Metoda Bourstow

Wednesday, May 12, 2021 8:00 AM

$$P_{M}(x) = 1 \cdot x^{M} + \alpha_{1} x^{M-1} + \dots + \alpha_{M-1} x + \alpha_{M}$$

$$P_{M}(x) = 0$$

$$P_{uu}(x) = (x^{2} + px + q) (x^{u-2} + b_{1}x + ... + b_{u-3}x + b_{u-2})$$

$$x_{u,2}$$

(x) Keeticijouti:

$$S = au - q \cdot bu - 2 - p \cdot bu - 1$$
  
= bu + p · bu - 1

1,2 K\$3,4..., w-2, ..., bo=1, b-1=0 Wednesday, May 12, 2021

$$b = \frac{3b}{3pm} \cdot \nabla b^{n} + \frac{3d}{3pm} \cdot \nabla b$$

Wednesday, May 12, 2021 8:00 AM

$$\frac{\partial b^{\kappa}}{\partial b^{\kappa}}$$
,  $\frac{\partial g}{\partial b^{\kappa}} = 7$ 

$$b_0=1$$
,  $b_{-1}=0$  =)  $\frac{\partial b_0}{\partial p}=\frac{\partial b_0}{\partial q}=\frac{\partial b_{-1}}{\partial p}=\frac{\partial b_{-1}}{\partial q}=0$ 

$$\frac{\partial b}{\partial px} = -1 \cdot px - 1 - b \cdot \frac{\partial b}{\partial px - 1} - d \cdot \frac{\partial b}{\partial px - 5}$$
 (V)

$$\frac{\partial q}{\partial hox} = -p. \frac{\partial q}{\partial hox^{-1}} - 1. bx-2 - q. \frac{\partial q}{\partial hox^{-2}}$$
 (2)

$$(V): C^{k-1} = -\frac{9b}{9px}$$
 (denoma)

$$C_{k-1} = b_{k-1} - p \cdot C_{k-2} - q \cdot C_{k-3}$$

$$V=1: C_1 = -\frac{\partial b_2}{\partial p} = -\frac{\partial (\alpha_2 - pb_1 - q)}{\partial p} = b_1 + p \cdot \frac{\partial b_1}{\partial p} = b_1 - p \cdot c_0$$

$$k=1: \quad C_0 = -\frac{3p}{3p} = -\frac{3(\alpha(-p))}{3p} = 1 = 1 \quad C_0 = 1$$

$$C_0 = 1 = b_0 = b_0 - P.C_{-1} - g.C_{-2} = 0$$

Wednesday, May 12, 2021  $(2): \frac{\partial bk}{\partial g} = -bk-2 - 9 \cdot \frac{\partial bk-2}{\partial g} - p \cdot \frac{\partial bk-1}{\partial g}$ dx-2 =  $\frac{\partial bx}{\partial q}$  (sucua) C=bk-p-Ck-1-g-Ck-2, K=1,-, M-2 =) (isho)  $\frac{\partial b^{m-1}}{\partial p} - \Delta p + \frac{\partial b^{m-1}}{\partial g} - \Delta g + b^{m-1} = 0$  (Sistem (S)) 0= md + PA. (md + qa) (CK-1 = -36K)  $\frac{\partial bu-1}{\partial P} = -Cu-2 \qquad \frac{\partial bu-1}{\partial q} = -Cu-3$ CK-2 = - 36K 3/0m = -Cm-1 30m = - Cm-s =)  $Cu-2 \cdot \Delta P + Cu-3 \cdot \Delta Q = bu-1$  (A)  $(Cu-1 - bu-1) \cdot \Delta P + Cu-2 \cdot \Delta Q = bu$ a,...au -> b1. -. but (bx=ax-p.bx-1-9.bx-2)

=)  $Cu-2 \cdot \Delta P + Cu-3 \cdot \Delta Q = bu-1$   $(Cu-1 - bu-1) \cdot \Delta P + Cu-2 \cdot \Delta Q = bu$   $(Cu-1 - bu-1) \cdot \Delta P + Cu-2 \cdot \Delta Q = bu$   $(Cu-1 - bu-1) \cdot \Delta P + Cu-2 \cdot \Delta Q = bu$   $(Cu-1 - bu-1) \cdot \Delta P + Cu-2 \cdot \Delta Q = bu$   $(Cu-2 - bu-3) \cdot (Cu-2 - bu-3) \cdot (Cu-2 - bu-3)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$   $(Cu-2 - bu-1) \cdot (Cu-2 - bu-1) \cdot (Cu-2 - bu-1)$ 

Résonaujour sistema (A) > AP, A9

DP=Pun-Pu =) Pun=Pu+DP

Δ9=qun-qu = qu+ Δ9

(Po, go) - (P, g) - - - (P\*, g\*)

who lexik tol

Keit. towst: Dructol i Dguctol

 $P_{M}(x):(x^{2}+p-x+9)=$ 

za varedur (toraa)



$$P_4(x) = 2 \times 4 - 20 \times 3 + 68 \times 2 - 100 \times + 50$$
 (  $E = 10^4$ 

 $P_0 = -5.8$ ,  $q_0 = 5$   $q_0 = 6.8$ ,  $q_0 = 5$   $q_1 = 6.8$   $q_1 =$ 

| P<br>9                                  | 2 - 5.8<br>5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - |                | N=1<br>-6,022<br>4;9324              |                   | √=2<br>-5.9996<br>4.994 1                  |                        | \( \sigma = 3 \\ \( \frac{-6}{+5} \)             |              |
|-----------------------------------------|----------------------------------------------------|----------------|--------------------------------------|-------------------|--------------------------------------------|------------------------|--------------------------------------------------|--------------|
| K Q<br>0 1 -10<br>2 34<br>3 -50<br>4 25 | 1<br>-4.2<br>4.64<br>-2.088<br>-10.3104            | 1. G<br>8. S 2 | 7,2275<br>5,4120<br>0,4055<br>2,4120 | 2,0439<br>12,4879 | 1<br>-4.0004<br>5.0050<br>0.0068<br>0.0448 | 1<br>1,9991<br>1200,11 | 9 4 4 15 00                                      | 1<br>2<br>12 |
| ΔP<br>Δq                                | -0.222<br>-0.0676                                  |                | 0.0224                               | <u>}</u>          | 0.0058                                     |                        | 2.60 <sup>-6</sup> < 8<br>1.60 <sup>-7</sup> < 8 |              |

$$C_2 \cdot \Delta P + C_1 \cdot \Delta q = b_3$$

$$-(C_2 \cdot P_0 + C_1 \cdot Q_0) \cdot \Delta P + C_2 \cdot \Delta q = b_4$$

$$\Delta P = -0.222$$

$$\Delta P = -0.0676$$

8:00 AM

$$P^{*} = -G, \quad Q^{*} = 5$$

$$P_{4}(x) = (x^{2} - Gx + 5) \quad (x^{2} + b_{1} \cdot x + b_{2}) = (x^{2} - 4x + 5)$$

$$S = (x^{2} + b_{1} \cdot x + b_{2}) = (x^{2} - 4x + 5)$$

$$S = (x^{2} + b_{1} \cdot x + b_{2}) = (x^{2} - 4x + 5)$$

$$S = (x^{2} - 4x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 4x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 6x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 6x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5) = (x^{2} - 6x + 5)$$

$$X_{3}u = (x^{2} - 6x + 5)$$

$$X_{4}u =$$