Consider the long exact
reduced homology sequence of the pair,

. . . → H̃p(Ni−1)
ϕ→ H̃p(Ni)

D→ Hp(Ni, Ni−1) → H̃p−1(Ni−1)
ψ→ H̃p−1(Ni) → . . . ,

where D is the connecting homomorphism in dimension p = dimσi. The group
Hq(Ni, Ni−1) is trivial for all q ̸= p and has rank one for q = p. It follows that
the maps from the reduced homology groups of Ni−1 to those of Ni are isomor-
phisms, except for ϕ : H̃p(Ni−1) → H̃p(Ni), which is possibly only injective, and
ψ : H̃p−1(Ni−1) → H̃p−1(Ni), which is possibly only surjective. There are two
possibilities for D.

Case 1: D is surjective. Then β̃p(A) = β̃p(A0) + 1.

Case 2: D is the zero map. Then β̃p−1(A) = β̃p−1(A0) − 1.

All other Betti numbers remain the same. In Case 1, the addition of σ creates a new
homology class, so we call it a positive simplex. In Case 2, σ destroys a homology
class, so we call it a negative simplex. The difference between the two cases will be
important again later, when we define persistent homology in Chapter VII.

Incremental algorithm. We use the insight about the two types of simplices to
compute the Betti numbers of a simplicial complex by adding one simplex at a time.
Let σ1,σ2, . . . ,σj be an ordering of the simplices in N such that every prefix of the
sequence forms a complex. In other words, Ni = {σ1,σ2, . . . ,σi} is a subcomplex of
N for 0 ≤ i ≤ j. The algorithm starts with N0 = ∅, whose reduced Betti numbers
are zero except in dimension minus one.

β̃−1 = 1; for p = 0 to d do β̃p = 0 endfor;
for i = 1 to j do

if σi is positive then β̃p = β̃p + 1
else β̃p−1 = β̃p−1 − 1

endif
endfor.

We call this the Incremental Betti Number Algorithm. Assuming we know the
classification of the simplices, the algorithm computes the Betti numbers of all
complexes Ni spending only constant time per simplex. We emphasize that the
algorithm makes no assumption on the dimension or the topology of the complex,
other than that both are finite. The only difficult operation is the classification
of the simplices. We could adapt the matrix reduction algorithm for homology
described in Section IV.2, and we will revisit this idea in Chapter VII. However,
in some important cases, the classification can be done directly, without the use of
the boundary matrix.

Fast classification in S3. Suppose K is a triangulation of S3 and σ1,σ2, . . . ,σm

is an ordering of its simplices such that Ni = {σ1,σ2, . . . ,σi} is a subcomplex of
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K for 0 ≤ i ≤ m. By stereographic projection, this includes the case in which K
is the Delaunay complex of a finite set of points in R3 and the Ni are the alpha
complexes of the same set; see Chapter III. We classify the simplices in the order
of their dimension, reversing two and three to exploit duality.

Vertices. The first vertex of K is negative because adding it reduces β̃−1 by one.
All other vertices are positive.

Edges. An edge is negative if it merges two components into one, and it is positive if
it connects two vertices that already belong to a common component; see Figure
V.10. To distinguish between the two cases, we maintain the components in
a union-find data structure, as described in Section I.1. If σi is an edge, we
label it negative if its two endpoints lie in different components of Ni−1, in
which case the addition of σi triggers a union operation. Otherwise, we label
σi positive.

Figure V.10: Top: a negative edge on the left and a positive edge on the right.
Bottom: a negative triangle on the left and a positive triangle on the right.

We note that the classification of the vertices and edges as described works in gen-
eral, for any finite simplicial complex, K. In contrast, the classification of triangles
and tetrahedra below makes crucial use of the assumption that K triangulates the
3-sphere.

Tetrahedra. The last tetrahedron of K is positive, and all other tetrahedra are
negative.

Triangles. A triangle is negative if it closes a tunnel and positive if it forms a void;
see Figure V.10. This is easier to explain for the dual blocks. Let Xi be the
set of dual blocks of the simplices in K − Ni and note that it is a subcomplex
of B. Reading the simplices from back to front and replacing them by their
dual blocks is like enumerating the sets from Xm = ∅ to X0 = K. As before,
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we maintain the components in a union-find data structure. Assuming σ̂i is an
edge, we label σi negative if the two endpoints of σ̂i lie in different components
of Xi+1, in which case the addition of σ̂i triggers a union operation. Otherwise,
we label σi positive.

It is straightforward to see that the classification of the vertices and edges is correct.
For the tetrahedra, we use the fact that K triangulates S3. For the triangles, we
use Alexander duality. As discussed in Section I.1, the maintenance of a union-find
data structure takes time proportional to α(n) per operation, where n is the number
of nodes (the vertices or tetrahedra in K), and α is the inverse of the Ackermann
function. For all practical purposes, this is constant time per operation.

Bibliographic note. We may think of the Alexander Duality Theorem as a gen-
eralization of the Jordan Curve Theorem mentioned in Chapter I. Roots of the
concept can be found in the work of Alexander [8], which was later further devel-
oped, in particular by Alexandrov and Pontryagin. Similar to the Poincaré and
the Lefschetz Duality Theorems, we state and prove the Alexander Duality Theo-
rem only for the combinatorial manifold case. The restriction is unnecessary but
simplifies the exposition.

The Incremental Betti Number Algorithm is due to Delfinado and Edelsbrunner
[45]. It was implemented as part of the 3-dimensional Alpha Shape software written
and distributed by Ernst Mücke in the early nineties of the last century. The
algorithm exploits the structure of the alpha shape filtration [63] and introduces the
concept of positive and negative simplices, thus foreshadowing the later development
of persistent homology, which will be discussed in Chapter VII.

Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical ques-
tion can be answered using knowledge of the material combined with some thought
and analysis.

1. Coboundary (one credit). Prove that the coboundary map can be thought
of as taking each simplex to its cofaces of one dimension higher. Formally,
⟨δϕ, τ ⟩ = 1 iff ⟨ϕ,σ⟩ = 1 for an odd number of faces σ of τ with dimension
dimσ = dim τ − 1.

2. Universal Coefficient Theorem (two credits). Let ϕ ∈ Zp be a cocycle
representing a cohomology class γ ∈ Hp and let c ∈ Zp be a cycle representing
a homology class α ∈ Hp. Let j : Hp → Hom(Hp, Z2) be defined so that j(γ)
applied to α is equal to ⟨ϕ, c⟩.

(i) Show that j is well defined, that is, it does not depend on the representa-
tives chosen for γ and α.

(ii) Show that j is an isomorphism.
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3. Dual vector spaces (three credits). Let U be a vector space over G = Z2 and
let U∗ = Hom(U, G) be its dual.

(i) Show that U∗ is also a vector space and U and U∗ are isomorphic. However,
note that the isomorphism between U and U∗ depends on a choice of basis
and is thus not natural.

Let (U∗)∗ = Hom(U∗, G) be the dual of the dual of U. Let j : U → (U∗)∗ be
defined by mapping u ∈ U to j(u) = φ ∈ (U∗)∗ such that φ(f) = f(u) for every
f ∈ U∗.

(ii) Prove that j is an isomorphism.

4. Classifying 3-manifolds (one credit). Recall the two steps of the algorithm
for classifying a triangulated 2-manifold described in Chapter II: deciding ori-
entability and computing the Euler characteristic.

(i) Generalize both steps of the algorithm to a triangulated 3-manifold.

(ii) Why does the algorithm in (i) not suffice to classify 3-manifolds?

5. Poincaré duality (two credits). Use the Perfect Pairing Lemma to prove the
first form from the second form of the Poincaré Duality Theorem.

6. 2-manifold with boundary (one credit). Let M be a 2-manifold with genus
g and b boundary circles.

(i) Use the first form of the Lefschetz Duality Theorem to determine the
ranks of Hp(M) and Hp(M, ∂M) for p = 0, 1, 2.

(ii) Draw generators for the first absolute and relative homology groups and
check your drawing against the second form of the Lefschetz Duality The-
orem.

7. d-dimensional boundary (three credits). Let M be a (d + 1)-manifold and
∂M its boundary, a d-manifold without boundary.

(i) Use Lefschetz and Poincaré duality to show that the kernel of the map
fd : Hd(∂M) → Hd(M) induced by the inclusion ∂M ⊆ M has rank exactly
half the d-th Betti number of ∂M.

(ii) Show that x · y = 0 for all classes x and y in ker fd.

8. Water and land on a manifold (one credit). Let M be a combinatorial
d-manifold and K its triangulation. Let N be a subcomplex of K, N ′ the
subcomplex of SdK whose underlying space is the same as that of N , and N ′′

the smallest subcomplex of Sd2K that contains all simplices incident to vertices
in N ′.

(i) Show that N ′′ is the union of closed stars over all vertices of N ′.

(ii) Show that N ′′ is a d-manifold with boundary.



Chapter VI

Morse Functions

The class of real-valued functions on a manifold is an unwieldy animal, and re-
stricting it to continuous functions does not do a whole lot to tame it. Even smooth
functions can be rather complicated in their behavior, and it is best to add another
requirement, namely genericity. What we get then is the class of Morse functions,
which distinguishes itself by having only simple critical points. Most of the the-
ory is concerned with the study of these critical points, their structure, and what
they say about the manifold and the function. In spite of the fact that we rarely
find Morse functions in actual applications, or smooth functions for that matter,
knowing about their structure significantly benefits our understanding of general,
smooth functions and even piecewise linear functions.

VI.1 Generic Smooth Functions

Many questions in the sciences and engineering are posed in terms of real-valued
functions. Instead of struggling with the wild character of general functions, we
restrict our attention to a class that achieves structural simplicity without undue
limitation of shape.

The upright torus. We start with an example that foreshadows many of the
results on generic smooth functions. Let M be the 2-dimensional torus and f(x)
the height of the point x ∈ M above a horizontal plane on which the torus rests, as
in Figure VI.1. We call f : M → R a height function. Each real number a has a
preimage, f−1(a), which we refer to as a level set. It consists of all points x ∈ M at
height a. Accordingly, the sublevel set consists of all points at height at most a:

Ma = f−1(−∞, a] = {x ∈ M | f(x) ≤ a}.

We are interested in the evolution of the sublevel set as we increase the level a.
Critical events occur when a passes the height values of the points u, v, w, z in

125
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u

z

w

v

Figure VI.1: The vertical height function on the torus with critical points u,
v, w, z and level sets between their height values.

Figure VI.1. For a < f(u), the sublevel set is empty. For f(u) < a < f(v), it is a
disk, which has the homotopy type of a point. For f(v) < a < f(w), the sublevel
set is a cylinder. It has the homotopy type of a circle. For f(w) < a < f(z), the
sublevel set is a torus with a disk removed. It has the homotopy type of a figure-
eight curve. Finally, for f(z) < a, we have the complete torus. It is obtained by
gluing on the final disk. Figure VI.2 illustrates the three intermediate stages of the
evolution. We need some background in differential topology to explain in what
sense this evolution of the sublevel set is representative of the general situation.

Figure VI.2: Going from a disk to a cylinder is homotopically the same as
attaching a 1-cell. Similarly, going from the cylinder to the capped torus is
homotopically the same as attaching another 1-cell.

Smooth functions. Let M be a smooth d-manifold; that is, M has an atlas
of coordinate charts each diffeomorphic to an open ball in Rd. We recall that a
diffeomorphism is a homeomorphism that is smooth in both directions. Technically,
being smooth means that derivatives of all orders exist. Practically, we just need
derivatives of first and second order for most of the things we do, but it is easier
to assume than to keep books. Denote the tangent space at a point x ∈ M by
TMx. It is the d-dimensional vector space consisting of all tangent vectors of M at
x. A smooth mapping to another smooth manifold, f : M → N, induces a linear
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mapping between the tangent spaces, the derivative Dfx : TMx → TNf(x). We are
primarily interested in real-valued functions for which N = R. Accordingly, we have
linear maps Dfx : TMx → TRf(x). The tangent space at a point of the real line
is again a real line, so this is just a fancy way of saying that the derivatives are
real-valued linear maps on the tangent spaces. Being linear, the image of such a
map is either the entire line or just zero. We call x ∈ M a regular point of f if Dfx

is surjective and we call x a critical point of f if Dfx is the zero map. If we have a
local coordinate system (x1, x2, . . . , xd) in a neighborhood of x, then x is critical iff
all its first-order partial derivatives vanish:

∂f

∂x1
(x) =

∂f

∂x2
(x) = . . . =

∂f

∂xd
(x) = 0.

The chain rule tells us that whether a point is critical or not is independent of
coordinates. The image of a critical point, f(x), is called a critical value of f . All
others are regular values of f . We use second derivatives to further distinguish
between different types of critical points. The Hessian of f at the point x is the
matrix of second derivatives:

H(x) =

⎡

⎢⎢⎢⎢⎣

∂2f
∂x1∂x1

(x) ∂2f
∂x1∂x2

(x) . . . ∂2f
∂x1∂xd

(x)
∂2f

∂x2∂x1
(x) ∂2f

∂x2∂x2
(x) . . . ∂2f

∂x2∂xd
(x)

...
. . .

...
∂2f

∂xd∂x1
(x) ∂2f

∂xd∂x2
(x) . . . ∂2f

∂xd∂xd
(x)

⎤

⎥⎥⎥⎥⎦
.

A critical point x is non-degenerate if the Hessian is non-singular, that is, det H(x) ̸=
0. Again, this does not depend on coordinates. The points u, v, w, z in Figure VI.1
are examples of non-degenerate critical points. Examples of degenerate critical
points are x1 = 0 for the function f : R → R defined by f(x1) = x3

1 and (x1, x2) =
(0, 0) for f : R2 → R defined by f(x1, x2) = x3

1 − 3x1x2
2. The degenerate critical

point in the latter example is often referred to as a monkey saddle. Indeed, the
graph of the function in a neighborhood goes up and down three times, providing
a convenient resting place for the two legs as well as the tail of the monkey.

Morse functions. At a critical point, all first-order partial derivatives vanish. A
local Taylor expansion has therefore no linear terms. If the critical point is non-
degenerate, then the behavior of the function in a small neighborhood is dominated
by the quadratic terms. Furthermore, we can find local coordinates such that there
are no higher-order terms.

Morse Lemma. Let u be a non-degenerate critical point of f : M → R. There
are local coordinates with u = (0, 0, . . . , 0) such that

f(x) = f(u) − x2
1 − . . . − x2

q + x2
q+1 + . . . + x2

d

for every point x = (x1, x2, . . . , xd) in a small neighborhood of u.
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The number of minus signs in the quadratic polynomial is independent of coordi-
nates and is called the index of the critical point, index(u) = q. The index classifies
the non-degenerate critical points into d + 1 types. For a 2-manifold, we have three
types, minima with index 0, saddles with index 1, and maxima with index 2. Ex-
amples of all three types can be seen in Figure VI.1. In Figure VI.3, we display
them by showing the local evolution of the sublevel set. A consequence of the

Figure VI.3: From left to right: the local pictures of a minimum, a saddle, and
a maximum. Imagine looking from above with the shading getting darker as
the function shrinks away from the viewpoint.

Morse Lemma is that non-degenerate critical points are isolated. In other words,
each critical point has a local neighborhood that separates it from the others. This
implies that a Morse function on a compact manifold has at most a finite number of
critical points. To contrast this with a function that is not Morse, take the height
function of a torus, similar to Figure VI.1 but placing the torus sideways, the way
it would naturally rest under the influence of gravity. This height function has an
entire circle of minima and another circle of maxima. All these critical points are
degenerate, and their index is not defined.

Definition. A Morse function is a smooth function on a manifold, f : M → R,
such that (i) all critical points are non-degenerate and (ii) the critical points have
distinct function values.

Sometimes the second condition is dropped, but in this book we will always require
both. For a geometrically perfect torus, the height function satisfies condition (i) for
all but two directions, the ones parallel to the symmetry axis of the torus. Condition
(ii) is violated for another two circles of directions along which the two saddles have
the same height. The height function of S2 is a Morse function for all directions.
The distance from a point is a Morse function for almost all points. Exceptions for
the torus are points on the symmetry axis and on the center circle, but there are
others. The only exception for the 2-sphere is the center.

Gradient vector field. A vector field on a manifold is a function X : M → TM
that maps every point x ∈ M to a vector X(x) in the tangent space of M at x.
Given f : M → R and X, we denote the directional derivative of f along the
vector field by X[f ]. It maps every point x ∈ M to the derivative of f at x in
the direction X(x). A particularly useful vector field is the one that points in the
direction of steepest increase. To define it, we need to measure length, which we



VI.1 Generic Smooth Functions 129

do by introducing a Riemannian metric, that is, a smoothly varying inner product
defined on the tangent spaces. For example, if M is smoothly embedded in some
Euclidean space, then the tangent spaces are linear subspaces of the same Euclidean
space and we can borrow the metric. Given a smooth manifold M, a Riemannian
metric on M, and a smooth function f : M → R, we define the gradient of f as the
vector field ∇f : M → TM characterized by ⟨X(x),∇f(x)⟩ = X[f ] for every vector
field X. Assuming local coordinates with orthonormal unit vectors xi, the gradient
at the point x is

∇f(x) =

[
∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xd
(x)

]T

.

We use the gradient to introduce a 1-parameter group of diffeomorphisms ϕ : R ×
M → M. There are two characteristic properties of this group. First, the map
ϕt : M → M defined by ϕt(x) = ϕ(t, x) is a diffeomorphism of M to itself for
each t ∈ R, and second, ϕt+t0 = ϕt ◦ ϕt0 for all t, t0 ∈ R. Such a group defines a
vector field by differentiation, and we require that this vector field be parallel to
the gradient vector field:

lim
ε→0

f(ϕε(x)) − f(x)

ε
=

∇f(x)

∥∇f(x)∥2 [f ].

This group of diffeomorphisms follows the evolution of the sublevel set and can be
used to prove that there are no topological changes that happen between contiguous
critical values. Specifically, let f : M → R be smooth and let a < b be such that
f−1[a, b] is compact and contains no critical points of f . Then Ma is diffeomorphic
to Mb.

Attaching cells. The situation is different when we consider regular values a < b
such that f−1[a, b] is compact but contains one critical point of f . Let this critical
point be u and let its index be q. In this case, Mb has the homotopy type of Ma with
a q-cell attached along its boundary. To explain what this means, we recall that Bq

is the q-dimensional unit ball with Sq−1 as its boundary. Let g : Sq−1 → bd Ma be
a continuous map. To attach the cell to Ma, we identify each point x ∈ Sq−1 with
its image g(x) ∈ bd Ma. The only case that is a bit different is q = 0. Then S−1 is
empty and attaching the 0-cell just means adding a point.

We illustrate this construction for a 3-manifold, M. There are four types of
critical points, namely minima with index 0, saddles with index 1 or 2, and maxima
with index 3. The two types of saddles deserve some attention. To illustrate the
local evolution of the sublevel set, we draw spheres around them and shade the
portion that belongs to the sublevel set, as in Figure VI.4. The level set that passes
through a saddle forms locally a double-cone with the apex at the critical point.
This is the same for both types, the only difference being the side on which the
sublevel set resides. For the index-1 saddle, we imagine a two-sheeted hyperboloid
approaching from two sides until the two sheets meet at the saddle. Thereafter, the
sublevel set thickens around the saddle as its boundary continues as a one-sheeted
hyperboloid (an hour glass). Homotopically, this evolution is the same as attaching
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Figure VI.4: The double-cone neighborhood of the index-1 saddle on the left
and of the index-2 saddle on the right. The volume occupied by the sublevel
set is shaded.

a 1-cell connecting the two sheets. For the index-2 saddle, the sequence of events
is reversed. Specifically, a one-sheeted hyperboloid approaches along a circle of
directions until it reaches the saddle. Thereafter, the sublevel set thickens around
the saddle as its boundary continues as two sheets of a hyperboloid. Homotopically,
this evolution is the same as attaching a 2-cell closing the tunnel formed by the
one-sheeted hyperboloid.

Bibliographic notes. Morse theory developed first in infinite dimensions, as part
of the calculus of variations; see Morse [113]. The classic source on the subject for
finite-dimensional manifolds is the text by Milnor [111], but see also Matsumoto
[105] and Banyaga and Hurtubis [14].

VI.2 Transversality

Given a Morse function, we can follow the gradient flow and decompose the manifold
depending on where the flow originates and where it ends. For this decomposition
to form a complex, we require that the function satisfy an additional genericity
assumption.

Integral lines. Recall the 1-parameter group of diffeomorphisms, ϕ : R×M → M,
defined by a Morse function, f , on a compact manifold, M, with a Riemannian
metric. The integral line that passes through a regular point, x ∈ M, is γ = γx :
R → M defined by γ(t) = ϕ(t, x); see Figure VI.5. It is the solution to the ordinary
differential equation defined by γ̇(t) = ∇f(γ(t)) and the initial condition γ(0) = x.
Because ϕ and therefore γ are defined for all t ∈ R and M is compact, the integral
line necessarily approaches a critical point, both for t going to plus and to minus
infinity. We call these critical points the origin and the destination of the integral
line:

org(γ) = lim
t→−∞

γ(t), dest(γ) = lim
t→∞

γ(t).
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The function increases along the integral line, which implies that org(γ) ̸= dest(γ).
The Existence and Uniqueness Theorems of ordinary differential equations imply
that the integral line that passes through another regular point y is either disjoint
from or the same as the one passing through x, im γx = im γy or im γx ∩ im γy = ∅.
This property suggests we decompose the manifold into integral lines or unions of
integral lines with shared characteristics.

v

u

z

w

Figure VI.5: The upright torus with the four integral lines that end at the two
saddles.

Stable and unstable manifolds. The stable manifold of a critical point u of
f is the point itself together with all regular points whose integral lines end at u.
Symmetrically, the unstable manifold of u is the point itself together with all regular
points whose integral lines originate at u. More formally,

S(u) = {u} ∪ {x ∈ M | dest(γx) = u},

U(u) = {u} ∪ {y ∈ M | org(γy) = u}.

The function increases along integral lines. It follows that f(u) ≥ f(x) for all points
x in the stable manifold of u. This is the reason why S(u) is sometimes referred
to as the descending manifold of u. Symmetrically, f(u) ≤ f(y) for all points y
in the unstable manifold of u, and U(u) is sometimes referred to as the ascending
manifold of u.

Suppose the dimension of M is d and the index of the critical point u is q. Then
there is a (q − 1)-sphere of directions along which integral lines approach u. It can
be proved that together with u, these integral lines form an open ball of dimension
q and that S(u) is a submanifold homeomorphic to Rq that is immersed in M. It is
not embedded because distant points in Rq may map to arbitrarily close points in
M, as we can see in Figure VI.5. For example, the saddle v has a stable 1-manifold
consisting of two integral lines that merge at v to form one open, connected interval.
The two ends of the interval approach the minimum, u, which does not belong to
the 1-manifold. While the map from R1 to M is continuous, the inverse defined on
its image is not.
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Morse-Smale functions. The stable manifolds do not necessarily form a com-
plex. Specifically, it is possible that the boundary of a stable manifold is not the
union of other stable manifolds of lower dimension. Take for example the upright
torus in Figure VI.5. The stable 1-manifold of the upper saddle, w, reaches down
to the lower saddle, v, but the latter is not a stable 0-manifold. The reason for this
deficiency is a degeneracy in the gradient flow. In particular, we have an integral
line that originates at a saddle and ends at another saddle. Equivalently, the inte-
gral line belongs to the stable 1-manifold of w and to the unstable 1-manifold of v.
Generically, such integral lines do not exist.

Definition. A Morse-Smale function is a Morse function, f : M → R, whose
stable and unstable manifolds intersect transversally.

Roughly, this requires that the stable and unstable manifolds cross when they inter-
sect. More formally, let σ : Rq → M and υ : Rp → M be two smooth maps. Letting
z ∈ M be a point in their common image, we say that σ and υ intersect transver-
sally at z if the derived images of the tangent spaces at preimages x ∈ σ−1(z) and
y ∈ υ−1(z) span the entire tangent space of M at z:

Dσx(TRq
x) + Dυy(TRp

y) = TMz.

We say that σ and υ are transversal to each other if they intersect transversally at
every point z in their common image.

Complexes. Assuming transversality, the intersection of a stable q-manifold and
an unstable p-manifold has dimension q+p−d. Furthermore, the boundary of every
stable manifold is a union of stable manifolds of lower dimension. The set of stable
manifolds thus forms a complex which we construct one dimension at a time.

0-skeleton: add all minima as stable 0-manifolds to initialize the complex;

1-skeleton: add all stable 1-manifolds, each an open interval glued at its endpoints
to two points in the 0-skeleton;

2-skeleton: add all stable 2-manifolds, each an open disk glued along its boundary
circle to a cycle in the 1-skeleton;

etc. It is possible that the two minima are the same so that the interval whose
ends are both glued to it forms a loop. Similarly, the cycle in the 1-skeleton can
be degenerate, such as pinched or even just a single point. Similar situations are
possible for higher-dimensional stable manifolds. An example is the height function
of the d-sphere. It has a single minimum, a single maximum, and no other critical
points. The minimum has index 0 and forms a vertex in the complex. The maximum
has index d and defines a stable d-manifold. It wraps around the sphere, and its
boundary is glued to a single point, the minimum, as illustrated for d = 2 in Figure
VI.6.
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Figure VI.6: All integral lines of the height function of S2 originate at the
minimum and end at the maximum. We therefore have two stable manifolds,
a vertex for the minimum and an open disk for the maximum.

Morse inequalities. If we take the alternating sum of the numbers of stable
manifolds in the above example, we get 1 + (−1)d, which is the Euler characteristic
of the d-sphere. This is not a coincidence. More generally, the alternating sum of
the numbers of stable manifolds gives the Euler characteristic, and this equation is
one of the strong Morse inequalities. We state both the weak and the strong Morse
inequalities, writing cq for the number of critical points of index q.

Morse Inequalities. Let M be a manifold of dimension d and let f : M → R
be a Morse function. Then

(i) weak: cq ≥ βq(M) for all q;

(ii) strong:
∑j

q=0(−1)j−qcq ≥
∑j

q=0(−1)j−qβq(M) for all j.

As mentioned above, the strong Morse inequality for j = d is an equality. We can
recover the weak inequalities from the strong ones. Indeed

j∑

q=0

(−1)j−qcq ≥ βj(M) −
j−1∑

q=0

(−1)j−q−1βq(M)

≥ βj(M) −
j−1∑

q=0

(−1)j−q−1cq.

Removing the common terms on both sides leaves cj ≥ βj(M), the j-th weak in-
equality. We omit the proof of the strong inequalities and instead refer to the proof
of their piecewise linear versions in the next section.

Floer homology. Assuming a Morse-Smale function, we can intersect the stable
and unstable manifolds and get a refinement of the two complexes, which we refer
to as the Morse-Smale complex of f . Its vertices are the critical points, and its
cells are the components of the unions of integral lines with common origin and
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common destination. It is quite possible that the stable manifold of a critical
point intersects the unstable manifold of another critical point in more than one
component. By definition of transversality, the index difference between the origin
and the destination equals the dimension of the cell. In particular, the edges are
isolated integral lines connecting index q − 1 with index q critical points.

u

v

w

z

Figure VI.7: The Morse-Smale complex of the height function for the almost
but not entirely upright torus.

To recover the homology of the manifold, we set up a chain complex. The q-
chains are the formal sums of index q critical points. The boundary of an index q
critical point, u, is the sum of index q − 1 critical points connected to u by an edge
in the Morse-Smale complex. If there are multiple edges, we add the index q − 1
point multiple times. We illustrate this construction with the example depicted in
Figure VI.7. We have a slightly tilted torus whose height function is a Morse-Smale
function. There are one minimum, two saddles, and one maximum. The non-trivial
chain groups are therefore C0 ≃ G, C1 ≃ G2, C2 ≃ G, with G = Z2, as usual. In this
example, each critical point appears twice in the boundary of every other critical
point, or not at all. Hence, the boundary of each one of the four critical points is
zero. It follows that the boundary groups are trivial and the cycle groups as well as
the homology groups are isomorphic to the chain groups. The Betti numbers are
therefore β0 = 1, β2 = 2, β2 = 1, which is consistent with what we already know
about the torus.

Bibliographic notes. The concepts of integral lines and stable as well as unsta-
ble manifolds rely on fundamental properties of solutions to ordinary differential
equations, in particular the Existence and Uniqueness Theorems; see e.g. Arnold
[10]. The extra requirement of transversality between stable and unstable manifolds
that distinguishes Morse from Morse-Smale functions has been proven to be generic
by Kupka [97] and Smale [133]. The chain complex whose groups are formal sums
of critical points is sometimes referred to as the Morse-Smale-Witten complex and
the resulting homology theory is referred to as Floer homology [69].
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VI.3 Piecewise Linear Functions

We rarely find smooth functions in practical situations. Instead, we often find
non-smooth functions that approximate smooth functions or a series of non-smooth
functions that approach a smooth limit. In this section, we turn things around and
use insights gained into the smooth case as a guide in our attempt to understand
the piecewise linear case.

Lower star filtration. Let K be a simplicial complex with real values specified
at all vertices. Using linear extension over the simplices, we obtain a piecewise
linear (PL) function f : |K| → R. It is defined by f(x) =

∑
i bi(x)f(ui), where

the ui are the vertices of K and the bi(x) are the barycentric coordinates of x;
see Section III.1. It is convenient to assume that f is generic, by which we mean
that the vertices have distinct function values. We can then order the vertices by
increasing function value as f(u1) < f(u2) < . . . < f(un). For each 0 ≤ i ≤ n,
we let Ki be the full subcomplex defined by the first i vertices. In other words, a
simplex σ ∈ K belongs to Ki iff each vertex uj of σ satisfies j ≤ i. Recall that the
star of a vertex ui is the set of cofaces of ui in K. The lower star is the subset of
simplices for which ui is the vertex with maximum function value:

St−ui = {σ ∈ Stui | x ∈ σ ⇒ f(x) ≤ f(ui)}.

Similar to the star, the lower star is generally not a complex. Adding the missing
faces to the set, we get the closed lower star, which is a subcomplex of K. By as-
sumption of genericity, each simplex has a unique maximum vertex and thus belongs
to a unique lower star. It follows that the lower stars partition K. Furthermore, Ki

is the union of the first i lower stars. This motivates us to call the nested sequence
of complexes ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K the lower star filtration of f . It will be
useful to notice that the Ki are representative of the continuous family of sublevel
sets. Specifically, for f(ui) ≤ a < f(ui+1) the sublevel set |K|a = f−1(−∞, a]

a

Figure VI.8: We retract |K|a to |Ki| by shrinking the line segments decom-
posing the partial simplices from the top downward.

has the same homotopy type as Ki. To prove this, consider each simplex with at
least one vertex in Ki and at least one vertex in K − Ki. Write this simplex as
a union of line segments connecting points on the maximal face in Ki with points
on the maximal face in K − Ki. In other words, express the simplex as the join of
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these two faces; see Figure VI.8. The sublevel set contains only a fraction of each
line segment, namely the portion from the lower endpoint x in |Ki| to the upper
endpoint y with f(y) = a. To get a deformation retraction, we let (1 − t)y + tx be
the upper endpoint at time t. Going from time t = 0 to t = 1 deformation retracts
|K|a onto |Ki|, so they have the same homotopy type.

PL critical points. We study the change from one complex to the next in the
lower star filtration in more detail. Recall that the link of a vertex is the set of
simplices in the closed star that do not belong to the star. Similarly, the lower link
is the collection of simplices in the closed lower star that do not belong to the lower
star. Equivalently, it is the collection of simplices in the link whose vertices have
smaller function value than ui:

Lk−ui = {σ ∈ Lkui | x ∈ σ ⇒ f(x) < f(ui)}.

When we go from Ki−1 to Ki, we attach the closed lower star of ui, gluing it along
the lower link to the complex Ki−1. Assume now that K triangulates a d-manifold.
This restricts the possibilities dramatically since every vertex star is an open d-ball
and every vertex link is a (d − 1)-sphere. A few examples of lower stars and lower
links in a 2-manifold are shown in Figure VI.9. We classify the vertices using the

Figure VI.9: From left to right: the lower star and lower link of a regular
vertex, a minimum, a saddle, and a maximum.

reduced Betti numbers of their lower links. Recall that β̃0 is one less than β0, the
number of components. The only exception to this rule is the empty lower link,
for which we have β̃0 = β0 = 0 and β̃−1 = 1. Table VI.1 gives the reduced Betti
numbers of the lower links in Figure VI.9. We call ui a PL regular vertex if its lower

β̃−1 β̃0 β̃1

regular 0 0 0
minimum 1 0 0
saddle 0 1 0
maximum 0 0 1

Table VI.1: Classification of the vertices in a PL function on a 2-manifold.

link is non-empty but homologically trivial, and we call ui a simple PL critical vertex
of index q if its lower link has the reduced homology of the (q− 1)-sphere. In other
words, the only non-zero reduced Betti number of a simple PL critical vertex of
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index q is β̃q−1 = 1. We call a piecewise linear function f : |K| → R on a manifold
a PL Morse function if (i) each vertex is either PL regular or simple PL critical and
(ii) the function values of the vertices are distinct.

Unfolding. In contrast to the smooth case, PL Morse functions are not dense
among the class of all PL functions. Equivalently, a PL function on a manifold may
require a substantial perturbation before it becomes PL Morse. As an example,
consider the piecewise linear version of a monkey saddle displayed in Figure VI.10.
It is therefore not reasonable to assume a PL Morse function as input, but we can

Figure VI.10: Left: a PL monkey saddle of a height function. The areas of
points lower than the center vertex are shaded. Right: the unfolding of the
monkey saddle into two simple saddles.

sometimes alter the triangulation locally to make it into a PL Morse function. In
the 2-manifold case, a k-fold saddle is defined by β̃0 = k. We can split it into k
simple saddles by introducing k−1 new vertices and assigning appropriate function
values close to that of the original, k-fold saddle; see Figure VI.10 for the case
k = 2. It is less clear how to unfold possibly complicated PL critical points for
higher-dimensional manifolds.

Alternating sum of indices. Let K be a triangulation of a d-manifold and let
f : |K| → R be a PL Morse function. It is not difficult to prove that the alternating
sum of the simple PL critical points gives the Euler characteristic:

χ(K) =
∑

u

(−1)index(u).

Since it is easy and instructive, we give an inductive proof of this equation. To go
from Ki−1 to Ki, we add the lower star of ui. By the Euler-Poincaré Theorem, the
Euler characteristic of the lower link, A = Lk−ui, is

χ(A) =
∑

q≥1

(−1)q−1βq−1(A)

= 1 +
∑

q≥0

(−1)q−1β̃q−1(A).

By definition, this is 1 if ui is PL regular and 1+ (−1)index(ui)−1 if ui is PL critical.
Each j-simplex in the lower star corresponds to a (j − 1)-simplex in the lower link,
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except for the vertex ui itself. Adding the lower star to the complex thus increases
the Euler characteristic by 1 − χ(A), which is zero for a PL regular point and
(−1)index(ui) for a simple PL critical point. The claimed equation follows.

Mayer-Vietoris sequences. We prepare the proof of the complete set of Morse
inequalities for PL Morse functions by recalling the Mayer-Vietoris sequence of a
covering of a simplicial complex by two subcomplexes. Let K = K ′ ∪ K ′′ be the
covering and note that the intersection of the two subcomplexes, A = K ′ ∩ K ′′, is
also a subcomplex of K. As discussed in Section IV.4, the reduced version of the
corresponding Mayer-Vietoris sequence is

. . . → H̃p+1(K)
ϕp→ H̃p(A)

ψp→ H̃p(K
′) ⊕ H̃p(K

′′) → H̃p(K) → H̃p−1(A) → . . .

It is exact, which means that the image of every homomorphism is equal to the
kernel of the next homomorphism in the sequence. We are interested in the reduced

kp kp

kp kp kp−1

kp−1kp−1

Figure VI.11: A portion of the Mayer-Vietoris sequence. By exactness, the
rank of the kernel of every map complements the rank of the cokernel of the
preceding map.

p-th homology group of A. Let kp be the rank of kerψp and let kp be the rank
of cokϕp = H̃p(A)/imϕp. By exactness at H̃p(A), we have β̃p(A) = kp + kp. As
illustrated in Figure VI.11, exactness also implies that the rank of imψp is kp and
the rank of H̃p+1(K)/kerϕp is kp.

We note that kerψp and cokϕp distinguish two kinds of cycles in A. A cycle in
the kernel bounds both in K ′ and in K ′′, and these two (p + 1)-chains fit together
to make a cycle of dimension p + 1 in K. In contrast, a cycle in the cokernel is
not in the image of the connecting homomorphism and thus represents a non-trivial
homology class in K ′ or in K ′′ or in both.

PL Morse inequalities. We are now ready to state and prove the PL versions
of the weak and strong Morse inequalities.

PL Morse Inequalities. Let K be a triangulation of a manifold of dimension
d and let f : |K| → R be a PL Morse function. Writing cq for the number of index
q PL critical points of f , we have

(i) weak: cq ≥ βq(K) for all q;

(ii) strong:
∑j

q=0(−1)j−qcq ≥
∑j

q=0(−1)j−qβq(K) for all j.
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Proof. We prove the inequalities inductively, for each Ki. They hold initially, when
K0 is empty. For the inductive step, we note that Ki is the union of Ki−1 and the
closed lower star of ui. To study the situation, we use the Mayer-Vietoris sequence
obtained by setting K = Ki, K ′ = Ki−1, K ′′ = St−ui ∪ Lk−ui, and A = Lk−ui.
Since K ′′ is the cone over a complex, it is homologically trivial. Referring to Figure
VI.11, we let ϕp : H̃p+1(K) → H̃p(A) be the connecting homomorphism and ψp :
H̃p(A) → H̃p(K ′)⊕ H̃p(K ′′) be induced by inclusion. Furthermore, kp = rank kerψp

and kp = rank cokϕp, as before. Since K ′′ is homologically trivial, the rank of
H̃p(K) is the rank of H̃p(K ′) minus the rank of the image of ψp plus the rank of the
kernel of ψp−1. Translating this back to the lower star filtration, we have

rank H̃p(Ki) = rank H̃p(Ki−1) − kp + kp−1.

By exactness of the sequence, kp−1 +kp−1 is the rank of the reduced (p−1)-st Betti
number of A. This number is 1 if ui is a simple PL critical point of index p and
0 otherwise. Specifically, if ui is PL regular, then kp−1 = kp−1 = 0 for all p and
the ranks of the homology groups do not change. Similarly, none of the counters
of critical points change, so all Morse inequalities remain valid. If index(ui) = p
and kp−1 = 1, then both cp and β̃p go up by one, which maintains the validity of
all Morse inequalities. On the other hand, if index(ui) = p and kp−1 = 1, then
cp goes up and β̃p−1 goes down. Since the two have opposite signs, this maintains
the validity of all Morse inequalities that contain both. The only strong Morse
inequality that contains one but not both terms is the one for j = p−1. It contains
the relevant Betti number with a plus sign, so this inequality is also preserved.

We note that the strong Morse inequality for j = d is actually an equality, namely
the one we have proved above, before recalling the Mayer-Vietoris sequence. It
contains both changing terms, in all cases, so there is never a chance that the two
sides become different. We also note that the proof of the Morse inequalities in the
smooth case is the same. Indeed, passing a non-degenerate critical point has the
same effect as adding the lower star of a simple PL critical vertex of the same index.

Bibliographic notes. Piecewise linear functions on polyhedral manifolds were
studied by Banchoff [12]. He defines the index of a vertex as the Euler characteristic
of its lower link. This is coarser than our definition but leads to similar results, in
particular, a short and elementary proof that the Euler characteristic is equal to
the alternating sum of critical points. However, it does not lend itself to a natural
generalization of the other Morse inequalities to non-Morse PL functions. Our
classification of PL critical points in terms of reduced Betti numbers can be found
in [58], where it is used to compute the PL analog of the Morse-Smale complex for
2-manifolds. There are industrial applications of these ideas to surface design and
segmentation based on curvature approximating and other shape-sensitive functions
in R3 [55].
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VI.4 Reeb Graphs

The structure of a continuous function can sometimes be made explicit by visualizing
the evolution of the components of the level set. This leads to the concept of the
Reeb graph of the function. It has applications in medical imaging and other areas
of science and engineering.

Iso-surface extraction. The practical motivation for studying Reeb graphs is the
extraction of iso-surfaces for 3-dimensional density data. In topological language,
the density data is a continuous function, f : [0, 1]3 → R, and an iso-surface is
a level set, f−1(a). If f is smooth and a is a regular value of f as well as the
restrictions of f to the faces of the cube, then the level set is a 2-manifold, possibly
with boundary. Similarly, if f is generic PL and a is not the value of a vertex, then
the level set is a 2-manifold, again possibly with boundary. Figure VI.12 illustrates
this fact for a PL function on the unit square. Assuming we enter a triangle at

Figure VI.12: The level set of a generic PL function on a triangulation of the
unit square. The superlevel set is white, and the sublevel set is shaded.

a boundary point x with f(x) = a, there is some other unique boundary point y
with f(y) = a where we exit the triangle. We draw the line segment from x to y as
part of the level set and repeat the construction by entering the next triangle at y.
There is never any choice as we trace the curve until we arrive at its other end. The
procedure is similar for a PL function on the unit cube, except that we use a graph
search algorithm to collect the triangular and quadrangular surface pieces we get
by slicing the tetrahedra with planes. The most popular choices are Breadth-first
Search and Depth-first Search, as described in Section II.2.

Given a first point on the level set, it is easy to trace out the component in
which it is contained. However, to avoid missing any of the other components, we
need to check the remainder of the triangulation. The desire to avoid this costly
computation leads to the introduction of the contour tree. This is a data structure
which can be queried for initial points on components of the level set without
checking the entire triangulation. It is based on the concept of a Reeb graph.
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Space of contours. Given a continuous map, f : X → R, we note that the level
sets form a partition of the topological space X. We are interested in a possibly
finer partition defined by calling two points x, y ∈ X equivalent if they belong to a
common component of a level set of f . We refer to the equivalence classes as the
contours of f . The Reeb graph of f is the set of contours, R(f), together with the
standard quotient topology. We recall that it is defined by taking all subsets whose
preimages under ψ : X → R(f) are open in X, where ψ(x) is of course the contour
that contains x. Let π : R(f) → R be the unique map whose composition with ψ is
f . In other words, it is the map such that

X f−→ R

ψ↘ ↗π

R(f)

commutes. We use it to explain how the Reeb graph speeds up the construction
of a level set, f−1(a). Instead of going directly from R to X, we first compute the
preimage of a under π, a set of points in the Reeb graph. The level set consists
of a number of contours, one for each point r in π−1(a). In a medical imaging
application, X would be represented by a triangulation of the unit cube, and to go
from a point r in R(f) back to X would be facilitated by a pointer to an edge in
the triangulation that intersects the contour, ψ−1(r).

Besides using the Reeb graph as a data structure to accelerate the extraction of
level sets, we may hope to learn something about the function or the topological
space on which the function is defined. Even though the Reeb graph loses aspects
of the original topological structure, there are some things it shows. First of all,
ψ : X → R(f) maps components to components. Furthermore, the Reeb graph
reflects the 1-dimensional connectivity of the space in some cases. To describe this,
we refer to a 1-cycle in R(f) as a loop and write #loops for the size of the basis. The
preimage of a loop in R(f) is necessarily non-contractible in X, and two different
loops correspond to non-homologous 1-cycles. Expressing the two properties in
terms of Betti numbers, we get

β0(R(f)) = β0(X),

β1(R(f)) ≤ β1(X).

Hence, if X is contractible, then the Reeb graph is a tree, independent of the function
f . In medical imaging, the space is a cube and thus contractible, which justifies the
practice of calling R(f) a contour tree.

Reeb graphs of Morse functions. More can be said if X = M is a manifold of
dimension d ≥ 2 and f : M → R is a Morse function, as in Figure VI.13. Recall
that each point u ∈ R(f) is the image of a contour in M. We call u a node of the
Reeb graph if ψ−1(u) contains a critical point or, equivalently, if u is the image
of a critical point under ψ. By definition of Morse function, the critical points
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Figure VI.13: Level sets of the 2-manifold map to points on the real line and
components of the level sets map to points of the Reeb graph.

have distinct function values, which implies a bijection between the critical points
of f and the nodes of R(f). The rest of the Reeb graph is partitioned into arcs
connecting the nodes. A minimum starts a contour and therefore corresponds to a
degree-1 node. An index-1 saddle that merges two contours into one corresponds to
a degree-3 node. Symmetrically, a maximum corresponds to a degree-1 node and
an index-(d − 1) saddle that splits a contour into two corresponds to a degree-3
node. All other critical points correspond to nodes of degree two. Indeed, the only
quadratic polynomials of the form f(x) = −x2

1− . . .−x2
q +x2

q+1 + . . .+x2
d that have

level sets with two components are the ones for q = 1, d − 1.

We note that the Reeb graph is a 1-dimensional topological space with points on
arcs being individually meaningful objects. However, there is no preferred way to
draw the graph in the plane or in space.

Loops in Reeb graphs. If M is an orientable 2-manifold, then every saddle
either merges two contours into one or splits a contour into two. Either way, the
saddle corresponds to a degree-3 node in the Reeb graph. We use this fact to show
that the number of loops depends only on M and not on the function as long it
is Morse. In the non-orientable case, we also have degree-2 nodes and therefore a
number of loops that is no longer independent of the function.

Loop Lemma for 2-manifolds. The Reeb graph of a Morse function on a con-
nected 2-manifold of genus g has g loops if the manifold is orientable and at most
g
2 loops if it is non-orientable.

Proof. Let cq be the number of critical points of index q and ni the number of
nodes with degree i in the Reeb graph. We first consider the orientable case for
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which the number of nodes is n = n1 + n3. We note that n1 = c0 + c2 and n3 = c1.
The number of arcs in the Reeb graph is m = 1

2 (n1 + 3n3). The number of loops
exceeds the surplus of arcs by one; that is,

#loops = 1 + m − n = 1 − 1

2
(c0 − c1 + c2).

By the last strong Morse inequality, the expression in parentheses is the Euler
characteristic, which for orientable 2-manifolds is χ = 2 − 2g. It follows that
#loops = 1 − 1

2 (2 − 2g) = g, as claimed. In the non-orientable case, the num-
ber of nodes is n = n1 +n2 +n3, where n1 = c0 + c2 and n2 +n3 = c1. The number
of arcs is m = 1

2 (n1 + 2n2 + 3n3). The number of loops is again one more than the
surplus of arcs; that is,

#loops = 1 +
1

2
(−n1 + n3) = 1 − 1

2
(c0 − c1 + c2 + n2).

Substituting the Euler characteristic for the alternating sum of critical points, wet
get #loops = 1− 1

2 (χ+n2). For a non-orientable 2-manifold, we have χ = 2−g and
therefore #loops = 1

2 (g − n2). Since the number of degree-2 nodes is non-negative,
this is at most half the genus, as claimed.

Coincidentally, the proof implies that the number of degree-2 nodes has the same
parity as the genus. Subject to this constraint, it can be anywhere between zero
and g, which implies that the upper bound is tight and any integer number of loops
between zero and half the genus can be achieved.

Constructing a Reeb graph. We finally consider the algorithmic problem of
constructing the Reeb graph of a function on a 2-manifold. We assume the manifold
is triangulated and the function, f : M → R, is PL Morse. The algorithm sweeps
the manifold in the order of increasing function values. We thus begin by sorting
the vertices such that f(ui) < f(ui+1) for 1 ≤ i < n. Consider a corresponding
sequence of interleaved values, s1 < f(u1) < s2 < . . . < sn < f(un) < sn+1. Since
si is not the value of any vertex, its preimage is a 1-manifold, consisting of finitely
many contours. Each contour is represented by a cyclic list of triangles in the
triangulation. Every triangle contributes a line segment, and any two contiguous
triangles meet in an edge that contributes a shared endpoint of two line segments to
the contour. The representation is the same for all values strictly between f(ui−1)
and f(ui). Adjustments need to be made when we move into the next open interval,
between f(ui) and f(ui+1).

Case 1: ui is a minimum. Add a degree-1 node to the Reeb graph. It starts a new
arc associated with a cyclic list initialized to the triangles in the star of ui.

Case 2: ui is a regular vertex. Then two or more triangles in its star form a
contiguous sequence in one of the cyclic lists. Except for the first and the last,
all these triangles belong to the lower star. We remove the lower star triangles
and replace them by the symmetrically defined upper star triangles of ui.
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Case 3: ui is a saddle. Then the triangles in its star form two contiguous sequences
in the representation of the current level set. They may be part of the same
cyclic list or of two different lists. Similarly to Case 2, we keep the first and
last triangle of each sequence and replace the lower star triangles in between
by the corresponding upper star triangles of ui. Either list can be empty. We

Figure VI.14: From left to right: merging two cyclic lists into one, splitting
one list into two, reconnecting one list. Correspondingly, we add a down-fork,
an up-fork, a degree-2 node to the Reeb graph.

do this by cutting the lists and regluing them when we add the upper star
triangles. The global effect of the operation depends on whether the cutting is
done on one or two cyclic lists and which ends are glued together. There are
three different cases, as illustrated in Figure VI.14. In each case, we add a new
node to the Reeb graph and represent the modified lists by arcs that end and
start at that node.

Case 4: ui is a maximum. Remove the cyclic list of triangles in its star and end
the corresponding arc by adding a new degree-1 node to the Reeb graph.

To implement the algorithm, we need a data structure that supports the following
operations:

• cut a cyclic list open by removing the links between two adjacent triangles;

• drop a triangle from the end of an open list;

• append a new triangle to the end of an open list;

• glue two ends of the same or of two different open lists;

• find the cyclic list that contains a specified triangle.

The cutting and gluing can be done without knowing whether the ends belong to
the same or to different cyclic lists. However, to update the Reeb graph, we need
to know which case we are in and we use the find operation to find out. All five
operations are supported in time logarithmic in the length of the list if we store it
in a data structure commonly referred to as a balanced search tree. Letting m be
the number of edges in the triangulation, we thus get an algorithm that constructs
the Reeb graph in time proportional to m log2 m. This is a significant improvement
over the more straightforward algorithm that constructs the Reeb graph in time
proportional to m2. No such improvement is currently known for functions on
manifolds of dimension three or higher.
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Bibliographic notes. The most common method for extracting iso-surfaces from
density data is the Marching Cube Algorithm due to Lorensen and Cline [103].
As the name suggests, it works with a cube complex rather than a triangulation.
The portion of the iso-surface within a single cube can be complicated, and the
implementation of the algorithm requires some care. The idea of speeding up the
iso-surface extraction with a contour tree is more recent [144]. This tree is really the
Reeb graph of a PL function on a cube, which has no loops. The concept of the Reeb
graph of a smooth function is much older [126]. The analysis of the number of loops
and the Reeb Graph Algorithm for triangulated 2-manifolds are relatively recent
results [39]. From a practical point of view, the most demanding operations are cut
and glue, as they require the splitting and melding of search trees. Particularly
easy implementations of these operations are provided by the splay tree, a type of
balanced search trees [132]. For contractible domains, the construction of the Reeb
graph can be improved to time proportional to mα(m), where α is the extremely
slow growing inverse of the Ackermann function [27].

Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical ques-
tion can be answered using knowledge of the material combined with some thought
and analysis.

1. Hessian (two credits). Compute the Hessian and, if defined, the index of the
origin, which is critical for each function in the list below.

(i) f(x1, x2) = x2
1 + x2

2.

(ii) f(x1, x2) = x1x2.

(iii) f(x1, x2) = (x1 + x2)2.

(iv) f(x1, x2, x3) = x1x2x3.

(v) f(x1, x2, x3) = x1x2 + x1x3 + x2x3.

(vi) f(x1, x2, x3) = (x1 + x2 + x3)2.

2. Approximate Morse function (two credits). Let M be a geometrically perfect
torus in R3; that is, M is swept out by a circle rotating about a line that lies
in the same plane but does not intersect the circle. Let f : M → R measure
height parallel to the symmetry axis and note that f is not Morse.

(i) Describe a Morse function g : M → R that differs from f by an arbitrarily
small amount, ∥f − g∥∞ < ε.

(ii) Draw the Reeb graphs of both functions.

3. Morse-Smale complex (two credits). Let M be the torus in Exercise 2 and
let f : M → R measure height along a direction that is almost but not quite
parallel to the symmetry axis of the torus.
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(i) Draw the Morse-Smale complex of the height function.

(ii) Give the chain, cycle, and boundary groups defined by Floer homology.

4. Quadrangles (three credits). Let M be a 2-manifold and f : M → R a Morse-
Smale function.

(i) Prove that each 2-dimensional cell of the Morse-Smale complex of f is a
quadrangle. In other words, each 2-dimensional cell is an open disk whose
boundary can be decomposed into four arcs each glued to an edge in the
complex.

(ii) Draw a case in which one edge is repeated so that the disk is glued to only
three edges but twice to one of the three.

5. Distance from a point (three credits). Let M be the torus swept out by a unit
circle rotating at unit distance from the x3-axis. More formally, M consists of
all solutions to x2

1 + x2
2 = (2 ±

√
1 − x2

3)
2 in R3. For a point z ∈ R3 consider

the function fz : M → R defined by fz(x) = ∥x − z∥.

(i) Describe the set of points z for which fz violates the first property of a
Morse function.

(ii) Describe the set of points z for which fz is not a Morse function.

6. Morse inequalities (two credits). Recall that the unstable manifolds of a
Morse function f : M → R are the stable manifolds of −f . Furthermore, if M
is a d-manifold, then an index-p critical point of f is an index-(d − p) critical
point of −f .

(i) Use this symmetry to formulate collections of inequalities symmetric to
the weak and strong Morse inequalities of f .

(ii) Use these inequalities to prove that the Euler characteristic of M vanishes
if d is odd.

7. Reeb graph (one credit). Consider the upright torus at time t = 0 and imagine
it falling down in slow motion until it rests on its side at time t = 1.

(i) What is the corresponding 1-parameter family of Reeb graphs of the height
functions?

(ii) At which position (moment in time) does the Reeb graph not have a loop?

8. BCC lattice (two credits). Instead of the cubic lattice, we may consider con-
structing iso-surfaces from the body centered cubic (BCC) lattice obtained by
adding the centers of all integer unit cubes. More formally, this is the set of
points Z3 union Z3 + ( 1

2 , 1
2 , 1

2 )T .

(i) Show that there is an (infinite) simplicial complex whose vertex set is the
BCC lattice and whose tetrahedra are pairwise congruent, that is, one can
be obtained from any other by a rigid transformation.

(ii) Give a geometric description of the tetrahedron in (i), complete with all
face, dihedral, and solid angles.
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Chapter VII

Persistence

The central concept of this chapter is motivated by the practical need to cope
with noise in data. This includes defining, recognizing, and possibly eliminating
noise. These are lofty goals and the challenge can be overwhelming. Indeed, the
distinction between noise and feature is not well-defined but lies instead in the eye
of the beholder. In any particular case, the focus is on a range of scales and a desire
to ignore everything that is smaller or larger. In other words, we make ourselves
the measure of all things and by doing so derive a unit, a point of view, and an
opinion. Motivated by this thought, we take an agnostic approach and offer a means
to measure scale, a tool that can be used to make judgments based on quantitative
information, if one so desires.

VII.1 Persistent Homology

Persistent homology can be used to measure the scale or resolution of a topological
feature. There are two ingredients, one geometric, defining a function on a topolog-
ical space, and the other algebraic, turning the function into measurements. The
measurements make sense only if the function does.

The elder rule. We begin with a simplified scenario in which we develop our
intuition. Let X be a connected topological space and f : X → R a continuous
function. The sublevel sets of f form a 1-parameter family of nested subspaces,
Xa ⊆ Xb whenever a ≤ b. It is convenient to write about this family as if it were
one sublevel set that evolves as the threshold increases. We visualize this evolution
by drawing each component of Xa as a point. The result is a 1-dimensional graph,
G(f), not unlike the Reeb graph discussed in the previous chapter. Thinking of f
as a height function, we draw the graph from bottom to top. Since components
never shrink, the arcs of the graph may merge, but they never split. In the end,
for large enough threshold a, we have a single component. It follows that G(f)
is a tree, and we refer to it as the merge tree of the function; see Figure VII.1.

149
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We decompose this tree into disjoint paths that increase monotonically with f . To
obtain the paths, we draw them from bottom to top, simultaneously, while keeping
their upper endpoints at the same height, a. Paths extend; however, when they
merge, we end the one that started later. Thinking of the difference between two
function values as age, we give precedence to the older path.

Figure VII.1: Left: a function on the unit square visualized by drawing six
level sets with lighter shades of gray indicating larger values. Right: the path
decomposition of the merge tree of the function.

Elder Rule. At a juncture, the older of the two merging paths continues and
the younger path ends.

Letting a ≤ b be two thresholds, we let β(a, b) be the number of components in
Xb that have a non-empty intersection with Xa. In terms of the merge tree, this is
the number of subtrees with topmost points at value b that reach down to level a
or below. Each such subtree has a unique path, its longest, that spans the entire
interval between a and b. It follows that β(a, b) is also the number of paths in the
path decomposition of G(f) that span [a, b]. We note that any path decomposition
that is not generated using the Elder Rule does not have this property. In particular,
if f is Morse, then the Elder Rule generates a unique path decomposition, which
is the only one for which the number of paths spanning [a, b] equals β(a, b) for all
values of a ≤ b.

Filtrations. We obtain persistence by formulating the Elder Rule for the ho-
mology groups of all dimensions. Consider a simplicial complex, K, and a function
f : K → R. We require that f be monotonic, by which we mean it is non-decreasing
along increasing chains of faces, that is, f(σ) ≤ f(τ ) whenever σ is a face of τ .
Monotonicity implies that the sublevel set, K(a) = f−1(−∞, a], is a subcomplex of
K for every a ∈ R. Letting m be the number of simplices in K, we get n+1 ≤ m+1
different subcomplexes, which we arrange as an increasing sequence:

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K.
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In other words, if a1 < a2 < . . . < an are the function values of the simplices in
K and a0 = −∞, then Ki = K(ai) for each i. We call this sequence of complexes
the filtration of f and think of it as a construction by adding chunks of simplices at
a time. We have seen examples before, namely the Čech and the alpha complexes
in Chapter III and the lower star filtration of a piecewise linear function in Section
VI.3. More than in the sequence of complexes, we are interested in the topological
evolution, as expressed by the corresponding sequence of homology groups. For
every i ≤ j we have an inclusion map from the underlying space of Ki to that of
Kj and therefore an induced homomorphism, f i,j

p : Hp(Ki) → Hp(Kj), for each
dimension p. The filtration thus corresponds to a sequence of homology groups
connected by homomorphisms,

0 = Hp(K0) → Hp(K1) → . . . → Hp(Kn) = Hp(K),

again one for each dimension p. As we go from Ki−1 to Ki, we might gain new
homology classes and we might lose some when they become trivial or merge with
each other. We collect the classes that are born at or before a given threshold and
die after another threshold in groups.

Definition. The p-th persistent homology groups are the images of the homomor-
phisms induced by inclusion, Hi,j

p = im f i,j
p , for 0 ≤ i ≤ j ≤ n. The corresponding

p-th persistent Betti numbers are the ranks of these groups, βi,j
p = rank Hi,j

p .

Similarly, we define reduced persistent homology groups and reduced persistent
Betti numbers. Note that Hi,i

p = Hp(Ki). The persistent homology groups consist
of the homology classes of Ki that are still alive at Kj or, more formally, Hi,j

p =
Zp(Ki)/(Bp(Kj) ∩ Zp(Ki)). We have such a group for each dimension p and each
index pair i ≤ j. We can be more concrete about the classes counted by the
persistent homology groups. Letting γ be a class in Hp(Ki), we say it is born at Ki

if γ ̸∈ Hi−1,i
p . Furthermore, if γ is born at Ki, then it dies entering Kj if it merges

with an older class as we go from Kj−1 to Kj , that is, f i,j−1
p (γ) ̸∈ Hi−1,j−1

p but
f i,j

p (γ) ∈ Hi−1,j
p ; see Figure VII.2. This is again the Elder Rule. If γ is born at Ki

and dies entering Kj , then we call the difference in function value the persistence,

0 0 0

γ

0

Hp(Ki) Hp(Kj−1) Hp(Kj)Hp(Ki−1)

Figure VII.2: The class γ is born at Ki since it does not lie in the (shaded)
image of Hp(Ki−1). Furthermore, γ dies entering Kj since this is the first time
its image merges into the image of Hp(Ki−1).
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pers(γ) = aj − ai. Sometimes we prefer to ignore the actual function values and
consider the difference in index, j − i, which we call the index persistence of the
class. If γ is born at Ki but never dies, then we set its persistence as well as its
index persistence to infinity. We note that births and deaths can also be defined
for a sequence of vector spaces that are not necessarily homology groups. All we
need is a finite sequence and homomorphisms from left to right, which, for vector
spaces, are usually referred to as linear maps.

Persistence diagrams. We visualize the collection of persistent Betti numbers
by drawing points in two dimensions. Some of these points may have coordinates
equal to infinity, and some might be the same, so we really talk about a multiset of
points in the extended real plane, R̄2 = (R ∪ {±∞})2. Letting µi,j

p be the number
of independent p-dimensional classes that are born at Ki and die entering Kj , we
have

µi,j
p = (βi,j−1

p − βi,j
p ) − (βi−1,j−1

p − βi−1,j
p ),

for all i < j and all p. Indeed, the first difference on the right-hand side counts the
classes that are born at or before Ki and die entering Kj , while the second difference
counts the classes that are born at or before Ki−1 and die entering Kj . Drawing
each point (ai, aj) with multiplicity µi,j

p , we get the p-th persistence diagram of
the filtration, denoted as Dgmp(f). It represents a class by a point whose vertical
distance to the diagonal is the persistence. Since the multiplicities are defined only
for i < j, all points lie above the diagonal. For technical reasons which will become
clear in the next chapter, we add the points on the diagonal to the diagram, each
with infinite multiplicity. Examples of persistence diagrams can be seen in Figure
VII.5. It is easy to read off the persistent Betti numbers. Specifically, βk,l

p is the
number of points in the upper left quadrant with corner point (ak, al). A class that
is born at Ki and dies entering Kj is counted iff ai ≤ ak and aj > al. The quadrant
is therefore closed along its vertical right side and open along its horizontal lower
side.

Fundamental Lemma of Persistent Homology. Let ∅ = K0 ⊆ K1 ⊆ . . . ⊆
Kn = K be a filtration. For every pair of indices 0 ≤ k ≤ l ≤ n and every dimension
p, the p-th persistent Betti number is βk,l

p =
∑

i≤k

∑
j>l µi,j

p .

This is an important property. It says the diagram encodes all information about
persistent homology groups.

Matrix reduction. Besides having a compact description in terms of diagrams,
persistence can also be computed efficiently. The particular algorithm we use is a
version of matrix reduction. Perhaps surprisingly, we can get all the information
with a single reduction. To describe this, we use a compatible ordering of the
simplices, that is, a sequence σ1,σ2, . . . ,σm such that i < j if f(σi) < f(σj) or if
σi is a face of σj . Such an ordering exists because f is monotonic. Note that every
initial subsequence of simplices forms a subcomplex of K. We use this sequence
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when we set up the m-by-m boundary matrix, ∂, which stores the simplices of all
dimensions in one place; that is,

∂[i, j] =

{
1 if σi is a codimension-1 face of σj ;
0 otherwise.

In words, the rows and columns are ordered like the simplices in the total ordering
and the boundary of a simplex is recorded in its column. The algorithm uses column
operations to reduce ∂ to another 0-1 matrix R. Let low(j) be the row index of the
lowest 1 in column j. If the entire column is zero, then low(j) is undefined. We call
R reduced if low(j) ̸= low(j0) whenever j and j0, with j ̸= j0, specify two non-zero
columns. The algorithm reduces ∂ by adding columns from left to right.

R = ∂;
for j = 1 to m do
while there exists j0 < j with low(j0) = low(j) do

add column j0 to column j
endwhile

endfor.

The running time is at most cubic in the number of simplices. In matrix notation,
the algorithm computes the reduced matrix as R = ∂ · V ; see Figure VII.3. Since
each simplex is preceded by its proper faces, ∂ is upper triangular. The j-th column
of V encodes the columns in ∂ that add up to give the j-th column in R. Since we
only add from left to right, V is also upper triangular and so is R.

∂R V

j j

low(j)

Figure VII.3: Reducing ∂ expressed as matrix multiplication. White areas are
necessarily zero while entries in shaded areas can be either 0 or 1.

To get the ranks of the homology groups of K, we notice that the number of
zero columns of R that correspond to p-simplices is the rank of Zp. Similarly, the
number of non-zero columns gives the rank of Bp. The difference is the p-th Betti
number.

Pairing. However, there is significantly more information that we can harvest. To
see this, we need to understand how the lowest 1s relate to the persistent homology
groups. We begin by showing that they are unique, and this in spite of the fact
that the reduced matrix, R, is not. Indeed, R is characterized by being reduced and
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is obtained by left-to-right column operations. But we may or may not continue
the operations once we have reached a reduced matrix. To see that the lowest 1s
are unique, we consider the lower left submatrix Rj

i of R whose corner element is
R[i, j]. In other words, Rj

i is obtained from R by removing the first i − 1 rows
and the last n− j columns. Since left-to-right column operations preserve the rank
of every such submatrix, the rank of Rj

i is the same as that of the corresponding
submatrix of ∂, the one similarly obtained by removing the first i− 1 rows and the
last n − j columns. We consider the expression

rR(i, j) = rankRj
i − rankRj

i+1 + rankRj−1
i+1 − rank Rj−1

i

and note that rR(i, j) = r∂(i, j) for all i and j, where r∂(i, j) has an analogous def-
inition except when we take ranks of submatrices of ∂. To evaluate this expression,
we observe that the linear combination of any collection of non-zero columns in Rj

i

is again non-zero. It follows that the rank of Rj
i is equal to its number of non-zero

columns. Now, if R[i, j] is a lowest 1, then Rj
i has one more non-zero column than

the other three submatrices, which implies rR(i, j) = 1. If R[i, j] is not a lowest 1,
then we consider two subcases. If none of the columns from 1 to j−1 has its lowest
1 in row i, then Rj

i and Rj
i+1 have the same number of non-zero columns and so do

Rj−1
i and Rj−1

i+1 . Second, if one of these columns has its lowest 1 in row i, then Rj
i

has one more non-zero column than Rj
i+1 and Rj−1

i has one more non-zero column

than Rj−1
i+1 . In either case, rR(i, j) = 0. Since the ranks of the lower left submatrices

of R are the same as those of ∂, we have a characterization of the lowest 1s that
does not depend on the reduction process.

Pairing Lemma. We have i = low(j) iff r∂(i, j) = 1. In particular, the pairing
between rows and columns defined by the lowest 1s in the reduced matrix does not
depend on R.

Now that we know for sure that the lowest 1s are not an artifact of the particular
strategy used for reduction, we ask what exactly they mean. Note that column
j reaches its final form at the end of the j-th iteration of the outer loop. At
this moment, we have the reduced matrix for the complex consisting of the first j
simplices in the total ordering. We distinguish the case in which column j ends up
zero from the other in which it has a lowest 1.

Case 1: column j of R is zero. Consistent with the terminology introduced in
Section V.4, we call σj positive since its addition creates a new cycle and thus
gives birth to a new homology class.

Case 2: column j of R is non-zero. It stores the boundary of the chain accumu-
lated in column j of matrix V and is thus a cycle. Again consistent with the
terminology in Section V.4, we call σj negative because its addition gives death
to a homology class.

The class that dies in Case 2 is represented by column j. We still need to verify that
it is born at the time the simplex of its lowest 1, σi with i = low(j), is added. But
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this is clear because the cycle in column j of R just died and all other cycles that
die with it have 1s below row i; otherwise, we could further reduce the matrix and
obtain low(j) < i, which contradicts the algorithm. It follows that the lowest 1s
indeed correspond to the points in the persistence diagrams. More precisely, (ai, aj)
is a finite point in Dgmp(f) iff i = low(j) and σi is a simplex of dimension p. In this
case, σj is a simplex of dimension p + 1. We have (ai,∞) in Dgmp(f) iff column i
is zero but row i does not contain a lowest 1. In other words, σi is positive, but it
does not get paired with a negative simplex.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
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Figure VII.4: Reducing the boundary matrix of the complex consisting of a
triangle and its faces. The shaded squares mark 1s in the matrices. The dark
shaded squares mark lowest 1s in the reduced matrix.

An example. We illustrate the definitions with a small example. Let K consist of
a triangle and its faces. To get a filtration, we first add the vertices, then the edges,
and finally the triangle, numbering them in this order from 1 to 7. To make the
exercise more interesting, we add the non-zero element of the (−1)-st reduced chain
group as a dummy simplex of index 0 to compute reduced rather than ordinary
homology. We recall that the augmentation map defines the boundary of each
vertex as this dummy simplex. The resulting boundary matrix is shown as part of
the matrix equation in Figure VII.4. We reduce it as described and get four non-

Figure VII.5: From left to right: the minus first, the zeroth, and the first
persistence diagrams of the filtration that constructs a complex by first adding
the three vertices, then the three edges, and finally the triangle.

zero columns in R. The first lowest 1 in R is in row 0 and column 1 and corresponds
to the (−1)-dimensional reduced homology class that dies when we add vertex 1.
The second lowest 1 is in row 2 and column 4. In words, the vertex 2 gives birth to
the 0-cycle that the edge 4 kills. Similarly, the vertex 3 gives birth to the 0-cycle
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that the edge 5 kills. Adding the edge 6 does not kill anything, which we see in the
matrix since column 6 is zero. It corresponds to a 1-cycle obtained by adding the
prior columns 4, 5, and 6, as indicated in V . The edge 6 thus gives birth to a 1-cycle
that is then killed by the triangle 7. Figure VII.5 shows the corresponding three
persistence diagrams which are drawn assuming the function value of a simplex is
the same as its index. This particular function is injective, so all points in the
diagrams have multiplicity one.

Bibliographic notes. The concept of persistent homology has been introduced
for components by Frosini and Landi [73] and for general homology groups by
Robins [127] and independently by Edelsbrunner, Letscher, and Zomorodian [60].
The latter paper gives the first fast algorithm for persistence, the same as described
in this section but with the sparse matrix implementation discussed in the next
section. A generalization of the notion of persistence to coefficient groups that are
fields can be found in [161]; see also the monograph based on Zomorodian’s thesis
[160]. A recent survey on persistent homology is [57].

VII.2 Efficient Implementations

For practical applications, the number of simplices can be large so that storing the
entire boundary matrix becomes prohibitive. As an alternative, we present a sparse
matrix implementation of the Persistence Algorithm and give bounds on its running
time that are better than cubic in the input size for many cases.

Sparse matrix representation. As in the previous section, we assume a mono-
tonic function on a simplicial complex, f : K → R, and a compatible ordering of
the simplices, σ1,σ2, . . . ,σm. We store the data using a linear array, ∂[1..m], and
a linked list of simplices per entry. The list in ∂[j] corresponds to the j-th column
of the boundary matrix, storing the codimension-1 faces of σj . By the end of the
algorithm, the list in the j-th array entry corresponds to the column of the reduced
matrix whose lowest 1 is in the j-th row. If there is no such column, then the list
will be empty. To emphasize the transition, we change the name for the array from
∂ at the beginning to R at the end of the algorithm. All lists are sorted in the order
of decreasing index so that the most recently added simplex is readily available at
the top; see Figure VII.6. We see a general migration of the lists from right to left.

1 i k l j

R :

m

Figure VII.6: The sparse matrix representation of the reduced matrix with
only one linked list shown.
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To describe the algorithm that governs this migration, we write L for the linked list
of the j-th array entry and i = top(L) for the index of its top simplex. We call the
i-th array entry occupied if it stores a non-empty list and unoccupied otherwise.

R = ∂;
for j = 1 to m do

L = ∂[j].cycle ; R[j].cycle = null;
while L ̸= null and R[i] with i = top(L) is occupied do

L = L + R[i].cycle
endwhile;
if L ̸= null then R[i].cycle = L endif

endfor.

Adding two lists means merging them while deleting both copies of every duplicate
simplex. Since we store the lists in consistent sorted order, each addition can be
done in parallel scans. It is instructive to compare this sparse matrix version of the
Persistence Algorithm with its standard matrix implementation.

Analysis. The main structure of the sparse matrix implementation is that of two
nested loops, the outer and the inner loop. The addition of two lists is another loop
in disguise, so the running time is at most cubic in the input size. To improve on
this first estimate, we define a collision as an attempt to deposit the list L that
fails because the entry is occupied. Each collision requires the merging of two lists,
which takes time proportional to the sum of their lengths. The loop ends when
L runs empty or when the non-empty list L is successfully deposited. The first
case identifies σj as giving birth to a homology class. The second case identifies
σj as giving death and the simplex, σi, where the deposit happens as triggering
the corresponding birth. Each list R[k].cycle contains σk as its topmost simplex.
Similarly, σk is the topmost simplex in L when it collides with the list in R[k]. Using
modulo 2 arithmetic, σk gets deleted, which implies that the topmost simplex in
the merged list has index less than k. The inner loop thus proceeds monotonically
from right to left. It follows that collisions for a simplex σj happen only at entries
between i and j, where i = 1 if σj gives birth and i is the index of the corresponding
birth if σj gives death. Note that in the latter case, j − i is what we call the index
persistence of σj . Consider now the inner loop for σj . A collision at entry k can
happen only if σk gave birth to a class that died at σl before σj is reached. We have
i < k < l < j, as in Figure VII.6. Similarly, the collisions during the inner loop
for σl correspond to birth-death pairs nested within [k, l]. Inductively, this implies
that the lists added at collisions contain only faces of simplices with index in [i, j].
Letting p be the dimension of σj , the number of such faces is at most p + 1 times
the number of indices in the interval. The time to merge two lists is therefore at
most proportional to this number. In summary, the running time of the inner loop
for a p-simplex σj is at most (p + 1)(j − i)2.

There are situations in which we know ahead of time which simplices give birth
and which give death. For example, if the complex is geometrically realized in
R3, the Incremental Betti Number Algorithm described in Section V.4 gives such a
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classification. With this information, we can then save the effort for the simplices
that give birth so that the total running time of the algorithm becomes output-
sensitive, and in particular bounded by the dimension times the sum of squares of
the index persistences. Assuming constant dimension, this is at most proportional
to m3, but for most practical data it is significantly smaller than that.

Zeroth diagram. The structure of the lists used to compute the 0-th persistence
diagram is simpler than for dimensions beyond zero. This diagram depends solely
on the vertices and edges of K and on their sequence in the compatible ordering.
A vertex has no boundary and always gives birth to a component, so no choice
there. An edge σj has two vertices as its boundary, ∂σj = u + w. Suppose u comes
first, that is, u = σi, w = σk, and i < k. The first step of the algorithm is then
its attempt to deposit the list L consisting of u and w in R[k]. If Lk = R[k].cycle
is empty, then the deposit is successful, σk,σj is a pair, and the inner loop ends.
Otherwise, Lk is itself a list of two vertices, v and w in which v comes first. Adding
the two lists gives L + Lk, which consists of u and v. Indeed, all non-empty lists
have length two so that each addition takes only constant time. This implies that
the total effort for dimension 0 is at most the sum of indices, for edges that give
birth, and at most the sum of index persistences, for edges that give death. In any
case, this is bounded from above by m2.

wu wuσj σj

σi

Figure VII.7: Adding the edge σj on the left gives birth to a 1-cycle while on
the right it gives death to a component.

But we can do even better. Consider again the two cases for the edge with
boundary ∂σj = u + w. It gives birth iff u and w belong to the same component
of Kj−1, the complex right before we add σj ; see Figure VII.7 on the left. Starting
with σj , the algorithm adds an edge to the growing path at each collision, and L
keeps track of its boundary, the two endpoints. Eventually, the two ends meet, L
becomes empty, and the path becomes a 1-cycle. The edge σj gives death iff u and
w belong to two different components of Kj−1; see Figure VII.7 on the right. The
inner loop ends when one of the ends of the growing path reaches the first (oldest)
vertex, σi, of one component. Since the inner loop works monotonically from right
to left, this implies that the oldest vertex of the other component is even older.
Following the Elder Rule, L gets deposited in R[i] and σi,σj form a pair. Note that
the outcome is predictable. All we need to know is whether or not u and w belong
to different components in Kj−1, and if they do, which are the oldest vertices of
these components. This is exactly the kind of information we can extract from the
union-find data structure, as explained in Chapter I. Recall that this data structure
stores each component as a tree of vertices. Given a vertex, we traverse the path up
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to the root to determine the name of the component. Using the index of the oldest
vertex as the name gives the information we need at negligible cost. In summary,
we compute the 0-th persistence diagram in time at most proportional to mα(m),
where α is the inverse of the Ackermann function which, for all practical purposes,
is bounded from above by a constant.

Surfaces. We now consider a simplicial complex, K, that triangulates a 2-
manifold. This case is of some practical importance and it allows for a fast imple-
mentation of the Persistence Algorithm. Let f : |K| → R be obtained by piecewise
linear interpolation of its values at the vertices, as explained in Section III.1. There
is possibly non-trivial information in the 0-th and the 1-st persistence diagrams of
f but not in any of the others. To compute these two diagrams fast, we need to
answer two questions.

1. How can we turn the 1-parameter family of sublevel sets into a filtration that
we can feed to our algorithm?

2. How can we improve the slower running time for the 1-st persistence diagram
to roughly the time needed for the 0-th diagram?

We deal with the first question now and defer the second question to later. Assume
for simplicity that the restriction of f to the vertices of K is injective. As defined
in Chapter VI, the lower star filtration is then the sequence ∅ = K0 ⊆ K1 ⊆ . . . ⊆
Kn = K, where Ki is the union of the lower stars of the first i vertices in the ordering
by f . It is also the filtration generated by the monotonic function g : K → R defined
by mapping each simplex to g(σ) = maxx∈σ f(x). The diagrams of f are defined by
the homology groups of the sublevel sets of f , |K|a = f−1(−∞, a], while those of
g are defined by the homology groups of the sublevel sets of g, Ka = g−1(−∞, a].
By definition of lower star filtration, we have |Ka| ⊆ |K|a, and the inclusion is a
homotopy equivalence; see Figure VI.8 and the discussion around it. It follows that
the vertical maps in the following diagram are isomorphisms:

Hp(|K|a) −→ Hp(|K|b)
↑ ↑

Hp(Ka) −→ Hp(Kb),

where p is any dimension and a, b, with a ≤ b, are any two real numbers. The
square commutes because all four maps are induced by inclusion. Indeed, these two
conditions suffice for the diagrams defined by the two sequences to be the same.

Persistence Equivalence Theorem. Consider two sequences of vector spaces
connected by homomorphisms φi : Ui → Vi:

V0 → V1 → . . . → Vn−1 → Vn

↑ ↑ ↑ ↑
U0 → U1 → . . . → Un−1 → Un.

If the φi are isomorphisms and all squares commute, then the persistence diagram
defined by the Ui is the same as that defined by the Vi.
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The proof is not difficult but it is tedious and is therefore omitted. As explained
above, the 0-th persistence diagram of g can be computed in time at most pro-
portional to mα(m). The equivalence with the 0-th persistence diagram of f thus
implies that the latter can be computed in the same amount of time.

First diagram. Instead of computing the 1-st persistence diagram of f directly,
we construct the 0-th persistence diagram of −f and derive the diagram of f from
it. We begin by describing the relation between Dgm1(f) and Dgm0(−f), omitting
proofs since the relations are consequences of the more general theorems given in
the next section.

Figure VII.8: The white points of Dgm1(f) are reflections of the black points
of Dgm0(−f) across the minor diagonal.

The 1-st persistence diagram of f consists of the diagonal, a finite portion of
off-diagonal points (a, b), and an infinite portion of off-diagonal points (c,∞). We
construct the finite portion from the 0-th persistence diagram of −f . Specifically,
the point (a, b) marks the birth of a 1-dimensional homology class at a and its
death at b. Looking at −f is like taking the complement and going backward.
We thus have the birth of a 0-dimensional homology class at −b and its death at
−a. It follows that a point (a, b) belongs to Dgm1(f) iff the point (−b,−a) belongs
to Dgm0(−f). In other words, the finite portion of Dgm1(f) can be obtained by
reflecting the finite portion of Dgm0(−f) across the minor diagonal, as illustrated
in Figure VII.8. We get the points at infinity by partitioning the set of edges in
the complex into three subsets: edges that give death in the lower star filtration of
f , edges that give death in the lower star filtration of −f , and the rest. The first
two contribute coordinates to the finite portions of the 0-th and the 1-st diagrams
of f . For each edge in the third set, we have a point at infinity in the 1-st diagram,
namely a class born when the edge is added and living on even when the complex
K is complete. In summary, we have a three-pass algorithm for computing the
persistence diagrams of a piecewise linear function f on a triangulated 2-manifold
in time at most proportional to mα(m).
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Bibliographic notes. The original paper on persistent homology by Edelsbrun-
ner, Letscher, and Zomorodian [60] describes the sparse matrix version of the Per-
sistence Algorithm explained in this section. Furthermore, the paper focuses on
cases in which birth and death information is available using the Incremental Betti
Number Algorithm by Delfinado and Edelsbrunner [45]. The standard matrix re-
duction version of the Persistence Algorithm came later historically and brought
with it a more general appeal at the expense of increased computational resources.
The Persistence Equivalence Theorem relating diagrams of different functions first
appeared in [161].

VII.3 Extended Persistence

In this section, we discuss an extension of persistence that is motivated by an
approach to fitting shapes to each other. The problem of fitting shapes arises when
we solve a puzzle but also in the assembly of mechanical shapes, in the reconstruction
of broken artifacts, and in protein docking.

Elevation on a surface. We give a brief sketch of the approach to fitting shapes
and refer to Section IX.2 for a more detailed description. Let M be a smoothly
embedded 2-manifold in R3. Given a direction u ∈ S2, the height function in this
direction, f : M → R, is defined by mapping each point x to f(x) = ⟨x, u⟩. We
usually draw u vertically going up and think of the height as the signed distance
from a horizontal base plane, as in Figure VII.9. Given a threshold a ∈ R, we recall
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Figure VII.9: A smoothly embedded 2-manifold with level sets shown and
critical points of the vertical height function marked.

that the sublevel set consists of all points with height a or less, Ma = f−1(−∞, a].
As mentioned in the previous sections, the sublevel sets are nested and define per-
sistence through the corresponding sequence of homology groups. For a generic
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smooth surface, the homological critical values of a height function are the height
values of isolated critical points. If, furthermore, the direction is generic, then there
are only three different types: minima which start components, saddles which merge
components or complete loops, and maxima which fill holes. Assuming the critical
points have distinct heights, the points in the persistence diagrams of f correspond
to pairs of critical points. The elevation at the points x and y of such a pair is set
to |f(x) − f(y)|. Since x is critical for two opposite directions, we need to make
sure that the pairing is the same in both directions, else we get contradictory as-
signments of elevation. We also need all critical points to be paired; otherwise, we
get white areas in which elevation remains undefined. The latter is the reason for
why we extend persistence and the former is a constraint we need to observe in this
extension.

Extended filtration. Let a1 < a2 < . . . < an be the homological critical values
of the height function f : M → R. At interleaved values

b0 < a1 < b1 < a2 < . . . < an < bn

we get sublevel sets Mbi = f−1(−∞, bi] which are 2-manifolds with boundary. Sym-
metrically, we define superlevel sets Mbi = [bi,∞), which are complementary 2-
manifolds with the same boundary. Finally, we use both to construct a sequence
of homology groups going up and a sequence of relative homology groups coming
back down:

0 = Hp(Mb0) → . . . → Hp(Mbn)
= Hp(M, Mbn) → . . . → Hp(M, Mb0) = 0

for each dimension p. The homomorphisms are induced by inclusion. We recall that
for modulo 2 arithmetic, the homology groups are isomorphic to the cohomology
groups. Furthermore, Lefschetz duality implies Hp(Mb) ≃ Hd−p(M, Mb). This shows
that the construction is intrinsically symmetric although not necessarily within the
same dimension. Since we go from the trivial group to the trivial group, everything
that gets born eventually dies. As a consequence, all births will be paired with
corresponding deaths, as desired.

Tracing what gets born and dies in the relative homology groups is a bit less
intuitive than for the absolute homology groups going up. However, we can translate
the events between the absolute homology of Mb and the relative homology of the
pair (M, Mb). Coming down, the threshold decreases, so the superlevel set grows.
We call a homology class in the superlevel set essential if it lives all the way down
to b0 and inessential otherwise.

Rule 1: a dimension p homology class of Mb dies at the same time that a dimension
p + 1 relative homology class of (M, Mb) dies.

Rule 2: an inessential dimension p homology class of Mb gets born at the same
time that a dimension p + 1 relative homology class of (M, Mb) gets born.

Rule 3: an essential dimension p homology class of Mb gets born at the same time
that a dimension p relative homology class of (M, Mb) dies.
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We can prove these relationships by studying the kernels and cokernels of the maps
from the homology groups of Mb into those of M. Leaving this to the interested
reader, we develop our intuition by considering an example.

Example. Consider the height function of the genus-2 torus in Figure VII.9. Go-
ing up, a1 and a2 give birth to classes in H0, a4, a5, a6, a7, a8 give birth to classes
in H1, and a10 gives birth to a class in H2. All classes live until the end of the
ascending pass, except for the dimension 0 class born at a2, which dies at a3, and
the dimension 1 class born at a8, which dies at a9. These are the only two finite
off-diagonal points in the ordinary persistence diagrams. Coming down, a10 kills
the class in H0 and a9 gives birth to a class in H1 that dies at a8. Furthermore,
a7, a6, a5, a4 kill the classes in H1, a3 gives birth to a class in H2 that dies at a2, and
finally a1 kills the class in H2 that was born going up at a10. To summarize, the
pairs of critical values defining the points in the diagrams are (a1, a10), (a2, a3) in
dimension 0, (a4, a7), (a5, a6), (a6, a5), (a7, a4), (a8, a9), (a9, a8) in dimension 1, and
(a10, a1), (a3, a2) in dimension 2. We show the diagrams in Figure VII.10 using
different symbols for classes born and dying going up, born going up and dying
coming down, and born and dying coming down. They make up the ordinary, the
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Figure VII.10: From left to right: the 0-th, 1-st, 2-nd persistence diagrams of
the height function in Figure VII.9.

extended, and the relative subdiagrams, which we denote as Ord, Ext, and Rel, with
the dimension in the index and the function in parentheses, as before. Note that the
points of the ordinary subdiagrams lie above and those of the relative subdiagrams
lie below the diagonal. The points of the extended subdiagrams can lie on either
side.

Duality and symmetry. The symmetries we observe in Figure VII.10 are not
coincidental. They arise as consequences of Lefschetz duality between absolute and
relative homology groups of complementary dimensions, Hp(Mb) ≃ Hd−p(M, Mb).
This translates into a duality result for persistence diagrams, which we state without
proof. We use a superscript ‘T ’ to indicate reflection across the main diagonal,
mapping the point (a, b) to (b, a).
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Persistence Duality Theorem. Let f be a function on a d-manifold without
boundary. Then the persistence diagrams are reflections of each other as follows:

Ordp(f) = RelTd−p(f),

Extp(f) = ExtT
d−p(f),

Relp(f) = OrdT
d−p(f).

Equivalently, the full p-th persistence diagram is the reflection of the full (d− p)-th
persistence diagram, Dgmp(f) = DgmT

d−p(f). We have d = 2 for the example illus-
trated in Figures VII.9 and VII.10 and we indeed have diagrams that are reflections
of each other as described. For 2p = d, the extended subdiagram is the reflection
of itself and is therefore symmetric across the main diagonal.

Recall that the definition of elevation requires that the pairing of critical points
be the same for antipodal height functions. We can use duality to prove that they
are indeed the same. More specifically, we have the following structural result,
again expressed in terms of subdiagrams of the persistence diagrams. We use the
superscript ‘R’ to indicate reflection across the minor diagonal, mapping the point
(a, b) to (−b,−a). Similarly, we use the superscript ‘0’ to indicate central reflection
or rotation by 180 degrees, mapping the point (a, b) to (−a,−b).

Persistence Symmetry Theorem. Let f be a function on a d-manifold with-
out boundary and let −f be its negative. Then the persistence diagrams of the two
functions are reflections of each other:

Ordp(f) = OrdR
d−p−1(−f),

Extp(f) = Ext0d−p(−f),

Relp(f) = RelRd−p+1(−f).

In lieu of a proof, we just mention that each of the three equations can be obtained
using the Persistence Duality Theorem together with the above three rules relating
events in the parallel sequences of absolute and relative homology groups.

Lower and upper stars. To describe how we compute extended persistence, let
K be a triangulation of a d-manifold M. We assume the height function is defined
at the vertices. We also assume that the height values are distinct, so we can index
the vertices such that f(v1) < f(v2) < . . . < f(vn). Let f : |K| → R be obtained by
piecewise linear extension. Writing ai = f(vi) and introducing interleaved values
b0 < a1 < b1 < . . . < an < bn, we can define sublevel sets and superlevel sets
as before. The set of points x ∈ |K| with f(x) ≤ bi is homeomorphic to Mbi

and thus is a manifold with boundary. Similarly, the set of points with f(x) ≥ bi is
homeomorphic to Mbi and is a manifold with boundary. We can retract the partially
used simplices and get homotopy equivalent subcomplexes of K. Specifically, let
Ki be the full subcomplex defined by the first i vertices in the ordering and Ki

the full subcomplex defined by the last n − i vertices. The two subcomplexes of K
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are disjoint although together they cover all n vertices. The only simplices not in
either subcomplex are the ones that connect the first i with the last n − i vertices.
Recall that the lower star of a vertex vi consists of all simplices that have vi as their
highest vertex. Symmetrically, we define the upper star to consist of all simplices
that have vi as their lowest vertex. More formally,

St−vi = {σ ∈ St vi | x ∈ σ ⇒ f(x) ≤ f(vi)},

St+vi = {σ ∈ St vi | x ∈ σ ⇒ f(x) ≥ f(vi)}.

Since every simplex has a unique highest and a unique lowest vertex, the lower
stars partition K and so do the upper stars. With this notation, K0 = ∅ and
Ki = Ki−1 ∪ St−vi for 1 ≤ i ≤ n. Equivalently, Ki is the union of the first i lower
stars. Symmetrically, Kn = ∅, Ki = Ki+1 ∪ St+vi+1, and Ki is the union of the
last n − i upper stars.

Computation. By the Persistence Equivalence Theorem in the previous section,
the Ki have the same homotopy type as the sublevel sets, and the Ki have the
same homotopy types as the superlevel sets of M. We can therefore use them to
compute persistence. Let A be the boundary matrix for the ascending pass, storing
the simplices in blocks that correspond to the lower stars of v1 to vn, in this order.
Within each block, we store the simplices in order of non-decreasing dimension and
break remaining ties arbitrarily. All simplices in the same block are assigned the
same value, namely the height of the vertex defining the lower star. If two simplices
in the same block are paired, they define a point on the diagonal of the appropriate
persistence diagram. In other words, the homology class dies as soon as it is born
and therefore has zero persistence. Only pairs between blocks carry any significance.

Let B be the boundary matrix for the descending pass, storing the simplices in
blocks that correspond to the upper stars of vn to v1, in this order. Using A and
B, we form a bigger matrix by adding the zero matrix at the lower left and the
permutation matrix P that translates between A and B at the upper right, as in
Figure VII.11. We can think of the result as the boundary matrix of a new complex,
namely the cone over K. We pick a new, dummy vertex, v0, and for each i-simplex
σ in K add the (i + 1)-simplex σ ∪ {v0}. Adding the cone removes any non-trivial
homology. This explains why reducing the big matrix works. As we move from left
to right, we first construct K, forming pairs by reducing A. At the halfway point,
the only unpaired simplices are the ones that gave birth to the essential homology
classes. As we continue, we cone off K step by step, eventually removing all non-
trivial homology. In the end, the ordinary, extended, and relative subdiagrams are
given by the lowest 1s in the upper left, upper right, and lower right quadrants of
the reduced matrix.

Indeed, we draw the diagram that corresponds to one of the three quadrants by
marking each lowest one as a point, replacing indices by function values. For A,
the birth values increase downward and the death values from left to right, so we
need to turn the quadrant by 90◦ to get the ordinary subdiagram. Symmetrically,
we turn the quadrant of B by −90◦ to get the relative subdiagram and we reflect
the quadrant of P across the main diagonal to get the extended subdiagram. Since
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Figure VII.11: The block structure of the boundary matrix representing the
construction of K going up and the subsequence destruction coming down.

the reduced versions of A and B are upper triangular, we indeed get the ordinary
subdiagram above and the relative subdiagram below the diagonal.

Bibliographic notes. The extension of persistence described in this section is due
to Cohen-Steiner, Edelsbrunner, and Harer [35]. It makes essential use of Poincaré
and Lefschetz duality to obtain the desired symmetry properties for manifolds. The
construction applies equally well to general topological spaces but without guarantee
of duality and symmetry. The main motivation for the extension is the definition
of the elevation function of a smoothly embedded surface in R3; see Section IX.2.
This definition requires that all critical points be paired, which is not the case
for ordinary persistence. The original paper on elevation contains an elementary
description of extended persistence just for the case of surfaces [3].

VII.4 Spectral Sequences

Topologists will immediately recognize a connection between persistence and spec-
tral sequences. We shed light on this relation by reviewing spectral sequences, first
in terms of the matrix reduction algorithm and second in terms of groups and maps
between them.

The matrix reduction view. As usual, we start with a filtration of a simplicial
complex,

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K,
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letting ki = card Ki be the number of simplices in the i-th complex. Using a
compatible total ordering of the simplices, we let ∂ be the boundary matrix which
we write in block form. Specifically, ∂i consists of the rows numbered ki−1 + 1 to
ki corresponding to the simplices in Ki − Ki−1, and ∂j consists of the columns
numbered kj−1 +1 to kj corresponding to the simplices in Kj −Kj−1. We write ∂j

i

for the intersection of the i-th block of rows and the j-th block of columns; that is, ∂j
i

records the codimension-1 faces of the simplices in Kj −Kj−1 that lie in Ki−Ki−1.
Since the boundary matrix is upper triangular, we have ∂j

i = 0 whenever i > j.
We reduce the boundary matrix with left-to-right column additions, as before, but
instead of sweeping the matrix from left to right, we sweep it diagonally. More
precisely, we work in phases, and in Phase r, we reduce columns in ∂j by adding
columns in the blocks from ∂j−r+1 all the way to ∂j itself. The Spectral Sequence
Algorithm thus reduces the columns from the diagonal outward, as illustrated in
Figure VII.12.

∂1

∂i

∂n

∂1 ∂j ∂n

Figure VII.12: After three phases, the triple blocks along the diagonal are
reduced. The highlighted blocks of rows and columns intersect in the block
matrix ∂j

i .

for r = 1 to n do
for j = r to n do
for ι = kj−1 + 1 to kj do
while ∃kj−r < ι′ < ι with kj−r < low(ι′) = low(ι) ≤ kj−r+1 do

add column ι′ to column ι
endwhile

endfor
endfor

endfor.

The result is the same as that of the Persistence Algorithm in the first section of
this chapter; only the order in which the columns are added is different. An easy
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connection to persistence arises by considering the monotonic function f : K → R
mapping a simplex σ ∈ Ki − Ki−1 to f(σ) = i. A leftmost lowest one in ∂j

i then
belongs to a simplex pair of persistence j − i. The Spectral Sequence Algorithm
thus computes the pairs in the order of non-decreasing index persistence.

Groups and maps. We now interpret the algorithm in terms of groups that make
up the spectral sequence of the filtration. Recall the chain groups and boundary
maps, ∂ : Cp → Cp−1, which form the chain complex defined by K. For each j, we

let Cj
p be the group of p-chains of Kj −Kj−1, and for each chain c ∈ Cj

p, we let ∂j
i c

be the sum of terms of ∂c that lie in Ki − Ki−1. Suppressing the dimension in the
notation for the boundary map, we have ∂j

i : Cj
p → Ci

p−1 and

∂c = ∂j
jc + ∂j

j−1c + . . . + ∂j
1c.

The block ∂j
i in the boundary matrix represents the maps ∂j

i simultaneously for all
dimensions. In spectral sequences, we approximate ∂ by the sum of maps ∂j

j to ∂j
i

and then decrease i. The spectral sequence itself consists of a collection of groups
Er

p,q and maps dr
p,q between them. To describe them, we break with the convention

of using p for the dimension. Instead, we follow the convention entrenched in the
spectral sequence literature in which the first subscript, p, identifies the block of
columns, the sum of subscripts, p + q, gives the dimension, and the superscript, r,
counts the phases in the iteration.

As usual, we think of the columns of the boundary matrix as generators of the
chain groups. Limiting our attention to the p-th block of columns, ∂p, we get the
groups of (p + q)-chains of Kp −Kp−1, for all q. If we further limit ∂p to the blocks
of rows ∂i to ∂p, we effectively ignore any boundary in Ki−1. For i = p, this is
equivalent to taking the relative chain groups, Cp+q(Kp, Kp−1). For i < p, we have
a subgroup of the relative chain group Cp+q(Kp, Ki−1), namely the one generated
by the (p + q)-simplices in Kp − Kp−1; see Figure VII.13. For what follows, it is

∂i

∂p

∂p

Figure VII.13: The darker shaded portion of the p-th block of columns repre-
sents the chains of Kp − Kp−1 and their boundaries in Kp − Ki−1.
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important to remember that the boundary matrix, ∂, represents simplices of all
dimensions at once. Hence, each block will correspond to a sequence of groups, one
for each dimension.

The E0-term of the spectral sequence. To prepare for the first phase of the
algorithm, we focus on the diagonal blocks of the boundary matrix. Fixing r = 0,
we write E0

p,q = Cp
p+q for the group of (p + q)-chains of Kp − Kp−1. Fixing p and

varying q, these groups are generated by the p-th block of columns. Furthermore,
we let

d0
p,q : E0

p,q → E0
p,q−1

be defined by the (p + q)-dimensional boundary map restricted to the block ∂p
p . In

other words, d0
p,q is ∂p

p applied to (p + q)-chains. We note that E0
p,q is isomorphic

to the relative chain group Cp+q(Kp, Kp−1) and d0
p,q agrees with the corresponding

relative boundary map. It follows that the maps satisfy the Fundamental Lemma
of Homology, that is, d0

p,q−1 ◦ d0
p,q = 0. Indeed, a codimension-2 face of a (p + q)-

simplex in Kp − Kp−1 either does not belong to Kp − Kp−1 or it does, but then
both codimension-1 faces that contain it also belong to Kp − Kp−1. Hence, we get
a chain complex,

. . . → E0
p,q+1 → E0

p,q → E0
p,q−1 → . . . ,

in which the maps are implied. It is customary to draw this chain complex vertically,
and adding the chain complexes for the other diagonal blocks, we get a 2-dimensional
grid of groups, as shown in Figure VII.14. To reduce the clutter, we omit the arrows
that connect the groups in each vertical line from top to bottom. We call this the
E0-term of the spectral sequence, noting that a vertical line in the grid contains all
groups represented by a diagonal block of the boundary matrix.

...

...

...

...

...

... ...
......

...

...

...

...

...

...
...

...
...

...
...

0

0

E0
1,−1

E0
1,0

E0
1,1

E0
2,−2

E0
2,−1

E0
2,0

E0
2,1

0

E0
3,1

E0
3,0

E0
3,−1

E0
3,−2

E0
3,−3

E0
4,1

E0
4,0

E0
4,−1

E0
4,−2

E0
4,−3

E0
5,1

E0
5,0

E0
5,−1

E0
5,−2

E0
5,−3

Figure VII.14: The E0-term of the spectral sequence. We have maps going
vertically downward, from E0

p,q to E0
p,q−1 for every choice of p and q.

The E1-term. After interpreting the diagonal blocks of the original boundary
matrix in terms of relative chain groups, we now push this interpretation through
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the phases of the algorithm. For the first phase, we take the homology of the above
vertical complexes and define E1

p,q = ker d0
p,q/im d0

p,q+1. An element of E1
p,q is thus

the equivalence class of a chain c ∈ Cp
p+q with ∂p

pc = 0, where two chains are
equivalent if their difference lies in the image of ∂p

p , taking of course the boundary
map that applies to chains of one higher dimension. In other words, the element is a
relative homology class and more generally E1

p,q ≃ Hp+q(Kp, Kp−1). Representatives
of E1

p,q are computed by reducing the matrix ∂p
p , which is what the algorithm does

in Phase r = 1. The zero columns in ∂p
p correspond to simplices that give birth

and represent cycles. Some are paired and have zero persistence since their classes
come and go within Kp − Kp−1. Others are not paired, and their cycles are the
generators of E1

p,q. Next, we let

d1
p,q : E1

p,q → E1
p−1,q

be defined by the (p+q)-th boundary map restricted to ∂p−1
p . Recall that an element

in E1
p,q is represented by a relative (p + q)-cycle, c. Hence, ∂p

pc = 0, but ∂p−1
p c is

possibly non-zero and represents a class in E1
p−1,q. All this sounds complicated, but

it is rather straightforward if interpreted in terms of the boundary matrix after one
phase of the algorithm. As before, the boundary maps satisfy the Fundamental
Lemma of Homology, d1

p−1,q ◦ d1
p,q = 0, so we again get a chain complex:

. . . → E1
p+1,q → E1

p,q → E1
p−1,q → . . . .

Going back to the grid in Figure VII.14, we can see these complexes as horizontal
lines going from right to left. Of course, we are now in the next phase, so we need
to substitute r = 1 for the superscript 0 everywhere. This is the E1-term of the
spectral sequence.

The E2-term. We take one more step before appealing to induction, taking the
homology of the horizontal complexes, E2

p,q = ker d1
p,q/im d1

p+1,q. An element of
E2

p,q is the equivalence class of the sum of a chain c ∈ Cp
p+q and another chain

c′ ∈ Cp−1
p+q . The chains satisfy ∂p

pc = 0 and ∂p
p−1c+∂p−1

p−1c′ = 0, and being equivalent

means that the difference lies in im ∂p
p + im ∂p

p−1 + im ∂p−1
p−1 . The group E2

p,q is not a
relative homology group by itself but a subgroup of one, namely E2

p,q ⊕ E1
p−1,q+1 ≃

Hp+q(Kp, Kp−2). Representatives of E2
p,q are computed by reducing the double block

of matrices ∂p
p , ∂p−1

p−1 , ∂p−1
p , ∂p

p−1. The first two have already been reduced, and the
third is zero. Phase r = 2 completes the reduction of the double block for the
remaining fourth matrix. Next, we let

d2
p,q : E2

p,q → E2
p−2,q+1

be defined by the (p + q)-th boundary map restricted to ∂p
p−2. By construction, an

element of E2
p,q is represented by a (p+q)-chain, c, whose boundary in Kp−Kp−2 is

empty. Its boundary in Kp−2 − Kp−3 is possibly non-empty and represents a class
in E2

p−2,q+1, the image of the class of c in E2
p,q. Taking the thus defined boundary

map twice gives zero again, so we get a chain complex,

. . . → E2
p+2,q−1 → E2

p,q → E2
p−2,q+1 → . . . ,
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similar to before. Going back to the grid in Figure VII.14, we see this complex
along a line of slope one half going from right to left. In other words, the groups
are connected by knight moves in chess, two to the left and one up. Of course, we
are now in the next phase, so we need to substitute r = 2 for the superscript 0
everywhere. This is the E2-term of the spectral sequence.

Iteration. The process continues, and for general phase numbers r, the maps take
the topologist’s chess move, that is, r steps to the left and r − 1 steps up:

dr
p,q : Er

p,q → Er
p−r,q+r−1.

This gives a set of chain complexes, and we take homology to enter the next phase.
Since K is finite, the maps are eventually zero and the sequence converges to a
limit term, Er = E∞ for r large enough. The homology groups of K are obtained
by taking direct sums along the diagonal lines in the limit term for which the
dimension is constant.

Before reaching the limit term, we may consider each class in Er
p,q as generated by

an “almost” cycle of dimension p+q. This is a chain whose boundary in Kp−Kp−r

is empty but may have non-empty boundary in Kp−r. It is either an essential
cycle of K, or a cycle of persistence at least r, assuming the monotonic function
f : K → R that maps σ ∈ Kp − Kp−1 to f(σ) = p, as before. This leads to the
following summary connection between persistence and spectral sequences.

Spectral Sequence Theorem. The total rank of the groups of dimension p+q
after r ≥ 1 phases of the Spectral Sequence Algorithm equals the number of points
in the (p + q)-th persistence diagram of f whose persistence is r or larger; that is,

n∑

p=1

rankEr
p,q = card {a ∈ Dgmp+q(f) | pers(a) ≥ r},

where q decreases as p increases so that the dimension remains constant.

In the limit, for r large enough, we have
∑n

p=1 rank Er
p,q = rank Hp+q(K) equal to

the number of points in the (p + q)-th persistence diagram whose persistence is
infinite.

Bibliographic notes. A comprehensive account of spectral sequences can be
found in [109]. The treatment in this section follows the more concise presentation
in the survey of persistent homology [57]. Similar to persistent homology, working
over a field is crucial for the construction of spectral sequences. Over Z, there are
extension problems to solve because of torsion; see [24].

Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical ques-
tion can be answered using knowledge of the material combined with some thought
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and analysis.

1. Tetrahedron complex (one credit). Let K consist of a tetrahedron and its
faces.

(i) Apply the matrix reduction algorithm to the filtration of K obtained by
adding the simplices in the order of dimension.

(ii) Do any of the three diagrams depend on the way you order the simplices
of the same dimension?

2. Matrix reduction revisited (two credits). Change the standard matrix re-
duction implementation of the persistence algorithm described in Section VII.1
by adding each j-th column to columns on its right rather than adding columns
on its left to it. Specifically, consider the following implementation.

R = ∂;
for j = 1 to m do
while there exists j0 > j with low(j0) = low(j) do

add column j to column j0
endwhile

endfor.

(i) Show that this implementation of the persistence algorithm generates the
same lowest 1s as the standard matrix reduction implementation.

(ii) Give an example for which this and the standard implementation of the
persistence algorithm compute different reduced matrices.

3. Sublevel sets (two credits). Let f : |K| → R be a piecewise linear function
defined by its values at the vertices, f(u1) < f(u2) < . . . < f(un). Let b be
strictly between f(ui) and f(ui+1), for some 1 ≤ i ≤ n− 1, and recall that the
sublevel set defined by b is f−1(−∞, b].

(i) Prove that the sublevel sets defined by b and by f(ui) have the same
homotopy type.

(ii) Draw an example for the case in which the sublevel sets defined by b and
by f(ui+1) have the same homotopy types, and another example for the
case in which they have different homotopy types.

4. Graphs without branching (three credits). Let K be a 1-dimensional simpli-
cial complex in which each vertex belongs to one or two edges. In other words,
K is a simple graph whose components are paths and closed curves. Show
that the sparse matrix implementation of the persistence algorithm described
in Section VII.2 takes time proportional to the number of simplices in K.

5. Persistence diagram (one credit). Draw a genus-3 torus, consider its height
function, and draw the non-trivial persistence diagrams of the function. Dis-
tinguish between points in the ordinary, extended, and relative subdiagrams.

6. Breaking symmetry (two credits). Design a topological space X and a con-
tinuous function f : X → R such that
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(i) the persistence diagrams violate the Persistence Duality Theorem in Sec-
tion VII.3;

(ii) the persistence diagrams violate the Persistence Symmetry Theorem in
the same section.

7. Matrix reduction once again (one credit). Prove that the reduced matrix
computed by the spectral sequence algorithm in Section VII.4 is the same as
that generated by the persistence algorithm in Section VII.1.

8. Parallel matrix reduction (three credits). First, rewrite the Spectral Se-
quence Algorithm of Section VII.4 for the case in which each block, Kj −Kj−1,
consists of a single simplex. Second, show that the thus simplified algorithm
can be run on a parallel computer architecture using n processors taking time
at most proportional to n2.





Chapter VIII

Stability

Persistence is a measure-theoretic concept built on top of algebraic structures. Its
most important property is the stability under perturbations of the data. In other
words, small changes in the data imply at most small changes in the measured
persistence. This has major ramifications, including the study of 1-parameter fam-
ilies and the comparison and classification of shapes. Of particular importance are
biological shapes, with their sheer endless variety in the midst of unmistaken sim-
ilarity and delicate variation. This book touches upon this fascinating topic, and
we foresee future inroads based on the notion of persistent homology as developed
here.

VIII.1 1-parameter Families

In this section, we study how continuous change of the data affects the measured
persistence. We focus on the structural effects and their computation. A conse-
quence of the analysis is a first proof of stability.

Straight-line homotopy. Let f : K → R and g : K → R be two monotonic
functions on the same simplicial complex. We recall that this means that the
functions are non-decreasing along increasing chains of the face relation. We use
the straight-line homotopy F : K × [0, 1] → R defined by

F (σ, t) = (1 − t)f(σ) + tg(σ)

to interpolate between f and g. Define ft(σ) = F (σ, t) and note that f0 = f and
f1 = g, as intended. Furthermore, ft is monotonic for each t ∈ [0, 1]. Indeed, if σ is
a face of τ , then f(σ) ≤ f(τ ) and g(σ) ≤ g(τ ) and therefore ft(σ) ≤ ft(τ ) for every
t ∈ [0, 1]. Hence, we can find a compatible ordering of the simplices, that is, a total
order that extends the partial orders defined by ft and by the face relation. Using
this compatible ordering, we compute the persistence diagrams of ft as explained
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in the previous chapter. However, if we somehow already have the diagrams for f ,
then we may consider modifying them to get the diagrams for ft. This turns out
to be more efficient than recomputing the diagrams provided the two total orders
are not too different. To describe exactly what this means, we plot the function
values with time, giving us a straight line for each simplex; see Figure VIII.1. It

f

1t0

ft g

Figure VIII.1: Each line tracks the function value of a simplex as t increases.
At any moment t ∈ [0, 1], we get ft by intersection with the corresponding
vertical line.

is convenient to assume that f and g are injective because this implies that ft is
injective except at finitely many moments t when two or more of the lines cross. To
further simplify the situation, we make the generic assumption that no two different
pairs of lines cross at the same moment. Equivalently, every ft has at most one
violation of injectivity, namely at most two simplices with the same function value.
As we sweep from left to right, in the direction of increasing t, we pass through
each violation by transposing the two simplices in the compatible ordering. This
motivates us to study the impact of a transposition on persistence.

Matrix decomposition. We recall that we compute the persistence diagrams of
f : K → R by reducing the boundary matrix whose rows and columns are ordered
like the simplices in a compatible ordering. Starting with R = ∂, we perform left-
to-right column additions until R is reduced, that is, each non-zero column has its
lowest 1 in a unique row. In other words, the mapping from non-zero columns to
rows defined by low is injective. Each lowest 1 gives a pair of simplices, namely
(σi,σj) if i = low(j), and a finite off-diagonal point in the p-th persistence diagram,
namely (f(σi), f(σj)) in Dgmp(f) with p = dimσi. It will be convenient to assume
a bijection between the lowest 1s and the off-diagonal points in the persistence
diagrams. In other words, we assume there are no off-diagonal points at infinity or,
equivalently, that every zero column in the reduced matrix corresponds to a row
with a lowest 1. We get this property in reduced homology iff K is homologically
trivial. This is no loss of generality since we can always add simplices at the end
so that they do not alter the earlier homological evolution along the filtration. For
example, we can form the cone over a given simplicial complex, which is necessarily
homologically trivial.
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The reduced matrix can be written as R = ∂V , where V keeps track of the
column operations. Its j-th column stores the chain whose boundary is stored in
the j-th column of R. Since we only use left-to-right column additions, V is upper
triangular, with V [i, i] = 1 for each i. The matrix V is therefore invertible. Let U
be the right inverse of V and note that it is again upper triangular and invertible.
Multiplying on the right, we get RU = ∂V U and therefore

∂ = RU.

We call this an ru-decomposition of the boundary matrix, using lowercase letters to
emphasize that we mean the form rather than the names of the matrices. Implicit
in this definition are the requirements that U be upper triangular and invertible
and that R be reduced. We get these properties from the way we compute the
matrices, but there are other ru-decompositions that may be obtained by other,
similar algorithms. Indeed, the ru-decomposition of ∂ is not unique, but as noted
in the previous chapter, the lowest 1s in the reduced matrix are. The specific
question we now ask is how we can update the ru-decomposition of the boundary
matrix if we transpose two simplices in contiguous positions along the compatible
ordering.

Updating the decomposition. Suppose ∂ is the boundary matrix for the or-
dering of the simplices as σ1,σ2, . . . ,σm. We write ∂′ for the boundary matrix
after transposing σi with σi+1. Letting P = P i+1

i be the corresponding permuta-
tion matrix, we have ∂′ = P∂P . The difference between P and the unit matrix,
I, is localized to the 2-by-2 submatrix for which P [i, i] = P [i + 1, i + 1] = 0 and
P [i, i + 1] = P [i + 1, i] = 1. Multiplying by P from the left exchanges the two rows,
and multiplying by P from the right exchanges the two columns. Note also that P
is its own inverse, that is, PP = I. We therefore get

∂′ = P∂P = PRUP = (PRP )(PUP ).

But this is not necessarily an ru-decomposition of the new boundary matrix. It
fails to be one if R′ = PRP is not reduced or if U ′ = PUP is not upper triangular.
We will now show that either deficiency can be remedied with little effort, namely
a constant number of row and column operations.

The only way R′ can fail to be reduced is when rows i and i+1 of R both contain a
lowest 1, i = low(k) and i+1 = low(l), and row i has a 1 in column l as well. Notice
that i, i + 1 < k, l. There are two cases, distinguished by k < l and l < k. In both
cases, we add the left column to the right column before we do the transposition.
This fixes the deficiency, as illustrated in Figure VIII.2, by changing R before we
even make the transposition of σi with σi+1.

The only way U ′ can fail to be upper triangular is if U [i, i + 1] = 1. We fix this
deficiency by adding row i+1 to row i in U and adding column i to column i+1 in
R. Letting S = Si+1

i be the matrix whose only difference from the identity matrix
is that S[i, i+1] = 1, we thus consider SU and RS. Since PP = I and SS = I, this
does not change the matrix product; that is, ∂′ = (PRSP )(PSUP ) = PRUP , as
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R R

i + 1i + 1

Figure VIII.2: After swapping rows i and i + 1 in R, the matrix would be no
longer reduced. We thus add the left to the right column before exchanging
the two rows.

before. With this modification, PSUP is upper triangular, but PRSP may again
fail to be reduced. If column i is zero or low(i) < low(i + 1), then multiplying
by S preserves the lowest 1s and RS is reduced. In this case, we have an ru-
decomposition after the transposition. On the other hand, if column i + 1 is zero
while column i is not or if low(i) > low(i + 1), as in Figure VIII.3, then we need
to make the lowest 1s unique again. To do this, we add column i + 1 to column i
after the transposition resulting in a left-to-right column addition. This repairs all
deficiencies, and we have an ru-decomposition of ∂′.

R RS

l

k

i i

PRSP

i + 1 i + 1i + 1 i + 1 i i

k

l

Figure VIII.3: After adding column i to i+1 and exchanging the two columns,
the matrix PRSP is no longer reduced. Adding column i + 1 to i after the
transposition finally produces a reduced matrix.

How the pairing changes. It takes additional work to understand which trans-
positions have an effect on the pairing. The ones that do we call switches. Recall
that each lowest 1 establishes a correspondence between a positive simplex (a row)
and a negative simplex (a column). For example, in Figure VIII.2 on the left, we
have the pairs (σi,σk) and (σi+1,σl), which are preserved throughout the transpo-
sition. On the right, we have the same two pairs but they change to (σi,σl) and
(σi+1,σk). This identifies the transposition as a switch. In Figure VIII.3, we have
the pairs (σk,σi+1) and (σl,σi), which change to (σk,σi) and (σl,σi+1), again a
switch.

As a rule of thumb, most transpositions are not switches. For example, if σi and
σi+1 do not have the same dimension, then their transposition does not require any
changes other than the obligatory swapping of rows and columns. Even if they have
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the same dimension but if σi is positive and σi+1 is negative, then the transposition
cannot be a switch. This is because row i has no lowest 1, so R′ = PRP is reduced
and requires no further effort. Similarly, column i of R is zero, so we can set
U [i, i + 1] = 0 to make sure U ′ = PUP is upper triangular, if necessary. In words,
the ru-decomposition is maintained without any of the repair operations that change
the pairing. However, the remaining three combinations of types can be switches,
and we see an example of each in Figure VIII.4. We get a switch between two

y x

w

u v

y xz

u

v

Figure VIII.4: The vertices u, v, w are the oldest in their respective compo-
nents, which are eventually joined by the edges x and y. On the right, the two
edges form a hole, which is eventually filled by the triangle z.

positive vertices, v and w, when we go from uvwxy to uwvxy in the drawing on the
left. Indeed, the pairs (v, y) and (w, x) before the transposition of v and w change
to (v, x) and (w, y) after the transposition. We get a switch between two negative
edges, x and y, when we go from uvwxy to uvwyx, again on the left. Indeed, the
transposition of x and y produces the same change between pairs as in the previous
example. Finally, we get a switch between a negative edge, x, and a positive edge,
y, when we go from uvxyz to uvyxz in the drawing on the right. Indeed, the pairs
(v, x) and (y, z) before the transposition of x and y change to (v, y) and (x, z) after
the transposition. The last switch is the most interesting of all. Besides changing
the pairing, it convinces the negative x to become positive and the positive y to
become negative. The two edges thus contribute to different persistence diagrams
before and after the transposition.

Summary. When we transpose σi and σi+1, we touch only the columns of σi and
σi+1 and of the simplices σk and σl paired with them. The changes are therefore
limited to these two pairs. Furthermore, there are no changes unless the transposed
simplices have the same dimension. Assuming p = dimσi = dim σi+1, the other
two simplices have dimension p− 1 and p+1. The only possible change is therefore
that the transposed simplices trade places. We state this result for later reference.

Transposition Lemma. Let ∂ and ∂′ be the boundary matrices for compatible
orderings of two monotonic functions on a simplicial complex that differ by a single
transposition of two contiguous simplices, σi and σi+1. Then the pairings defined
by ru-decompositions ∂ = RU and ∂′ = R′U ′ differ only if dim σi = dim σi+1, and
if they differ, then only by σi and σi+1 trading places.
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The computational effort for updating the ru-decomposition is small, namely a
constant number of row and column operations, each computable in time propor-
tional to the number of simplices. Returning to our two monotonic functions,
f, g : K → R, we have m simplices and thus at most

(m
2

)
transpositions to go

from a compatible ordering for f to a compatible ordering for g. To get started, we
compute the persistence diagrams of f in m3 time using the algorithm explained
in Section VII.1. Thereafter, we spend m time per transposition and therefore
m
(m

2

)
< m3 time in total until we arrive at the persistence diagrams of g. This

is roughly the same amount of time required to compute the diagrams of g from
scratch, at least in the worst case. However, going through the transposition has
the advantage that we get the interpolating diagrams for free.

Bibliographic notes. The material of this section is fashioned after [38], where
continuous families of persistence diagrams are proposed as a tool to study
parametrized families of functions. As explained, the algorithm constructs these
diagrams by maintaining the ru-decomposition of the boundary matrix through a
sequence of transpositions scheduled by sweeping an arrangement of lines. We can
find these transpositions in logarithmic time each by sorting the crossings or in
constant time each by sweeping the arrangement topologically [56].

VIII.2 Stability Theorems

Like any good measurement device, persistence gives similar readings for similar
functions. We make this statement precise for two notions of similarity between
persistence diagrams. The bottleneck distance is the cruder of the two but leads to
a more general result. The Wasserstein distance is more sensitive to details in the
diagrams but requires additional properties to be stable.

Bottleneck distance. Recall that a persistence diagram is a multiset of points in
the extended plane, R̄2. Under the assumptions on the input functions considered in
this book, the diagram consists of finitely many points above the diagonal. To this
finite multiset, we add the infinitely many points on the diagonal, each with infinite
multiplicity. These extra points are not essential to the diagram, but their presence
simplifies upcoming definitions and results. Now let X and Y be two persistence
diagrams. To define the distance between them, we consider bijections η : X → Y
and record the supremum of the distances between corresponding points for each.
Measuring distance between points x = (x1, x2) and y = (y1, y2) with L∞-norm
∥x − y∥∞ = max{|x1 − y1|, |x2 − y2|} and taking the infimum over all bijections, we
get the bottleneck distance between the diagrams:

W∞(X, Y ) = inf
η:X→Y

sup
x∈X

∥x − η(x)∥∞.

As illustrated in Figure VIII.5, we can draw squares of side length twice the bot-
tleneck distance centered at the points of X so that each square contains the
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Figure VIII.5: The superposition of two persistence diagrams consisting of the
white and the black points. Only the marked points on the diagonal correspond
to off-diagonal points in the other diagram. The bottleneck distance is half
the side length of the squares illustrating the bijection.

corresponding point of Y . Clearly, W∞(X, Y ) = 0 iff X = Y . Furthermore,
W∞(X, Y ) = W∞(Y, X) and W∞(X, Z) ≤ W∞(X, Y ) + W∞(Y, Z). We see that
W∞ satisfies all axioms of a metric and thus deserves to be called a distance.

Bottleneck stability. Letting f, g : K → R be two monotonic functions, we
consider the straight-line homotopy ft = (1 − t)f + tg, as in the previous section.
This gives a monotonic function ft with a persistence diagram for each dimension
p and each t ∈ [0, 1]. Fixing a dimension p, the family of persistence diagrams
is a multiset in R̄2 × [0, 1]. Drawing t along a third coordinate axis, we get a 3-
dimensional visualization of how the persistent homology evolves as we go from
f0 = f to f1 = g. To describe this, we assume that K has no non-trivial (reduced)
homology, as in the previous section. Adding the third coordinate, each off-diagonal
point of Xt = Dgmp(ft) is of the form x(t) = (ft(σ), ft(τ ), t), where σ and τ are
simplices in K. The point represents the fact that when we construct K by adding
the simplices in the order defined by ft, then adding σ gives birth to a p-dimensional
homology class and adding τ gives death to the same. There are only finitely
many values at which the pairing of the simplices changes, and we denote these as
0 = t0 < t1 < . . . < tn < tn+1 = 1. Within each interval (ti, ti+1), the pairing is
constant and each pair σ, τ gives rise to a line segment of points x(t) connecting
points in the planes t = ti and t = ti+1. If the endpoint is an off-diagonal point
at ti+1, then there is some other unique line segment that begins at that point.
This line segment may correspond to the same simplex pair and thus continue on
the same straight line, or it may correspond to a different pair created in a switch
and make a turn at the shared point. It is also possible that the endpoint lies on
the diagonal at ti=1, in which case there is no continuation. In summary, the line
segments form polygonal paths that monotonically increase in t. Each path begins
at an off-diagonal point in X = X0 or at a diagonal point in some Xti and ends at
an off-diagonal point in Y = X1 or at a diagonal point in some Xtj . We call each
polygonal path a vine and the multiset of vines a vineyard ; see Figure VIII.6.

The fact that the points in the family of persistence diagrams form connected
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t = 0.5

t = 1.0

t = 0.0

Figure VIII.6: The 1-parameter family of persistence diagrams of the straight-
line homotopy between f0 = f and f1 = g. One point traces out a vine
spanning the entire interval while the other merges into the diagonal halfway
through the homotopy.

vines is important. It is a way of saying that the persistence diagram is stable.
To further quantify this notion, we differentiate x(t) = (1 − t)(f(σ), f(τ ), 0) +
t(g(σ), g(τ ), 1) to get ∂x

∂t (t) = (g(σ)−f(σ), g(τ )−f(τ ), 1). Projecting the endpoints
of the line segment back into R̄2, we get two points whose L∞-distance is ti+1 − ti
times the larger of the differences between f and g at the two simplices. Letting υ
be the simplex in K that maximizes this difference, we get the L∞-distance between
the two functions, ∥f − g∥∞ = |f(υ) − g(υ)|. This is also an upper bound on the
slope of any line segment in the vineyard and therefore an upper bound on the
L∞-distance between the projected endpoints of any vine.

Stability Theorem for Filtrations. Let K be a simplicial complex and
f, g : K → R two monotonic functions. For each dimension p, the bottleneck
distance between the diagrams X = Dgmp(f) and Y = Dgmp(g) is bounded from
above by the L∞-distance between the functions, W∞(X, Y ) ≤ ∥f − g∥∞.

Tame functions. To apply the Stability Theorem, it is convenient to get it into
a form that allows for more general functions. According to the Simplicial Ap-
proximation Theorem in Chapter III, every continuous function on a triangulable
topological space can be approximated by a piecewise linear function, and as shown
in Chapter VII, for every piecewise linear function there is a monotonic function that
generates the same persistence diagrams. It is therefore not surprising that what
we said about filtrations can indeed be generalized. We explain this for functions
that satisfy a mild tameness condition.

Let X be triangulable and f : X → R continuous. Given a threshold a ∈ R, recall
that the sublevel set consists of all points x ∈ R with function value less than or
equal to a, Xa = f−1(−∞, a]. Similar to the complexes in a filtration, the sublevel
sets are nested and give rise to a sequence of homology groups connected by maps
induced by inclusion, one for each dimension. Writing fa,b

p : Hp(Xa) → Hp(Xb) for
the map from the p-th homology group of the sublevel set at a to that at b, we
call its image a persistent homology group, as before. The corresponding persistent
Betti number is βa,b

p = rank im fa,b
p . As long as the topology of the sublevel set
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does not change, the maps between the homology groups are isomorphisms. We
thus call a ∈ R a homological critical value if there is no ε > 0 for which fa−ε,a+ε

p is
an isomorphism for each dimension p. Finally, we call f tame if it has only finitely
many homological critical values and all homology groups of all sublevel sets have
finite rank. The main motivation for this definition is the relative ease with which
we can define persistence diagrams. Letting a1 < a2 < . . . < an be the homological
critical values of f , we choose interleaved values b0 to bn with bi−1 < ai < bi for all i.
Adding b−1 = a0 = −∞ and an+1 = bn+1 = ∞, we then consider the corresponding
sequence of homology groups,

0 = Hp(Xb−1) → Hp(Xb0) → . . . → Hp(Xbn) → Hp(Xbn+1) = Hp(X),

and the maps between them. For 0 ≤ i < j ≤ n + 1, the multiplicity of the pair
ai, aj is now defined as µ

ai,aj
p = (β

bi,bj−1
p −β

bi,bj
p )−(β

bi−1,bj−1
p −β

bi−1,bj
p ). To get the

p-th persistence diagram of f , we draw each point (ai, aj) with multiplicity µ
ai,aj
p ,

and we add the points of the diagonal, each with infinite multiplicity. With these
definitions, we have the following stability result, which we state without proof,
illustrating it in Figure VIII.7.

Stability Theorem for Tame Functions. Let X be a triangulable topolog-
ical space and let f, g : X → R be two tame functions. For each dimension p, the
bottleneck distance between X = Dgmp(f) and Y = Dgmp(g) is bounded by the
L∞-distance between the functions, W∞(X, Y ) ≤ ∥f − g∥∞.

Figure VIII.7: Left: two functions with small L∞-distance. Right: the corre-
sponding two persistence diagrams with small bottleneck distance.

Wasserstein distance. A drawback of the bottleneck distance is its insensitivity
to details of the bijection beyond the furthest pair of corresponding points. To
remedy this shortcoming, we introduce the degree-q Wasserstein distance between
X and Y for any positive real number q. It takes the sum of q-th powers of the
L∞-distances between corresponding points, again minimizing over all bijections:

Wq(X, Y ) =

[
inf

η:X→Y

∑

x∈X

∥x − η(x)∥q
∞

]1/q

.
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As suggested by our notation, the bottleneck distance is the limit of the Wasserstein
distance as q goes to infinity. Similar to the bottleneck distance, it is straightforward
to verify that Wq satisfies the requirements of a metric and thus deserves to be called
a distance.

It should be obvious that we cannot substitute the degree-q Wasserstein distance
for the bottleneck distance and expect that the Stability Theorem for Tame Func-
tions still holds. Indeed, we can approximate a function f : R → R with a function
g that has arbitrarily many wrinkles without deviating from f by more than some
positive ε; see Figure VIII.7. Each wrinkle generates a point with persistence about
2ε in the 0-th persistence diagram. Making the wrinkles narrow, we can get an arbi-
trarily large number and therefore an arbitrarily large Wasserstein distance between
the diagrams of f and g.

Wasserstein stability. Although a general stability result like the one for the
bottleneck distance is out of reach, we get stability under the Wasserstein distance
for a reasonably large class of functions. Let X be a metric space, that is, a topo-
logical space for which the distance between points x, y ∈ X, denoted as ∥x − y∥, is
well defined. A function f : X → R is Lipschitz if there is a constant C such that
|f(x) − f(y)| ≤ ∥x − y∥ for all points x, y ∈ X. Without loss of generality, we only
consider Lipschitz functions with constant C = 1. This condition prevents narrow
wrinkles. Indeed, each wrinkle now requires an amount of space that relates to its
persistence. It is therefore not possible to crowd arbitrarily many wrinkles together
without shrinking their persistence. What we suggest here is a packing argument,
the metric version of the combinatorial pigeonhole principle, but homology classes
can interact so that the packing argument cannot be applied directly. Indeed, mak-
ing it a rigorous proof is work which we would rather skip. Instead, we introduce
the precise conditions on the space X for which we can prove stability of persistence.

Assume X is triangulable and consider a triangulation, that is, a simplicial com-
plex K together with a homeomorphism φ : |K| → X. Letting its mesh be the
maximum distance between the images of two points of the same simplex in K, we
define N(r) as the minimum number of simplices in a triangulation with mesh at
most r. We say the triangulations of X grow polynomially if there are constants c
and j such that N(r) ≤ c/rj . Finally, we define the degree-k total persistence of a
persistence diagram X as the sum of k-th powers of the persistences of its points,
Φk(X) =

∑
x∈X pers(x)k. To finesse the difficulties caused by points with infinite

persistence, we restrict the sum to the finite points in X. The main technical insight
is that polynomial growth implies bounded total persistence. Specifically, if X is
a metric space whose triangulations grow polynomially with constant exponent j,
f : X → R is Lipschitz, and X = Dgmp(f), then Φk(X) is bounded from above by
a constant for every k > j. The proof of this implication is omitted. For example
the d-dimensional sphere is triangulable, and its triangulations grow polynomially,
with constant exponent j = d. It follows that for every k > d, the degree-k total
persistence of a Lipschitz function on the sphere is bounded by a constant. Using
these ingredients, we are now ready to prove an upper bound on the Wasserstein
distance that implies stability for q > k.
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Stability Theorem for Lipschitz Functions. Let f, g : X → R be tame
Lipschitz functions on a metric space whose triangulations grow polynomially with
constant exponent j. Then there are constants C and k > j no smaller than 1 such
that the degree-q Wasserstein distance between X = Dgmp(f) and Y = Dgmp(g)

is Wq(X, Y ) ≤ C · ∥f − g∥1−k/q
∞ for every q ≥ k.

Proof. Let η : X → Y be a bijection that realizes the bottleneck distance; that
is, ∥x − η(x)∥∞ ≤ ε = ∥f − g∥∞ for each point x ∈ X. In addition, we require
that ∥x − η(x)∥∞ ≤ 1

2 [pers(x) + pers(η(x))]. Indeed, if this inequality does not
hold, then pers(x) ≤ 2ε and pers(η(x)) ≤ 2ε and we can change the bijection by
matching both with points on the diagonal within L∞-distance ε. The q-th power
of the degree-q Wasserstein distance is therefore

Wq(X, Y )q ≤
∑

x∈X

∥x − η(x)∥q
∞

≤ εq−k
∑

x∈X

∥x − η(x)∥k
∞

≤ εq−k

2k

∑

x∈X

[pers(x) + pers(η(x))]k

≤ εq−k

2k

∑

x∈X

[(2pers(x))k + (2pers(η(x)))k],

where the last step uses the fact that taking the k-th power is convex. The sum is 2k

times the degree-k total persistence of X plus that of Y , which gives Wq(X, Y )q ≤
εq−k[Φk(X)+Φk(Y )]. By assumption, the degree-k total persistence is bounded by
a constant. Taking the q-th root thus gives the claimed inequality.

Bibliographic notes. Vineyards have been introduced as a tool for studying
parametric families of functions in [38]. The proof that the vines in it are connected
paths is equivalent to establishing the stability for monotonic functions under the
bottleneck distance between diagrams. The first proof of stability goes back to
Cohen-Steiner, Edelsbrunner, and Harer [34] who used a homological algebra ar-
gument to establish it for tame functions. A further generalization to 1-parameter
families of vector spaces can be found in [31]. A proof of the Stability Theorem for
Lipschitz Functions along with applications in systems biology can be found in [36].
The Wasserstein distance is named after the author of [153]. It is related to optimal
transportation as studied by Monge [112] and Kantorovich [89]; see also [148].

VIII.3 Length of a Curve

In this section, we use the stability of persistence to generalize a classic result on
curves, proving an inequality connecting the lengths and total curvatures of two
curves. At this time, no other proof of this connection is known.
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Closed curves. We consider a closed curve γ : S1 → R2, with or without self-
intersections. Assuming γ is smooth, we have derivatives of all orders. The speed at
a point γ(s) is the length of the velocity vector, ∥γ̇(s)∥. We can use it to compute
the length as the integral over the curve:

length(γ) =

∫

s∈S1

∥γ̇(s)∥ ds.

It is convenient to assume a constant speed parametrization, that is, speed =
∥γ̇(s)∥ = length(γ)/2π for all s ∈ S1. With this assumption, the curvature at a
point γ(s) is the norm of the second derivative divided by the square of the speed,
κ(s) = ∥γ̈(s)∥/speed2. The reciprocal of the curvature is the radius of the circle
that best approximates the shape of the curve at the point γ(s). To interpret this
formula geometrically, we follow the velocity vector as we trace out the curve. Since
its length is constant, it sweeps out a circle of radius speed, as illustrated in Figure
VIII.8. The curvature is the speed at which the unit tangent vector sweeps out the

γ̇(s)γ(s)
γ̇(s)

Figure VIII.8: A curve with constant speed parametrization and its velocity
vector sweeping out a circle with radius equal to the speed.

unit circle as we move the point with unit speed along the curve. This explains
why we divide by the speed twice, first to compensate for the length of the velocity
vector and second for the actual speed. The total curvature is the distance traveled
by the unit tangent vector:

curv(γ) = speed

∫

s∈S1

κ(s) ds.

As an example consider the constant speed parametrization of the circle with radius
r, γ(s) = rs. Writing a point in terms of its angle, we get

s =

[
cosϕ
sinϕ

]
, γ(s) =

[
r cosϕ
r sinϕ

]
, γ̇(s) =

[
−r sinϕ
r cosϕ

]
.

We thus have speed = r and length(γ) =
∫

speed ds = 2πr. The curvature is
κ(s) = ∥γ̈(s)∥/speed2 = 1/r, which is of course independent of the location on
the circle. The total curvature is curv(γ) =

∫
r
r ds = 2π, which is independent of

the radius. Indeed, the unit tangent vector travels once around the unit circle, no
matter how small or how big the parametrized circle is.
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Integral geometry. The length and total curvature of a curve can also be ex-
pressed in terms of integrals of elementary quantities. We begin with the length.
Take a unit length line segment in the plane. The lines that cross the line seg-
ment at an angle ϕ form a strip of width sinϕ. Integrating over all angles gives∫ π
ϕ=0 sinϕ dϕ = [− cosϕ]π0 = 2. In words, the integral of the number of intersec-

tions over all lines in the plane is twice the length of the line segment. Since we
can approximate a curve by a polygon whose total length approaches that of the
curve, the same holds for our curve γ. To express this result formally, we introduce
gu : R2 → R defined by gu(x) = ⟨u, x⟩, mapping each point x ∈ R2 to its height
in the direction u ∈ S1. The preimage of a value z ∈ R, g−1

u (z), is the line with
normal direction u and offset z. The composition with the curve, fu = gu ◦ γ, maps
each s ∈ S1 to the height of the point γ(s). The preimage of this function thus
corresponds to points at which the line intersects the curve. We are now ready to
formulate the length of the curve in terms of the number of intersections.

Cauchy-Crofton Formula. The length of a curve in the plane is one quarter
of the integral of the number of intersections with lines:

length(γ) =
1

4

∫

u∈S1

∫

z∈R
card (f−1

u (z)) dz du.

Here we divide by two twice, once because
∫

sinϕ dϕ = 2 and again because we
integrate over all u ∈ S1 and therefore over all lines twice. To get an integral
geometry expression of the total curvature, we again consider a direction u ∈ S1

and the height of the curve in that direction, fu : S1 → R. For generic directions
u, this height function has a finite number of minima and maxima, as illustrated
in Figure VIII.9. Recall that the total curvature is the length traveled by the unit

u

Figure VIII.9: The vertical height function defined on the curve has four local
minima which alternate with the four local maxima along the curve.

tangent vector. Equivalently, it is the length traveled by the outward unit normal
vector. The number of maxima of fu is the number of times the unit normal
passes u ∈ S1, and the number of minima is the number of times it passes −u ∈ S1.
Writing #crit(fu) for the number of minima and maxima, we get the total curvature
by integration.
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Total Curvature Formula. The total curvature of a smooth curve in the
plane is half the integral of the number of critical points over all directions:

curv(γ) =
1

2

∫

u∈S1

#crit(fu) du.

The integral in the above formula can be interpreted as 2π times the average number
of critical points, where the average is taken over all directions. Hence the total
curvature is π times this average.

Theorems relating length with total curvature. Suppose the image of γ fits
inside the unit disk in the plane, im γ ⊆ B2. Then γ must turn to avoid crossing
the boundary circle of the disk. We can therefore expect that the total curvature is
bounded from below by some constant times the length. A classic result in geometry
asserts that this constant is one.

Fáry Theorem. Let γ : S1 → R be a smooth closed curve with im γ ⊆ B2. Then
its length is at most its total curvature, length(γ) ≤ curv(γ).

To generalize this result, we consider two curves, γ, γ0 : S1 → R2, and the ‘shortest
leash distance’ between them. Specifically, we trace out both curves simultane-
ously and connect the two moving points by a leash so that their distance can
never exceed the length of that leash. Formally, this concept is known as the
Fréchet distance between the curves. To define it, we record the leash length for
a homeomorphism η : S1 → S1 and take the infimum over all homeomorphisms,
F (γ, γ0) = infη maxs ∥γ(s) − γ0(η(s))∥. This notion of distance does not depend on
the parametrizations of the two curves.

Generalized Fáry Theorem. Let γ, γ0 : S1 → R2 be two smooth closed
curves. Then |length(γ) − length(γ0)| ≤ [curv(γ) + curv(γ0) − 2π] F (γ, γ0).

To see that Fáry’s Theorem is indeed a special case, let the image of γ be contained
in the unit disk and let the image of γ0 be a tiny circle centered at the origin, as in
Figure VIII.10. Since γ0 is a circle, its total curvature is 2π. Furthermore, we can
make it arbitrarily small so its length approaches zero. While for some curves γ,
the Fréchet distance to γ0 exceeds one, it approaches the maximum distance from
the origin, which is at most one. Substituting 0 for length(γ0), 2π for curv(γ0), and
1 for F (γ, γ0) in the Generalized Fáry Theorem gives the original Fáry Theorem.

Length and total curvature in terms of persistence. A first step toward
proving the Generalized Fáry Theorem is a re-interpretation of the length and the
total curvature. Fix a direction u ∈ S1 and consider fu = gu ◦γ, the height function
of the first curve. Almost all level sets, f−1

u (z), consist of an even number of points,
decomposing γ into the same number of arcs, half of which belong to the sublevel
set, f−1

u (−∞, z]. The number of arcs in the sublevel set is equal to the number of
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im γ0

im γ

Figure VIII.10: Two curves inside the unit disk. The Fréchet distance between
the tiny circle and the other curve approaches a constant at most one as the
circle shrinks toward the origin.

components that are born at or before z and are still alive at z. To be precise, this
is true as long as z does not exceed the height of the global maximum of fu. To
make it true for all height values, we declare that the component born at the global
minimum dies at the global maximum; see Figure VIII.11. This is, incidentally,

Figure VIII.11: The zeroth persistence diagram of the height function on the
curve. We simplify the situation by pairing the global minimum with the global
maximum so that all the pair information is contained in this one diagram.

what we would get with extended persistence as described in the previous chapter.
Drawing the vertical lines from the off-diagonal points in the persistence diagram
down to the diagonal gives a set of line segments with total length equal to the total
persistence of Dgm0(fu) as defined in the preceding section. We simplify notation
by listing the function rather than its persistence diagram as argument, writing
Φ(fu) =

∑
pers(a), where the sum is over all points a in Dgm0(fu). By what

we said above, the number of line segments that intersect the horizontal line at
height z is equal to half the number of points in f−1

u (z). Integrating the number of
intersections between γ and lines with normal direction u thus gives twice the total
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persistence:
∫

z∈R
f−1

u (z) = 2Φ(fu).

The relationship between total curvature and the persistence diagram is even more
straightforward. Assuming fu is Morse, we have a finite number of critical points.
This number is even, with equally many minima and maxima paired up to give
half the number of off-diagonal points in the persistence diagram. We get similar
relationships for the height function of the second curve.

Bounding the difference and integrating. To relate the quantities for the
two curves, we write ε = F (γ, γ0) for the Fréchet distance and assume that γ
and γ0 are parametrized such that ∥γ(s) − γ0(s)∥ ≤ ε, for all s. It follows that
|fu(s) − f0,u(s)| ≤ ε, for all s. The Stability Theorem for Tame Functions then
implies that there is a bijection between the points of Dgm0(fu) and of Dgm0(f0,u)
such that corresponding points have L∞-distance at most ε. It follows that the
difference in persistence between two corresponding points is at most 2ε. If both
are off-diagonal points, then we have four critical points (two of fu and two of f0,u)
that we can hold responsible for the difference. However, if an off-diagonal point is
matched with a point on the diagonal, then we have only two critical points to take
responsibility for the 2ε difference. This is indeed the worse of the two possibilities,
but we can guarantee that at least two off-diagonal points can be matched within
L∞-distance ε, namely the two points formed by the global min-max pairs. This
is because these critical points correspond to points at infinity in the ordinary
persistence diagrams, and being at infinity, they cannot be matched to points on
the diagonal. In summary, the difference in total persistence between fu and f0,u

is at most ε times the number of critical points of fu and f0,u minus two. We are
now ready to integrate over all directions u ∈ S1 to get the final result. Specifically,

|length(γ) − length(γ0)| ≤ 1

2

∫

u∈S1

|Φ(fu) − Φ(f0,u)| du

≤ ε

2

∫

u∈S1

[#crit(f) + #crit(f0) − 2] du

= ε[curv(γ) + curv(γ0) − 2π],

using first the Cauchy-Crofton Formula, second the re-interpretations in terms of
persistence, third the inequality implied by the Stability Theorem for Functions, and
fourth the Total Curvature Formula. This completes the proof of the Generalized
Fáry Theorem.

Bibliographic notes. The inequality that connects the length with the total
curvature of a closed curve is due to Fáry [67]. The generalization that compares
the lengths of curves that are close in the Fréchet distance is more recent [33].
Both results have generalizations to curves in dimensions beyond two. The integral
geometry interpretations of length and total curvature can be found in Santaló
[129].
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VIII.4 Bipartite Graph Matching

In this section, we consider algorithms for the bottleneck and Wasserstein dis-
tances between persistence diagrams. Both problems reduce to constructing optimal
matchings in bipartite graphs.

Distance from matching. We begin by reducing the computation of distance
to constructing a matching. Let X and Y be two persistence diagrams. We assume
both consist of finitely many points above the diagonal and infinitely many points
on the diagonal. Letting X0 be the finite multiset of off-diagonal points in X and
X ′

0 the orthogonal projection of X0 onto the diagonal, we construct a complete
bipartite graph G = (U ∪̇ V, E) with U = X0 ∪̇ Y ′

0 , V = Y0 ∪̇ X ′
0, and E = U × V .

For each q > 0, we introduce the cost function c = cq : E → R defined by mapping
the edge uv ∈ E to the q-th power of the L∞-distance between the points:

c(uv) =

{
∥u − v∥q

∞ if u ∈ X0 or v ∈ Y0;
0 if u ∈ Y ′

0 and v ∈ X ′
0.

By construction, the minimum cost edge connecting an off-diagonal point u to a
point on the diagonal is the edge uu′, where u′ is the orthogonal projection of u.
For q = 1, the cost of this edge is half the persistence of u.

A matching of G is a subset of vertex disjoint edges, M ⊆ E. It is maximum if
there is no matching with more edges and perfect if every vertex is the endpoint of an
edge in M . Since G is complete with equally many vertices on the two sides, every
maximum matching is also a perfect matching. We will also consider matchings for
graphs G(ε) = (U ∪̇ V, Eε) obtained from G by removing all edges uv ∈ E with cost
c(uv) > ε. Of course, every perfect matching of G(ε) is a maximum matching but
not necessarily the other way around. A minimum cost matching is a maximum
matching that minimizes the sum of costs of the edges in the matching. We refer to
this sum as the total cost of the matching. It is not difficult to prove the following
relation between distance and matching.

Reduction Lemma. Let X and Y be two persistence diagrams and let G =
(U ∪̇ V, E) be the corresponding complete bipartite graph. Then

(i) the bottleneck distance between X and Y is the smallest ε ≥ 0 such that the
subgraph G(ε) of G with cost function c = c1 has a perfect matching;

(ii) the q-th Wasserstein distance between X and Y is the q-th root of the total
cost of the minimum cost matching of G with cost function c = cq.

We are therefore interested in recognizing bipartite graphs that have perfect match-
ings and in constructing minimum cost matchings.

Augmenting paths. We begin by considering the algorithmic problem of con-
structing a maximum matching of the bipartite graph G(ε) = (U ∪̇ V, Eε). The
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algorithm is iterative, improving the matching in each round, until no further im-
provement is possible. Let Mi be the matching after i iterations. The crucial
concept is a path that alternates between edges in and out of Mi. To explain this,
we introduce a directed graph Di that depends on G(ε) and Mi. For the most part,
it is the same as G(ε) except that each edge is drawn with a direction, namely from
V to U if the edge belongs to Mi, and from U to V if the edge does not belong
to Mi. In addition to the vertices in G(ε), the directed graph contains two new
vertices, the source s with an edge from s to every unmatched vertex u ∈ U , and
the target t with an edge from every unmatched vertex v ∈ V to t; see Figure
VIII.12. An augmenting path is a directed path from s to t that visits every vertex

U

V

t

s

Figure VIII.12: A bipartite graph with six plus six vertices and a matching
with four edges giving rise to a directed graph with three paths from s to t.

at most once. By construction, an augmenting path consists of 2k + 1 edges, one
from s to U , an interleaved sequence of k edges not in Mi and k − 1 edges in Mi,
and finally an edge from V to t. Clearly, if we have an augmenting path, we can
improve the matching by substituting the k edges not in Mi for the k − 1 edges in
Mi. When we make this improvement, we say we augment the matching using the
path. To get an algorithm, we also need the existence of an augmenting path unless
Mi is maximum. To construct such a path, draw the edges of an assumed maximum
matching from U to V and those of Mi from V to U . Each vertex is incident to
at most two edges, one incoming and the other outgoing, so we can partition the
edges into maximal, vertex disjoint paths and closed curves that interleave edges
from the two matchings. A path in this partition extends to an augmenting path
from s to t iff it contains one more edge from the maximum matching than from
Mi. Since Mi is smaller, there is at least one such path. We use this fact to give
an algorithm for constructing a maximum matching of G(ε).

M0 = ∅; i = 0;
while there exists an augmenting path in Di do

augment Mi using this path to get Mi+1;
i = i + 1

endwhile.
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Each iteration increases the size of the matching by one. The number of edges in
the maximum matching is at most n = card U = card V , which implies that the
algorithm terminates after at most n iterations. We can use Depth-first Search or
Breadth-first Search to find an alternating path in time proportional to the number
of edges, mε = card Eε. In either case, we have an algorithm that runs in time at
most proportional to mεn ≤ n3.

Shortest augmenting paths. The running time of the algorithm can be im-
proved if we use multiple augmenting paths at a time. Specifically, we use a maximal
set of edge disjoint, shortest, augmenting paths. To find them, we use Breadth-first
Search to label all vertices by their distance from the source and Depth-first Search
to construct a maximal set of paths in the thus labeled directed graph. Since
Depth-first Search has been explained in detail in Section II.2, we focus on the first
step.

S0 = {s}; label s with 0; j = 0;
while Sj ̸= ∅ do
forall vertices x ∈ Sj do
forall unlabeled successors y of x do

label y with j + 1 and add y to Sj+1

endfor
endfor; j = j + 1

endwhile.

Assuming suitable data structures, we can iterate through the vertices in the sets Sj

and their successors in constant time per vertex. Using repeated Depth-first Search
in the labeled graph Di, we construct a maximal set of edge disjoint paths from s
to t. If we remove edges and vertices as they become useless, we get an algorithm
that computes the paths in time proportional to mε. For example, if we start with
the directed graph in Figure VIII.12, we get either two paths of length seven, one
on the left and the other on the right, or just one path of the same length, as shown
in Figure VIII.13. Finally, we augment the matching using all paths in the maximal
set.

U

V

Figure VIII.13: The two maximal sets of edge disjoint, shortest, augmenting
paths in the directed graph of Figure VIII.12.
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Analysis. We now show that the new strategy leads to a substantially smaller
number of iterations. In a nutshell, the reason is that there cannot be many aug-
menting paths that are all long. Playing off length against number, we get a bound
of some constant multiplied with the square root of the number of vertices.

Iteration Bound. Starting with the empty matching and augmenting the
matching of G(ε) using a maximal set of edge disjoint, shortest, augmenting paths
each time, we reach a maximum matching in fewer than 2

√
2n iterations.

Proof. We first show that the length of the shortest path from s to t increases
from one iteration to the next. Let ℓi(x) be the length of the shortest path from
s to the vertex x in Di; it is the label assigned to x by Breadth-first Search. We
prove that ℓi+1(t) is strictly larger than ℓi(t), assuming both are defined. Consider
a shortest path π from s to t in Di+1. It is also a path in Di iff none of its edges
belongs to the paths selected in the i-th round. If π is a path in Di, then it cannot
be shortest; otherwise, it would have been added to the maximal set. On the other
hand, if π is not in Di, then it has at least one edge xy that is reversed in Di. Since
yx belongs to a shortest path in Di, we have ℓi(y) = ℓi(x)− 1. For an edge xy of π
that is not reversed in Di, we have ℓi(y) ≤ ℓi(x) + 1 by definition of ℓi. As we walk
along the path, ℓi+1 grows by one at each step while ℓi grows by at most one and
at least once it shrinks. Hence ℓi(t) < ℓi+1(t), as required.

For the second part of the proof, we note that two edge disjoint paths from s to t
share no vertices other than the source and the target. This is because each vertex
of U has only one incoming edge and each vertex of V has only one outgoing edge.
Let m̄i be the size deficit of Mi; that is, the number of edges is short of being a
maximum matching. Since Mi can be improved by this much, there are at least m̄i

augmenting paths from s to t in Di. Using the construction of augmenting paths
given earlier in this section, we find m̄i augmenting paths that share no vertices
other than s and t. By the pigeonhole principle, the shortest of these paths contains
at most a fraction of 1/m̄i of the vertices of G(ε). Equivalently, ℓi(t) ≤ 2n/m̄i + 1.
Since the distance of t from s begins at three and grows with increasing i, this
implies i ≤ 2n/m̄i − 2. To increase Mi by another m̄i edges takes at most m̄i

additional iterations. The total number of iterations is therefore bounded from
above by 2n/m̄i − 2 + m̄i. Setting m̄i to the smallest integer no smaller than

√
2n

implies the claimed bound.

Recall that each iteration takes time at most proportional to the number of edges.
The bound on the number of iterations thus implies that the algorithm runs in time
at most proportional to mε

√
n ≤ n5/2.

Minimum cost matching. To compute the smallest ε for which G(ε) has a per-
fect matching, we do binary search in the list of edges sorted by cost, constructing a
maximum matching at every step. Similarly, constructing a minimum cost match-
ing of G is done by iterating the maximum matching algorithm, but the iteration
is different. There are two easy structural insights that show the way.
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1. If the subgraph G(0) consisting of the cost zero edges in G has a perfect match-
ing, then this is a minimum cost matching. Indeed, its total cost is zero, which
is as small as it gets.

2. Subtracting the same amount from the cost of all edges incident to a vertex in
G affects all perfect matchings the same way. In particular, a perfect match-
ing minimizes the total cost before the subtractions iff it does so after the
subtractions.

To compute a minimum cost matching of G, we begin with all zero cost edges and
construct a maximum matching of G(0). If the matching is perfect, we are done.
Otherwise, we change the costs of the edges in G while preserving the ordering of
the perfect matchings by total cost. To describe how this is done, we introduce
deduction maps di : U ∪ V → R. Starting with the zero map, d0(x) = 0 for all
vertices x, the algorithm will change the map and will this way modify the costs.
Writing c(xy) for the original cost of the edge xy in G, the modified cost after i
iterations is

ci(xy) = c(xy) − di(x) − di(y).

It is important for the efficiency but also the correctness of the algorithm that all
modified costs always be non-negative. This will be an invariant of the algorithm.
Letting Gi be the graph G with costs modified using di, the algorithm iterates the
construction of a maximum matching of Gi(0), the graph Gi with edges of positive
modified cost removed. Increasing the maximum matching by one edge each time,
we get a perfect matching after n iterations. By construction, all edges in this
matching have zero modified cost.

Minimum cost paths. We now show how to change the deduction map so that
the maximum matching increases. Let Mi be a maximum matching of Gi(0) and
let Di(0) be the directed graph defined by Gi(0) and Mi. Because Mi is maximum,
Di(0) has no directed path from s to t. Let Di be the directed graph defined by Gi

and the same matching Mi and note that it contains Di(0) as a subgraph. Assuming
Mi is not perfect, it is not maximum for Gi, which implies that Di has directed
paths from s to t. Each such path is an augmenting path, and we define its total
cost as the sum of modified costs of its edges. By definition, the modified cost of
the first edge, from s to U , is zero, and so is the modified cost of the last edge,
from V to t. Let π be the augmenting path in Di that minimizes the total cost.
It can be computed by an algorithm similar to Breadth-first Search. Indeed, the
only difference is that it visits the vertices in a particular ordering that depends on
the modified costs of the edges. At every moment during the construction, we have
a set of visited vertices forming a tree rooted at s and we have a set of unvisited
vertices. For each unvisited vertex, y, we consider the minimum cost path that
starts at s, goes to a vertex x using edges in the tree, and ends with the edge from
x to y. The next vertex visited by the algorithm is the unvisited vertex y that
minimizes this cost, and we add y together with the last edge of its path to the tree.
This is known as Dijkstra’s Single Source Shortest Path Algorithm, or Dijkstra’s
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Algorithm for short. We compute the minimizing vertex y and update the costs of
all yet unvisited vertices in time proportional to n. Iterating this step n times, we
find the minimum cost path π in time proportional to n2.

We augment the matching Mi using π to get Mi+1. This increases the matching,
but to be sure that we made progress toward computing a minimum cost matching,
we have to show that it is possible to change the deduction map so that all edges
in Mi+1 have zero modified costs. To this end, let γi(x) be the minimum total cost
of a path from s to x; it is the total cost of the path from s to x within the tree
computed by Dijkstra’s Algorithm. Using these quantities, we update the deduction
map to

di+1(x) =

{
di(x) − γi(x) if x ∈ U ;
di(x) + γi(x) if x ∈ V.

For vertices u ∈ U and v ∈ V , the new modified cost of the edge connecting u with
v is

ci+1(uv) = c(uv) − di+1(u) − di+1(v)

= c(uv) − di(u) − di(v) + γi(u) − γi(v).

In words, it is the old modified cost plus γi(u)− γi(v), no matter whether the edge
goes from u to v or from v to u in Di. If γi(u) ≥ γi(v), we use induction to get
ci+1(uv) ≥ 0 from ci(uv) ≥ 0. Otherwise, γi(v) − γi(u) ≤ ci(uv), because γi(v) is
the minimum total cost of a path from s to v. If follows that all new modified costs
are non-negative. But we need more, namely zero new modified cost for all edges
of the new matching. There are two kinds of such edges uv, those that belong to
Mi and those that belong to the path π. For the first kind, we have γi(v) = γi(u)
because ci(uv) = 0, and the only way to reach u is along the directed edge from v
to u. For the second kind, we have γi(v) − γi(u) = ci(uv) by definition of γi. In
both cases, we have ci+1(uv) = 0, as required.

This completes the proof that the iteration ends with a perfect matching mini-
mizing the total cost. The maximum matching gains one edge per iteration. We
thus have n iterations each taking time proportional to n2. Our algorithm thus
constructs a minimum cost matching in time at most proportional to n3.

Bibliographic notes. Computing a maximum matching of a bipartite graph is a
classic optimization problem discussed in operations research texts [7]. As explained
in [140], it is a special case of the more general maximum flow problem in networks.
Indeed, Dinic’s maximum flow algorithm for so-called unit networks [50] specializes
to the n5/2 time algorithm for maximum matching independently discovered by
Hopcroft and Karp [85] and explained in this section. The Minimum Cost Matching
Algorithm is a variant of what is known as the Hungarian method [96]. Following
[92], we describe a version that uses Dijkstra’s Algorithm for finding shortest paths
in a weighted graph as a subroutine [49]. Using the geometry of the persistence
diagrams, the Maximum Matching Algorithm can be improved to run in time at
most proportional to n3/2 log2 n [65], and the Minimum Cost Matching Algorithm
can be improved to run in time at most proportional to n2+ε [5].
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Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical ques-
tion can be answered using knowledge of the material combined with some thought
and analysis.

1. Examples of switches (two credits). Give examples for the types of switches
analogous to the ones shown in Figure VIII.4 but one dimension up in each of
the three types.

2. Matrix maintenance (two credits). Formulate an algorithm that maintains
the reduced boundary matrix under transpositions for ∂ = RV ; that is, it
maintains the matrix V instead of its inverse, U .

3. Sparse matrix representation (two credits). Give a sparse matrix represen-
tation that allows an implementation of the maintenance algorithm running in
time proportional to the number of ones in the changed columns and rows of
R = ∂U .

4. Measuring vineyards (two credits). Let f, g : K → R be two monotonic
functions on a simplicial complex and let ft = (1 − t)f + tg for t ∈ [0, 1] be
the straight-line homotopy between them. Each vine of the homotopy is a map
x : [a, b] → R̄2 with 0 ≤ a < b ≤ 1. Let

µ(x) =

∫ b

s=a
∥x(s) − x(a)∥ ds

and define a measure by summing the integrals over all vines in the p-th vine-
yard, µp(f, g) =

∑
x µ(x). Give examples that show that µp and the first

Wasserstein distance are incomparable, that is, there are monotonic functions
f , g, f0, g0 such that µp(f, g) < W1(Dgmp(f), Dgmp(g)) and µp(f0, g0) >
W1(Dgmp(f0), Dgmp(g0)).

5. Cauchy-Crofton (two credits). Generalize the Cauchy-Crofton formula for
curves in the plane given in Section V.3 to

(i) curves in 3-dimensional Euclidean space;

(ii) surfaces in 3-dimensional Euclidean space.

6. Mean and Gaussian curvatures (three credits). Use the structure of the
proof of the Generalized Fáry Theorem to show the following relationship be-
tween the total mean curvature and the total absolute Gaussian curvature of
two homeomorphic closed surfaces embedded in R3:

|mean(S) − mean(S0)| ≤ [gauss(S) + gauss(S0) − 4π(1 + g)]F (S̄, S̄0),

where g is the common genus of S and S0, S̄ and S̄0 are the solid bodies
bounded by the two surfaces, and F (S̄, S̄0) is the Fréchet distance between
them.
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7. Breadth-first Search (one credit).  irst Search al-
gorithm for labeling the vertices of Di using a single queue to represent all sets
of vertices Sj in one data structure. As suggested by the name, this is a data
structure that supports adding an element at the end and removing it from the
front, both in constant time.

8. Incremental matching (three credits). Recall that the maximum matching of
a bipartite graph with n vertices can be constructed in time at most propor-
tional to n5/2. Running this algorithm within a binary search routine, we find
the perfect matching of a complete bipartite graph that minimizes the largest
cost of any of its edges in time at most proportional to n5/2 log2 n. Show that
the two algorithms can be integrated to avoid the log2 n overhead, constructing
the perfect matching in time at most proportional to n5/2.

fReformulate the Breadth- 



Chapter IX

Applications

The primary application of the mathematical and computational tools introduced
in the previous chapters is in data analysis, an activity that reaches into every
discipline in science and engineering. The data may comprise the readings of an
array of sensors, the pixels of an image, the accumulation of observations, or what
have you. Invariably, there is noise in the data, which may be systematic or random.
It may also reflect genuine properties of the measured phenomenon but at a scale
that is outside the window of interest. The traditional approach to noise is to
‘smooth’ or ‘regularize’ the data, which invariably means we change the data. This
is in contrast to the approach we advocate here, namely to measure the noise and
not change the data. What is new is the measurement and the additional level of
rationality and consistency it affords us. The four case studies selected to illustrate
the possibilities that this paradigm affords us all start with biological data.

IX.1 Measures for Gene Expression Data

Our first application deals with 1-dimensional real-valued functions, the simplest
kind of objects about which persistent homology can make meaningful statements.
Such functions arise in the development of somites in vertebrates.

Background. Vertebrates are characterized by a spinal column consisting of a
sequence of vertebrae that provide a periodic segmentation of their body along the
axis. Mice are one example, with a spinal column of about sixty-five vertebrae.
The numbers are larger for snakes, whose columns might be segmented into a few
hundred vertebrae. This structure arises in the development of the embryo, when
the vertebral precursors, the somites, are formed rhythmically from the presomitic
mesoderm. This process is associated with a molecular oscillator that drives gene
expression with a period corresponding to that of somite formation. We refer to
this oscillator as the segmentation clock. The desire to fully understand this clock
is the motivation for the work described in this section.
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An early indication of the molecular underpinnings of somite development was
the visual exposure of a cyclically expressed gene called lunatic fringe. Adding
a fluorescent marker, its expression could be observed as a wave initiated in the
posterior presomitic mesoderm. Migrating up, the wave narrows as it moves to the
anterior, where the somites form.

Technology. The segmentation clock is one of the most reliable organic struc-
tures, and it has a built-in counter that terminates its rhythm after some number of
periods. Its operation suggests an elaborate mechanism involving more than a few
genes. Microarray technology offers a way to pursue the broad question of which
genes are involved by testing the entire genome of an organism at once. An array
is a 2-dimensional organization of array elements, each measuring the expression of
a particular gene. This is done by depositing pieces of DNA that are specific to
the RNA product of that particular gene. These pieces bind to copies of particular
RNA strands, if they are present in the tissue probe. The binding event is made ob-
servable by fluorescence whose intensity quantifies the abundance of the particular
strand in the tissue.

The organism of choice for the study of the segmentation clock is the mouse. We
start with a microarray primed with the entire mouse genome. Copies of this array
are used to measure the expression of all genes several times during a single period.
In the mouse, a somite is developed roughly every two hours, and measurements
are taken at seventeen time points in that interval. It is important to mention
that this description is a simplification of the actual experiment. Tissue probes
are taken from seventeen embryos and during five periods. Rather than timing the
probes with a stopwatch, the time within a period is estimated from the state of
the observed wave of lunatic fringe expression. Instead of quantified time, we thus
have ranked time, events subjectively ordered by visual inspection. In the end, we
have a series of seventeen measurements for each of about seven and a half thousand
genes in the mouse genome. Each measurement is a real number representing the
observed intensity at the particular array location, which quantifies the abundance
of the corresponding strand of RNA.

Before discussing the mathematical analysis of this data, we draw attention to
an inherent limitation that results from folding data from several periods into one.
Suppose we have a gene that is rhythmically expressed but with a different period,
say, three instead of two hours. The sorting process will shuffle the data collected
for this gene, destroying any clear signal if there was one. It is thus reasonable to use
this data to decide whether a gene is rhythmically expressed with a period consistent
with somite development, but not whether a gene is rhythmically expressed at all,
or what the most likely length of the period would be.

Lipschitz functions on the circle. We model the results of the time series of
microarray experiments as a set of functions from the circle to the real numbers,
f : S1 → R, one for each gene. The circle represents the two hours of one period, and
the function tracks the abundance of the gene product within the period. Change
requires energy, namely for the production and degradation of RNA. We use this
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as a justification to assume that f is Lipschitz, that is, there is a smallest positive
constant, called the Lipschitz constant of f and denoted as Lip(f), such that |f(s)−
f(t)| ≤ Lip(f)∥s − t∥, where the distance between s and t is measured along the
circle. For a differentiable function, this is equivalent to constraining the derivative
between ±Lip(f). Defining the total variation as the integral of the norm of the
derivative, we thus get

Var(f) =

∫ 2π

s=0
|f ′(s)| ds ≤ 2πLip(f).

This inequality will be relevant shortly, when we study the stability of different
ways to measure functions on the circle. To prepare this study, we consider the
persistence diagram of f . It expresses the history of births and deaths in the
sequence of sublevel sets, f−1(−∞, a]. Assuming f is Morse, we have the birth of
a component at every minimum and the death of a component at every maximum,
except at the last, global maximum at which we have the birth of a 1-dimensional
class. This class never dies. Similarly, the 0-dimensional class born at the global
minimum never dies. All other classes are born and die at finite values. Using
the notation from Chapter VI, we write c0 for the number of minima and c1 for
the number of maxima of f . Clearly, c0 = c1. By what we said above, the only
persistence diagram that contains interesting information is the zeroth, Dgm0(f),
containing one point at infinity and n = c0 − 1 = c1 − 1 points in its finite portion,
R2. Each finite point corresponds to a minimum paired with a maximum, and
we write xi = (bi, di), where bi and di are the values of f at the minimum and
the maximum. Let b0 and bn+1 be the values of f at the global minimum and
the global maximum, remembering that (b0,∞) is the point at infinity in Dgm0(f)
and (bn+1,∞) is the only point in Dgm1(f). Consistent with the notation in the
preceding chapter, we write

Φ(f) =
n∑

i=1

(di − bi)

for the total persistence of f . Note that this is the same as half the total variation
minus the amplitude; that is, Φ(f) = 1

2Var(f)−(bn+1−b0). Indeed, Φ(f)+(bn+1−
b0) is the sum of the values of f at the n + 1 maxima minus the sum of the values
at the n + 1 minima. Decomposing f into increasing and decreasing portions, we
can write Var(f) as the sum of two integrals, each equal to the same difference of
sums. Hence, Var(f) = 2Φ(f) + 2(bn+1 − b0), as claimed.

Simplification. Before we introduce a measure for how close a function f : S1 →
R is to being periodic, in our assessment, we need to understand how we can simplify.
Call another continuous function fε : S1 → R an ε-simplification of f if

(i) |f(s) − fε(s)| ≤ ε for all s ∈ S1;

(ii) an off-diagonal point belongs to Dgmp(fε) iff it belongs to Dgmp(f) and its
vertical distance from the diagonal exceeds ε.



202 IX Applications

Condition (ii) says the persistence diagrams of the two functions are the same except
that the diagrams of fε have no points of persistence ε or less. We prove the existence
of ε-simplifications by explicit construction of a function fε. It is convenient to

Figure IX.1: Simplifications of the expression profile of the gene Axin2. From
left to right: the original function and the simplified functions obtained by
canceling one, two, and all three minimum-maximum pairs. Notice that the
last cancellation affects the curve at both ends, because the domain of the
function is the circle.

assume that f is PL Morse. If f has only one minimum and one maximum, then its
persistence diagrams have no finite points and f is its own ε-simplification for every
real number ε ≥ 0. So assume f has at least two minima and two maxima. Let u and
v be a pair with minimum persistence and let x = (f(u), f(v)) be the corresponding
point in the zeroth diagram. By assumption of minimality, the function value
increases monotonically to c = f(v) on both sides of u. Let t ̸= v be the point with
f(t) = c reached from u going in the direction away from v. If f(v) − f(u) < ε,
we change f by setting f(s) = c for all points s on the arc from t to v that
contains u. The values on the complementary arc are preserved. We can make
the new function PL Morse by giving a subtle slope to the flat interval between
v and t, slightly extending it beyond t to pick up a small amount of height. The
persistence diagrams of the new f are the same as before, except that the point x
has disappeared. We get fε by repeating this step for all minimum-maximum pairs
with persistence ε or less. This construction is illustrated in Figure IX.1, which
shows the function for the gene Axin2 along with three simplifications.

Measures. The sine function, which maps points of S1 to their second Cartesian
coordinates in R2, is the prototypical periodic function. It has a single minimum
and a single maximum and varies smoothly between the two. Allowing for more
general patterns to increase and decrease, we retain the property of having only
two critical points as the characteristic ideal of a periodic function. To quantify
periodicity more generally, we assign zero to a function with c0 + c1 = 2 and a
positive number to every other function. Again, we find it convenient to restrict the
discussion to PL Morse functions. Specifically, we set µ0(f) = 1

2 (c0+c1)−1, and for
every positive integer q, we define the degree-q periodicity measure by integrating
the degree-(q − 1) measure over the ε-simplifications of f :

µq(f) =

∫
µq−1(fε) dε.

ε≥0
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Note that µ1(f) is proportional to the average number of critical points of the ε-
simplifications. To see that µq(f) is well defined, we show that the measures do not
depend on which ε-simplifications we use. We do this by proving that µq is equal
to the degree-q total persistence of f defined as Φq(f) =

∑n
i=1(di − bi)q.

Periodicity Measure Lemma. Let f : S1 → R be a PL Morse function. Then
µq(f) = Φq(f) for all non-negative integers q.

Proof. We use induction over q to prove that the contribution of the point xi =
(bi, di) in Dgm0(f) to the degree-q periodicity measure is (di − bi)q. For q = 0,
this point contributes one to µ0(f) as well as to Φ0(f). This establishes the base
case. Let q ≥ 1. By definition of ε-simplification, the point xi belongs to the
zeroth diagram of fε for all 0 ≤ ε < di − bi but not for any larger values of ε.
The contribution of xi to the degree-q periodicity measure is therefore di − bi times
its contribution to the degree-(q − 1) measure, which, by inductive assumption, is
(di − bi)q−1. Summing over all points xi, for 1 ≤ i ≤ n, gives Φq(f). There are no
other finite points in the diagrams of the fε, which implies the claim.

The Periodicity Measure Lemma implies an algorithm for computing µq(f),
namely constructing the zeroth persistence diagram and summing the q-th pow-
ers of the vertical distances of its finite points from the diagonal. It also provides a
definition of µq for real values q that are not integers.

Instability for small degree. Whether or not the periodicity measure is stable
depends on the choice of q. Clearly, µ0 is not stable because arbitrarily small per-
turbations can change the measure by an arbitrary amount. Perhaps less obviously,
µ1 is also not stable. Perhaps less obviously, µ1 is also not stable. To see this,

0 2π

Figure IX.2: The graphs of the functions gk, for k = 0, 1, 2, 3, 4, with vertical
off-set for clarity.

we construct a series of Lipschitz functions, gk : S1 → R, that approach the zero
function while their total persistence approaches π. Replacing each point of S1 by
its angle, ϕ ∈ [0, 2π), we set g0(ϕ) = min{ϕ, 2π−ϕ} and define gk(ϕ) = 1

2gk−1(2ϕ)
for all positive integers k; see Figure IX.2. The maximum difference between gk and
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the zero function is ∥gk∥∞ = max0≤ϕ<2π g(ϕ) = π/2k, which goes to zero as k goes
to infinity. On the other hand, every function gk has slope ±1 almost everywhere.
The total variation is therefore Var(gk) = 2π. We divide by two and subtract the
amplitude to get the total persistence as Φ1(f) = π − π/2k, which goes to π as k
goes to infinity.

Stability for degree at least two. There is a qualitative difference between the
periodicity measures when q passes from one to two. In particular, µq is stable for
every constant q ≥ 2.

Stability Theorem for Total Persistence. Let f, g : S1 → R be Lipschitz
functions with Lipschitz constant one and let q ≥ 2. Then

|Φq(f) − Φq(g)| ≤ 4qπq−1 · ∥f − g∥∞.

Proof. We begin by noting that yq − xq =
∫ y

x qtq−1 dt ≤ q|y − x| max{x, y}q−1

for all x, y ≥ 0 and q ≥ 1. We use the Stability Theorem for Tame Functions in
Chapter VIII to index the persistences of the finite points in the zeroth diagrams
of f and g such that

Φ1(f) = φ1 + φ2 + . . . + φm,

Φ1(g) = γ1 + γ2 + . . . + γm,

and |φi − γi| ≤ 2ε for all i, where ε = ∥f − g∥∞, possibly after adding zeros. Both
sums are bounded from above by half the total variation, which implies Φ1(f) +
Φ1(g) ≤ 2π. We also note that φi ≤ π and γi ≤ π for 1 ≤ i ≤ n. Writing
∆ = Φq(f) − Φq(g), we therefore get

|∆| ≤
m∑

i=1

|φq
i − γq

i |

≤
m∑

i=1

q|φi − γi| max{φi, γi}q−1

≤ q(2ε)πq−2
m∑

i=1

max{φi, γi}.

The sum in the last expression is bounded from above by
∑m

i=1(φi + γi) ≤ 2π. The
claimed inequality follows.

For constant q ≥ 2, the right-hand side of the inequality in the theorem is at most
some constant times the L∞-difference between the two functions. It follows that
the difference between the degree-q total persistences goes to zero as the difference
between the functions goes to zero. The above theorem is thus a statement of
stability for total persistence and therefore for the periodicity measure.
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Notes. The background for the material in this section is provided by the bio-
logical work on somite development in Pourquié’s group; see e.g. [118, 123]. The
microarray time series data of the mouse genome forms the motivation for our work.
It had originally been analyzed using a variant of Fourier analysis [47]. Because of
limitations in the discerned patterns, the same data was later re-analyzed using
four custom-made mathematical methods, all designed to recognize rhythmic gene
expression of the kind exhibited by a small number (fewer than 30) of genes verified
to participate in somite development. One of these methods was the periodicity
measure described in this section. Assessing all seven and a half thousand expres-
sion profiles, each method generated a list of the genes, ordered from most to least
compatible with the rhythm of somite development. These lists were then compared
on the basis of their ranking of the verified genes. The results of the comparison
can be found in [46], including the discussion of a small number of newly identified
genes.

Figure IX.3: The step functions characterizing the distribution of the verified
genes in the ordered lists generated with the periodicity measures µq, for q =
0, 1, 2, 3, 4. For better visibility, we truncate the lists after the first three and
a half thousand genes. Moving northwest, toward the upper left corner of the
rectangle, we first cross the graph of f0, then that of f1, and finally the graphs
of f2, f3, f4 in an order that depends on the exact route we choose.

The particular periodicity measure used in the re-analysis was µ2, which we
preferred over the other choices because q = 2 is the smallest power for which
we know that the measure is stable. There is indeed evidence that stability is
an important property for the task at hand. This is illustrated in the following
comparison of the measures for q = 0, 1, 2, 3, 4. For each q, we generate an ordered
list of the genes, as before, and we construct a step function, fq : [0, 1] → [0, 1],
that counts the verified genes in every initial segment of the list. In other words,
fq(x) equals the percentage of the total number of verified genes that lie within the
initial x percent of the list. If the verified genes are distributed evenly among the
others, then we get a step function whose graph is close to the diagonal. On the
other hand, if the verified genes are all listed first, then the function shoots up to
one and stays there until the end. In general, one measure performs better than
another if the first function majorizes the second. As shown in Figure IX.3, there
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is indeed a marked difference between the unstable measures, µ0 and µ1, and the
stable measures, µ2, µ3, and µ4. In summary, the graph of f0 is slightly above the
diagonal, indicating that µ0 performs only marginally better than giving a random
ordering. The visibly most striking improvement is from µ0 to µ1. However, as we
get closer to the ideal step function, improvements are more difficult to come by,
so the improvement from µ1 to µ2 is also significant. Thereafter, the graphs for
q = 2, 3, 4 are almost indistinguishable.

Recall that the periodicity measures are defined in terms of ε-simplifications of
the expression profiles. The concept of an ε-simplification was introduced in [61],
where the main result is a construction for functions on 2-manifolds. As described
in this section, existence is obvious for functions on a 1-manifold. The situation is
much less understood for functions on a 3-manifold. The question of the stability
of the total persistence for Lipschitz functions was considered in [36]. Similar to
the degree-q Wasserstein distance between diagrams studied in Section VIII.2, the
difference between degree-q total persistences goes to zero as the functions approach
each other for some values of q and not for others. For both concepts, the qualitative
change happens at a value of q that depends on the dimension of the manifold on
which the Lipschitz functions are defined.

IX.2 Elevation for Protein Docking

In this section, we express the protrusions and cavities of a surface using a real-
valued function whose design is motivated by the 3-dimensional shape matching
problem central to the molecular basis of life.

Background. According to the central dogma of biology, strands of DNA are
transcribed to pieces of RNA, which are then translated into proteins. Transcrip-
tion works by complementarity, while translation is more involved, going from an
alphabet of four nucleotides to one of twenty amino acids. Proteins are made of
strings of amino acids. These strings are highly variable in order and length. In
principle, this suggests an astronomical number of different possible proteins, but
nature apparently uses only a tiny fraction of perhaps a few hundred thousand
types. Once a protein has been formed, it folds into a characteristic shape. This
shape determines its function, that is, how the protein acts within its environment
and, in particular, how it interacts with and binds to other proteins.

The interaction between proteins is one of the most fundamental processes in
biology and holds the key to how biological systems work. Cells send signals to one
another and build machines that perform the many tasks that make life possible.
To understand these and other processes, it would be wonderful if we could predict
which proteins interact with which other proteins simply by knowing their shapes
and the forces exerted by their atoms. This is the protein docking problem, the
computational prediction of protein interaction. However, this prediction has proven
notoriously difficult. There is significant debate in the biochemistry community
about the relative importance of the geometry (shape) and the physics (forces), but
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it is clear that both are involved. It stands to reason that the relative importance
of the geometry increases with the size of the involved molecules. But proteins flex,
so geometry alone cannot predict the matching of undocked proteins. Nevertheless,
geometric analysis is the first step.

Technology. The starting point for most docking efforts is geometric structures of
proteins and other molecules collected by the biochemical community. The Protein
Data Bank is an archive that contains information about experimentally determined
geometric structures of proteins and nucleic acids. Data comes in the form of 3-
dimensional atomic coordinates labeled by atom type and other descriptors. Data
is determined primarily using two technologies, x-ray crystallography and nuclear
magnetic resonance. For the former, biochemists crystallize the molecule and image
the crystallized arrangement with a beam of x-rays that scatter in a variety of direc-
tions. From the angles and intensities of the scattered rays, a 3-dimensional picture
of the density of electrons in produced. This density then allows the estimation of
the positions of atoms in the crystal, as well as their chemical bonds. In contrast,
nuclear magnetic resonance aligns nuclei with a magnetic field and perturbs this
alignment with an orthogonal field. The response to the perturbation is then used
to estimate the location of individual atoms.

Figure IX.4: Cut-away view of a molecular skin surface.

Protein surfaces. Given atomic coordinates, we are interested in features on the
surface of a protein that suggest binding configurations. The first problem is to
define what we mean by the protein surface. Individual atoms attract and repel
one another in several ways. The strong forces that hold the molecule together
are chemical bonds and electrostatic interaction of ions. A weaker set of forces,
known collectively as the van der Waals force, is strongly repulsive at short distance,
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attractive at medium distance, and negligible at large distance. It favors a fixed
distance along a large patch of contact, which is the reason why geometry plays a
role in the interaction. To model this contact, we place a small sphere, called the van
der Waals sphere, around the center of each atom. To define a surface, we keep the
spheres fixed while rolling a ball about the configuration, always touching but never
overlapping any of the spheres. The radius of the ball is chosen to approximate that
of a water molecule. As the ball rolls around, it traces out the molecular surface,
which is made up of sphere and torus patches. This is roughly how the surrounding
water experiences the protein. Except for the occasional sharp edge formed by
intersecting blending surfaces, the patches meet to form a continuous bundle of
normal vectors. If continuity is important everywhere, we may alternatively use
the molecular skin, which consists of sphere and hyperboloid patches; see Figure
IX.4. However a protein surface is defined, we look for protrusions and cavities
that might line up when two proteins interact. The mathematical tool we use to do
this is called elevation, and it can be defined for curves in the plane or surfaces in
3-dimensional space. Although our primary application is to surfaces, we simplify
the discussion by restricting ourselves to curves.

Curves in the plane. Suppose M ⊆ R2 is the image of a smooth embedding of
the circle. Define F : M×S1 → R by mapping each point x ∈ M and each u ∈ S1 to
the height of x in the direction u, that is, F (x, u) = ⟨x, u⟩. Fixing a direction, we
get fu : M → R defined by fu(x) = F (x, u), the height function in the direction u.
We are interested in conditions for which this height function is Morse. Recalling
the definition in Section VI.1, we note that fu may fail to be Morse for two reasons,
namely because it contains a degenerate critical point or it has two critical points
sharing the same height value.

A simple degenerate critical point is modeled by the family of functions gs(t) =
t3 + st. For s < 0, we have two critical points, one a local maximum and the
other a local minimum. For s = 0, we have a degenerate critical point at t = 0,
and for s > 0, we have no critical points. As s goes from negative to positive,
the pair of critical points cancel each other. We call this event a cancellation,
or an anti-cancellation if we go in the other direction. Similarly, we can use a
parametrized fourth degree polynomial to model an interchange at which two critical
points momentarily share the function value. In our case, varying the parameter,
s, corresponds to moving the direction such that the critical points slide on the
curve. A cancellation occurs when two critical points collide, which happens at
an inflection point. This motivates us to assume that the curve has only a finite
number of inflection points and only a finite number of lines that are tangent at two
or more points. It follows that there are only a finite number of directions for which
fu is not Morse. Equivalently, the 1-parameter family of height functions passes
through only a finite number of cancellations, anti-cancellations, and interchanges.

Elevation function. When fu is a Morse function, we can use extended persis-
tence to pair up its critical points. These are the points for which u is normal to
the curve, and we associate to each the persistence of the pair to which it belongs,
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calling this real number the elevation of the point. By the Persistence Symmetry
Theorem of Section VII.3, the pairing is the same if we substitute −u for u. It
follows that fu and f−u = −fu define the same elevation values for the same points.
In other words, elevation depends only on the normal line to the curve. Since every
point of M has a unique normal line, this defines the elevation function, E : M → R,
except at points at which the height functions are not Morse. We take limits to
define E also at these exceptional points.

Recall that a cancellation happens at an inflection point, x, for which we set
E(x) = 0. Indeed, it is easy to see that the two critical points are paired right
before they meet and cancel each other at x. The limit is the same from both sides,
namely zero, which implies that E is continuous at x. At the points involved in
an interchange, however, we may have different left and right limits and thus an
ambiguity of how to define E. This is illustrated in Figure IX.5. Here, the point x

y

x

z

w

Figure IX.5: The four white points share the same normal direction, as do the
four light shaded and the four dark shaded points.

would be paired with either y or z. In fact, if we rotate the vertical, upward directed
vector u slightly to the right, the critical point near x is paired with the critical
point near y. In contrast, if we rotate u slightly to the left, the critical point near x
is paired with the critical point near z. Thus, there is a jump from y to z in moving
the normal from right to left. The elevation near x varies continuously, so we can
simply set E(x) equal to the absolute height difference between x and y, which is
the same as the absolute height difference between x and z. But the left and right
limits at y are different, jumping from the absolute height difference between y and
x to that between y and w. We get the same two different limits and the opposite
jump at z. Continuity can therefore be obtained through surgery. Specifically, we
cut M at y and at z and we glue the four ends in pairs to get a new curve on which
E is continuous at the cut points. Of course, the new curve is no longer embedded
in the plane. In this particular case, the new curve consists of two components, a
long loop that contains w and a short loop that contains x. If we perform surgery
at all such discontinuities, we get a curve, N, on which E is everywhere continuous.

Elevation maxima. Our interest in surgery is merely a means to an end, namely
the determination of the interesting features of the curve. Call a point x ∈ N a
local maximum of E if it has an open neighborhood such that E(y) ≤ E(x) for all y
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in this neighborhood. For convenience, we assume the smooth curve is generic by
which we mean

(i) it has only finitely many height functions that are not Morse;

(ii) its elevation function has only a finite number of local maxima.

Condition (i) has been discussed earlier, where it was used to define the elevation
function. Condition (ii) prohibits curves of (locally) constant width, such as for
example the circle. Consider the curve in Figure IX.5 as an example. Its elevation
function has six local maxima, x and w, the two cut points formed by gluing the
four ends obtained by cutting the curve at y and at z, as well as the leftmost point,
p, and the rightmost point, q, of the curve (both not shown).

The local maxima come in pairs, by construction. For example, p and q form a
pair, and E(p) = E(q) is the Euclidean distance between p and q. Since neither
point is a cut point, we call this pair a one-legged elevation maximum. We note that
having p and q paired by extended persistence is necessary to form an elevation
maximum but it is not sufficient. In the one-legged case, the line connecting p and
q must be in the direction of the normal vector, and the curvature at p and at q
must be such that a small rotation does not increase the local width. A second pair
is formed by x and the cut point produced by gluing the right end at y to the left
end at z. We call this a two-legged elevation maximum because we have two legs
connecting x to y and to z on the original curve. Again, having x paired to y and
to z by extended persistence is necessary but not sufficient to form a two-legged
elevation maximum. We also need the property that the orthogonal projection of x
onto the line of y and z falls between the points y and z. Finally, we have a third
pair formed by w and the cut point produced by gluing the left end at y to the right
end at z. This is another two-legged elevation maximum.

Piecewise linear curves. To design an algorithm for computing the elevation
maxima of a curve, we face the usual dilemma that input is never smooth. Instead,
we assume a simple, closed polygon with vertices x0, x1, . . . , xn−1 and edges ei

connecting xi to xi+1, for 0 ≤ i < n where we take indices modulo n. We assume
the polygon is generic, by which we mean that no two of the

(n
2

)
lines connecting the

n vertices are parallel or orthogonal to each other. We may think of this polygon
as approximating a smoothly embedded curve and this way get an idea of what the
elevation maxima ought to be. Alternatively, we may approximate the polygon by
a generic, smooth curve and obtain the definitions by limit considerations. This is
what we do next.

Let P be the subset of R2 whose boundary is the polygon. We write P ε for the
set of points at distance at most ε from P and (P ε)−δ for the set of points of P ε at
distance more than δ from the complement. For δ = ε

2 and sufficiently small ε > 0,
the boundary of (P ε)−δ alternates between an arc on a circle with center xi and
radius δ and a straight line segment parallel to ei. Finally, we replace the straight
line segment by circular arcs of ever so small, positive curvature, κ, calling them the
chords connecting the circular arcs around the vertices. While the resulting curve
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Figure IX.6: Turning a polygon into a generic curve. To simplify the drawing,
we have chosen to ignore the requirements for a generic polygon. The circles
at the vertices have radius ε and δ = ε

2 ; they illustrate the construction of

(P ε)−δ. On the right, we see the circle of directions decomposed into arcs of
constant height ordering.

is not smooth, its normal bundle is continuous and it satisfies the requirements of
a generic curve, which suffices to define the elevation function; see Figure IX.6. For
sufficiently small ε > κ > 0, the points on a chord are all paired with points on the
same circular arc. In contrast, points on a circular arc may be paired with points
of more than one chord or arc.

Algorithm. We begin by recalling the Extended Persistence Algorithm applied
to a height function, fu, defined on the polygon. Assume the vertices have distinct
height values and they are relabeled such that fu(y0) < fu(y1) < . . . < fu(yn−1).
Then each vertex can be unambiguously classified as a minimum, a regular vertex,
or a maximum. Since minima and maxima alternate along the polygon, we have
the same number of each, and the algorithm outputs a pairing (a perfect matching)
between the two collections. The global minimum, y0, is necessarily paired with the
global maximum, yn−1. The other pairs depend on the sequence of sublevel sets
or, equivalently, the lower star filtration of fu, as explained in Chapter VII. We
note that the pairing is the same for other piecewise linear functions for which the
ordering of the vertices is the same. It thus suffices to run the Extended Persistence
Algorithm for

(n
2

)
height functions, one per antipodal pair of arcs defined by the

vertex pairs; see Figure IX.6. Skipping a few details, we note that this can be done
in time at most some constant times n3.

We now discuss how the
(n
2

)
pairings are used to extract all elevation maxima.

As mentioned earlier, there are two types. We first discuss the one-legged elevation
maxima. Let xi, xj be two vertices and u = (xj − xi)/∥xj − xi∥ the direction they
define. Then xi and xj form a one-legged elevation maximum iff xi and xj are
paired by the algorithm applied to fu. In the piecewise linear case, the condition
on the curvature at the two points is void. We second discuss two-legged elevation
maxima. Let xi, xj , xk be three vertices and let u be normal to xk − xj . Suppose
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furthermore that xj and xk lie on opposite sides of the line with direction u that
passes through xi. Let u− and u+ be directions sufficiently close to and on opposite
sides of u. Then xi and xj , xk form a two-legged elevation maximum iff xi and xj

are paired for fu− and xi and xk are paired for fu+ . In summary, the
(n
2

)
runs of

the Extended Persistence Algorithm provide all the information we need to identify
the elevation maxima of the polygon.

Notes. The difficulty of predicting the binding between proteins of known ge-
ometric structure combined with the importance of this question has lead to a
community organized competition [87]. Using yet unpublished geometric structures
determined by x-ray crystallography [52] or by nuclear magnetic resonance [159],
the participants are asked to submit their best predictions, which are then compared
to the observed configuration. The idea of using protrusions and cavities of protein
surfaces to predict binding configurations goes back to Connolly [40]. He represents
the protein by its molecular surface, which decomposes R3 into the inside and the
outside, two 3-manifolds with disjoint interiors and common boundary, namely the
molecular surface. Fixing a radius, r > 0, he places the center of a sphere with
radius r at every point x of the surface and assigns to x the fraction of the sphere
contained in the inside. As shown in [29], the limit of this function, as r approaches
zero, is related to the mean curvature function of the surface. This should be con-
trasted to the relationship between the total mean curvature and the elevation that
follows from integral geometric considerations described in [33]; see also Section
VIII.3. As demonstrated in [152], the elevation maxima are useful in the coarse
alignment of protein structures. This suggests we use elevation as a first pass to-
ward predicting a binding configuration and refine the resulting alignments with
methods that incorporate detailed knowledge of the physical behavior of molecular
systems [130].

While this section focuses on the simpler setting of a curve embedded in R2, the
important setting is of course that of a surface embedded in R3. This is described
in the original paper on the subject by Agarwal, Edelsbrunner, Harer, and Wang
[3]. In going from curves to surfaces, the ideas remain the same but get technically
more complicated. For smoothly embedded surfaces, the construction is based on
Cerf theory [30], which is part of differential topology. Instead of two, we get four
types of elevation maxima; see Figure IX.7. Except for the one-legged case, each

Figure IX.7: From left to right: a one-, two-, three-, and four-legged elevation
maximum of a surface embedded in 3-dimensional space.
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type arises at an ambiguity of the pairing of critical points produced by extended
persistence. The algorithms are again for piecewise linear functions. Similar to the
polygonal case, we construct all elevation maxima by running the Extended Persis-
tence Algorithm for a finite collection of height functions. We refer to Section VII.2
for a fast implementation of the Persistence Algorithm for piecewise linear func-
tions on a 2-manifold. Computing the extended persistence pairs is, however, more
difficult and a similarly efficient algorithm requires sophisticated data structures
[77].

IX.3 Persistence for Image Segmentation

In this section, we discuss image data and, in particular, the problem of segmenting
the data into meaningful pieces. A popular approach is the watershed method, but
it is sensitive to noise in the data, tending to overdo the segmentation. We show
how to use persistent homology to cope with this difficulty.

Background. When we collect data about a physical phenomenon, we do so
to varying degrees of resolution. Images are high-resolution data sets, representing
shapes and scenes in great detail. A large part of biological and medical research, as
well as medical practice, depends on technology that produces 2- and 3-dimensional
images. But we can go beyond three dimensions, eg. with video sequences that
unwind in time. There are also reasons for generating images synthetically, using
methods such as Fourier transforms, for finding symmetries and for other purposes.
The high resolution of image data suggests we think of it as a continuous object and
apply methods from continuous rather than discrete mathematics for its analysis.
By its nature, an image contains more than the desired information. Therefore the
first task is often the extraction of interesting features. Capturing and describing
these features is the province of image analysis. It includes tasks such as denoising,
segmentation, registration, comparison, and more.

Technology. The last decades have witnessed a revolutionary change in how sci-
ence is practiced, and this change is fueled by ever improving ways of acquiring
data. Using new technology, we are able to collect high-resolution data on physical
events that have traditionally been beyond our reach. Examples are sensor net-
works monitoring environments and microarrays measuring the expression of the
entire genomes. These are relatively recent technologies for which we can expect
rapid improvements in the accuracy and volume of collected data. More traditional
imaging technologies generate 2- and 3-dimensional arrays of measurements.

Microscopy. This is an umbrella under which we distinguish different technologies
depending on the medium used to generate the image. Optical microscopy involves
light diffracted from an object passing through a lens to allow for a magnified view.
Similarly, electron microscopy measures the diffraction of electromagnetic radia-
tion by an object. In contrast, scanning probe microscopy, as the name suggests,
measures the interaction of a probe with an object. In each case, the output is a
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2-dimensional array of tiny squares, referred to as pixels, short for picture elements.
Being 2-dimensional, the number of pixels is usually not more than perhaps a few
million, which is easy to manage with current computer storage technology.

Magnetic resonance imaging. The principles are the same as for nuclear magnetic
resonance, but the N-word has been dropped for medical applications. Here we use
a magnetic field to align the nuclei of hydrogen atoms in water. Radio frequency
fields are then used to systematically alter the alignment, which creates the signal
detected by the scanner. This technology is widely employed in radiology to study
the internal structure of the human body. The output is a 3-dimensional array of
tiny cubes, referred to as voxels, short for volume elements. Being 3-dimensional,
the voxel array provides a lot more information than a pixel array generated with
microscopy. This wealth comes with a cost, namely the added difficulty of managing
and analyzing such a large amount of data.

Segmentation. Once an image is acquired, it becomes a mathematical object
that we can study. In particular, a 2-dimensional image is a function that is piece-
wise constant on a rectangular configuration of pixels; see Figure IX.8. Inside a
pixel, the function is constant and measures intensity or gray value, and similarly
for color pictures, except that we get three separate images, one for red, one for
green, and one for blue. Given an image, the segmentation problem looks to identify

Figure IX.8: Confocal microscopy image of a cross-section of the cells in a
Drosophila embryo during the developmental process known as dorsal closure
[image courtesy of Daniel P. Kiehart and Adrienne Wells, Biology, Duke Uni-
versity].

regions of interest from these values. In Figure IX.8, these regions would be the
cells imaged by microscopy. The general problem is hopelessly ill-defined but of
major importance. As a result, the state of the art in the field is at best imperfect.
Every type of image provides a different set of challenges, motivating a variety of
approaches to the problem. Specifying global or adaptive thresholds to define the
regions is a good first step. Methods of mathematical morphology can then be
used to refine the result. Deformable models or level set methods solve differen-
tial equations to shrink-wrap a region with a curve or a surface. Region growing
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and region splitting methods seek to improve segmentations by locally improving a
quality assessment. In this section, we consider yet another approach, one that fits
nicely into the framework of computational topology.

Watershed intuition. We begin with an intuitive description of the method. Let
us treat an image as a continuous function defined on a region of the plane, usually
a rectangle, although for this description we assume it is defined on all of R2. Think
of the graph of this function, a surface in R3, which we imagine permeable, with soil
below and air above. Now suppose it rains and the water level rises everywhere on
the plane. As is common on planet Earth, we call land only the part of the surface
above the water level. As the level rises, we see the land shrinking and its topology
changing. When the water reaches a local minimum, a lake forms and grows as the
level rises. When the water reaches a saddle point, two lakes merge into a single
lake or an island separates from the mainland. When the water reaches a local
maximum, the corresponding island has completely submerged under water.

We can keep the water from overflowing by building watershed lines as we pass
saddles. These are the curves that separate lakes where the water meets as it rises.
Mathematically, they form the unstable or ascending 1-manifolds corresponding to
the saddles. They prevent the lakes from merging and form roads (anti-canals)
between the islands and the mainland, thus maintaining the lakes as topological
disks throughout the process.

The Watershed Algorithm. To formalize this process, we construct a piecewise
linear function that represents a given image. For each pixel, we have a vertex at
its center and we connect the vertices to form a triangulation. It is convenient
to compactify by adding a dummy vertex to get a triangulation of S2. Specifying
a value at each vertex, we get a function by piecewise linear interpolation; see
Section III.1. More generally, we can begin with a triangulated 2-manifold and a
piecewise linear function, f : M → R. Recall that in Section VI.2, we constructed a
complex whose vertices were the maxima, edges were the unstable 1-manifolds, and
regions were the unstable 2-manifolds of the function. We now give an algorithm
that constructs an approximation of the unstable manifolds. It is convenient to
assume that the vertices have distinct function values and they are indexed such
that f(x1) < f(x2) < . . . < f(xn). We recall from Section VI.3 that each vertex
is classified as regular or critical by looking at the values of f in its link. Call the
part of the link spanned by vertices whose function value exceeds f(xi) the upper
link of xi. Then xi is a minimum if the upper link is the entire link, a maximum
if the upper link is empty, and a k-fold saddle if the upper link consists of k + 1
components, each a path or an isolated vertex. The vertex is regular if it is a 0-fold
saddle, that is, if it has a non-empty, connected, upper link that does not exhaust
the entire link.

We process the vertices from lowest to highest. Specifically, we run a loop from
i = 1 to i = n and distinguish between the different types of vertices. Initially, all
simplices in the triangulation are unmarked.



216 IX Applications

Case 1: xi is a saddle. We mark xi together with the edges that connect the sad-
dle to the highest vertex in each component of the upper link.

Case 2: xi is regular. If xi has an incoming marked edge, then we mark xi together
with the edge to the highest vertex in the upper link.

Case 3: xi is a maximum. We mark xi.

In the end, we have k + 1 paths running upward from a k-fold saddle. Sometimes
these paths merge, but then they continue together until they reach a maximum.
The number of paths ending at a maximum varies depending on the surrounding
configuration of minima and saddles. It is even possible that a maximum is isolated,
without a path ending at the vertex. But this can only happen if the manifold is a
sphere and f has one minimum, one maximum, and no saddles. It is not difficult to
see that the paths consisting of the marked edges and vertices cut the 2-manifold
into open disks, one for each minimum. This is also true if we have no saddles and
therefore no marked edges. The open disk is then the sphere minus the maximum,
which is marked by the algorithm.

Cleaning up. The Watershed Algorithm is widely used, but it tends to overdo
the segmentation, creating too many regions and identifying small noise in the
image rather than just the desired features. For this reason, there is always a clean-
up step, sometimes done systematically and sometimes in an ad hoc way or even
manually. This is illustrated in Figure IX.9, where the goal of the segmentation is
to identify the location and the shape of cells of a fly embryo. To appreciate the
importance of a reliable and consistent segmentation, we note that the image shows
a cross-section of the embryo and similar images are taken at other cross-sections.
Furthermore, the images are taken in a time series. After segmenting each cross-
section, the task is to connect the results to reconstruct the 3-dimensional cells and
then the cells to reconstruct the motion. Finally, the details of the motion are used
as cues to hypothesize the forces that drive the motion. We can clearly see that
the segmentation in Figure IX.9 at the top is too fine to capture individual cells.
We need to simplify the segmentation by distinguishing more from less important
separations. Persistence gives us just the tool we need for this.

Simplification. We begin by computing the persistence of the minima, saddles,
and maxima, which can be done during the same bottom-up sweep that constructs
the segmentation. We get infinite persistence for the critical vertices, giving birth
to essential homology classes, and finite, positive persistence for all other critical
vertices. For simplicity, assume that all saddles are 1-fold and thus get assigned a
unique persistence value, the absolute height difference to the paired minimum or
maximum.

We simplify the segmentation in the order of increasing persistence. Assuming
the absolute height differences of the vertex pairs computed by the Persistence
Algorithm are distinct, the pair with minimum persistence is unique. Consider first
the case in which this pair consists of a minimum, x, and a saddle, y. Passing
y during the sweep merges the component started at x with another component
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Figure IX.9: Top: the initial watershed segmentation before clean-up. Bottom:
the result of simplifying the segmentation using persistence.

started earlier. By minimality of persistence, the watershed line started at y is part
of the boundary of the region of x. Therefore, we can simplify by removing this
line, which we do in two passes, both beginning at y. Unmarking edges and vertices
in sequence, we stop each pass when we reach a maximum or the line merges with
another. The result is that the two regions separated by y are now joined, and
since x was the minimum of one of these, the other minimum represents the merged
region. Consider second the case in which the minimum persistence pair consists of
a saddle, y, and a maximum, z. By minimality of persistence, the watershed line
started at y ends at z on one side and at a higher maximum on the other side. If
this is the only watershed line ending at z, we remove it by unmarking its vertices
and edges in sequence, beginning at z. Otherwise, we let the watershed line be,
except that we think of it as an extension of the other lines ending at z.

We note that the change effectively treats the critical vertices of the minimum
persistence pair as if they were regular. The rest of the persistence pairing re-
mains unchanged. We can therefore proceed to the next lowest persistence pair
and continue until we exceed a pre-chosen threshold. Applying this strategy to the
segmentation in Figure IX.9, top, we get the segmentation shown at the bottom.
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Notes. Images are generated by a plethora of technology, including microscopy
[42] and magnetic resonance [81]. The 2-dimensional images in this section are from
work on the dorsal closure in fly embryos [91]. Algorithms for processing images are
described in the image analysis literature [135]. Many problems in this area are of a
topological nature [93], including the segmentation of images into regions of interest.
The Watershed Algorithm for segmentation goes back to the early eighties of last
century [18]; see [128] for a survey of the general literature on the topic. Because
of the importance and the large amount of medical data, the 3-dimensional version
of the algorithm is of particular interest. We refer to [131] for the description of
the method for magnetic resonance images using a diffusion filter to cope with the
endemic over-segmentation. The algorithm for 3-dimensional images is similar to
but more complicated than for 2-dimensional images. From Morse theory, we know
that we have four types of simple critical vertices: minima, index-1 saddles, index-2
saddles, and maxima. We get a 3-dimensional cell for each minimum, a surface
for each index-1 saddle, a curve for each index-2 saddle, and a vertex for each
maximum. Together, they form a complex akin to the unstable manifolds discussed
in Chapter VI. Persistence pairs minima with index-1 saddles, index-1 with index-2
saddles, and index-2 saddles with maxima. The simplification can again be done
in the order of increasing persistence, but this is now more complicated than for
2-manifolds.

IX.4 Homology for Root Architectures

In this section, we look at the problem of recovering the structure of a plant root
from photographic images. We combine standard image processing techniques with
homology computations to capture interesting traits, such as the branching pattern
and the distribution in space.

Background. Plant biologists understand much more about how plants grow and
develop above the ground than underground. Yet, the root is every bit as important
in how a plant responds to environmental variation and how it adapts to soil and
moisture conditions. Learning about root architecture beyond what we know today
is necessary before we can begin to understand the connection between phenotype
and genotype in root development. The genotype is studied in a variety of biological
experiments, many involving microarrays used to measure the expression of an
entire collection of genes. To characterize the phenotype, we need an accurate set
of measurements, preferably obtained without moving or damaging the plant. This
way we can repeat the measurements during development, while the root makes
decisions about where and when to grow.

We focus here on topological features of a plant root, in particular on a decompo-
sition into tips, forks, and branches and on a characterization of space utilization.
At a fork, a growing root either divides into two or a lateral root emerges. If we
remove the fork, the rest of the root is branches, and we call the end of a branch
that is not a fork a tip. Plant roots grow from the tip, so the number and location
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of these is of importance to biologists. Note, however, that the location of the forks
and tips along the root says little about the way the root distributes itself in the
soil. To study this distribution, we consider the complement of the root embedded
in space and measure its connectivity using persistent homology.

Technology. For simple and rather obvious reasons, studying the architecture of
a plant root is a difficult undertaking. We can dig up the plant to measure traits
like length, branching, and more, but there are limitations to this approach. The
first is that removing a plant from the ground seriously disrupts its growth pattern
and may even kill it. A second is a lack of information about space utilization.
We would like to find out how the root distributes itself in the soil and how its
growth varies in response to a variety of stimuli, such as soil nutrient abundance
and distribution, other forms of environmental stress, and the availability of water.

Figure IX.10: Rice root system growing in gel [image courtesy of Philip N.
Benfey and Anjali Iyer-Pascuzzi, Biology, Duke University].

To cope with these difficulties, we need a new medium to grow the plant and a
way to image the root. We know of two solutions: growing the plants in styrofoam
containers and taking x-ray images, and growing them in transparent gel and taking
photographs. The styrofoam provides a fairly realistic medium for the plant and
both nutrition and water conditions are easy to vary without disturbing the plant.
The disadvantage is the need to vacuum the container to remove as much water as
possible before taking images. Water is an issue because x-rays refract when they
pass through water, so any moisture left in the container shows up as noise in the
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image. The problem is severe since vacuuming disturbs the plant while moisture
compromises the images. The transparent gel provides a nutrient mix that is less
realistic than that of the styrofoam but much more than that of a hydroponic system,
for example. The main advantage is the ease with which we can take photographic
images; see Figure IX.10. Placing the gel together with the root inside a glass
container, we can take photographs 360 degrees around. The task thus reduces to
extracting the desired information from a 2-parameter sequence of images, going
around the root and taking the photographs over a period of a few weeks. Each
image is a 2-dimensional array of pixels. We discuss the extraction of features
directly from these images as well as attempts to reconstruct a 3-dimensional image
from the sequence of 2-dimensional images.

Tips, forks, and branches. Suppose first that we are working with a single
photographic image, that is, a projection of our root to the plane represented by an
array of pixels, p, with intensities, f(p). Specifying a threshold, θ, we decompose
the image into foreground, the union Y of all pixels with intensity f(p) ≥ θ, and
background, the union X of pixels with intensity f(p) < θ. We recall that each pixel
is a closed square so that foreground and background are both closed and intersect
in their common boundary, which is 1-dimensional.

Figure IX.11: From left to right: schematic local pictures of a tip, a branch, a
fork, and a crossing.

Assuming the foreground represents the root, it consists of streams of pixels
forming roads that fork and cross and eventually end. While the roads vary in
their thickness, we think of them as forming a 1-dimensional graph, with nodes
connected by arcs. We call a degree-1 node a tip, a degree-3 node a fork, and an arc
between two such nodes a branch. We illustrate the definitions by showing typical
local pictures in Figure IX.11. There are also degree-4 intersections, but since
roots rarely sprout two lateral branches at the same location, we assume these are
artifacts of occlusion and represent them as crossings between branches rather than
nodes in the graph. Of course, there can be more complicated situations caused by
accumulated occlusion. These are better dealt with in three dimensions, and we
ignore them for the time being.

Persistent local homology. As suggested by Figure IX.11, we look at the ho-
mology of the foreground and the background within small circular windows to
classify a pixel to belong to a tip, a fork, or a branch. Fixing a point x ∈ R2 and
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a real number r ≥ 0, we write B(r) = Bx(r) for the closed disk with center x and
radius r. The foreground and background within this window are Y(r) = Y ∩ B(r)
and X(r) = X ∩ B(r). We are interested in the first homology of the foreground
within the window relative to its boundary on the circle, H1(Y(r), bdB(r)). Assum-
ing the generic case in which the circle intersects the boundary of Y transversally,
we replace the boundary on the circle by the boundary Y(r) shares with X(r). Since
Y(r) is in the plane, it is easy to see that this gives an isomorphic first homology
group; compare with Exercise 7 at the end of this chapter. We thus get

H1(Y(r), bdB(r)) ≃ H1(Y(r), Y(r) ∩ X(r))

≃ H1(B(r), X(r))

≃ H̃0(X(r)),

where we get the second line by excision and the third line using the exact sequence
of the pair (B(r), X(r)). Instead of looking at the first relative homology group,
we can therefore use the zeroth absolute homology group of the local complement,
X(r), to distinguish between the different types of neighborhoods; see Table IX.1.
Using persistence, we eliminate the dependence on the choice of r. Specifically, we

tip branch fork crossing
rank H0(X(r)) 1 2 3 4

Table IX.1: The rank of the zeroth homology groups of the neighborhoods of
a pixel inside a tip, a branch, a fork, and a crossing.

increase r from zero to infinity and consider the zeroth persistence diagram of the
local background pictures, X(r) ⊆ X(s) for 0 ≤ r ≤ s < ∞. If x is part of a tip, we
see the following typical behavior as we grow the window.

Tip. For very small r, X(r) will be empty. Its first component will be born when r
reaches the distance from x to X. This might be the only event for a while, but
more likely we will see births and deaths of components in quick succession.
However, these extra components correspond to points in the diagram whose
persistence is negligible. Of course, once r gets large, all kinds of things may
happen. In summary, we see only one birth that happens for small r and whose
persistence is not negligible.

Similarly, for a branch we see two births for small r with larger than negligible
persistence, for a fork we see three such births, and for a crossing we see four. As
one can imagine, using persistence instead of a fixed radius greatly increases the
number of pixels that can be correctly classified, but it is still a long shot from
classifying all pixels. Ambiguities arise for a variety of reasons, including spurious
foreground and background components, thicker than expected branches, and other
root portions reaching into the local window. We can conceive of heuristics coping
with these difficulties, but ultimately we need to face the fact that the problem as
described does not admit a perfect solution.
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3-dimensional reconstruction. Important information about the root, includ-
ing estimates for the number of tips and forks, can be computed directly from the
2-dimensional images. However, to learn how the root distributes itself to explore
the soil requires a reconstruction as a subset of 3-dimensional space. We describe

Figure IX.12: Schematic cross-section of a root growing inside a cylindrical
container. We reconstruct the two shaded spots from their images in the five
projections.

here an image processing approach to this problem. It starts with a cubic block
of voxels from which the algorithm sculpts the root. We assume a small, but not
too small, number of photographic images taken of the same root from different
directions and at about the same time. For each image, we know the position of
the camera and the direction of the projection. As before, we use a threshold to
decompose an image into foreground and background. If the projection of a voxel
into the plane of the image lands inside the background, then the voxel cannot be
part of the root. As illustrated in Figure IX.12, the Space Carving Algorithm com-
bines the information gleaned from all 2-dimensional images and this way arrives
at a first approximation of the 3-dimensional structure.

The quality of the reconstruction depends on the number and resolution of the
images, the calibration of the cameras, and other factors. As before, we can make
amendments to the algorithm to improve the quality, such as estimating probabili-
ties for a voxel to belong to the root or using prior knowledge about the structure
of the root. While we can perhaps reach acceptable results, we should keep in mind
that perfection is at best reachable in the limit of our improvement efforts.

Utilization of space. Suppose now that we have reconstructed the 3-dimensional
structure of the root. Reusing the 2-dimensional notation, we write Y ⊆ R3 for the
space we use to represent the root. We may revisit the decomposition of the root
into tips, forks, and branches using local homology within spherical balls. Since
crossings no longer confuse the picture, we can expect a higher success rate in the
classification. We can also address the global question of how the root distributes
itself in space. For this purpose, we introduce the Euclidean distance function,
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f : R3 → R, defined by mapping every point x ∈ R3 to its distance from Y, that
is, f(x) = infy∈Y ∥x − y∥. Note that Y = f−1(0). The sublevel sets of f form a
nested sequence of spaces, Yr = f−1[0, r]. The corresponding sequence of reduced
homology groups,

0 → H̃p(Y0) → . . . → H̃p(Yr) → . . . → 0,

characterizes how thickening up the root fills space. As described in Chapter VII,
we use the persistence diagram to characterize the main events in the filtration. The
root is connected, so the zeroth diagram, Dgm0(f), should be empty. Any devia-
tion from this ideal will have to be explained by failures to accurately reconstruct
the root. There is more interesting information in the first and second diagrams.
Consider for example a diffuse root system, that is, a root that distributes itself
reasonably densely and more or less uniformly in the available space. Then Yr will
have trivial first and second homology groups already for small values of r. Cor-
respondingly, Dgm1(f) and Dgm2(f) will have no points of larger than negligible
persistence. On the other hand, if the root has a tendency to grow around pieces of
space, then this will express itself in voids and tunnels of Yr. Correspondingly, one
of the two or both diagrams will have points with larger than negligible persistence.
We note that this discussion neglects the possibility of a root that grows radially in
a non-uniform manner but avoids the creation of tunnels and voids while exploring
space. But we can detect such behavior by considering spherical cross-sections, for
example.

There is more than one way we can compute the persistence diagrams of f . For
example, we can grow Yr by successively adding voxels to the initial space, Y = Y0.
Alternatively, we may let S ⊆ R3 be the set of centers of the voxels constituting Y.
We then compute the Delaunay complex of S and the family of alpha complexes,
as explained in Chapter III. The Stability Theorems of Chapter VIII imply that
the diagrams we get from these and reasonable other methods are only a small
bottleneck distance away from each other.

Notes. The study of plant roots has a long tradition in biology [26]. The project
that provides the background for the discussions in this section targets agricultural
plants, such as rice and maize. Local homology is a natural choice in the study
of structural features such as forks and tips in roots. In mathematics, the con-
cept makes its first appearance in Poincaré duality. Letting M be a d-dimensional
manifold without boundary and x a point of M, we find that the relative homol-
ogy group Hp(M, M − {x}) is trivial for all dimensions p ̸= d and has rank one
for p = d. Using integer coefficients, the latter group has two generators, and a
choice of one is called an orientation of M at x. Making consistent choices at all
points, an element of Hd(M) is a fundamental class of M if its image under the
induced map to Hd(M, M − {x}) is the chosen orientation. This class is used to
define Poincaré duality; see Hatcher [82, Section 3.3]. The idea of using this con-
struction in combination with persistent homology appears for the first time in [17].
Given a finite point set S ⊆ Rd, the paper uses persistent versions of local homology
towards reconstructing a stratified space that best approximates S. Basic tools in
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this study are the persistent kernels and cokernels of maps from one filtration to
another. The algorithms for these are similar to but more involved than those for
ordinary persistence [37].

The problem of reconstructing shapes from sequences of images is studied in the
general field of computer vision; see e.g. [72, 86]. The idea of carving out the shape
from a block of voxels is due to Kutulakos and Seitz [98], but see also [100]. Given
such a reconstruction, we can use standard algorithms for Delaunay complexes [54],
alpha shapes [63], and persistent homology [60] to characterize the distribution of
the root in space.

Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical ques-
tion can be answered using knowledge of the material combined with some thought
and analysis.

1. Antipodal functions (two credits). A function f : S1 → R is antipodal if
f(s) = f(−s) for all s ∈ S1. Equivalently, the function defined by g(s) =
f(s) − f(−s) is the zero function.

(i) Design a measure for quantifying the distance of a function from being
antipodal.

(ii) Prove that your measure is stable or, alternatively, change your measure
such that it is stable.

2. Lipschitz function on the sphere (three credits). Let d be a positive integer
constant and f : Sd → R a Lipschitz function. Note that the d-dimensional
volume of Sd is bounded from above by a constant that depends on d.

(i) Prove that for q > d, the degree-q total persistence of f is bounded from
above by a constant.

(ii) Use the result in (i) to show that for q > d + 1, the degree-q total persis-
tence measuring Lipschitz functions on Sd is stable.

3. Fast pairing (two credits). Let f : S1 → R be a continuous, piecewise linear
function specified by its values at the vertices of a triangulating n-gon.

(i) Assuming f(xi) ̸= f(xj) for all pairs of vertices xi ̸= xj of the n-gon,
characterize the vertices that are paired by extended persistence.

(ii) Furthermore assuming the vertices are given in the order of increasing
function value, show that the extended persistence pairing can be com-
puted in time at most some constant times n.

4. Inflection points and bitangent lines (one credit). Let γ : S1 → R be a
smooth embedding of the circle in the plane. Suppose the curvature vanishes
only at a finite number of points. Show that there are only a finite number of
lines that are tangent to the curve at two or more points.
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5. Labeling regions (two credits). Consider the Watershed Algorithm for seg-
menting a triangulated 2-manifold given in Section IX.3.

(i) Modify the algorithm so it labels the simplices in each region with the
index of the generating maximum.

(ii) Define the i-th region as the union of the interiors of the simplices labeled
i by the modified Watershed Algorithm. Prove that it is homeomorphic
to an open disk.

6. Ordering the pixels (two credits). Let n = 2k and consider an n-by-n array
of pixels pj

i for 1 ≤ i, j ≤ n. We define what it means to list the pixels in
Z-order. For k = 1, we have four pixels which we arrange as p1

1, p
2
1, p

1
2, p

2
2. For

k > 1, we decompose the array into four equal blocks and list the upper left,
the upper right, the lower left, the lower right blocks in this sequence and each
in Z-order.

(i) Assume the pixels are listed in lexicographic ordering of their index pairs,
(i, j). Write an algorithm that rearranges the pixels in Z-order.

(ii) Write computer programs that translate back and forth between the row-
column index pairs of a pixel and its index in Z-order.

7. Isomorphic relative homology groups (three credits). Let Y be a d-manifold
with boundary and let bd Y = A ∪ B be a decomposition of the boundary into
two (d−1)-manifolds with common, (d−2)-dimensional boundary and disjoint
interiors. Prove that Hd−p(Y, A) ≃ Hp(Y, B) for all dimensions p.

8. Distance function (two credits). Let S be a finite set of points in Rd and let
f : Rd → R be defined by f(x) = minu∈S ∥x − u∥. Recall from Chapter III
that Alpha(r) is the alpha complex defined by S and a radius r ≥ 0.

(i) Let r ≤ s and consider the diagram of homology groups in which all four
maps are induced by inclusion:

Hp(f−1[0, r]) −→ Hp(f−1[0, s])
↑ ↑

Hp(Alpha(r)) −→ Hp(Alpha(s)).

Prove that the vertical maps are isomorphisms and that the diagram com-
mutes.

(ii) Show that the persistence diagrams of f are the same as those of the
sequence of alpha complexes.
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[9] P. S. Alexandrov. Über den allgemeinen Dimensionsbegriff und seine Beziehungen zur
elementaren geometrischen Anschauung. Math. Ann. 98 (1928), 617–635.

[10] V. I. Arnold. Ordinary Differential Equations. Translated from Russian, MIT Press, Cam-
bridge, Massachusetts, 1973.

[11] F. Aurenhammer. Voronoi diagrams — a study of a fundamental geometric data structure.
ACM Comput. Surveys 23 (1991), 345–405.

[12] T. F. Banchoff. Critical points and curvature for embedded polyhedra. J. Differential
Geometry 1 (1967), 245–256.

[13] T. F. Banchoff. Triple points and surgery of immersed surfaces. Proc. Amer. Math. Soc.
46 (1974), 403–413.

[14] A. Banyaga and D. Hurtubis. Lectures on Morse Homology. Kluwer, Dordrecht, The
Netherlands, 2004.

[15] W. R. Bauer, F. H. C. Crick and J. H. White. Supercoiled DNA. Scientific American
243 (1980), 118–133.

[16] B. Baumgart. A polyhedron representation for computer vision. In “Proc. Natl. Comput.
Conf., 1975”, 589–596.

[17] P. Bendich, D. Cohen-Steiner, H. Edelsbrunner, J. L. Harer and D. Morozov. In-
ferring local homology from sampled stratified spaces. In “Proc. 48th Ann. Sympos. Found.
Comput. Sci., 2007”, 536–546.

[18] S. Beucher. Watersheds of functions and picture segmentation. In “Proc. IEEE Intl. Conf.
Acoustic, Speech, Signal Process, 1982”, 1928–1931.

[19] K. Borsuk. On the imbedding of systems of compacta in simplicial complexes. Fund. Math.
35 (1948), 217–234.

227



228 References

[20] H. R. Brahana. Systems of circuits on two-dimensional manifolds. Ann. Math. 23 (1922),
144–168.

[21] E. Brisson. Representing geometric structures in d dimensions: topology and order. Discrete
Comput. Geom. 9 (1993), 387–426.
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O. Pourquié. A complex oscillating network of signaling genes underlies the mouse seg-
mentation clock. Science 314 (2006), 1595–1598.

[48] T. Dey, H. Edelsbrunner, S. Guha and D. V. Nekhayev. Topology preserving edge
contraction. Publ. Inst. Math. (Beograd) (N.S.) 66 (1999), 23-45.

[49] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik
1 (1959), 269–271.

[50] E. A. Dinic. Algorithm for solution of a problem of maximum flow in a network with power
estimation. Soviet Math. Doklady 11 (1970), 1277–1280.

[51] D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of three-dimensional
subdivisions. Algorithmica 4 (1989), 3–32.

[52] J. Drenth. Principles of Protein X-Ray Crystallography. Springer-Verlag, New York, New
York, 1999.

[53] H. Edelsbrunner. The union of balls and its dual shape. Discrete Comput. Geom. 13
(1995), 415–440.

[54] H. Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge Univ. Press,
Cambridge, England, 2001.

[55] H. Edelsbrunner. Surface tiling with differential topology. In “Proc. 3rd Eurographics
Sympos. Geom. Process., 2005”, 9–11.

[56] H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement. J. Comput.
System Sci. 38 (1989), 165–194. Corrigendum. J. Comput. System Sci. 42 (1991), 249–251.

[57] H. Edelsbrunner and J. L. Harer. Persistent homology — a survey. Surveys on Discrete
and Computational Geometry. Twenty Years Later, J. E. Goodman, J. Pach and R. Pollack
(eds.), Contemporary Mathematics 453, 257–282, Amer. Math. Soc., Providence, Rhode
Island, 2008.

[58] H. Edelsbrunner, J. L. Harer and A. J. Zomorodian. Hierarchical Morse-Smale com-
plexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30 (2003), 87–107.

[59] H. Edelsbrunner, D. G. Kirkpatrick and R. Seidel. On the shape of a set of points in
the plane. IEEE Trans. Inform. Theory IT-29 (1983), 551–559.

[60] H. Edelsbrunner, D. Letscher and A. J. Zomorodian. Topological persistence and sim-
plification. Discrete Comput. Geom. 28 (2002), 511–533.

[61] H. Edelsbrunner, D. Morozov and V. Pascucci. Persistence-sensitive simplification of
functions on 2-manifolds. In “Proc. 22nd Ann. Sympos. Comput. Geom., 2006”, 127–134.
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[108] W. Mayer. Über abstrakte Topologie. Monatschr. Math. Phys. 36 (1929), 1–42 and 219–
258.

[109] J. McCleary. A User’s Guide to Spectral Sequences. Second edition, Cambridge Univ.
Press, Cambridge, England, 2001.

[110] J. Milnor. Two complexes which are homeomorphic but combinatorially distinct. Ann. of
Math. 74 (1961), 575–590.

[111] J. Milnor. Morse Theory. Princeton Univ. Press, Princeton, New Jersey, 1963.
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tiques. Premier Mémoire: Sur quelques proriétés des formes quadratiques positive parfaites.
J. Reine Angew. Math. 133 (1907), 97–178.

[150] G. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadra-
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