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PREFACE

This course is intended for students of non-English major in the Department of
Mathematics. The course aims at developing students’ language skills in English
context of mathematics with emphasis on reading, translating, speaking and writing.
The language content, mainly focuses on: firstly, key points of mathematical
terminology and key functions appropriate to this level; secondly, language
vocabulary and models that are important for decoding and translating mathematical
texts; thirdly, language skills developed as outlined below.

This textbook contains 16 units with a Glossary handbook of mathematical
terms and abbreviations designed to provide 34 hours of learning for the second term
of senior and graduate students.

Course structural organization. Each unit contemplates the following:

1) Text presentation: the mathematical topics are provided in original context. Thus
the first part of the unit includes professionally oriented texts taken from English
speaking sources. After the text there is represented a list of mathematical
terminology to be learnt.

2) Comprehension questions: Students are guided to the understanding of the
professional language, and directed to mastering rules for their own benefit.

3) Practice: Speaking, reading and writing skills as well as grammar exercises are
provided to consolidate the active language.

4) Professional skills development: Language is used for realistic purposes. The
information given in the texts coincides with the information presented during
Calculus studies.

5) Reading and speaking: The texts in units are intergrated with various free speaking
activities. They contain the basic data about the history of mathematics and the most
prominent mathematicians.

6) Writing: The book is supplied with writing activities. It contains grammar
exercises to revise and develop different grammatical aspects.

7) Translating: The translation will encourage students to review their performance
and to decide about the priorities for their own future self-study.



Mathematics is the gate and key to science
/Roger Bacon/

UNIT 1

Text 1. Introduction to Mathematical analysis

Mathematical analysisis a branch of mathematics that includes the theories
of differentiation, integration, measure, limits, infinite series, and analytic function.

These theories are usually studied in the context of real and complex numbers
and functions. Analysis evolved from calculus, which involves the elementary
concepts and techniques of analysis. Analysis may be distinguished from geometry;
however, it can be applied to any space of mathematical objects that has a definition
of nearness (a topological space) or specific distances between objects (a metric

space).
OO

Archimedes used the method of exhaustion to

compute the area inside a circle by finding the area of regular polygons with more
and more sides. This was an early but informal example of a limit, one of the most
basic concepts in mathematical analysis.
Mathematical analysis formally developed in the 17th century during the Scientific
Revolution, but many of its ideas can be traced back to earlier mathematicians. Early
results in analysis were implicitly present in the early days of ancient Greek
mathematics. For instance, an infinite geometric sum is implicit in Zeno's paradox of
the dichotomy.

Later, Greek mathematicians such as Eudoxus and Archimedes made more
explicit, but informal, use of the concepts of limits and convergence when they used
the method of exhaustion to compute the area and volume of regions and solids. The
explicit use of infinitesimals appears in Archimedes' The Method of Mechanical
Theorems, a work rediscovered in the 20th century. In Asia, the Chinese
mathematician Liu Hui used the method of exhaustion in the 3rd century AD to find
the area of a circle. Zu Chongzhi established a method that would later be
called Cavalieri's principleto find the wvolume of aspherein the 5th
century. The Indian mathematician Bhaskara II gave examples of the derivative and
used what is now known as Rolle's theorem in the 12th century.

In the 14th century, Madhava of Sangamagrama developed infinite

series expansions, like the power series and the Taylor series, of functions such
6
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as sine, cosine, tangent and arctangent. Alongside his development of the Taylor
series of the trigonometric functions, he also estimated the magnitude of the error
terms created by truncating these series and gave a rational approximation of an
infinite series. His followers at the Kerala school of astronomy and
mathematics further expanded his works, up to the 16th century.

The modern foundations of mathematical analysis were established in 17th
century Europe. Descartes and Fermat independently developed analytic geometry,
and a few decades later Newton and Leibniz independently developed infinitesimal
calculus, which grew, with the stimulus of applied work that continued through the
18th century, into analysis topics such as the calculus of variations, ordinary
and partial differential equations, Fourier analysis, and generating functions. During
this period, calculus techniques were applied to approximate discrete problems by
continuous ones.

In the 18th century, Euler introduced the notion of mathematical function. Real
analysis began to emerge as an independent subject when Bernard Bolzano
introduced the modern definition of continuity in 1816, but Bolzano's work did not
become widely known until the 1870s. In 1821, Cauchy began to put calculus on a
firm logical foundation by rejecting the principle of the generality of algebra widely
used in earlier work, particularly by Euler. Instead, Cauchy formulated calculus in
terms of geometric ideas and infinitesimals. Thus, his definition of continuity
required an infinitesimal change in x to correspond to an infinitesimal change in y. He
also introduced the concept of the Cauchy sequence, and started the formal theory
of complex analysis. Poisson, Liouville, Fourier and others studied partial differential
equations and harmonic analysis. The contributions of these mathematicians and
others, such as Weierstrass, developed the (e, 6) - definition of limit approach, thus
founding the modern field of mathematical analysis.

In the middle of the 19th century Riemann introduced his theory of integration.
The last third of the century saw the arithmetization of analysis by Weierstrass, who
thought that geometric reasoning was inherently misleading, and introduced
the "epsilon-delta" definition of limit. Then, mathematicians started worrying that
they were assuming the existence of acontinuum of real numbers without
proof. Dedekind then constructed the real numbers by Dedekind cuts, in which
irrational numbers are formally defined, which serve to fill the "gaps" between
rational numbers, thereby creating a complete set: the continuum of real numbers,
which had already been developed by Simon Stevin in terms of decimal expansions.
Around that time, the attempts to refine the theorems of Riemann integration led to
the study of the "size" of the set of discontinuities of real functions.



Also, "monsters” (nowhere continuous functions, continuous but nowhere
differentiable functions, space-filling curves) began to be investigated. In this
context, Jordan developed his theory of measure, Cantor developed what is now
called naive set theory, and Baire proved the Baire category theorem. In the early
20th century, calculus was formalized using an axiomatic set theory. Lebesgue solved
the problem of measure, and Hilbert introduced Hilbert spacesto solve integral
equations. The idea of normed vector spacewas in the air, and in the
1920s Banach created functional analysis.

Important concepts

Metric spaces. In mathematics, ametric spaceis asetwhere a notion
of distance (called a metric) between elements of the set is defined.

Much of analysis happens in some metric space; the most commonly used are
the real line, the complex plane, Euclidean space, other vector spaces, and the
integers. Examples of analysis without a metric include measure theory (which
describes size rather than distance) and functional analysis (which studies topological
vector spaces that need not have any sense of distance).

Formally, A metric space is an ordered pair (M, d) where M is a set and d is
a metricon M, i.e.,afunctiond: M x M — R
such that for any &, ¥,z € M  the following holds:
1. dlz,y) =0 2=y (identity of indiscernibles),
2. d(z,y) =d(y,x) (symmetry) and
3. d(z,2) <d(z,y)+d(y,2) (triangle inequality) .
By taking the third property and lettingz=x, it can be shown
that 4(2,¥) =2 0 (non-negative).
Sequences and limits

Asequenceis an ordered list. Like aset, it contains members (also
called elements, or terms). Unlike a set, order matters, and exactly the same elements
can appear multiple times at different positions in the sequence. Most precisely, a
sequence can be defined as a function whose domain is a countable totally
ordered set, such as the natural numbers.

One of the most important properties of a sequence is convergence. Informally,
a sequence converges if it has a limit. Continuing informally, a (singly-infinite)
sequence has a limit if it approaches some point x, called the limit, as n becomes very
large. That is, for an abstract sequence (a,) (with nrunning from 1 to infinity

understood) the distance between a, and x approaches 0 as n — oo, denoted

lim a, = =x.
—r>0



Mathematical terminology

differentiation - quddepenumrpoBanue, OTbICKAaHUE TPOU3BOTHON
integration — uHTErpUpOBaHUE, BEIYMCICHNE HHTErpaia
measure — mepa; rnokasareib; KpUTEpHil; MaciiTad; 1eIuTeNb
infinite series - 6eckoHEYHBIH Ps
calculus - 1) ucuncnenue 2) MareMaTudeckuil ananu3 (yueOHast JUCIUILIIHA, Pa3/iel BBICIICH
MaTEeMaTHKH )
mathematical object — maTemarnueckuii 00BEKT
topological space - Tononoruyeckoe nmpoctpancTBo; Metrical space — Mmerpudeckoe MpoOCTPaHCTBO
method of exhaustion — mero mocie10BaTEIbHBIX TMMHHAIUI
regular polygon — npaBuiibHbINH MHOTOYTOJIBHHUK
limit - 1) npexen; rpanuna 2) pl. uHTEpBaN 3HAYCHUI
Zeno's paradox of the dichotomy — mapagokc auxoromuu 3eHOHA WK amopus «IHXOTOMHES
(mocie0BaTeIbHOE ACICHUE LIENIOT0 Ha JBE YacTH).
Zeno of Elea — 3endn Dnéiickuii (490 1o H. 3. - 430 10 H. 3.), ApeBHErpeUecKuii HUI0cod, yueHUK
[Tapmenuna. Ponuncs B Onee, Jlykanus. 3HaMEHUT CBOMMM arnoOpUsIMH, KOTOPBIMU OH IbITaJCA
JI0Ka3aTh IMPOTUBOPEYMBOCTh KOHIICHIMHA JBMXCHHS, IMPOCTPAHCTBA W MHOXecTBa. HayuHbie
JIMCKYCCUH, BBI3BaHHBIC ATUMH NapaJOKCATbHBIMU PACCYKACHUSIMHU, CYHICCTBCHHO YIIyOHIIH
NOHMMAaHHE TakuX (PyHIAMEHTAJIbHBIX MOHATHH, KaK pOJIb JUCKPETHOIO M HENPEPHIBHOTO B
HpUPOJIE, aJICKBATHOCTh (PM3MUYECKOTO JBIKCHUS M €r0 MAaTEeMAaTHYEeCKOW MOJICIH U JIp.
Liu Hui — JIro Xysif u3BeCTCH CBOMMH KOMMEHTapHUsMHU Ha «MaTeMaTHKy B JEBATH KHHTax»,
KOTOPAsk MPEICTABISET CO00i COOPHUK PEIICHUH MaTeMaTHYECKUX 3a]1a4 U3 MMOBCETHEBHON KHU3HH.
Jio Xysi1i onybnukoBan «l[3t0 wxkaH cyaHbiry» B 263 rogy co CBOMMH KOMMEHTapHsIMH, 3TO
cTapeiimas coxpaHuBmasics myonukanus kKHuru. Camplie u3BecTHbIC TPy bl JIro Xyas:
Pacuér yncia T MeTo10M BIHMCAHHBIX MPABUIBHBIX MHOTOYTOJIbHUKOB.
Pemenne cucreM TMHEHHBIX ypaBHEHUI METOIOM, HA3BaHHBIM BIIOCIIE/ICTBIH UMeHeM [ aycca.
Pacuér 00béMa mpu3Mbl, TUPAMUIbI, TETPAYAPA, IIIHHAPA, KOHYCa H YCEUEHHOTO KOHYCa;
METO]I HeJICTTMBIX.
Cavalieri's principle — Ilpunnun Kapanbepu, HauOosiee MOJHOE BBIPAKEHHE M TEOPETHUECKOE
00OCHOBaHHME METOJ HEACTUMBIX IMOJNYYHJI B PabOTE HMTAJIBIHCKOIO MaTeMaTHKa BOHaBEHTYpHI
KaBanbepu B coepemennom euoe:
s nnockocmu: Thnomanau AByX GUTYp ¢ paBHBIMH TIO JUTMHE XOpAAaMHU BCEX HUX OOIIMX CEKYIHUX,
napauIeIbHBIX MPSIMOM, 10 OJTHY CTOPOHY OT KOTOPOH OHH JIEXKAT, PABHBI.
s npocmpancmea: OOBEMBI IBYX TeN HAJ IUIOCKOCTBhIO, C PaBHBIMU TIO TUIOIIAJAH CCUCHHUSIMH
BCEX OOMIMX CEKYIIMX MX IUIOCKOCTEH, MapaieIbHbIX JaHHOH IIOCKOCTH, PABHBI.
[Mpuniun KaBanbepu sIBUICS OJHUM U3 MEPBBIX MIAroB Ha MYTH K UHTETPAIbHOMY HCUYHCICHHIO. B

YaCTHOCTHU, HCIIOJIb3YyA 0003HaueHUsT OECKOHEYHO MaJibIX, OH J0Kas3aJl TCOpEeMYy, SKBHUBAJICHTHYIO

a™ +1

COBpPEMEHHOM hopmyie: /0 ThAT =00
Taylor series—psiapr Téiinopa, pasnoxkenne QyHKIMNA B OSCKOHEYHYIO CYMMY CTETICHHBIX ()YHKIIHH.
infinite series expansions — pa3ioxeHre OECKOHEYHBIX PSJIOB

POWer Series - cTeneHHo psij

Rolle's theorem — Teopema Pomnns (Teopema o Hysie IpOU3BOAHOMN): €ciH BellecTBeHHast (pyHKIuS,
HenpephIBHAs Ha oTpe3ke [a; b] u nuddepenuupyemas Ha nHTEpBasie (a; b), MPUHUMAET Ha KOHIIAX

3TOTr0 MHTEpPBala OJMHAKOBBIC 3HAUEHUS, TO Ha ITOM MHTEpBaJIe HaWAETCA XOTsS OBl OJHA TOYKA, B
KOTOPO# Mpou3BOAHAs QYHKIIUU paBHA HYIIO.

infinitesimal [infinr'tesim(a)l] - 6eckoneuHo Maast BenuyMHA

infinitesimal calculus - ananu3 6eCKOHEYHO MaJIBIX BETHYUH

sine [sain], cosine ['kausain], tangent ['teendg(a)nt], arctangent — cunyc, KOCHHYC, TaHTEHC,
apKTaHIeHC

derivative — mpou3BogHas1, TPOU3BOIHAST (PYHKITHSI



Newton and Leibniz; Descartes and Fermat — Hetoton u Jleitouui; JIekapt u ®depma

calculus of variations - BapuanimoHHOE UCUHCIICHUE

Fourier analysis - rapmonunueckuii anaiaus, @ypbe-aHau3

generating function - mopoxnatomas GpyHKIMs, TPOU3BOIAIIAs HYHKIIUS

Cauchy sequence - ¢ynmameHTanbHas nocieaoBarebHocTh (Korm)

theory of complex analysis — Teopust KOMILIEKCHOTO aHaIK3a

Siméon Denis Poisson — Cumeon Jlenn ITyaccon (21 urons 1781 - 25 anpens 1840), 3HaMEHUTHIH
(dpaHIry3cKHii MaTeMaTHK, MEXaHUK U (pu3uK. Yucio HayuHsix TpyaoB Ilyaccona npeBocxoaut 300.
OHM OTHOCATCS K pa3HbIM 00JacTsAM YHCTOW MAaTEMaTHKH, MaTeMaTUYeCKOH (HU3UKH,
TEOPETHUECKOM U HeOSCHON MEXaHHKHU.

Joseph Liouville — ozed JlmyBwmib (24 mapra 1809 — 8 cenrsiOps 1882), dpaniy3ckuii
mMateMaTHK. CHCTEeMaTHYECKH MCCIE0Bal Pa3peliuMOCTh psijia 3ajad, JAajl CTPOroe ONpeIeCHHe
MOHATHIO 3JIEMEHTApHOH (YHKIMM M KBagpaTypbl. B dacTHOCTH, HcCCieoBal BO3MOMXKHOCTD
WHTETPUPOBAHUS 3aJaHHON (DYHKIMH, anreOpanvdecKod WM TPAHCICHIICHTHOH, B 3JIEMEHTapHBIX
(GYHKIUSAX, U pa3pelImMOCTh B KBaJIpaTypax JIMHEWHOTO YPaBHEHHS 2-TO TOPSIKA.

Jean Baptiste Joseph Fourier — Xaun Batuct Xozep Pypoe (21 mapra 1768 — 16 mas 1830),
bpanmy3cknii MatemMaTuk ©u (u3uk. Jokazam TeopeMy O 4YHCIE JACHCTBHTEIBHBIX KOpHEH
aIreOpandyeckoro ypaBHEHUS, JIGKAIIUX Mexay naHHbiMu mnpenenamu (Teopema ®dypee 1796).
Hccnenosai, vezaBucumo ot JK. Mypaiine, Bonpoc 00 yclIoBUSX MPUMEHUMOCTH pa3pabOTaHHOTO
Hcaakom HproToHOM wMeToma uyuciieHHOro pemieHus ypaBHenuid (1818). Hamén dopmymy
npeAcTaBieHus (QYHKIMH C TOMOIIBI0 HHTErpalla, WrpaloNlyl0 BaXXHYIO pPOJIb B COBPEMEHHOU
mareMaTke. Jlokaszan, 4TO BCSKYK MPOHM3BOJBHO HAYEPUYCHHYHO JIMHHUIO, COCTABICHHYIO W3
OTPE3KOB JYT Pa3HBIX KPUBBIX, MOXKHO MPEACTABUTH CIMHBIM aHATMUTUYCCKUM BBIpaKkeHHEM. Ero
MMl BHECEHO B CIMCOK BeIMYalIInX Y4Y€HbIX PpaHUMH, NOMELIEHHBIM Ha IIEPBOM JTaxe
DiieneBoit banram.

harmonic analysis - rapmonmnueckuit ananu3

(g, 0) - definition of limit - "epsilon-delta definition of limit"

theory of integration — Teopust uHTErpHpOBaHUS

discontinuities - HapyIleH#He OC/IeI0BATEILHOCTH; IPEPHIBHOCTH;

continuum of real numbers — KOHTHHYYM AEHCTBUTENBHBIX YHUCEIT

Julius Wilhelm Richard Dedekind - FOmuyc Buubsrénem Prixapn Jenexinn (6 oxtsiops 1831 -
12¢eBpans 1916) - HeMenkuii MaTeMaTHK, H3BECTHBIN paboTamu 1o 00IIe#H anredpe 1 OCHOBAHUSIM
BEIIECTBEHHBIX YHCEN.

Dedekind cuts - JleaqeKHHI0BO CEUCHHE

a complete set — mosiHOE MHOXECTBO

Simon Stevin - Cimon Ctéun (1548 - 1620), pnamanackuii MaTeMaTHK, MEXaHUK U HHKEHEP.
decimal expansions - mpeacTaBieHHe [MHOTOPA3PSIHOTO YUCIIA WA IpOOH| B eCATHUHON (hopme
npUMepbl: peoOdpa3oBaHue MpocToi 1podbu (common fraction) B AecATUYHYIO, OCOOEHHO €ClU B
pesynbTate nomydaercs 0,(n), kak B ciyqae 1/3 =0,333333...

Riemann integration — Harerpan Prmana (01HO W3 BaXHEUIIMX IMOHATUH MaTEMAaTHYECKOTO
aHaJIA3a. BBenén bepuxapnom Pumanom B1854 rony, W sABIAETCS OOHOM M3 NEPBBIX
dbopManm3aiuii MOHATUS UHTETpaa.

arithmetization of analysis — apudmeTnszanus ananusa

Karl Theodor Wilhelm Weierstrass — Kapn Téomop Buubsréasm Béiiepmrpace (31
okTs0ps 1815 - 19 despans 1897) - Hemelkuii MaTEMaTHK, «OTEIl COBPEMEHHOTO aHAITU3a

limit — mumuT, npenen

discontinuities of real functions — pa3pbIB HEMPEBHIBHOCTH BEIIECCTBEHHBIX (YHKIIMN

nowhere continuous function — Bcroay pa3pbeiBHast (PyHKIIHS

nowhere differentiable functions (Weierstrass functions) - ¢dyukuus Beitepurrpacca — nmpumep
HENPEepbIBHON (QYHKIIUHU, HUTJIE HE UMEIOIIEH MPON3BOAHOM

space-filling curve — 3amonHsromas mpocTpaHcTBo KpuBas (is a curve whose range contains the
entire 2-dimensional unit square (or more generally an n-dimensional hypercube)
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Mapi Iumon Kamias XKopaau (Ssusaps 1838 — 22suBaps 1922) —  dpaHmy3ckuii MareMaruk,
M3BECTHBIN Onaromapsi cBouM (pyHIaMEeHTAIBHBIM paboTaM B Teopuu rpyii u «Kypcy anammza.
theory of measure — teopus mep (B MaremaTnveckoM aHajimu3ze Mepa JKopaaHa HCHONIb3YeTCs ISt
IOCTPOEHHUS HHTErpana Prumana)

Georg Ferdinand Ludwig Philipp Cantor — I'edpr Kaurop (3 mapra 1845, Caukr-IletepOypr — 6
saBapst 1918, Tanne (3aane)) — Hemenkuii Matematnk. OH Hamboyiee W3BECTEH KaK CO3/1aTENb
TEOpUU MHOXECTB, CTaBIIEH KpaeyroJbHBIM KaMHEM B MareMatuke. KaHTop BBEN MOHSTHE
B3aMIMHO-OJTHO3HAYHOTO  COOTBETCTBUSAMEKAY  DJIEMEHTAMH MHOXECTB, Jall  ONpPEICICHUS
0OECKOHEYHOTO U BIIOJIHE-YIOPSIIOYEHHOTO MHOXECTB U JIOKa3all, YTO JCHCTBUTEIBHBIX YHUCEIN
«Oonpiiey, 4veMm HartypaibHbIX. Teopema Kanrtopa, ¢akTuyecku, YTBEp)KIaeT CYLIECTBOBAHUE
«0eCKOHEYHOCTH OecKoHeUHOCTeW». OH OnpeaeNi MOHITHS KapJUHAIBHBIX U TOPSAKOBBIX YHCET
u ux apupmeruky. Ero pabora mpexacrariser Oonbiion ¢umocopckuid mHTEpEC, 0 4€M M caM
Kantop npekpacHo 3Hai.

naive set theory - HaiiBHast TeOpusi MHOXKECTB (pa3/iesl MaTeMaTHKH, B KOTOPOM H3y4aroTcsi 00IIue
CBOMCTBAa MHOYKECTB)

René-Louis Baire — Pené-JIyn bap, dpanmysckuii Matematuk. SIBjiseTcss OQHMM M3 co3dareiei
COBPEMEHHOUM TEOPUU BEIISCTBEHHBIX (DYHKIMNA M JECKPUIITHBHONW TEOpHH MHOXKECTB. OIHOU M3
BaXHEeHIKMX paboT mareMatuka ctana teopema bapa. Bap Ttaxke paspaboran kimaccuduxaiuio
pa3pbIBHBIX (PYHKITUI.

Henri Léon Lebesgue - Aupu Jleon Jle6ér (28 urons 1875, Bose, nenaprameHT Yasza — 26 U0
1941, Tapwmx) — dpaniy3ckuit MaTemaTuk, wieH [Tapmwkckoir AH (1922), npodeccop [Taprkckoro
yauBepcuteta (¢ 1910). Hanbonee uzBecteH kak aBTop Teopun nHTerpupoBanus. Muterpan JleGera
HAIIET IMUPOKOE TPUMEHEHUE B TEOPHH BEPOSITHOCTEH.

David Hilbert — [dapiin I'ins6ept (23 saBaps 1862 — 14 despans 1943), HeMelkuii MaTeMaTHK-
YHHBEpCas, BHEC 3HAYUTEIBHBIA BKJIQ B pa3BUTHE MHOTHX obOsacTeit Mmaremaruku. B 1910—1920-
e ronel (mocie cmeptu AHpu Ilyankape) ObUT MpPU3HAHHBIM MHUPOBBIM JIUJIEPOM MaTEMaTHKOB.
['mnpbept paspaboran MWHPOKHM CHEKTp (yHAAMEHTANIBHBIX WA BO MHOTHX O0JacTsIX
MaTeMaTUKH, B TOM YHCJE TEOPUI0O MHBAPUAHTOB M AKCMOMATHKY €BKINAOBON reomerpuu. OH
c(OpMyJIUPOBAJT TEOPUIO THIHOEPTOBBIX MPOCTPAHCTB, OJHOW W3 OCHOB COBPEMEHHOTO
(GYHKIIMOHAIBHOTO aHAIH3a.

Stefan Banach — Crédan banax (30 mapra 1892, Kpakos — 31 aBrycra 1945, JIbBOB) — MOJIbCKHIA
MaTematuk, npodeccop JIbBoBckoro yuuBepcutera (1924), nexkaH (U3HKO-MaTEeMaTHYECKOTO
¢dakynpTera 3Toro yauBepcuteta (1939). Unen I[Monbckoit AH u unen-koppecnongaent AH YCCP.
OnuH U3 co3aareneil COBPEMEHHOTo (DYHKIIMOHAIBHOTO aHAlIW3a M JIbBOBCKONW MaTeMaTHUeCKOi
TKOJTBI.

normed vector space — HOpMHPOBaHHOE BEKTOPHOE MPOCTPAHCTBO

metric space — MmeTpu4ecKoe MPOCTPAHCTBO

metric — w™erpuka, T.e. (QYHKIHS, ONPEHENIIONAs PACCTOSIHUE MEXAY JIBYMS TOYKAMH
MIPOCTPAHCTBA WIIH JIBYMS 3JIEMECHTAMH MHOYKECTBA

distance — 1) paccrosiHue; AUCTaHIMS 2) UHTEPBAIT; IPOMEKYTOK

real line — BemecTBenHas npsimast (0Ch)

complex plane — komrmiekcHasi TNIOCKOCTh OECKOHEYHAs! JBYMEPHAsi IJIOCKOCTb, CyXamias s
IpEJICTaBICHUs] KOMIUIEKCHBIX uuncen (complex number); oOpa3zoBaHa mnepneHAUKYISIPHBIMU
neiictBuTenbHOM (real axis) m MHHMMOHM (imaginary axis) OCSIMH, Ha KOTOPBIX OTKJIQJbIBAIOTCS
COOTBETCTBEHHO JICHCTBUTEIIbHAS U MHUMAs YaCTH KOMILJIEKCHOTO YHCiIa

Euclidean space — eBkiIn0BO MPOCTPAHCTBO MPOCTPAHCTBO, B KOTOPOM MECTOTIOIOKECHUE KaXIOH
TOYKH 33JIaHO M PACCTOSHUS MEXIY TOYKAMH BBIYUCIIIOTCS KaK KOPSHb KBAJIPATHBIH M3 CyMMBI
KBaJIpaTOB Pa3HOCTEH KOOPAMHAT IO KaKJIOMY H3MEpeHUIo. B mMaTemaruke paccMarpuBaloTcs U
HEeeBKJIMI0BHI TpocTpancTBa (non-Euclidean space), rae 3To mpaBuio HE BBITTOIHSIETCS.

vector spaces — BEKTOPHOE MPOCTPaHCTBO; INteger — menoe gyucio

complex plane — kommiekcHast TUIOCKOCTh, INIOCKOCTh KOMIUIEKCHOM TiepeMenHo# complex plane
= complex number plane

ordered pair — ymopsiiodeHHas mapa

11


https://ru.wikipedia.org/wiki/3_%D0%BC%D0%B0%D1%80%D1%82%D0%B0
https://ru.wikipedia.org/wiki/1845
https://ru.wikipedia.org/wiki/%D0%A1%D0%B0%D0%BD%D0%BA%D1%82-%D0%9F%D0%B5%D1%82%D0%B5%D1%80%D0%B1%D1%83%D1%80%D0%B3
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https://ru.wikipedia.org/wiki/%D0%93%D0%B0%D0%BB%D0%BB%D0%B5_(%D0%A1%D0%B0%D0%BA%D1%81%D0%BE%D0%BD%D0%B8%D1%8F-%D0%90%D0%BD%D1%85%D0%B0%D0%BB%D1%8C%D1%82)
https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA
https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2
https://ru.wikipedia.org/wiki/%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B8
https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0
https://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%B5%D0%BA%D1%86%D0%B8%D1%8F
https://ru.wikipedia.org/wiki/%D0%9C%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)
https://ru.wikipedia.org/wiki/%D0%91%D0%B5%D1%81%D0%BA%D0%BE%D0%BD%D0%B5%D1%87%D0%BD%D0%BE%D0%B5_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE
https://ru.wikipedia.org/wiki/%D0%92%D0%BF%D0%BE%D0%BB%D0%BD%D0%B5_%D1%83%D0%BF%D0%BE%D1%80%D1%8F%D0%B4%D0%BE%D1%87%D0%B5%D0%BD%D0%BD%D0%BE%D0%B5_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE
https://ru.wikipedia.org/wiki/%D0%92%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE
https://ru.wikipedia.org/wiki/%D0%9D%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE
https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9A%D0%B0%D0%BD%D1%82%D0%BE%D1%80%D0%B0
https://ru.wikipedia.org/wiki/%D0%91%D0%B5%D1%81%D0%BA%D0%BE%D0%BD%D0%B5%D1%87%D0%BD%D0%BE%D1%81%D1%82%D1%8C
https://ru.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE
https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%80%D1%8F%D0%B4%D0%BA%D0%BE%D0%B2%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE

Cavalieri's principle (method of indivisibles) - TIIpuanun Kaanbepun (Meton
HeleauMbIX) HaMOOJIee ITOJIHOE BBIPAKEHHE M TCOPETHYECKOE OOOCHOBAHHME METOJ HEIEIUMBIX
HOJy4YHJI B paboTe UTaJIbsHCKOrO MareMaTHka bonaBentypbl KaBanbepu «I'eoMeTpusi HelIeIMMbIX
HETPEPHIBHBIX, BEIBECHHAS U3 HEKOETO HOBOTO MOJICYETA

@urypsl OTHOCATCS Opyr K JApPYyry, Kak BC€ HX JHMHHUHU, B3SATHIE MO JIOO0H peryne [6asze
napajieNbHBIX |, @ Tela — KaK BCE UX IUIOCKOCTH, B3ATHIE TI0 1000 peryie.

Ecniun nBa Tema WMEIOT OIMHAKOBYIO BBICOTY, M €CIM CEUYCHHUS TeJl, DPAaBHOYNAJIEHHBIE H
napaieNibHbIe TNIOCKOCTH, HAa KOTOPOH TE MOKOSITCS, BCET/1a OCTAaHYTCS B 3aIaHHOM OTHOILICHHUH, TO
¥ 00BEMBI TEJl OCTAHYTCS B ’TOM OTHOLICHHUHU.

B coBpemennom Buze Ags miaockocTu: [nomany 1Byx Guryp ¢ paBHbBIMHU 10 JUTHHE XOPJIaMH BCEX
UX OOIIMX CEeKYIIUX, MapajuIeIbHBIX MPSAMOM, MO0 OAHY CTOPOHY OT KOTOPOH OHHM JIeXaT, paBHBI
Jdasi npoctpanceTBa: OO0BEMBI ABYX Tel HaJ IUIOCKOCTBIO, C PABHBIMHU IO IUIOIAAN CEYCHUSIMH
BCEX OOLIMX CEKYLIUX MX IUIOCKOCTEH, MapayiebHbIX TaHHOH IIOCKOCTH, PaBHBI.

function — ¢pyuuus; iff - Torma u-tonpko Torna

triangle inequality — akcuoma TpeyronbHUKa, HEPABEHCTBO TPEYTOJIbHUKA

totally ordered — Bosiie ynopsimouennsiii; countable - ncuuncisemsrii

Grammar, Lexical, Translation and Speaking Exercises

Task 1. Answer the questions.

1.1. What main problems does Mathematical analysis deal with?

1.2. What sphere of science did analysis evolve from?

1.3. In what way can analysis be distinguished from geometry and in what way can it be applied to
a topological space and to a metric space?

1.4. Name the ancient Greek mathematicians:

- who described the method of exhaustion?

- who represented paradox of the dichotomy?

- who used the concepts of limits and convergence?

1.5. What outstanding discoveries in maths were made by Chinese and Indian scientists?

1.5. Describe the most prominent discoveries of mathematicians in times past and conclude about
their influence on current conceptions in Mathematical analysis?

1.6. When were established the modern foundations of mathematical analysis?

1.7. What European mathematicians developed such branches as analytic geometry, infinitesimal
calculus?

1.8. Give the interpretation and definition to the following notions: the calculus of variations,
ordinary and partial differential equations, Fourier analysis and generating functions.

1.9. Name the scientists who introduced the notion of mathematical function, differential equations
and harmonic analysis. Expand upon the essence of these mathematical discoveries.

1.10. Give the determinations (in your own words) to the following notions: sequence, limit,
complete set, metric spaces.

1.11. Formulate the Rolle's theorem and Cavalieri's principle in modern interpretation.

1.12. What sequence does the given below plot describe? Write the formula of the sequence for real

numbers?
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Task 2. Translate the definitions into Russianand find the suitable term from the
opposite column.

1) a pair of elements a, b having the property that (a, b) = (u, v) if and | a) natural numbers
onlyifa=u,b=v; b) topological space
2) a space that has an associated family of subsets that constitute a | ¢) ordered pair
topology. The relationships between members of the space are | d) power series
mathematically analogous to those between points in ordinary two- and | ) real line

three-dimensional space; f) countable
3) a notional line in which every real number is conceived of as | q) iff
represented by a point; h) function

4) a relation between a set of inputs and a set of permissible outputs with
the property that each input is related to exactly one output. An example
is the function that relates each real number x to its square (x° ). The
output of a function f corresponding to an input x is denoted by f(x) (read
"f of x"). In this example, if the input is —3, then the output is 9, and we
may write f(—3) = 9. The input variable(s) are sometimes referred to as
the argument(s) of the function;

5) in logic and mathematics, if and only if is a biconditional logical
connective between statements;

6) able to be counted;

7) the positive integers (whole numbers) 1, 2, 3, etc.;

8) a mathematical series whose terms contain ascending positive integral

powers of a variable, such as ag + a;X + azx2 +...

Task 3. Translate into Russian and make the report on Cavalieri's principle to
the group.

In geometry, Cavalieri's principle, sometimes called the method of indivisibles, named after
Bonaventura Cavalieri, is as follows:

2-dimensional case: Suppose two regions in a plane are included between two parallel lines in that
plane. If every line parallel to these two lines intersects both regions in line segments (otpe3ox
npsimoit, nuneitHbIi cerment) Of equal length, then the two regions have equal areas.

3-dimensional case: Suppose two regions in three-space (solids) are included between two parallel
planes. If every plane parallel to these two planes intersects both regions in cross-sections of equal
area, then the two regions have equal volumes.

Today Cavalieri's principle is seen as an early step towards integral calculus, and while it is used in
some forms, such as its generalization in Fubini's theorem, results using Cavalieri's principle can
often be shown more directly via integration. In the other direction, Cavalieri's principle grew out of
the ancient Greek method of exhaustion, which used limits but did not use infinitesimals.

o= Figure 1
.| Two stacks of coins with the same volume, illustrating
Cavalieri's principle in three dimensions

Task 4. Give the lectures to the group on the topics mentioned in the text:

Lecture 1 Series. (Definition, basic properties and example (Zeno's dichotomy and its
mathematical representation); Lecture 2. (g, 8)-definition of limit
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Task 5. Join the two sentences to make one sentence, beginning with a gerund.

Model:  She’s a teacher. It’s hard work.
Being a teacher is hard work / Teaching is hard work.

1. Capital letters are used to name geometrical objects. It is very convenient. 2. You
are to classify these quadrilaterals. It requires the knowledge of some properties. 3.
We are going to locate this point on the y axis. It will give us the first point on the
line. 4. The student intends to divide a circle into a certain number of congruent parts.
It will help him to obtain a regular polygon. 5. The base and the altitude of a
rectangle are to be multiplied. It will give the product of its dimensions or the area of
the rectangle. 6. Don’t argue! It’s no use. In a crossed quadrilateral, the interior
angles on either side of the crossing add up to 720°. 7. Don’t deny this fact! It is
useless. A square is a quadrilateral, a parallelogram, a rectangle and a rhombus. 8.
You are going to divide a heptagon (a 7-sided polygon) into five triangles. Is it any
good?

Task 6. Choose the right preposition. Make sensible sentences.

1. Are you interested on | a. disturbing you.
2. She is very good of | b. looking after the children.
3. He insisted to | c. learning foreign languages.
4. | apologize at d. having more time for doing things he
5. The teacher is fed up in | wants to.
6. She succeeded with | e. understanding this — its too difficult.
7. My friend is keen for | f. answering our stupid questions.
8. Professor is looking forward g. studying.
9. This student is not capable h. considering his solution of the problem.
10. His sister is tired I. doing sums.
J. getting good education.

Task 7. Complete the sentences using a gerund as an attribute.
. I didn’t very much like the idea of ... .

. What is the purpose of ... ?

. She had no difficulty (in) ... .

. You have made great progress in ... .

. He was late, and he was afraid of ... .

. Can you imagine the pleasure of ... .

. He always produces the impression of ... .

0 3 N i W N~

. I am afraid you do not realize the importance of ... .
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UNIT 2

Text 2. Main branches of Mathematical Analysis

Real analysis. Real analysis (traditionally, the theory of functions of a real
variable) is a branch of mathematical analysis dealing with the real numbers and real-
valued functions of a real variable. In particular, it deals with the analytic properties
of real functions and sequences, including convergence and limits of sequences of
real numbers, the calculus of the real numbers, and continuity, smoothness and
related properties of real-valued functions.

Complex analysis, traditionally known as the theory of functions of a complex
variable, is the branch of mathematical analysis that investigates functions of
complex numbers. It is useful in many branches of mathematics, including algebraic
geometry, number  theory, applied mathematics; as well as in physics,
including hydrodynamics, thermodynamics, mechanical engineering, electrical
engineering, and particularly, qguantum field theory. Complex analysis is particularly
concerned with the analytic functions of complex variables (or, more
generally, meromorphic functions). Because the separate real and imaginary parts of
any analytic function must satisfy Laplace's equation, complex analysis is widely
applicable to two-dimensional problems in physics.

Functional analysis. Functional analysis is a branch of mathematical analysis,
the core of which is formed by the study of vector spaces endowed with some kind of
limit-related structure (e.g. inner product, norm, topology, etc.) and the linear
operators acting upon these spaces and respecting these structures in a suitable sense.
The historical roots of functional analysis lie in the study of spaces of functions and
the formulation of properties of transformations of functions such as the Fourier
transform as transformations defining continuous, unitary etc. operators between
function spaces. This point of view turned out to be particularly useful for the study
of differential and integral equations.

Differential equations. A differential equation is a mathematical equation for

an unknown function of one or several variables that relates the values of the function
itself and its derivatives of various orders. Differential equations play a prominent
role in engineering, physics, economics, biology, and other disciplines.
Differential equations arise in many areas of science and technology, specifically
whenever a deterministic relation involving some continuously varying gquantities
(modeled by functions) and their rates of change in space and/or time (expressed as
derivatives) is known or postulated. This is illustrated in classical mechanics, where
the motion of a body is described by its position and velocity as the time value
varies. Newton's laws allow one (given the position, velocity, acceleration and
various forces acting on the body) to express these variables dynamically as a
differential equation for the unknown position of the body as a function of time. In
some cases, this differential equation (called an equation of motion) may be solved
explicitly.
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Measure theory. A measure on a set is a systematic way to assign a number to
each suitable subset of that set, intuitively interpreted as its size. In this sense, a
measure is a generalization of the concepts of length, area, and volume. A
particularly important example is the Lebesgue measure on a Euclidean space, which
assigns the conventional length, area, and volume of Euclidean geometry to suitable
subsets of the n-dimensional Euclidean space R™. For instance, the Lebesgue

measure of the interval [0; 1] in the real numbers is its length in the everyday sense of
the word — specifically, 1.

Technically, a measure is a function that assigns a non-negative real number or +oo to
(certain) subsets of a set X. It must assign 0 to the empty set and be (countably)
additive: the measure of a 'large' subset that can be decomposed into a finite (or
countable) number of 'smaller' disjoint subsets, is the sum of the measures of the
"smaller" subsets. In general, if one wants to associate a consistent size to each subset
of a given set while satisfying the other axioms of a measure, one only finds trivial
examples like the counting measure. This problem was resolved by defining measure
only on a sub-collection of all subsets; the so-called measurable subsets, which are
required to form awc-algebra. This means that countable unions,
countable intersections and complements of measurable subsets are measurable. Non-
measurable sets in a Euclidean space, on which the Lebesgue measure cannot be
defined consistently, are necessarily complicated in the sense of being badly mixed
up with their complement. Indeed, their existence is a non-trivial consequence of
the axiom of choice.

Numerical analysis. Numerical analysisis the study of algorithms that use
numerical approximation (as opposed to general symbolic manipulations) for the
problems of mathematical analysis (as distinguished from discrete mathematics).
Modern numerical analysis does not seek exact answers, because exact answers are
often impossible to obtain in practice. Instead, much of numerical analysis is
concerned with obtaining approximate solutions while maintaining reasonable
bounds on errors. Numerical analysis naturally finds applications in all fields of
engineering and the physical sciences, but in the 21st century, the life sciences and
even the arts have adopted elements of scientific computations. Ordinary differential
equations appear in celestial mechanics (planets, stars and galaxies); numerical linear
algebra is important for data analysis; stochastic differential equations and Markov
chains are essential in simulating living cells for medicine and biology.

Other topics in mathematical analysis:

o Calculus of variations deals with extremizing functionals, as opposed to
ordinary calculus which deals with functions.

« Harmonic analysis deals with Fourier series and their abstractions.

« Geometric analysis involves the use of geometrical methods in the study of partial
differential equations and the application of the theory of partial differential equations
to geometry.

« Clifford analysis, the study of Clifford valued functions that are annihilated by
Dirac or Dirac-like operators, termed in general as monogenic or Clifford analytic
functions.
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« p-adic analysis, the study of analysis within the context of p-adic numbers, which
differs in some interesting and surprising ways from its real and complex
counterparts.

. Non-standard analysis, which investigates the hyperreal numbers and their
functions and gives arigorous treatment of infinitesimals and infinitely large
numbers.

« Computable analysis, the study of which parts of analysis can be carried out in
a computable manner.

« Stochastic calculus — analytical notions developed for stochastic processes.

. Set-valued analysis — applies ideas from analysis and topology to set-valued
functions.

. Convex analysis, the study of convex sets and functions.

Techniques from analysis are also found in other areas such as: physical sciences.
The vast majority of classical mechanics, relativity, and quantum mechanics is based
on applied analysis, and differential equations in particular. Examples of important
differential equations include Newton's second law and the Einstein field equations.
Functional analysis is also a major factor in quantum mechanics.

Mathematical terminology

real number — neiicTBuTENIbHOE (BELICCTBEHHOE) YHCIIO JIF0O00E MOJIOKUTEILHOE, OTPHUIATEIBHOC
YKCJIO WK HYJb; Pa3Ae/sSIOTCs Ha PAllHOHAIBHBIC U HPPAIIHOHATBHBIC.

function — ¢yukuus: exponential function — skcnionennuanpras Gyskius; inverse function —
obparnas ¢Qynkuus; linear function — nwuueiinas ¢ynkuus; trigonometric function —
TPUTOHOMETpHUYECKas PyHKIUsS

sequence - moceI0BaTEIbHOCTD, PSI/T

convergence — conmxeHue, KOHBEPreHIIUs, CXOKIEHHE B 0HOM Touke Ant: divergence

sequence of real numbers — nmocieg0BaTETLHOCTD IEHCTBUTEIBHBIX YHCEIT

calculus — 1) ucuucnenne — QopmanabHas MaTeMaTHUECKash CHCTEMa, 3aJaBacMas MHOXKECTBOM
0a30BbIX CHMBOJIOB, MHOXXCCTBOM CHHTAKCHYCCKMX TMPABHJI JUIS TMOPOXACHUS W3 0a30BbIX
SJIEMEHTOB MPOU3BOJIBHBIX, MHOXKECTBOM aKCHOM (3aBEJIOMO HMCTHHHBIX JJIEMEHTOB JaHHOTO
WCUMCIICHUS]) U MHOYKECTBOM TPABWJI BBIBOJA (CEMAaHTHUYECKUX MPABUI), C TIOMOIIbIO KOTOPBHIX U3
OJTHUX AJIEMEHTOB CUCTEMbI MIOPOXKIAOTCS JIp.; 2) MaTeMaTHYeCKHi aHanu3 (yueOHas TUCIMILIMHA,
pasjien BhICIIEi MaTEeMAaTUKH)

continuity — HenpepBIBHOCTD; MPEEMCTBEHHOCTh; HEPA3PhIBHOCTD; IIEJIOCTHOCTB;

smoothness — rmankocts (Hamp. QyHKIIKHN)

real-valued functions — nefictBuTenbHas GyHKIHS

functions of complex numbers — GyHKIHH KOMITIEKCHBIX YHCEIT

algebraic geometry — anredpanueckast reoMeTpus

number theory — teopus uuncen, MaTemaTndeckast JUCIUTUIMHA, H3YyYaroliast CBOMCTBA YHCEIL.
applied mathematics — npukiagHas MaTeMaTHKa Hay4Has TUCIMILIMHA, U3yYarolias MPUMEHEHUE
MaTeMaTHYECKUX METOJOB B JPYrUX OTPACIsIX 3HAHWUW, B CBOK Ouepelb JICIUTCS Ha Pl
HaIlpaBJICHUN

physics, hydrodynamics, thermodynamics — ¢pu3uka, ruipoJiHaMuKa, TEPMOAUHAMHUKA
mechanical engineering and electrical engineering — MammHOCTPOEHHE U SJICKTPOTEXHHUKA
quantum field theory — kBanToBas reopus mosst (KTIT)
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analytic function — ananutiueckas GyHKIHS

real and imaginary parts of any analytic function — mgecrBurenbHast ¥ MHUMAasI 4acTh JIIOOOM
AHATTUTHYECKON (DYyHKIIUU

Laplace's equation - ypaBuenue Jlamaca

Functional analysis - pyukinoHanbHbIH aHATN3

vector spaces - BEKTOPHOE MPOCTPAHCTBO

inner product - ckansipHOE ITPOKU3BEICHHE, BHYTPEHHEE MPOM3BEICHUE (BEKTOPOB)

norm - HopMa BekTopa ((YHKIMOHAJ, 33/IaHHBII HA BEKTOPHOM IMPOCTPAHCTBE M O0OOIIAIOIIHIA
HOHSTHE JUTMHBI BEKTOPA WM a0COIIOTHOTO 3HAYEHHSI YHCIIA)

topology — Tomosorus

linear operators - nuHEHHBIA oneparop (000OIICHHE JINHEHHOW YHCIOBON (QYHKIHMHU (TOYHEE,

Gynxuum ¥ = JE‘:I) Ha ciydaii 6os1ee 0011ero MHOKECTBa apryMEHTOB M 3HAUCHUN

linear map (linear mapping, linear transformation , linear function) - nuuéitHoe oToOpaxenue
space of functions — ¢pyHKIIHOHATIBHOE MPOCTPAHCTBO

Fourier transform - IlpeoOpasoBanue dypre (F) — omepamusi, COMOCTABISIOMAs (YHKIIHH
BCIICCTBEHHOH MEPEMEHHOU APYTryto (DYHKIIMIO BEIIECTBEHHON TIEPEMEHHOM.

continuous - HenpepbIBHBIN, KOHTHHYAJIbHBINA, HEPA3PBIBHBIN

unitary - yHUTapHbIi; eIMHHUYHBIN; OJHOKPATHBIN

differential and integral equations — nudpepeHunanbHbie 1 HHTErPaIbHbIC YPABHCHHUS
mathematical equation — maTemMaTH4YeCcKOEe ypaBHEHUE

variable — nepemeHHas1, IepeMeHHasI BETMYNHA

derivatives of various orders — npou3BOAHbIC PA3TMYHOTO MOPSIIKA

engineering — WHXXEHEpHOE JIeJI0, ECONOMICS — 3KoHOMHUKa, biology — 6uomorus

Newton's laws (of motion) - 3akons! (1BumxeHus) HproToHa

equation of motion — ypaBHeHHe ABHXEHUS, TMHAMUIECKOE YPaBHEHHE

set — MmuoOkecTBO, Subset - moaMHOXKECTBO

Lebesgue measure - neberosa Mepa

Euclidean space - eBK/IHI0BO ITPOCTPAHCTBO MPOCTPAHCTBO, B KOTOPOM MECTOIOIOKEHHUE KaX 0
TOYKH 33/1aHO M PACCTOSHHS MEXKIy TOYKAMH BBIYHCIISIOTCS KaK KOPEHb KBAJPATHBIA U3 CyMMBI
KBaJPaTOB Pa3HOCTEH KOOPAWHAT IO KAXKIAOMY H3MEpeHHIo. B MaTemaTnke paccMaTpwBarOTCS U
HEEeBKJIMAO0BHI MpocTpaHcTBa (non-Euclidean space), riie 3To NpaBUio HE BBIOIHSAETCS.

length - muHa; paccTosiHUe; OTpPe30K; MOATOTa; area — miomaas, vVolume — o0bem

Euclidean geometry — eBkiinioBa reomMeTpus

interval — uHTEpBAT; MPOMEKYTOK BPEMEHH; OTPE30K; PACCTOSTHUE

+00 and —20 (positive infinity and negative infinity) — +2C (nonoxurensHas 6eckOHEYHOCTD)
u — 20 (oTpHIaTenbHas OCCKOHSUHOCTD)

empty set — myctoe MHOKeCTBO (MHOXKECTBO, HE COJIEpIKaIllee HU OJHOTO DJICMEHTA)

counting measure - cuuTaromas mepa (Mepa, COCpEIOTOUYEHHAS Ha MHOXECTBE IEIBbIX YHCET U
paBHAs ISl KQXKIOTO U3 HUX €UHUIIC)

T-algebra (sigma-algebra) — c-anredpa (ciirma-anrebpa), T.e. anrebpa MHOXECTB, 3aMKHYTas
OTHOCHTEJIBHO OTepaluu CUETHOro o0beauHeHus. Curma-aareOpa WrpaeT BaKHEHIIYIHO POJIb B
TEOpUHU MepbI U HHTEerpaioB JleOera, a Tak)Ke B TEOPUH BEPOSITHOCTEH.

countable — ucuncsiemsrii

union - oObeauHEHHE MHOXECTB (CyMMa WM COCTUHEHNE) B TECOPHH MHOYKECTB - MHOXKECTBO,
cozeprkaree B cebe Bce EMEHTH MCXOIHBIX MHOXecTB. OObenuHenHne aByx muoxects. A n B
0GbraHo 0603nauaercs <1 U B, Ho nnorma moxuo BCTPETHUTH 3aITUCh B BUJIE CYyMMBI A+ B
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intersections - mepeceyéHre MHOMKECTB B TCOPHM  MHOXECTB -  3TO MHOXECTBO, KOTOPOMY
NPUHAIICKAT TE M TOJBKO TE DJIEMEHTBI, KOTOPBIC OJHOBPEMCHHO MPUHAIJICIKAT BCEM JaHHBIM
MHO>KECTBaM.

complements - pa3HOCTb IByX MHOXECTB — 3TO TEOPETHKO-MHOXCCTBEHHAsI —OICparys,
pe3yJIbTaTOM KOTOPOW SIBJISIETCS MHOXECTBO, B KOTOPOE BXOJST BCE DIIEMEHTHI IIEPBOTO
MHOKECTBA, HE BXOJSIIME BO BTOpOEe MHOXKecTBO. OOBMHO pasHocTh MHOxecTs A n B

oGosnauaeTes rax A \ B 110 nsorna moxo BeTpetuth obosnavenue A — Bu A ~ B.
Non-measurable sets — HercuncIsieMble MHOXECTBA

axiom of choice - akcuomoii BEIOOpa Ha3bIBACTCS CIIEAYIOIIEE BHICKA3bIBAHHE TCOPUH MHOKECTB:
JUIL BCAKOTO cemeiicTBa X HEMyCThIX MHOXKECTB CyllecTByeT (yHkums f, KoTtopas Kaxiaomy
MHOXKECTBY CEMEHCTBa COIOCTAaBISICT OAWH U3 DIIEMEHTOB JTOro MHokectBa. @Dynkuwms f
Ha3bIBaeTCs (PyHKIMEH BbIOOpa /1711 3alaHHOTO CEMENCTBA.

Numerical analysis - uucneHHbIi aHaTW3 — HAYYHOE HANpABJICHHE, M3YYAIOIIEEe AITOPUTMBI
pelLICHUsT 3a/la4 HEMPEePHIBHOW MaTeMaTHKH (B OTJIMYME OT JUCKpeTHoW Maremaruku (discrete
mathematics))

algorithm - amroput™m (mporpamma pelieHHs MaTeMaTH4YeCKuX JIMOO  JIpyrux — 3ajad,
NpEANUCHIBAMONIAS, KaKUe ACHCTBHUS M B KaKOW IMOCIEIOBATEILHOCTH HEOOXOAUMO MPEIIPUHSITH
JUTS TIOJTyYCHHUS TPeOyeMOoro pe3ysibTaTa)

approximation — npuOinkeHue; anmpOKCUMAIHST;, TPUOIHU3UTEIEHOE COOTBETCTBHE

symbolic manipulations (computer algebra, symbolic computation or algebraic computation) -
CHMBOJIbHBIC BBIYKMCJICHUS - 3TO IpeoOpa3oBaHus U paboTa ¢ MaTeMaTHYCCKHMMHU PABEHCTBAMH U
dopMynamMu Kak C IOCIEIOBATEILHOCTEIO CHMBOJIOB, KOMITBIOTEpHas aireOpa (B OTJIMYHE OT
YHCIICHHBIX METO/IOB) 3aHUMACTCS Pa3pabOTKOIl M peain3alueii aHATUTHIECKUX METO/IOB PEIICHHSI
MaTeMaTHUYECKUX 3a/lad Ha KOMIBIOTEpE M TPEANOJIaraeT, uYTO HWCXOJIHBIC JaHHbIE, KaK |
PE3YNIBTAThl PeHIeH!s, CHOPMYITHPOBAHBI B aHATUTHYECKOM (CHMBOJIBHOM) BH/IE.

discrete mathematics - nuckperHas MaTeMaTHKa OXBaTbIBACT TaKUE HANPaBICHUS, Kak
KOMOMHATOPHBIA ~ aHalnW3, Teopus rpadoB, TEOpUS  YNOPABIAIOUIMX  CHCTEM, TEOpPUS
(GYHKIIMOHATIBHBIX CHCTEM, KpunTorpadus, TeopHus KOJUPOBAHHUS, BEPOSTHOCTHBIC 3aIaud
JMCKPETHOW MAaTeMaTHUKH, QJITOPUTMBI M  aHajdu3 WX CIOXKHOCTH, KOMOHWHATOPHBIC |
BBIYHCITUTEIILHBIC 33][a4l TEOPUHU YUCEN U aareOpbl

ordinary differential equations - oObikHOBéHHBIE auddepeHnmatbubie ypaBueuus (OY) —
910 MU depeHraIbHbIe ypaBHEHHS 111 QYHKIIMU OT OJHOW IIEPEMEHHOM.

celestial mechanics - mexannka HeOECHBIX Tell

numerical linear algebra — nuneitnas anredpa

stochastic differential equation — croxactuueckoe nuddepenuuansoe ypasaenue (CHY) —
miuddepenimanbHoe ypaBHEHHE, B KOTOPOM OJIMH WIEH WM 00Jiee MMEIOT CTOXaCTHYECKYIO
MIPUPOJTY, TO €CTh MPECTABIISIOT COO0M CTOXAaCTUYECKUH TTporiecc (T.€. CIIydaiiHbIN mporiecc).
Markov chain — néns MapkoBa, T.e. MOCIEIOBATEIBLHOCTD CIYYAMHBIX COOBITHI C KOHEYHBIM
WM CYETHBIM YHCIIOM MCXOJIOB, XapaKTEPU3YIOMIAsICsS TeM CBOWCTBOM, YTO, TOBOPSI HECTPOTO, MPH
(UKCHPOBAaHHOM HacTosIIEeM Oy/yliee He3aBUCHMO OT MPOILIOTO.

Calculus of variations — BapuaniMoOHHOE HCYHCIICHHE

extremized function - sxcTpemu3zoBanHas GpyHKIUS

calculus— 1) wucuucnenue; audpdepeHIUATBHOC HCYUCICHHE, HHTErPAIbHOC HCUYHUCICHHE, 2)
MaTeMaTHUeCKUi aHanu3 (yuyeOHast TUCIUILINHA, pa3/iel BbICIICH MAaTEMaTHKH )

Harmonic analysis - rapmonnyeckuii aHaIn3

Fourier series - psg ®ypbe
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Geometric analysis — reomeTpuueckuii aHam3

partial differential equation — mguddepeHumansHoe ypaBHEHHE B YacTHBIX IPOM3BOIHBIX
(yacTHBIE cIy4aW TaK)K€ HW3BECTHBI KaK ypaBHEHHA Maremartudeckod ¢usuku, YMD) -
nuddepenimanbHOe ypaBHEHHE, COJICpIKalllee HEM3BECTHbIC (DYHKIIMU HECKOJIBKHX MEPEMEHHBIX
UX YaCTHBIC IIPOU3BOIHbIC.

Clifford analysis — ananu3 Knuddopaa

p-adic analysis — p-agnyeckuii aHaIU3

Non-standard analysis - HecTrangapTHBII aHAIN3

hyperreal numbers - runepsemiecTBeHHOE YHCIIO

rigorous treatment — rounast TpakToBKa

infinitesimals - 6eckoHeuHO Masast BeTUYMHA

Stochastic calculus — croxactuueckoe ucuncieHue

Set-valued analysis — ananu3 MHOTO3HAYHBIX (YHKIHI

multivalued function (multifunction, many-valued function, set-valued function, set-valued map,
point-to-set map, multi-valued map, multimap) — Muoro3nauHast GyHKIHsA — 0000IIEHUE TOHATHS
GYHKIMH, TOMYCKaKOIIee HATMINE HECKOIbKUX 3HAYCHU I (DYHKIUU I OJJHOTO apryMeHTa
Convex analysis — BbITyKJIbIi aHAIN3

Einstein field equation - ypaBHéHus DiHIITENHHA — ypaBHEHHE T'PaBUTAIIMOHHOTO TOJIs B OOIIEH
TEOPUU OTHOCHTEIBHOCTH, CBSI3bIBAIOIINE MEXIY COOOM METPHUKY UCKPUBIEHHOTO MPOCTPAHCTBA-
BPEMCHHU CO CBOMCTBAMH 3aIOJIHSIONICH €ro MaTepHH.

Grammar, Lexical, Translation and Speaking Exercises

Task 1. Answer the questions.

1. What mathematical notions does the Real analysis deal with?

2. What types of functions does the Complex analysis concerned with?

3. Describe the historical roots of functional analysis.

5. What kind of disciplines do the differential equations play a prominent role in?

6. Referring to the measure theory how can the measure of a 'large' subset be
decomposed into?

7. What fields does the Numerical analysis find its applications in?

8. Enumerate the basic forms of Mathematical Analyses and expand on their
principles.

Task 2. Ask the special questions.

1. Some properties are established by way of reasoning (how). 2. Geometry is
concerned with the properties and relationships of figures in space (what ... with). 3.
Some figures such as cubes and spheres have three dimensions (how many). 4. Many
discoveries were made in the nineteenth century (when). 5. The truth of non-
mathematical propositions in real life is much less certain (where). 6. The given
proposition and its converse can be stated as follows (in what way). 7. Pure
mathematics deals with the development of knowledge for its own purpose and need
(what ... with). 8. Carl Gauss proved that every algebraic equation had at least one
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root (who). 9. There are three words having the same meaning (how many). 10. The

given definition corresponds to the idea of uniqueness (what).

Task 3. Translate the definitions into Russian and find the suitable term from

the opposite column,

1. A number (symbol i) whose square equals a real negative
number. These numbers were invented to allow equations to be
solved when they have no real roots. For example, 1 has two real
square roots, +1 and -1. The equation x* = 1 thus has two real
roots, X = 1 and x = -1. The number -1 has no real square roots, so
the equation x> = -1 has no real roots. However, the ‘imaginary’
number, denoted by i, allows the equation x* =-1 to have two
Imaginary roots, X =i and X =-1. By convention i always precedes
any coefficient other than 1 or -1.

2. In mathematics, the limit of a sequence is the value that the
terms of a sequence "tend to". If such a limit exists, the sequence
is called . A sequence which does not converge is said to be

3. The branch of mathematics that deals with the properties and
relationships of numbers, especially the positive integers is called

4. A scalar function of two vectors, equal to the product of their
magnitudes and the cosine of the angle between them, also called

5. The branch of mathematics that deals with the finding and
properties of derivatives and integrals of functions, by methods
originally based on the summation of infinitesimal differences.
The two main types are

6.The abstract science of number quantity, and space, either as
abstract concepts (pure mathematics), or as applied to other
disciplines such as physics and engineering is called

7. Extremely small. However small a number other than zero may
be, it is always possible to find another even closer to zero. The
derivative of a continuous function considers the limit to which
the ratio between changes in a function and changes in its
argument tends as both changes become infinitesimally small.

a) applied
mathematics

b) differential
calculus and
integral calculus

c) dot product or
scalar product

d) number
theory

e) divergent,
convergent

f) infinitesimal

g) imaginary
number

Task 4. Translate the sentences according to the models.
Model 1.

pasnuunslie cnocoowbl 8bIYUCTEHUS DOPMYIL.

There are various ways of evaluating formulae. — Cywecmesyrom

1. There are a lot of important theorems in this book. 2. There are sets containing no

elements.
theorem. 4. There are many measurements to be made.

3. There has been recently developed a new method of proving the
5. There weren’t any

problems with my term paper last year. 6. There will be enough work for everybody

at the next conference.
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Model 2. There exist a lot of equivalent relations. — Cywecmeyem mnoco
OKBUBANICHMHBIX OMHOUWEHU.

1. There exists no difference between these two expressions. 2. There exists at least
one element in a non-empty set. 3. There exist some important statements in the
article. 4. There exist many different ways of defining a circle. 5. There exist no
solutions to the problem presented.

Model 3. To a pair of numbers there corresponds a point in the plane. — Ilape uucen
coomeenmcmeyen mouka Ha njiloCKocniu.

1. To a linear equation there corresponds a straight line in the Euclidean space. 2. To
a point in three dimensional space there correspond its three coordinates. 3. To each
number in X there corresponds a unique element in Y. 4. To any two objects a, b
there corresponds a new object. 5. If to each member x of a set there corresponds one
value of a variable y, then y is a function of x.

Task 5. Substitute the correct mathematical terms and translate the sentences.

In mathematics, a function space is a set of functions of a given kind from a set X to a
set Y. Function spaces appear in various areas of mathematics:
In (reopuss  mHOkecTBa), the set of functions fromXtoY may be
denoted X — Y or Y*. As a special case, the (MHOKeCTBO BCEX MOIMHOMKECTB,
Oynean mHOkectBa) Of a set X may be identified with the set of all functions
from X to {0, 1}, denoted 2*. The set of (Guexuuu) from X to Y is denoted X < Y.
The factorial notation X! may be used for permutations of a single set X.
(set theory, power set, bijections)
In  (muneitnoit anredpe) the set of all (nuHe#nHbIX mnpeoOpasoBanuii) from
(BektopHoro mpoctpancra) V to another one, W, over the same (moxe) , is itself a
vector space (with the natural definitions of ‘addition of functions' and 'multiplication
of functions by scalars': this vector space is also over the same field as that
of Vand W.);
(linear algebra, linear transformations, vector space, field)
In (bynkumonanbHeii ananm3) the same is seen for continuous linear transformations,
including (Tomosiorust BekTOpHOTrO IMpocTpancTBa) and many of the major examples
are function spaces carrying atopology; the best known examples include
(rupOepTOBO MPOCTPAHCTBO M OaHAXaBO MPOCTPAHCTBO).
(Hilbert spaces and Banach spaces, functional analysis, topologies on the vector
spaces)
In (byaknmonansHbii anams) the set of all functions from the (matypanbabie
yrcia) to some set X is called a (mpoctpancTBo mocieaoBareabHocTel) . It consists
of the set of all possible (mocnemnoBarensHocTH) Of elements of X.
(functional analysis, natural numbers, sequence space, sequences)
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Task 6. Complete these sentences by putting the verb in brackets into the
Present Simple or the Present Continuous.

To solve the problem of gravitation, scientists ............... (consider) time-space
geometry in a new way nowadays.

Quantum rules ............... (obey) in any system.

We ...l (use) Active Server for this project because it ......... (be) Web-
based

Scientists ............... (trace and locate) the subtle penetration of quantum effects
into a completely classical domain.

Commonly we ............ (use) C + + and JavaScript.

At the moment we ............... (develop) a Web—based project.

Its domain ............ (begin) in the nucleus and ............ (extend) to the solar
system.

Rightnow I ............. (try) to learn how to use Active Server properly.

Task 7. Put “can”, “can not”, ”could”, ”could not” into the following sentences.
Parents are finding that they .............. no longer help their children with their
arithmetic homework.

The solution for the construction problems ............... be found by pure reason.

The Greeks ................. solve the problem notbecause they were not clever enough,
but because the problem is insoluble under the specified conditions.

Using only a straight-edge and a compass the Greeks ............. casily divide any
line segment into any number of equal parts.

Web pages............. offer access to a world of information about and exchange with
other cultures and communities and experts in every field.

Task 8. Answer the questions.

Do you know the adjective of the noun “algebra™?

Can you name a new division of algebra?

What is your favourite field in modern maths?

Why do you like studying maths?

What basic problems do the following fields of algebra — linear algebra, Lie group,
Boolean algebra, homological algebra, vector algebra, matrix algebra — deal with?
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UNIT 3
Text 3. Real numbers (Part I)

TR is f symbol of the set of real numbers. In mathematics, a real number is a
value that represents a quantity along a continuous line.

The real numbers include all the rational numbers, such as the integer —5 and
the fraction 4/3, and all the irrational numbers such as \2 (1.41421356..., the square
root of two, an irrational algebraic number) and & (3.14159265..., a transcendental
number).

Real numbers can be thought of as points on an infinitely long line called
the number line or real line, where the points corresponding to integers are equally
spaced. Any real number can be determined by a possibly infinite decimal
representation such as that of 8.632, where each consecutive digit is measured in
units one tenth the size of the previous one.

The real line can be thought of as a part of the complex plane, and complex
numbers include real numbers.

I
3 -2 -1 o 1| =2 |3

Real numbers can be thought of as points on an infinitely long number line.
These descriptions of the real numbers are not sufficiently rigorous by the modern
standards of pure mathematics. The discovery of a suitably rigorous definition of the
real numbers — indeed, the realization that a better definition was needed — was one of
the most important developments of 19th century mathematics. The currently
standard axiomatic definition is that real numbers form the unique Archimedean
complete totally ordered field (R;+;-; <), up to an isomorphism, whereas popular
constructive definitions of real numbers include declaring them as equivalence
classes of Cauchy sequencesof rational numbers, Dedekind cuts, or certain infinite
"decimal representations”, together with precise interpretations for the arithmetic
operations and the order relation. These definitions are equivalent in the realm
of classical mathematics.

The reals are uncountable; that is, while both the set of all natural numbers and
the set of all real numbers are infinite sets, there can be no one-to-one function from
the real numbers to the natural numbers: the cardinality of the set of all real numbers
(denoted ¢ and called cardinality of the continuum) is strictly greater than the
cardinality of the set of all natural numbers (denoted Ro). The statement that there is
no subset of the reals with cardinality strictly greater than Ro and strictly smaller

than ¢ is known as the continuum hypothesis. It is known to be neither provable nor
24



https://en.wikipedia.org/wiki/File:Latex_real_numbers.svg
https://en.wikipedia.org/wiki/File:Real_number_line.svg
https://en.wikipedia.org/wiki/Aleph_number#Aleph-naught

refutable using the axioms of Zermelo—Fraenkel set theory, the standard foundation
of modern mathematics, provided ZF set theory is consistent.

History. Simple fractions have been used by the Egyptians around 1000 BC;
the Vedic "Sulba Sutras" ("The rules of chords") in, 600 BC, include what may be
the first "use" of irrational numbers. The concept of irrationality was implicitly
accepted by early Indian mathematicians since Manava (750-690 BC), who were
aware that the square roots of certain numbers such as 2 and 61 could not be exactly
determined. Around 500 BC, the Greek mathematicians led byPythagoras realized the
need for irrational numbers, in particular the irrationality of the square root of 2. The
Middle Ages brought the acceptance of zero, negative, integral, and fractional
numbers, first by Indian and Chinese mathematicians, and then by Arabi
mathematicians, who were also the first to treat irrational numbers as algebraic
objects, which was made possible by the development of algebra. Arabic
mathematicians merged the concepts of "number” and "magnitude” into a more
general idea of real numbers. The Egyptian mathematician Abti Kamil Shuja ibn
Aslam was the first to accept irrational numbers as solutions to quadratic
equations or as coefficients in an equation, often in the form of square roots, cube
roots and fourth roots. In the 16th century, Simon Stevin created the basis for
modern decimal notation, and insisted that there is no difference between rational and
irrational numbers in this regard.

In the 17th century, Descartes introduced the term "real” to describe roots of a
polynomial, distinguishing them from "imaginary" ones. In the 18th and 19th
centuries there was much work on irrational and transcendental numbers. Johann
Heinrich Lambert (1761) gave the first flawed proof that=cannot be
rational; Adrien-Marie Legendre (1794) completed the proof, and showed that x is
not the square root of a rational number. Paolo Ruffini (1799) and Niels Henrik
Abel (1842) both constructed proofs of the Abel-Ruffini theorem: that the
general quintic or higher equations cannot be solved by a general formula involving
only arithmetical operations and roots.

Evariste Galois (1832) developed techniques for determining whether a given
equation could be solved by radicals, which gave rise to the field of Galois
theory. Joseph Liouville (1840) showed that neither e nor e’ can be a root of an
integer quadratic equation, and then established the existence of transcendental
numbers, the proof being subsequently displaced by Georg Cantor (1873). Charles
Hermite (1873) first proved thateis transcendental, and Ferdinand von
Lindemann (1882), showed that m is transcendental. Lindemann's proof was much
simplified by Weierstrass (1885), still further by David Hilbert (1893), and has
finally been made elementary by Adolf Hurwitz and Paul Gordan. The development
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of calculus in the 18th century used the entire set of real numbers without having
defined them cleanly. The first rigorous definition was given by Georg Cantor in
1871. In 1874 he showed that the set of all real numbers is uncountably infinite but
the set of all algebraic numbers is countably infinite. Contrary to widely held beliefs,
his first method was not his famous diagonal argument, which he published in 1891.

Mathematical terminology

real number - neiicTBuTENIEHOE (BELICCTBEHHOE) YHCIIO
rational number/irrational number — pannonanbHOe YncIO/MpPpALIMOHATIBHOE YUCIIO
integer - uenoe 4ncIio
fraction — apo06sk; apobHOE YnCIIO
square root of — kBagpaTHbIii KOPEHb
7 (transcendental number) — TpancueHaeHTHOE YKCIIO
number line (real line) — uncioBas npsmas, [BernecTBeHHas | udpoBast 0Ch
decimal representation — mecsTHuHOE TpEACTaBICHUE (3aKCh YMCIIA B JCCATHYHOW CHCTEME
CUMCIICHUS)
complex plane — komrutekcHasi MIOCKOCTh, OSCKOHEYHAsI JBYMEpHAas IUIOCKOCTh, CIIy)Kamias s
NpECTaBICHNUS KOMIUIEKCHBIX uucenl (complex number ); oOpa3oBaHa MepreHAUKYIIPHBIMU
neiictBuTenbHOM (real axis) m MHMMOHM (imaginary axis) OCSIMH, Ha KOTOPBIX OTKJIaJbIBAIOTCS
COOTBETCTBEHHO JICHCTBUTENbHAS U MHUMAs YaCTH KOMIUIEKCHOTO YuCIia
totally ordered field — Bnonue ynopsinoueHHoe moie
Isomorphism — u3omopdu3m (CBOWCTBO 0OBEKTOB HEKOTOPOH COBOKYITHOCTH MMETh OJHOTHUITHYIO
BHYTPEHHIOIO CTPYKTYPY)
equivalence classes — kiaccbl 5KBUBaJICHTHOCTH
Cauchy sequences — mocieoBareabHOCTh Kot
Dedekind cuts — nenekiHI0BO ceueHMe
uncountable — Hencuncnsemblit, HeCUETHBIH (0 MHOXKECTBE)
infinite set — 6eckoneunoe MHOKeCTBO (ant: finite set)
one-to-one function — B3auMHO 01HO3HAYHAS ()YHKITUS
cardinality of the set — MoIHOCTh (MHOKECTBA), KOJUYECTBO DJIEMEHTOB MHOXKECTBA
continuum — KOHTHHYYM, aOCOJIFOTHO HETIPEPBIBHBIN 00BEKT; CIIONIHAS Cpe/ia
continuum hypothesis — KOHTHHYyM-THITOTE3a
Zermelo—Fraenkel set theory — Tteopus wmuHOxectB Ilepmeno-dpenkens ¢ aKCHOMOU
BeIOOpa (0003Ha4YaeTcs ZFC), camas pacrocTpaHeHHAs] aKCHOMATUIECKasi TEOPHsI MHOXKECTB
consistent — HEMPOTHBOPEUNBBIN, COBMECTUMBIHN, COCTOSATEIbHBIN (HAIp. 00 OlCHKE)
simple fraction — nmpocras 1po0Ob
Vedic “Sulba Sutras” — Beaumiickue myab0a-cyTpsl — 3T0 aopu3Mbl (BHICKAa3bIBAHUS) SBISIOTCSI
€IMHCTBEHHBIM HMCTOYHUKOM MO WHIMICKON MareMaTHKe 510X Bes, Mx cojepikaHue KacaeTcs
TFCOMETPUUCCKUX MPOCKTOB M 3a71a4, OTHOCAIIMXCS K MPSIMOJIMHEHHBIM (UTrypam, UX KOMOWHAIHSIM
1 TpaHchopManmsIM, KBaapaType Kpyra, a TakkKe aareOpandeckux U apuMETHYECKUX pPEIIeHU
JTAHHBIX 33124
Pythagoras [pi thagoras], [pa1'0agoras] - [Tudarop
negative / positive number — orpuriarenbHoe / MOJ0KUTETBLHOE YHCIIO
integral — enoe uuncio
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fractional number — npoGHoe uncio

magnitude — BennunHa; aOCOJIIOTHAS BEIUYMHA, 3HAYCHHUE, MOTYJIb

quadratic equations — kBajgpaTHOE YpaBHEHHUE, YPABHCHHE BTOPOil CTCIICHH YpPaBHCHHE BHa AX°

+ Bx + C=0, rne A He paBHO HYJIIO
coefficient — ko purueHT; MHOKHUTEH
equation — ypaBHeHue; paBEeHCTBO

cube root — kyOuueckuii KOpeHb, KOPEHb TPETHEH CTEIICHU

fourth root — xopeus ueTBEPTOI CTEMECHH

decimal notation — necaTuyHas cucreMa UCUUCICHUS

Descartes ['der kart] — Pené Jlekapt (1596 - 1650),

MeXaHUuK, QU3UK u (HU3MNOIIOT,

bpanmysckuii  grtocod, MaTemaTwk,

co3/JaTeib AHAJUTUYECKOW TI'E€OMETPUM M COBPEMEHHOMN

anreOpanvdeckoil CHMBOJIMKH, aBTOP METOJIa PaTUKaIbHOTO0 COMHEHHS B GUIOCOPHUH, MEXaHUIT3MA

B (hu3HKe.

quintic - 1) ypaBHeHHE MATON CTETIEHH; TOJIMHOM 5-0i CTETMEHH 2) B MSITOM CTENCHU;
uncountably infinite — mecuérHo-0ecKOHEUHbIIH

countably infinite — cuétHo GeckoHEUHBIIH

diagonal argument — auaronansHoe q0Ka3aTenbcTBO Kanropa
Grammar, Lexical, Translation and Speaking Exercises
Task 1. Find the correspondence between English and Russian definitions.

1. TTociemoBaTeEnbHOCTD Komm —
MOCJIC0OBATEIPHOCTh TOYEK METPHUYCCKOIO
MPOCTpPAHCTBATaKas, YTO i1 JIFOOOTO

3aJIaHHOI0 PACCTOSHUA CYIIECTBYET JJIEMEHT
IIOCIIEI0BATENBHOCTH, HAYMHAs C KOTOPOTO
BCE JJIEMEHTBI II0CJIEI0OBATEIbHOCTH
HaxoIATCsl JApyr OT Jpyra Ha pPacCTOSHUHU
MEHEe, YEM 3aJJaHHOE.

a) Galois theory, named after Evariste Galois,
provides a connection between field theory and
group theory. Using Galois theory, certain
problems in field theory can be reduced to group
theory, which is in some sense simpler and better
understood.

2. Teépus Tamya — pasgen aiareOpsl,
TIO3BOJISFOIIN T nepeopMyITHpPOBAThH
OfpeieieHHbIe BONPOCHI TEOPHH TOJIeH Ha
SI3bIKE TEOPUU TPYIII, JIeNiasi UX B HEKOTOPOM
cMbICIIe 00JIee TPOCTHIMH.

b) The continuum hypothesis is a hypothesis about
the possible sizes of infinite sets. It states: there is
no set whose cardinality is strictly between that of
the integers and the real numbers.

3. KonTiHyym-runoresy MO>KHO
chopMynupoBaTh  CIEAYIONIMM  00pa3oMm:
nroboe OecKOHEeuHOe MOJIMHO>KECTBO
KOHTHHYyMa SIBJISICTCS JINOO CUETHBIM, JIHOO
KOHTHHYaJIbHBIM. Jpyrumu CIIOBaMH,
MOIITHOCTh KOHTHHYyMa HaUMEHbIIIas,
MIPEBOCXOIAIIIAsS MOIITHOCTb CUETHOTO
MHOY€ECTBA, u «IPOMEKYTOUHBIX
MOIITHOCTEH MEXy CUETHBIM MHOXECTBOM U
KOHTHHYYMOM HET.

c) Dedekind cut is a partition of the rational
numbers into two non-empty parts A and B, such
that all elements of A are less than all elements of
B, and A contains no greatest element. Dedekind
cuts are one method of construction of the real
numbers. Dedekind used his cut to construct the
irrational, real numbers.

'
L
: |

a = = s——= @@ 32 =

4. JleneKUHIOBO CEUYCHHE — OJMH W3
CIoco0O0B MOCTPOCHHUSI BEIIECTBEHHBIX YHCET
u3 panMOHAJIbHBIX. MHoxecTBO
BEIIIECTBEHHBIX YHMCEI OMNPENEseTcsl Kak
MHO>KECTBO JCASCKMHIOBBIX ceueHui. Ha anux
BO3MOKHO MPOJOJKUTH ONEPALMK CIIOKEHUS
Y YMHOXEHHSL.

d) Cauchy sequence is a sequence whose elements
become arbitrarily close to each other as the
sequence progresses. More precisely, given any
small positive distance, all but a finite number of
elements of the sequence are less than that given
distance from each other.
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Task 2. Turn direct speech into reported speech.

1. Plato advised, "The principal men of our state must go and learn arithmetic, not as
amateurs, but they must carry on the study until they see the nature of numbers with
the mind only." 2. Descartes, father of modernism, said, "All nature is a vast
geometrical system. Thus all the phenomena of nature are explained and some
demonstration of them can be given." 3. In Descartes's words, "You give me
extension and motion then I'll construct the universe." 4. The often repeated motto on
the entrance to Plato's Academy said, "None ignorant of geometry enter here." 5. J.
Kepler affirmed: "The reality of the world consists of its maths relations. Maths laws
are true cause of phenomena. " 6. I. Newton said, "I don't know what | may appear to
the world; but to myself | seem to have been only like a boy playing on the seashore,
and diverting myself now and then by finding a smoother pebble or a prettier shell
than usual; whist the great ocean of truth lay all undiscovered before me. If | saw a
little farther than others, it is because | stood on the shoulders of giants".

Task 3. Choose the correct variant of translation.

1. We thought that you were going to enter an institute.

a) Mol oymanu, umo vl cobupaemecs NOCMYNUMb 8 UHCTIUMY.

b) Mol oymanu, umo vt cobupanucy nocmynums 6 UHCHUMYM.

C) Mol Oymaem, umo 6l cobupaemecv UOMU 8 UHCIUMYI.

2. Scientists use mathematical formulas to express their findings precisely.

a) Vuenvie ucnonvsyrom mamemamuyeckue opmyavl, umobObl ONUCAMb CEOU
onpeoeeHus.

b) Vuenvie ucnonvzyrom mamemamuueckue Gopmynvt 011 MOUHO2O bIPAdNCEHUs
CB0UX HAXOOOK.

C) Vuenwvle ucnonvzyrom mamemamuueckue GQopmyavl, 4mobObl MOUHO GbIPA3UND
nOJy4eHHble OAHHbIE.

3. Where there is a choice of two expressions, we should always choose the more
accurate one.

a) Tam, 20e cywecmgyem 6blOOpP U3 0B8YX BbIPANCEHUU, HAM 6ce20a cledyem
8b1OUpams 60J1ee MOYHOe BblpadiCcetue.

b) Tam, 20e ecmv 6b160p U3 08YX BbIPAdICEHUL, Mbl 8Ce20a 8blOepem Oojlee MOUHOe
svipaiceHue.

c) Tam, 20e ecmb 6b100p U3 08YX GvIpAdCeHUll, Mbl Obl 8ce20a 6vloupalu 0Oojee
MOYHOE Bblpadcetue.

4. They are likely to have taken a wrong turning in their assumption that all men and
women think alike.

a) OHu npuuAnu Cnpageonusoe NpeonooANCeHUe O MOM, YMO He 8Ce MYICUUHbBL U
HCEHUJUHBL OYMAIOM 0OUHAKOBO.
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b) Beposimno, onu owubouHo npeononoNcUIU, HUMO 8Ce MYNCUHUHbL U IICEHUJUHDL
0yMarom 0OUHAKOBO.

C) OHu nOIHOCMBIO OMKIOHUIUCH OM C80€20 NEePBOHAYANLHO20 OONYWEHUs, YMO 6Ce
MYAHCUUHBL U HCEHUWUHBL OYMAMAIOmM NOOOOHBIM 00PA30M.

5. Very often a proposition is so worded that it requires thought to state the converse
proposition correctly.

a) Ouenvb yacmo ymeepaicoerue Gopmymupyemcs makum o0pazom, 4mo HYHCHO KaK
cnedyem nooymams, 4moowvl cqhopmyauposams 06pamuoe ymeepicoenue npasuibHo.
b) 3auacmyro ymeepoicoenue cocmaensiemess mak, umo mpedyemcsi noOpasmviCaiuno,
4mooObL NPABUTILHO 3A58UMb 00 0OPAMHOM YMBEPHCOCHU.

c¢) Ouenv uacmo ymeepoicOeHUe Gblpajicaemcsi maxk, umo OHO mpebyem
Pa3mMbluLIenus Hao NPAsUIbHOU POPMYIUPOBKOU 0OPAMHO20 YMBEPHCOCHUSL.

Task 4. Find Russian equivalents to the English terms.

to reduce a fraction cocTaBHast JIpoOb
common fraction; simple fraction; vulgar fraction AecsiTHIHas 1po0b
complex fraction; compound fraction HEenpaBWIbHAs Ipo0Ob
improper fraction HECOKpaTuMas Ipoob
irreducible fraction paBHIIbHAS JPOOb
proper fraction npoctas ApoOb
decimal fraction COKpamiaTh Ipooh

Task 5. Translate.

A fraction is a number that can be expressed as a proportion of two whole numbers.
For example, 1/2 and 1/3 are both fractions. The students had a grasp of decimals,
percentages and fractions. We can enjoy the infinite number of stars in the
universe.The use of parentheses will indicate how the result was obtained. Will there
be a remainder if you divide 31 by 7? Are subtraction and addition inverse
operations?

Are division and multiplication inverse operations? Any operation is called a binary
operation when it is applied to only two numbers at a time and gives a single result.

[Ipexae yem MbI pelM JIaHHOE YpPaBHEHHE, Mbl JIOJKHBI MPOJEIaTh CISAYIOIIUE
nevctBus. [IpowsumocTpupyidTe 3TOT 3aKOH KaKHUM-HUOYIh mpumepoM. [[BomuHas
CHUCTEMa HCUHCIICHUS] UMEET HEKOTOpbhIe MpeumylnecTBa. KakoBbl HETOCTATKH ITOU
cuctrembl? CyMMa JBYX HATypajbHBIX YHCEI €CTh TOXE€ HATypajJbHOE YHUCIIO.
Pe3ynbraT yMHOkKEHU Ha3bIBaeTcs mpousBeneHueM. CienoBaTenbHO, Mbl IPUHUMAEM
CBOMCTBO 3aMKHYTOCTH KaK aKCHOMY 0€3 KaKOTro-TH00 JOKa3aTeIhCTBA.
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UNIT 4

Text 4. Real numbers (Part I1)

Definition. The real number system (R;+; 1<) can be defined axiomatically
up to an isomorphism. There are also many ways to construct “the" real number
system, for example, starting from natural numbers, then defining rational numbers
algebraically, and finally defining real numbers as equivalence classes of
their Cauchy sequences or as Dedekind cuts, which are certain subsets of rational
numbers. Another possibility is to start from some rigorous axiomatization of
Euclidean geometry (Hilbert, Tarski etc.) and then define the real number system
geometrically. From the structuralist point of view all these constructions are on
equal footing.

Axiomatic approach. Let R denote the set of all real numbers. Then: The set R
is afield, meaning that addition and multiplication are defined and have the usual
properties. The field R is ordered, meaning that there is a total order > such that, for
all real numbers x,yand z: ifx>ythenx+z>y+2z; ifx>0andy >0 then xy > 0.

The order is Dedekind-complete; that is, every non-empty subset S of R with
an upper bound in R has a least upper bound (also called supremum) in R.

The last property is what differentiates the reals from the rationals. For example,
the set of rationals with square root less than 2 has a rational upper bound (e.g., 1.5)
but no rational least upper bound, because the square root of 2 is not rational.

The real numbers are uniquely specified by the above properties. More
precisely, for given any two Dedekind-complete ordered fields R; and R,, there
exists a unique field isomorphism from R; to R,, allowing us to think of them as
essentially the same mathematical object.

Construction from the rational numbers. The real numbers can be
constructed as a completion of the rational numbers in such a way that a sequence
defined by a decimal or binary expansion like (3; 3.1; 3.14; 3.141; 3.1415;
...) converges to a unique real number, in this case .

Basic properties. A real number may be either rational or irrational;
either algebraic or transcendental; and either positive, negative, or zero. Real
numbers are used to measure continuous quantities. They may be expressed
by decimal representations that have an infinite sequence of digits to the right of the
decimal point; these are often represented in the same form as 324.823122147...
The ellipsis (three dots) indicates that there would still be more digits to come. More
formally, real numbers have the two basic properties of being an ordered field, and

having the least upper bound property. The first says that real numbers comprise
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a field, with addition and multiplication as well as division by non-zero numbers,
which can be totally ordered on a number line in a way compatible with addition and
multiplication. The second says that, if a non-empty set of real numbers has an upper
bound, then it has a real least upper bound. The second condition distinguishes the
real numbers from the rational numbers: for example, the set of rational numbers
whose square is less than 2 is a set with an upper bound 1.5 but no (rational) least
upper bound: hence the rational numbers do not satisfy the least upper bound
property.

Completeness of the real numbers. A main reason for using real numbers is

that the reals contain all limits. More precisely, every sequence of real numbers
having the property that consecutive terms of the sequence become arbitrarily close
to each other necessarily has the property that after some term in the sequence the
remaining terms are arbitrarily close to some specific real number. In mathematical
terminology, this means that the reals are complete (in the sense of metric
spaces or uniform spaces, which is a different sense than the Dedekind
completeness). This is formally defined in the following way:
A sequence (x,) of real numbers is called a Cauchy sequence if for any € > 0 there
exists an integer N (possibly depending on ¢€) such that the distance |x, — Xq| is less
than ¢ for all nand m that are both greater than N. In other words, a sequence is
a Cauchy sequence if its elements x, eventually come and remain arbitrarily close to
each other.

A sequence (Xp) converges to the limitxif for any e > 0there exists an
integer N (possibly depending on €) such that the distance |X, —X|is less than ¢
provided that n is greater than N. In other words, a sequence has limit x if its elements
eventually come and remain arbitrarily close to x. Notice that every convergent
sequence is a Cauchy sequence.

The converse is also true: Every Cauchy sequence of real numbers is convergent
to a real number. That is, the reals are complete.

Note that the rationals are not complete. For example, the sequence (1; 1.4; 1.41;

1.414; 1.4142; 1.41421...), where each term adds a digit of the decimal expansion of
the positive square root of 2, is Cauchy but it does not converge to a rational number.
(In the real numbers, in contrast, it converges to the positive square root of 2.)
The existence of limits of Cauchy sequences is what makes calculus work and is of
great practical use. The standard numerical test to determine if a sequence has a limit
IS to test if it is a Cauchy sequence, as the limit is typically not known in advance.

For example, the standard series of the exponential function:

o i ﬂ M n
n! o nl
n=0 '~ CONverges to a real number because for every x the sums ==~ *** can be
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made arbitrarily small by choosing N sufficiently large. This proves that the sequence
Is Cauchy, so we know that the sequence converges even if the limit is not known in
advance.

""The complete ordered field". The real numbers are often described as "the
complete ordered field", a phrase that can be interpreted in several ways. First, an
order can be lattice-complete. It is easy to see that no ordered field can be lattice-
complete, because it can have no largest element (given any elementz,z+ 1is
larger).

Mathematical terminology
addition — ciioskenue
multiplication - ymHo>xxeHuUe
ordered field — ynopsimouenHoe mosie
total order (linear order, total order,simple order, non-strict ordering) - nuHeiHO
YHopsAA0UYCHHOC MHOKECTBO HUJIN IICTIb
non-empty subset — HemycToe MOAMHOXECTBO
upper bound — BepxHHii TIpees, BEPXHsA IPaAHUIIA
least upper bound — Tounas (HauMeHbIIast) BEPXHsA TPpaHb (IPaHUIIA), WIHA CYTPEMYM
converge - 1) cxoauTbest; CTpEMUTHCS K (0011eMy) Ipeieny 2) CBOJUTH (B-OJHY TOUKY)
construction of the real numbers-koHcTpyKTHBHBIE CITOCOOBI OMPEIEICHUS BEIIECTBEHHOTO YUCIIa
limit — mumuT, npeaen
exponential function — skcrioneHnanbHast GYHKIHS, TOKa3aTeabHAsS (YHKIIHS
lattice-complete — monHas pemiérka, YaCTHYHO YIOPSAJAOUYCHHOE MHOXKECTBO, B KOTOPOM BCSIKOEC

HCIMYCTOC IMMOAMHOXKECTBO A umeer TOYHYKO BCPXHIOKO WM HHKXHIOIO I'PaHb, HAa3bIBACMBLIC 00BIYHO
O6’LC,Z[I/IHCHI/ICM 1 NCPECCUCHUCM 3JICMCHTOB ITOAMHOKCCTBA A.

Grammar, Lexical, Translation and Speaking Exercises

Task 1. Translate the sentences from Russian into English. State the functions
and the forms of the Participles.

1. Mathematicians have developed geometric ideas from the world around us having
many physical objects. 2. When naming geometric ideas we usually use letters of the
alphabet. 3. The line AB shown below is called a line segment as you might
remember. 4. A line segment is a set of points consisting of the two end points and all
of the points on the line between them. 5. A geometric figure being formed by a set of
points is an abstract concept, it cannot be seen. 6. Having performed the operation of
subtraction they found the difference. 7. Drawing a straight line | used a ruler. 8. The
program improved by the expert was checked yesterday. 9. The procedure being
fulfilled by the researchers needed modern equipment. 10. The translated text dealt
with the practical use of geometry. 11. Working in various fields of science
Lomonosov also have much of his time to practical application of natural sciences.
12. Testing the new system over and over they found the error at last. 13. All the
necessary changes having been made, the experiment showed different result. 14.
When asked to compare the two approaches he agreed immediately.
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Task 2. Translate the sentences from English into Russian. Denote the function
of the Participle in the sentences.

The student writing a new programme works for our research department. Solving
these problems we must use a new rule. While/ When solving a problem use a
computer. Students are considering the properties of sets. The computers being
developed now will be extensively used. Being written on time, the article was
published in the journal. The system which is being tested seems very complicated.
The proposed method was used in our calculations. The method proposed by the
mathematician was used in our calculations. The method just referred to is of great
interest. Translated from the language of mathematics into everyday language the
relation became easier to understand. As seen from the results the information was
carefully collected. When given enough time he will write his paper. Unless properly
constructed the device will not be reliable. He was told about some new
developments in this field of mathematics. Having answered the instructor’s
questions the student left. Having been given the problem we began to analyse it.

Task 3. Match the English terms with their Russian equivalents.

1. the process of reasoning a. IePECeKaThCS B OJJHOW TOUYKE

2. to discover properties of figures b. cyIecTByeT eTUHCTBCHHAS JIUHUS

3. what meaning one attributes C. KaKoe 3HaYCHHUE TPUIAIOT

4. to accept without proof d. mporecc paccyxaeHus

5. there is a unique line ¢. HAYMHATh CO CJIOB

6. to lie in the same plane f. KOHTpy?HTHBIC AYTH

/. congruent arcs g. O0HAPYKUTh CBOMCTBA (QUTYP

8. exterior angle h. mpuHUMaTh 6e3 JoKa3aTeIbCTBA

9. to intersect at one point I. BHCIIHUI yToJT

10. under this hypothesis j. MpoBeCcTH OUCCEKTPUCY

11. to begin with the words k. ObITH OOpaTHBIM JAHHOU TeopeMe

12. to draw a bisector 1. mo aToit ruMmoTe3e

13. to be converse to the given theorem | m. iexaTh Ha OJHOM IMIOCKOCTH

14. interior angle N. BHYTPEHHHUH YTOJI

15. alternate angle 0. HaKpecT TSI yTolI,
MIPOTUBOJIEKAIUN YT OJI

Task 4. Guess what figure possesses the following properties and memorize
them (a square, a trapezoid, a kite, a rectangle, a parallelogram, a rhombus).

1. A ... has two parallel pairs of opposite sides. 2. A ... has two pairs of opposite sides
parallel, and four right angles. It is also a parallelogram, since it has two pairs of
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parallel sides. 3. A ... has two pairs of parallel sides, four right angles, and all four
sides are equal. It is also a rectangle and a parallelogram. 4. A ... is defined as a
parallelogram with four equal sides. It does not have to have 4 right angles. 5. ... only
has one pair of parallel sides. It's a type of quadrilateral that is not a parallelogram. 6.
... has two pairs of adjacent sides that are equal.

Task 5. Translate from English into Russian the description of the following
arithmetic operations:

1. Addition: The concept of adding stems from such fundamental facts that it does
not require a definition and cannot be defined in formal fashion. We can use
synonymous expressions, if we so much desire, like saying it is the process of
combining. Notation: 8 + 3 =11; 8 and 3 are the addends, 11 is the sum.

2. Subtraction: When one number is subtracted from another the result is called the
difference or remainder. The number subtracted is termed the subtrahend, and the
number from which the subtrahendis subtracted is called minuend. Notation:15 — 7 =
8; 15 is the subtrahend, 7 is the minuend and 8 is the remainder. Subtraction may be
checked by addition: 8 + 7 = 15.

3. Multiplication: is the process of taking one number (called the multiplicand) a
given number of times (this is the multiplier, which tells us how many times the
multiplicand is to be taken). The result is called the product. The numbers multiplied
together are called the factors of the products. Notation:12 x5 = 60 or 12.5 = 60; 12
is the multiplicand, 5 is the multiplier and 60 is the product (here, 12 and 5 are the
factors of product).

4. Division: is the process of finding one of two factors from the product and the
other factor. It is the process of determining how many times one number is
contained in another. The number divided by another is called the dividend. The
number divided into the dividend is called the divisor, and the answer obtained by
division is called the quotient. Notation:48 : 6 = 8; 48 is the dividend, 6 is the divisor
and 8 is the quotient.

Division may be checked by multiplication.

Task 6. Learn how to pronounce these symbols in English.

1) = 4) — 7) 3 10) > 13) +
2)# 5) < 8) v 1) a 14) /
3) = 6) > 9) < 12) o0 15)e
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UNIT 5 Text5. Integer

An integer (from the Latin integer meaning "whole™) is a number that can be
written without a fractional component. For example, 21, 4, 0, and —2048 are
integers, while 9.75, 5%, and \2 are not.

The set of integers consists of zero (0), the natural numbers (1, 2, 3, ...), also
called whole numbers or counting numbers, and their additive inverses (the negative
integers —1, —2, =3, ...). This is often denoted by a boldface Z ("Z") or blackboard
bold Z standing for the German word Zahlen ([ 'tsa:lan], "numbers").

Zis a subset of the sets of rational and real numbers and, like the natural
numbers, is countably infinite.

The integers form the smallest group and the smallest ring containing the natural
numbers. In algebraic number theory, the integers are sometimes called rational
integers to distinguish them from the more general algebraic integers. In fact, the
(rational) integers are the algebraic integers that are also rational numbers.

Algebraic properties

987 65:4321012345678 3 Integers can be thought of as discrete,
equally spaced points on an infinitely long number line. In the above, non-
negative integers are shown in purple and negative integers in red.

Like the natural numbers, Zis closed under  the operations of  addition
and multiplication, that is, the sum and product of any two integers is an integer.
However, with the inclusion of the negative natural numbers, and,
importantly, 0, Z (unlike the natural numbers) is also closed under subtraction. The
integers form a unital ring which is the most basic one, in the following sense: for any
unital ring, there is a unique ring homomorphism from the integers into this ring.
This universal property, namely to be aninitial objectin the category of rings,
characterizes the ring Z.

Properties of addition and multiplication on integers

Addition Multiplication
Closure: a+bisan integer a x b is an integer
Associativity: at(b+c)=(a+b)+c ax((bxc)=(@xbyxc
Commutativity: atb=b+a axb=bxa
Existence of an identity element: a+t0=a axl=a
Existence of inverse elements: at(-a)=0 An inverse element usually does
not exist at all.
Distributivity: ax(+c)=(axb)+(axc)and
(a+byxc=(axc)+(bxc)
No zero divisors: Ifaxb=0,thena=00rb=0
(or both)
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Z is not closed under division, since the quotient of two integers (e.g., 1 divided
by 2), need not be an integer. Although the natural numbers are closed under
exponentiation, the integers are not (since the result can be a fraction when the
exponent is negative).The following lists some of the basic properties of addition and
multiplication for any integers a, b and c.

In the language of abstract algebra, the first five properties listed above for
addition say that Zunder addition is an abelian group. As a group under
addition, Z is a cyclic group, since every non-zero integer can be written as a finite
suml + 1 + - + lor(-1) + (-1) + -« + (=1). In fact, Zunder addition is
the only infinite cyclic group, in the sense that any infinite cyclic group
Is isomorphic to Z.

The first four properties listed above for multiplication say that Z under
multiplication is acommutative monoid. However not every integer has a
multiplicative inverse; e.g. there is no integer x such that 2x = 1, because the left hand
side is even, while the right hand side is odd. This means that Z under multiplication
IS not a group.

All the rules from the above property table, except for the last, taken together
say that Z together with addition and multiplication is a commutative ring with unity.
It is the prototype of all objects of suchalgebraic structure. Only
those equalities of expressions are true in Z for all values of variables, which are true
in any unital commutative ring. Note that certain non-zero integers map to zero in
certain rings.

At last, the property (*) says that the commutative ring Z is an integral domain.
In fact, Z provides the motivation for defining such a structure.

The lack of multiplicative inverses, which is equivalent to the fact that Z is not
closed under division, means that Z is not a field. The smallest field with the usual
operations containing the integers is the field of rational numbers. The process of
constructing the rationals from the integers can be mimicked to form the field of
fractions of any integral domain. And back, starting from an algebraic number
field (an extension of rational numbers), its ring of integers can be extracted, which
includes Z as its subring.

Although ordinary division is not defined on Z, the division "with remainder" is
defined on them. It is called Euclidean division and possesses the following important
property: that is, given two integersaandb withb# 0, there exist unique
integersqand rsuch thata=qxb+rand0 <r< |b|, where |b| denotes
the absolute value of b. The integerqis called the quotientandris called
the remainder of  the  division ofabyb. The Euclidean  algorithm for
computing greatest common divisors works by a sequence of Euclidean
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divisions.Again, in the language of abstract algebra, the above says that Zis
a Euclidean domain. This implies that Z is a principal ideal domain and any positive
integer can be written as the products of primes in an essentially unique way. This is
the fundamental theorem of arithmetic.

Order-theoretic properties

Z is atotally ordered set without upper or lower bound. The ordering of Z is
givenby: ... 3<-2<-1<0<1<2<3<..

An integer is positive if it is greater than zero and negative if it is less than zero.
Zero is defined as neither negative nor positive.

The ordering of integers is compatible with the algebraic operations in the
following way: ifa<bandc<d,thena+c<b+d

ifa<bandO0<c,thenac < bc.

It follows that Z together with the above ordering is an ordered ring.

The integers are the only nontrivial totally ordered abelian group whose positive
elements are well-ordered. This is equivalent to the statement that any Noetherian
valuation ring is either a field or a discrete valuation ring.

Construction

| sto.s)  -t15)  elzZS)  el3 S  _=la S _=l55)
| =104 _-llLa  etZa)  e{EZa  =1ad _=i5D

N

Y T e e O & =
1 - . 2)

| —to. 2 = B2 -taz -l52)

NeoONDONY

L=la, 1)
-ta,

| st -tioy - -ta o
o 1 = ET a

Red points represent ordered pairs of natural numbers. Linked red points are
equivalence classes representing the blue integers at the end of the line.

In elementary school teaching, integers are often intuitively defined as
the disjoint union of the (positive) natural numbers, the singleton set whose only
element is zero, and the negations of natural numbers. However, this style of
definition leads to many different cases (each arithmetic operation needs to be
defined on each combination of types of integer) and makes it difficult to prove that
these operations obey the laws of arithmetic. Therefore, in modern set-theoretic
mathematics a more abstract construction, which allows one to define the arithmetical
operations without any case distinction, is often used instead. The integers can thus
be formally constructed as the equivalence classes of ordered pairs of natural
numbers (a,b).

The intuition is that (a,b) stands for the result of subtracting b from a.To confirm
our expectation that1 — 2and4 — 5denote the same number, we define

an equivalence relation ~ on these pairs with the following rule: (a,b) ~ (c, d)
precisely when a+d =>5b+c.
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Addition and multiplication of integers can be defined in terms of the equivalent
operations on the natural numbers; denoting by [(a,b)] the equivalence class having
(a,b) as a member, one has: [(a,b)] + [(c, d)] := [(a + ¢, b+ d)].

[(a,b)] - [(e,d)] := [(ac + bd, ad + bc)].

The negation (or additive inverse) of an integer is obtained by reversing the
order of the pair: —[(a, b)] := [(b, a)].

Hence subtraction can be defined as the addition of the additive inverse:

[(a,B)] — [(c.d)] = [(a+ d.b+c)].

The standard ordering on the integers is given by: [(a,b)] < [(c,d)] iffa + d < b + c.

It is easily verified that these definitions are independent of the choice of
representatives of the equivalence classes.

Every equivalence class has a unique member that is of the form (n,0) or (0,n)
(or both at once). The natural number n is identified with the class [(n,0)] (in other
words the natural numbers are embedded into the integers by map sending nto
[(n,0)]), and the class [(O,n)] is denoted —n (this covers all remaining classes, and
gives the class [(0,0)] a second time since —0 = 0. Thus, [(a,b)] is denoted by

g.—b_., if {Izb
—(b—a), ifa<b

If the natural numbers are identified with the corresponding integers (using the
embedding mentioned above), this convention creates no ambiguity.

This notation recovers the familiar representation of the integers as {...
-3,-2,-1,0, 1,2, 3, ...}. Some examples are:

0=1[(0,0)] =[11)]=--- =][(kF)]

1=1[(1,0)] =[2D]=--- =[k+1,K)]
—1=[0,1)] =[1.2)]=--- =I[kk+1)]

2=[2,0)] =B D]=--- =[k+2k)]

—2=1[(0,2)] =[1.3)]=--- =I[kk+2)]

Cardinality. The cardinality of the set of integers is equal to No (aleph-null).
This is readily demonstrated by the construction of a bijection, that is, a function that
IS injective and surjective from Z to N. If N = {0, 1, 2, ...} then consider the function:

2|x|, if x <0

f(x) = 40, ifx =0

20 — 1, if x = 0.
{... (-4,8) (-3,6) (-2,4) (-1,2) (0,0) (1,2) (2,3) (3,5) ...}
If N={1, 2, 3, ...} then consider the function:

(2) 2|x|, if x << 0
:I: pr—
g 20 + 1, ifx > 0.

{.. (-4,8) (-3,6) (-2,4) (-1,2) (0,1) (1,3) (2,5) (3,7) ...} If the domain is restricted
to Z then each and every member of Z has one and only one corresponding member

of N and by the definition of cardinal equality the two sets have equal cardinality.
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MareMaTH4YecKas TCPMHUHOJIOTUA

fractional component — npoGHast cocrasJsromas

set of integers — MHOXKECTBO LEJIBIX YUCEIT

natural numbers — HaTypasnbHbIC YnCIa

additive inverse — axquTUBHAS UHBEPCHUS, HTHBEPCHSI OTHOCUTEIBHO CIIOKEHHS

boldface — nonyxupHsIii mpudT, NOITYKUPHBIH (0 HmpHDTE)

blackboard bold — crioco6 nHanucanust xupHbIM prdTOM

countably infinite — cuétHo GeckoHeUHBIM

algebraic number theory — anre6panueckas Teopus drcen

algebraic integers — 1enoe anredpanueckoe YuCIO

number line — [BemecTBennas | nudposas och

unital ring — yHuTaIbHOE KOJBIO (KOJIBIO ( aCCOIMATUBHOE KOJBIO) — B 0OMImIei anredpe —
anreOpanyeckas CTPyKTypa, B KOTOPOHM OIPEICIICHbI OIepalusi 00paTUMOro CIIOKECHHUS U Oepalus
YMHOKEHHSI, IO CBOWCTBaM [OXOKHE Ha COOTBETCTBYIOIIHE OICpPAlMK HAJ YHCIIAMU.
IMpocreitmumun prEMepaMu KOJIeI] SIBIITIOTCS qncia (uenble, BEIECTBEHHBIE,
KOMILICKCHBIE), QYHKIHH, OTIpe/IeTICHHbBIC Ha 3aJaHHOM MHOYKECTBE.

ring homomorphism — romoMopdu3m Koer

universal property — yHuBepcaibHOE CBOWCTBO

initial object — wuHUIMANBEHBIA O00BEKT (B TEOPHH KaTeropuil Ha4yaibHbIH 00bEKT KaTeropuu C —
910 €€ 00beKT |, Takol uto ans moboro oowvekta X B C cymiecTByeT eQMHCTBEHHBIH MOp(hU3M
I — X))

exponentiation [ eksponen|i‘eif(a)n] — Bo3BeCHNE B CTEIICHD

abstract algebra — abctpaktHas anredpa

abelian group — abenesa rpyrra; KOMMyTaTUBHAs TPYIIIa

cyclic group — nukiMYeckas rpymrmna

isomorphic — nuzomopdHbIi, UMEOLIHI UICHTUYHYIO (GOPMY; B MATEeMaTHKE TOBOPAT, YTO MEXKIY
JBYMSI CTPYKTYPaMH CYIIECTBYET H30MOP(U3M, €CITH JUTS KaXKI0r0 KOMIIOHEHTa OJTHOM CTPYKTYPBI
€CTh COOTBETCTBYIOIIHI KOMITOHEHT B IPYrOil CTPYKTYpE, U HA000POT

commutative monoid — koMMyTaTHBHBIH [a0eeB] MOHOU T

commutative ring — KOMMYTaTHBHOE KOJIBIIO

equality of expressions — paBeHCTBO BBIPAKCHHI

integral domain — o6siacTh 1IETIOCTHOCTH

field of fractions — moJte yacTHEBIX, TT0JI€ OTHOLIEHUIA

number field — uucioBoe mone; mose uncen

subring — moaKoJbIIO (MTOJAMHOKECTBO KOJIBIIA)

absolute value — abcomtoTHOE 3HaYeHKE, aOCOTIOTHAS BETMYMHA, MOIYJIb (YHCIIA)

remainder — 1) octarok (0T JesieHus); 2) pa3HOCTh; 3) OCTATOYHBIN wieH (psia)

greatest common divisors — HanOOIBIIHI OOIHI JCTUTETH

principal ideal domain — o6acTh T1aBHBIX UCATOB

fundamental theorem of arithmetic — ocnoBHast Teopema apudmeTHKH

totally ordered set — BmosHe yrmopsigoueHHOE MHOKECTBO

ordered ring — ymopsa04eHHOE KOJIBIIO

Noetherian valuation ring — xosbiio HopmupoBanusi Herep;
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Noether — Dmmu Herep (1882-1935), nemenkuii matemaruk. C 1933 B CIIA. Tpyast Herep o
anreOpe crocoOCTBOBAIM CO3JaHWIO HOBOTO HAMPABIICHUs, HA3BAHHOTO OOIIEH anreOpoid.
Chopmynuposana (1918) dbyHaamMeHTaATBHYIO TEOPEMY TEOPETUIECCKON (PUBHKH.

discrete valuation ring — KoJbIO AUCKPETHOTO HOPMHPOBAHHUS

disjoint union — HecBs3HOE OOBETUHCHHE

singleton set — oHO3IEMEHTHOE MHOKECTBO

equivalence classes — kiaccbl 5KBHBaJCHTHOCTH

ordered pair of natural numbers — yrmopsiqoueHHas mapa HaTypalbHBIX YHCEI

equivalence relation — oTHOIICHHE SKBHBAJICHTHOCTH

to be embedded into — GbITH BIIOKEHHBIM B

embedding (or imbedding) — BioxxeHre B MaTeMaTHKE — 3TO CICIHMAIBHOIO BHIa OTOOpaKCHHE
OJIHOTO JK3EMIUIIpa HEKOTOPOM MAaTEMaTU4YECKOM CTPYKTYpPbl BO BTOPOH 3K3EMIULIP TaKOIO K€
TUNA. A UMEHHO, BJIOXXEHUE HEKOTOPOro o0bekra X B Y 3a7aéTcsi HHbEKTUBHBIM OTOOpaKEHHEM,
COXPaHSIONIMM HEKOTOPYIO CTPYKTYpY. UTO O3HAa4YaeT «COXpaHEHHE CTPYKTYPBI», 3aBUCHUT OT THIIA
MaTEeMAaTHYECKON CTPYKTYpBI, OOBEKTaMU KOTOPOW SIBISIOTCS X W Y. B TepmuHax Teopuu
KaTeropuil 0TOOpaXKeHNE, «COXPAHSIOIIEE CTPYKTYPY», Ha3bIBAIOT MOP(HU3MOM.

familiar representation — npuBeIYHOE NIPEACTABICHNUE

primitive data type — uCXOHBIN THIT TaHHBIX

computer languages (programming languages) — s3bIK¢i IPOrpaMMHPOBAHHS

cardinality — xapauHaIbHOE YHCII0, MOIIHOCTH MHOKECTBA

aleph-null — anedp-uynp (kapauHaIBLHOE YHCIIO, XapaKTEPHU3YIOIIEe MOIIHOCTh CUETHOI'O
MHOECTBA)

bijection — 6uekius, B3aMMHO-0THO3HAYHOE OTOOPAKEHHE

Injective — MHBEKTUBHBIN a) PEATU3YIONIHI BIOKEHHUE, PEATU3YIOIINN HHEEKTHBHOE 0TOOpaKeHUE;
0) yBEJIMYUBAIOLINI YMCIIO apTyMEHTOB (0 (YHKITHH)

surjective — CrOpbEKTUBHBIN

natural numbers — narypansusie uncia (the positive integers (whole numbers) 1, 2, 3, etc., and
sometimes zero as well)

number line — a line on which numbers are marked at intervals, used to illustrate simple numerical
operations

exponentiation - the operation of raising one quantity to the power of another

equivalence relation - a relation between elements of a set that is reflexive, symmetric, and
transitive. It thus defines exclusive classes whose members bear the relation to each other and not to
those in other classes (e.g., "having the same value of a measured property")

Grammar, Lexical, Translation and Speaking Exercises

Task 1. Translate.

1. PamuoHanbHOE YHCIIO YHCIO, KOTOPOE MOXET OBITh TMPEJCTABICHO B BHJC
oTHoIeHus a/b, e a u b - uesble uncaa u b - He paBHO HYJIIO.

2. llensle ymcia— pacIIMpeHHE MHOKECTBA HATypalbHBIX dmcena [N, momydaemoe
nobasienueM K N HyJIsE HOTPHUIIATEIBHBIX YHCEN BUIA —7t. MHOKECTBO HENbIX YHCE
obo3Havaercs 7. 3. B maremaruke CHHIJIETOHOM HAa3bIBA€TCSI MHOKECTBO C
CIMHCTBEHHBIM 3JIeMeHTOM. Hanpumep, MHOKecTBO {0} SIBJISETCS CUHTIICTOHOM.
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Task 2. Fill in the blanks with the necessary words.

1. To (u3meputh) an angle, compare its side to the corner of this page. 2. The corner
represents (mpsimoit yrour), whose measurement is 90°. 3. If the angle is smaller than
the corner, the angle is (octpsiit yromn). 4. If the opening is larger than the corner of
the page, the angle is (Tymoit). Its measure is more than 90°. 5. Locate the point of
your (Tpancnoptup) which represents the (Bepmmna) and align the vertex with the
point. 6. Rotate the protractor keeping the vertex aligned until one (cropona) of the
angle is on the 0° — 180° line of the protractor. 7. The angle measure that is
(ompenensercs) by the side of the angle that is not on the 0° — 180° line of the
protractor. 8. You may have to (mpoayuts) one side of the angle so that it crosses the
scale. 9. Use the proper (0o603HaueHue), m is the symbol for “measure of™.

Task 3. Find the corresponding Russian sentence.

1. From what you already know you may deduce that drawing two rays originating

from the same end point forms an angle.

a) U3z moeco, umo 6vl ydice 3Haeme, bl Modceme COeNamy 6bl800, UMO, PUCysi 08d

YA, UCXOOAWUX U3 OOHOU KOHEYHOU MOYKU, 8bl NOJyUAeme Y2oll.

b) U3 mozco, umo eam uzgecmmo, bl Modiceme coenams 8bl800, YMO U30OPAdNCEHUE

08YX Jyuell, bepyuux Havano 8 0OHOU U MOl dce KOHEYHOU mouKe, 0opasyem yeoil.

C) U3 moeco, umo 6wl yoice Y3HAIU, 8bl, BOZMONCHO, COELANU 8bI800, UMO PUCYHOK OBYX

Jyyett, bepyuwux Ha4aio 6 0OHOU KOHEUHOU moyKe, 00pasyem y2oil.

3. The approach to the problem being considered remained traditional.

a) Paccmampusancs ocmasuuiicsi nooxo0 Kk mpaouyuoHHoU npooieme.

b) ITo0x00 k ocmasweticst npobeme paccmampusancs mpaouyuoOHHO.

C) I1o0x00 k paccmampusaemoti npobieme ocmasaics mpaouyUOHHbIM.

4. Physical facts expressed in terms of mathematics do not seem unusual nowadays.

a) BuipadicenHvle mamemamuyecKue (hakmol KA3aauch HeOObIYHbIMU 6 (PUULECKUX

MepMUHAX 8 Hacmosujee 8Pems.

b) @Qusuueckue paxmol, evipasicentvie 6 MamemMamuieckux MmepMUHAax, He Kaxicymcsi

HeOObIYHbIMU Ce20O0HS.

c) To, umo ¢usuueckue ¢hakmer 6 Hacmosiuee BpemMs  BbIPANCAIOMCI

MaAmemMamuyecKumMu mepMuHaml, He Kaxcemcs ce200Hs HeOObIYHbIM.

5. Having made a number of experiments Faraday discovered electromagnetic

induction.

a) IIpo600s psi0 sxcnepumenmos, @apaoeti OMKPLLIL INEKMPOMASHUMHYIO UHOVKYUIO.

b) [Ilpooenas psio sxcnepumenmos, Dapadeti OMKPLLL  INEKMPOMACHUMHYIO

UHOYKYUIO.

) Coenas psio sxcnepumenmos, Dapaoeii OMKPoLL INEKMPOMASHUMHYIO UHOYKYUIO.
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Task 4. The present simple or the past simple. Put the verbs in brackets in the
correct forms.

The problem of constructing a regular polygon of nine sides which .............
(require) the trisection of a 60° angle ......... (be) the second source of the famous
problem.

The Greeks ......... (add) “the trisection problem” to their three famous unsolved
problems. It ......... (be) customary to emphasize the futile search of the Greeks for
the solution.

The widespread availability of computers ............... (have) in all, probability
changed the world for ever.

The microchip technology which ............ (make) the PC possible has put chips not
only into computers, but also into washing machines and cars.

Fermat almost certainly ............ (write) the marginal note around 1630, when he
first ............ (study) Diophantus’s Arithmetica.

| (protest) against the use of infinitive magnitude as something completed,
which ......... (be) never permissible in maths, one ............ (have) in mind limits
which certain ratio ........... (approach) as closely as desirable while other ratios may
increase indefinitely (Gauss).

In 1676 Robert Hooke ................ (announce) his discovery concerning springs. He
................. (discover) that when a spring is stretched by an increasing force, the
stretch variesdirectly according to the force.

Task 5. Answer the questions below.
1. What have you seen if you multiply a whole number by 1?

2. Have you changed the fraction when you multiply % by % ?

3. What division have you used to change g to lower terms?

Task 6. Translate from English into Russian.

1. Anangle is the union of two rays which have a common endpoint but which do
not lie on the same line.

2. Since an angle is a union of two sets of points, it is itself a set of points. When
we say “the angle ABC” we are talking about a set of points - the points lying on the
two rays.

3. Two angles occur so often in geometry that they are given special names. An
angle of 90° is called a right angle and an angle of 180° is called a straight angle.
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UNIT 6

Text 6. Archimedean property

Illustration of the Archimedean | In abstract algebra and analysis, the Archimedean

property property, named after the ancient Greek

A mathematician  Archimedes of Syracuse, is a

— property held by some algebraic structures, such as

B : ordered or normed groups, and fields. Roughly

speaking, it is the property of having no infinitely

L1 large or infinitely small elements. It was Otto

I T o Stolz who gave the axiom of Archimedes its name

because it appears as Axiom V of Archimedes’ On
the Sphere and Cylinder.

The notion arose from the theory of magnitudes of Ancient Greece; it still plays
an important role in modern mathematics such as David Hilbert's axioms for
geometry, and the theories of ordered groups, ordered fields, and local fields.

An algebraic structure in which any two non-zero elements are comparable, in the
sense that neither of them is infinitesimal with respect to the other, is said to
be Archimedean. A structure which has a pair of non-zero elements, one of which is
infinitesimal with respect to the other, is said to be non-Archimedean. For example,
a linearly ordered group that is Archimedean is an Archimedean group.

This can be made precise in various contexts with slightly different ways of
formulation. For example, in the context of ordered fields, one has the axiom of
Archimedes which formulates this property, where the field of real numbers is
Archimedean, but that of rational functions in real coefficients is not.

Definition for linearly ordered groups.

Let x and y be positive elements of a linearly ordered group G. Then x is infinitesimal
with respect to y (or equivalently, y is infinite with respect to x) if, for every natural
number n, the multiple nx is less than y, that is, the following inequality holds:
T4+ x <y

n terms The group G is Archimedean if there is no pair X, y such that x is
infinitesimal with respect to y.

Ordered fields. An ordered field has some additional nice properties.
1) One may assume that the rational numbers are contained in the field.
2) If x is infinitesimal, then 1/x is infinite, and vice versa. Therefore to verify that a
field is Archimedean it is enough to check only that there are no infinitesimal
elements, or to check that there are no infinite elements. 3) If xis infinitesimal
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and r is a rational number, then r x is also infinitesimal. As a result, given a general
element c, the three numbers c/2, ¢, and 2c are either all infinitesimal or all non-
infinitesimal.
In this setting, an ordered field Kis Archimedean precisely when the following
statement, called the axiom of Archimedes, holds: Let x be any element of K. Then
there exists a natural number n such that n > x.
Alternatively one can use the following characterization: For any positive ¢ in K,
there exists a natural number n, such that 1/n < e.

Archimedean property of the real numbers. The field of the rational numbers
can be assigned one of a number of absolute value functions, including the trivial

function|Z] = 1, when = # 0, the more usual || = V@, and the p-adic absolute
value functions. By Ostrowski's theorem, every non-trivial absolute value on the
rational numbers is equivalent to either the usual absolute value or some p-adic
absolute value. The rational field is not complete with respect to non-trivial absolute
values; with respect to the trivial absolute value, the rational field is a discrete
topological space, so complete. The completion with respect to the usual absolute
value (from the order) is the field of real numbers. By this construction the field of
real numbers is Archimedean both as an ordered field and as a normed field. On the
other hand, the completions with respect to the other non-trivial absolute values give
the fields of p-adic numbers, where p is a prime integer number (see below); since
the p-adic absolute values satisfy the ultrametric property, then the p-adic number
fields are non-Archimedean as normed fields (they cannot be made into ordered
fields).
In the axiomatic theory of real numbers, the non-existence of nonzero infinitesimal
real numbers is implied by the least upper bound property as follows. Denote byZ the
set consisting of all positive infinitesimals. This set is bounded above by 1.
Now assume for a contradiction that Zis nonempty. Then it has aleast upper
bound c, which is also positive, so ¢/2 <c¢ < 2c. Since c is an upper bound of Z and
2c is strictly larger than c, 2c is not a positive infinitesimal. That is, there is some
natural number n for which 1/n< 2c. On the other hand,c/2 is a positive
infinitesimal, since by the definition of least upper bound there must be an
infinitesimal xbetween ¢/2 and c, and if 1/k < c¢/2 <= x then x is not infinitesimal. But
1/(4n) <c/2, soc/2 is not infinitesimal, and this is a contradiction. This means
that Z is empty after all: there are no positive, infinitesimal real numbers. One should
note that the Archimedean property of real numbers holds also in constructive
analysis, even though the least upper bound property may fail in that context.

Every linearly ordered field K contains (an isomorphic copy of) the rationals as

an ordered subfield, namely the subfield generated by the multiplicative unit 1 of K,
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which in turn contains the integers as an ordered subgroup, which contains the natural
numbers as an ordered monoid. The embedding of the rationals then gives a way of
speaking about the rationals, integers, and natural numbers in K. The following are
equivalent characterizations of Archimedean fields in terms of these substructures.

1. The natural numbers are cofinal in K. That is, every element of K is less than
some natural number. (This is not the case when there exist infinite elements.) Thus
an Archimedean field is one whose natural numbers grow without bound.

2. Zero is theinfimum in K of the set {1/2,1/3,1/4,...}. (If Kcontained a
positive infinitesimal it would be a lower bound for the set whence zero would not be
the greatest lower bound.)

3. The set of elements of K between the positive and negative rationals is closed.
This is because the set consists of all the infinitesimals, which is just the closed set
{0} when there are no nonzero infinitesimals, and otherwise is open, there being
neither a least nor greatest nonzero infinitesimal. In the latter case, (i) every
infinitesimal is less than every positive rational, (ii) there is neither a greatest
infinitesimal nor a least positive rational, and (iii) there is nothing else in between, a
situation that points up both the incompleteness and disconnectedness of any non-
Archimedean field.

4. For any x in K the set of integers greater than x has a least element. (If x were
a negative infinite quantity every integer would be greater than it.)

5. Every nonempty open interval of K contains a rational. (If xis a positive
infinitesimal, the open interval (x, 2x) contains infinitely many infinitesimals but not
a single rational.)

6. The rationals are dense in K with respect to both sup and inf. (That is, every
element of K is the sup of some set of rationals, and the inf of some other set of
rationals.) Thus an Archimedean field is any dense ordered extension of the rationals,
in the sense of any ordered field that densely embeds its rational elements.

Mathematical terminology
infinitely large or infinitely small elements — 6eckoneuno Gosbiue U OECKOHEUHO MaJIbIe
9JIEMEHTHI (4aCTH)
magnitude — BennunHa; aOCOTIOTHOE 3HAYEHHE; MOYITb
ordered group — ynopsinouennas rpymma; ordered field — ynopsimouennoe mose
local field — mokansHOE TIOJTE
infinitesimal — GeckoHeyHO Masast BeTUYHNHA
linearly ordered group — nuHeHHO yIIOpsI0YCHHAS TPYIIa
Archimedean group — apxuMeoBa rpymma
p-adic numbers — p-aguyeckue uncia
absolute value — a6comroTHas BeauurHa, a0CONMIOTHOE 3HAYEHHE
ultrametric property — ynpTpamMeTpudeckoe CBOUCTBO
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axiomatic theory — akcnomaruueckas Teopust

least upper bound property — cBoiicTBO TOUHO¥ BepXHEil rpaHUIIbI

bounded above — orpannveHHbIit cBEpXy

proof by contradiction — qoka3areabCTBO OT IPOTUBHOTO

assume for a contradiction — npezmonoxum o6paTHOE

constructive analysis — KOHCTPYKTHBHBII aHAJIN3

monoid — MoHou (OJTYTPYIIIa ¢ HEHTPATbHBIM JIEMEHTOM). MOHOM/IOM Ha3bIBACTCS MHOXKECTBO
M, Ha KOTOpOM 3a/iaHa OMHApHAs aCCOIMATHBHAS OIepalus, OOBIYHO MMEHYyeMasi YMHO)KEHHEM, U B

KOTOPOM CYIIECTBYET TAaKOH 3JEMEHT €, YTO eX=X=Xe Ui JI00oro XEM. DieMeHT € Ha3bIBaeTCs

eIMHUIIeH 1 9acTo obo3Havyaercs 1. B mobomM MOHOUIE UMeEeTCs POBHO OJIHA €IUHHIIA.

cofinal — koduHaNBHBIH, KOKOHIICBOI; ENSe — IUTOTHBIH

Grammar, Lexical, Translation and Speaking Exercises

Task 1. Give the definition of the Archimedean property.

Task 2. Find the correspondence between English and Russian definitions.

MuHopaHTa WK HUKHSS
rpasbp (rpaHMIa) YUCIOBOTO
MHOXeCTBa X — qrcio b,
Takoe uto Vr € X =z = b,

The infimum (abbreviated inf; plural infima) of a
subset S of a partially ordered set T is the greatest
element of T that is less than or equal to all
elements of S.Consequently the term greatest
lower bound (abbreviated as GLB) is also

A
commonly used. Inﬁnlum A set
T of real numbers (red and green balls), a subset S
of T (green balls), and the infimum of S. Note that
for finite sets the infimum and the minimum are
equal.

Ila0oTHOE  MHOXKECTBO  —
MOJMHOECTBO MPOCTPAHCTBA,
TOYKaMH KOTOPOTO  MOKHO
CKOJIb YTOJIHO XOPOIIO
MpUOJIM3UTh  JIOOYI0  TOYKY
00BEMJTIONIETO TPOCTPAHCTBRA.
dopMaIbHO roBODA, A
IVDIOTHO B X, €CJIM BCsSKas
OKPECTHOCTh JTIO00H TOUYKH X
13 X COJICP)KUT DJIEMEHT U3 A.

The supremum (abbreviated sup; plural suprema)
of a subset S of a totally or partially ordered set T
Is the least element of T that is greater than or
equal to all elements of S. Consequently, the
supremum is also referred to as the least upper
bound (or LUB)

—— 0000 0—0—0—0—>

A A set A of real numbers
(blue balls), a set of upper bounds of A (red
diamond and balls), and the smallest such upper
bound, that is, the supremum of A (red diamond).

MaskopaHTa Ui BepXHAs
rpasbp (rpaHMIa) YucjIoOBOTO
MHOK€ECTBA X —4HCIIO @, TAKOE
yroVr € X =x < a,

A subset A of a topological space X is called
dense (in X) if every point x in X either belongs to
A or is a limit point of A. Informally, for every
point in X, the point is either in A or arbitrarily
"close" to a member of A — for instance, every real
number is either a rational number or has one
arbitrarily close to it.
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Task 3. Translate the sentences from English into Russian.

The termalgebraic structure generally refers to aset(called carrier
set or underlying set) with one or more finitary operations defined on it.

Examples of algebraic structures include groups, rings, fields, and lattices. More
complex structures can be defined by introducing multiple operations, different
underlying sets, or by altering the defining axioms. Examples of more complex
algebraic structures include vector spaces, modules, and algebras.

An ordered field necessarily has characteristic 0, all natural numbers, i.e. the
elements 0, 1, 1 + 1, 1 + 1 + 1, ... are distinct. This implies that an ordered field
necessarily contains an infinite number of elements: a finite field cannot be ordered.

Task 4. Practice saying these expressions.

4.1 Fractions: =, =, =, =, = =, =
23 458867

4.2. Equations: x = ﬂ, X+y =2 ,
c a-b

g |r

1
+ -=
v

e

Task 5. Grammar revision: Change the following sentences using infinitive to
express the purpose.

Model: We have to subtract this number from the sum obtained because we want to
check the result of addition. — To check the result of addition, we have to subtract
this number from the sum obtained.

1) We must know the details because we want to understand the situation. —

2) You must do the following because you want to operate this machine. —

3) He put the figures in a table because he wants to look at the data. —

4) He included the empty set at the beginning because he wants to have a complete table.
5) We made a conjecture and then proved this because we want to have the correct
procedure. —

Task 6. Match a line in A with a line in B.

1) We apply the Euclidean algorithm | a) to denote sets.
2) We use the symbol e b) let us use the unit circle.
3) We use the braces { } C) to mean “ is an element of ”.
4) To clarify this idea d) we return to one-dimensional geometry and
5) We draw a picture line segments.
6) To fix our thoughts e) we must find a statement that conforms to
7) To find the negation of some | the rule stated above.
statements, f) to express GCD as a linear combination.
8) In order to introduce the concept | g) to show the physical realization on this
of measure, vector sum.
h) we present some examples of set.
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Task 7. Read these sentences and state the form and the function of the
Infinitive. Translate into Russian.

1. To solve the equation was not difficult for her. 2. The speaker at the conference
didn’t like to be interrupted. 3. The article is difficult to translate. 4. They must have
attended his lecture before. 5. He is always the first to come to the University. 6. The
method to be applied is rather complicated. 7. He worked hard in order not to be
behind the other students. 8. The topic may have been considered at the previous
lesson. 9. Our aim is to extend the definition. 10. It isn’t easy to speak any foreign
language. 11. He must be improving his knowledge of mathematics. 12. The scientist
might have been working on this problem for many years.

Task 8. Open the parentheses and give the correct form of the infinitive.

1. I am glad (read) this book now. 2. | hope (award) a scholarship for the coming
semester. 3. He is happy (work) at this company for more than five years. 4. He
does not like (interrupt) by anybody. 5. Ann was surprised (pass) the exams. 6. The
question is too unexpected (answer) at once. 7. | want (solve) these equations. 8.
This theorem was the first (prove). 9. She might (forget) to translate the text
yesterday. 10. The question must (settle) an hour ago. 11. The article is (write) in
time. 12. (Understand) the situation one must (know) the details.

Task 9. Complete the sentences by using infinitives. Supply a preposition after
the infinitive if necessary. Use the Model.

1. I’m planning to fly to the USA next year. 2. The student promised not ... late for
the lecture. 3. | need ... my homework tonight. 4. I want ... computer games after
my classes. 5. He intends ... a programmer when he graduates from the university.
6. I hope ... all of my courses this term. So far my grades have been pretty good. 7.1
try ... class on time every day. 8. I learned (how) ... when I entered the university.
9.1 like ... a lot of e-mails from my friends. 10. I hate ... in front of a large group.
11. My roommate offered ... me with my English.

Task 10. Write the correct form (gerund or infinitive) of the verbs given in
parentheses. Sometimes more than one answer is possible.

1. He regrets (not study) harder when he was at school. 2. The teacher was very strict
and nobody dared (talk) during his lessons. 3. She suggested (go) to the University
by taxi. 4. (learn) English involves (speak) as much as you can. 5. (Solve) this
equation multiply each term in it by the quantity that precedes it. 6. On (obtain) the
data the scientists went on working. 7. The procedure (follow) depends entirely on
the student. 8. This equation must (solve) at the previous lesson. 9. Euclid was the
first (bring) all the known facts about geometry into one whole system. 10. We don’t
mind (give) further assistance. 11. The method (apply) is rather complicated. 12.
(prove) this theorem means (find) a solution for the whole problem. 13. Students are
(study) the laws of mathematics and mechanics.
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UNIT 7
Text 7. Series

A series is, informally speaking, the sum of the terms of a sequence. Finite
sequences and series have defined first and last terms, whereas infinite sequences and
series continue indefinitely.

In mathematics, given an infinite sequence of numbers {a,}, aseriesis
informally the result of adding all those terms together: a; + a, + az + - - -. These can
be written more compactly using the summation symbol ). An example is the

famous series from Zeno's dichotomy and its mathematical representation:
=1 1 1 1
Zgn Tty

The terms of the series are often produced according to a certain rule, such as by
a formula, or by an algorithm. As there are an infinite number of terms, this notion is
often called an infinite series. Unlike finite summations, infinite series need tools
from mathematical analysis, and specifically the notion of limits, to be fully
understood and manipulated. In addition to their ubiquity in mathematics, infinite
series are also widely used in other quantitative disciplines such as physics, computer

science, and finance.
Definition. For any sequence {ax} of rational numbers, real numbers, complex
numbers, functions thereof, etc., the associated series is defined as the ordered formal
o0
Zﬂnzﬂﬂ-l-ﬂi—i-ﬂ-z—i-'“
sum n=>0 .

o0
a‘ﬂ-
The sequence of partial sums {Sk} associated to a seriesn=0 is defined for

each & as the sum of the sequence {an} from ao to ax
i o0
Sp=Y a,=ap+a+ -+ a D an
n=>0 By definition the seriesn=0  convergesto a
limit L if and only if the associated sequence of partial sums {Sk} converges to L.
o0
L=Y a,< L= lim 5.
This definition is usually written as n=>0 hroo

More generally, if [5G is afunction from anindex setl to a set G, then
the series associated to a is the formal sum of the elements @(«) € G over the index

> a(x).

elements * € I denoted by the =<7
When the index set is the natural numbers I = N, the function N3G is

a sequence denoted by a(n) =an_A series indexed on the natural numbers is an
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> >

ordered formal sum and so we rewrite === as ».=o in order to emphasize the ordering
induced by the natural numbers. Thus, we obtain the common notation for a series
indexed by the natural numbers:

30

Eﬂn:'ﬂﬂ—i-ﬂi—i-ﬂ-z—i-'“-

n=>0
When the set ( is a semigroup, the sequence of partial sums {Sk} C G associated to
a sequence {an} C G is defined for each k as the sum of the terms o, @1, * - , Gk

Zaﬂ—aﬂ+a1+ -+ ay,.
n=>0

]

When the semigroup (= is also a topological space, then the series <= “ converges
to an element L € G if and only if the associated sequence of partial sums {Sk}
L=Y a, &L= lm 5.
converges to L. This definition is usually written as n=0 o0
Convergent series. A series Y a, is said to ‘converge' or to 'be convergent'
when the sequence Sy of partial sums has a finite limit. If the limit of Sy is infinite or
does not exist, the series is said to diverge. When the limit of partial sums exists, it is

-l

Eaﬂ_— llm Sy = llm Eaﬂ
called the sum of the series n=0

An easy way that an infinite series can converge is if all the a,are zero
for n sufficiently large. Such a series can be identified with a finite sum, so it is only
infinite in a trivial sense.

Working out the properties of the series that converge even if infinitely many terms

are non-zero is the essence of the study of series. Consider the example

1 1 1 1
1+§+1—|—g+' +2—ﬂ—|—
It is possible to "visualize™ its convergence on the real number line: we can imagine a
line of length 2, with successive segments marked off of lengths 1, 74, 4, etc. There is
always room to mark the next segment, because the amount of line remaining is
always the same as the last segment marked: when we have marked off 2, we still
have a piece of length 2 unmarked, so we can certainly mark the next %. This
argument does not prove that the sum is equal to 2 (although it is), but it does prove
that it is at most 2. In other words, the series has an upper bound. Given that the
series converges, proving that it is equal to 2 requires only elementary algebra. If the
series is denoted S, it can be seen that

l+5+5+5+--- 1 1 1 1

S 2: — — — -
/ 2 272816 Therefore, s-s2-1=5-2
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Mathematicians extend the idiom discussed earlier to other, equivalent notions of
series. For instance, when we talk about a recurring decimal, as in = = 0.111...

= 1
we are talking, in fact, just about the series n=1 10"

But since these series always converge to real numbers (because of what is
called the completeness property of the real numbers), to talk about the series in this
way is the same as to talk about the numbers for which they stand. In particular, it
should offend no sensibilities if we make no distinction between 0.111... and /..
Less clear is the argument that 9 x 0.111... = 0.999... = 1, but it is not untenable
when we consider that we can formalize the proof knowing only that limit laws
preserve the arithmetic operations.

Examples: A geometric series is one where each successive term is produced by
multiplying the previous term by a constant number (called the common ratio in this

context). Example:

1 1 1 1 =1
1+ s+ +gtomt =3 —.

n=02

o0

2 4 8 16
22"
In general, the geometric series n=0 converges if and only if |z| < 1.

An arithmetico-geometric sequence is a generalization of the geometric series, which
has coefficients of the common ratio equal to the terms in an arithmetic series.

Example:
5 7 9 11 < (34 2n)
S S I T —
MR- T 2 o
1 1 1 1 >~ 1
R R e e R ) D
The harmonic series is the series 2 3 4 5 on

The harmonic series is divergent.
An alternating series is a series where terms alternate signs. Example:

R ) ME)
n=1 n

Calculus and partial summation as an operation on sequences
Partial summation takes as input a sequence, { a, }, and gives as output another
sequence, { Sy }. It is thus a unary operation on sequences. Further, this function
is linear, and thus is a linear operator on the vector space of sequences, denoted X.
The inverse operator is the finite difference operator, A. These behave as discrete
analogs of integration and differentiation, only for series (functions of a natural
number) instead of functions of a real variable. For example, the sequence {1, 1, 1,
...} has series {1, 2, 3, 4, ...} as its partial summation, which is analogous to the fact

f1ﬁ=1
that /o
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Properties of series. Series are classified not only by whether they converge or
diverge, but also by the properties of the terms a, (absolute or conditional
convergence); type of convergence of the series (pointwise, uniform); the class of the
term a, (whether it is a real number, arithmetic progression, trigonometric function);
etc.

Non-negative terms. When a, is a non-negative real number for every n, the
sequence Sy of partial sums is non-decreasing. It follows that a series Y a, with non-
negative terms converges if and only if the sequence Sy of partial sums is bounded.

For example, the series
1

— 1 1 1
2 L )
nz1 is convergent, because the inequality n? ~n—1 n’ — “and a
telescopic sum argument implies that the partial sums are bounded by 2.
o0

2 an
Absolute convergence. A series n=0 is said to converge absolutely if the

D la|
series of absolute values_»=0  converges. This is sufficient to guarantee not only

that the original series converges to a limit, but also that any reordering of it
converges to the same limit.

Conditional convergence. A series of real or complex numbers is said to
be conditionally convergent (or semi-convergent) if it is convergent but not
absolutely convergent. A famous example is the alternating series

i(—l)““_l 1+1 1+1
n=1 2 3 45 which is convergent (and its sum is

equal to In 2), but the series formed by taking the absolute value of each term is the
divergent harmonic series.
Mathematical terminology

Series — psij; MPOrpeccHst; MOCIeI0BATEIBHOCTD

term — uyjeH, 2JIEMEHT

terms of a sequence — uieHsI (3JIEMEHTBI) MTOCIIEA0BATEILHOCTH
infinite sequence — GeckoHeYHast OCIIEI0BATEILHOCTh

summation — cymmupoBaH#e

Zeno's dichotomy — muxtomust 3eHOHA

formula (pl. formulae, formulas) — ¢opmyna (MH. hopmysr)
algorithm - anroputm

formal sum — ¢opmansHast cymma

converge — 1) cxoauThes; CTPEMUTBHCS K (001eMy) TIpe/iey, 2) CBOIUTH (B OJHY TOUKY)
diverge — 1) pacxoauTtbcsi, 2) OTKJIOHATHCS (OT JTUHUH, HATIPABIICHHS )
functions thereof — ux ¢ynxrmii

index set — HHAEKCHOE MHOXKECTBO

recurring decimal — nepuoanyeckas gecaTUYHAsA IPOObH
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completeness property — cBOMCTBO IMOJIHOTHI

geometric series — reoMeTpUIeCKuii psill, 0ECKOHEYHAsl TEOMETPHUYECKAsl IIPOTPECCHUs

constant — koHcTaHTa, IOCTOSIHHAS (BEJIMYMHA)

if and only if — Torna u TonkKO TOrAA, KOTIA

arithmetico-geometric sequence — apuMeTHKO-T€OMETPHUYECKAs IIPOTPECCHS,
MOCJIEIOBATEILHOCTh unceN Un, 3a1aBaemast peKyppPEHTHBIM COOTHOIIICHUM:

Uy = a1, Upyy = qUy + d, rned u d - nocrosHuble yncna. YacTHBIMU CIydasMu
apu(PMETHKO-TEOMETPUIECKOI POrPECCHHU SIBISFOTCS apu(MeTHICCKasI

nporpeccus (npu ¢ = 1) u reomerpuueckas nporpeccus (mpu d = 0),

harmonic series — rapmonudeckuii psia (psi, 00paTHBIC BEINYNHBI YWICHOB KOTOPOTO COCTABJISIOT
apuhMETUUYECKYIO IPOTPECCHIO)

alternating series — 3HaKOIICpEMEHHBIH PSJT

unary operation — yHapHas ornepanus

linear — muneiinplik; linear operator — nuHeiHbBIH onepaTop

finite difference — koneuHast pa3HOCTh, MATEMATUYECKUI TEPMHH, IIUPOKO MIPUMEHSFOLIHIACS B
METO/IaX BBIYHCIICHHSI TP HHTEPIIOINPOBAHUH.

integration — uHTErpHpoOBaHUE

differentiation — quddepenunpoBanue, OTbICKAHNUE IPOU3BOIHOMN

conditional convergence — ycioBHast CXOIUMOCTb

Grammar, Lexical, Translation and Speaking Exercises

Task 1. Answer the questions.

1. What is series?

2. Give the mathematical representation of the famous series from Zeno's dichotomy.
3. How can the associated series be defined for any sequence {an} of rational
numbers, real numbers, complex numbers? Give the formula.

4. Write the common notation for a series indexed by the natural numbers.

5. What is the name of a costant number that serves as a multiplier to get successive

. : : L 1+1+1+1+i+---=wi.
term from the previous one in a geometric series likethat 2 4 8 16 =02 ?
6. How do we call a series whose terms are in harmonic progression, as in
1+1/2+1/3+..7

7. Enumerate the properties of series?

Task 2. Grammar revision. Translate from English into Russian and remember
that Passives Voice is very common in technical writing where we are more
interested in facts, processes, and events than in people.

Data is transferred from the internal memory to the arithmetic logical unit.
Distributed systems are built using networked computers.

The organization was created to promote the use of computers in education.

A new method for studying geometric figures and curves, both familiar and new were
created by Descartes and Fermat.
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Task 3. Fill in the gaps using the correct form of the verb in brackets.

All calls ...... (register) by the Help Desk staff. Eachcall ...... (evaluate) and then
...... (allocate) to the relevant support group. If avisit ...... (require), the user......
(contact) by telephone, and an appointment ...... (arrange). Most calls ...... (deal
with) within one working day. In the event of a major problem requiring the removal
of a user’s PC, a replacement can usually...... (supply).

Task 4. Make the sentences passive. Use “by ...” only if it is necessary to say who
does or did the action.

a) Charles Babbage designed a machine which became the basis for building today’s
computer in the early 1800s.

b) People submerged geometry in a sea of formulas and banished its spirit for more
than 150 years.

c) People often appreciate analytical geometry as the logical basis for mechanics and
physics.

d) Bill Gates founded Microsoft.

e) People call the part of the processor which controls data transfers between the
various input and output devices the central processing unit (CPU).

f) You may use ten digits of the Hindu-Arabic system in various combinations. Thus
we will use 1, 2 and 3 to write 123, 132, 213 and so on.

g ) Mathematicians refer to a system with which one coordinates numbers and points
as a coordinate system or frame of reference.

h) People establish a correspondence between the algebraic and analytic properties of
the equation f (X, y) = 0, and geometric properties of the associated curve.

1) In 1946 the University of Pensylvania built the first digital computer.

Task 5. Change the following passive sentences into active.

a) This frame of reference will be used to locate a point in space.

b) Although solid analytic geometry was mentioned by R.Descartes, it was not
elaborated thoroughly and exhaustively by him.

c) Most uses of computers in language education can be described as CALL.

d) Since many students are considerably more able as algebraists than as geometers,
analytic geometry can be described as the “royal road” in geometry that Euclid
thought did not exist.

e) Now new technologies are being developed to make even better machines.

f) Logarithm tables, calculus, and the basis for the modern slide rule were not
invented during the twentieth century. g) After World War 2 ended, the transistor was
developed by Bell Laboratories. h) The whole subject matter of analytic geometry
was well advanced, beyond its elementary stages, by L.Euler.

54



Task 6. Read the text and answer the questions.

RATIO AND PROPORTION
A ratio is an indicated division. It should be thought of as a fraction. The

language used is: “the ratio of a to b which means a + b or % and the symbol is a :

b. In this notation a is the first term or the antecedent, and b is the second term or the
consequent. It is important to remember that we treat the ratio as a fraction. A
proportion is a statement that two ratios are equal. Symbolically we write: a: b =c:

d or % = 2. The statement is read “a is fo b as c is to d” and we call a and d the

extremes, b and c the means, and d the fourth proportional. Proportions are treated as
equations involving fractions. We may perform all the operations on them that we do
on equations, and many of the resulting properties may already have been met in
geometry.

Questions: What should a ratio be thought of as?

How is the statement read when we writea:b=c:dor % ==?

<
rk
How are proportions treated?

Task 7. Fine proper definitions to the following mathematical terms: ellipse,
hyperbola, parabola.

a) A type of cone that has an eccentricity equal to 1. It is an open curve symmetrical
about a line.

b) A type of cone that has an eccentricity between 0O and 1 (0 <e <1). Itis a closed
symmetrical curve like an elongated circle — the higher the eccentricity, the greater
the elongation.

c) A type of cone that has an eccentricity (e) greater than 1. It is an open curve with
two symmetrical branches.

d) A closed conic section shaped like a flattened circle and formed by an inclined
plane that does not cut the base of the cone. Standard equation x2/a2 + y2/b2 =1,
where 2a and 2b are the lengths of the major and minor axes.

e) A conic section formed by a plane that cuts both bases of a cone; it consists of two
branches asymptotic to two intersecting fixed lines and has two foci. Standard
equation: x2/a2 - y2/b2 = 1 where 2a is the distance between the two intersections
with the x-axis and b = aV(e2 - 1), where e is the eccentricity.

f) The graph of a quadratic expression. If y = ax2 + bx + ¢, where a # 0, then y
always has an extreme value when x + -b/2a. This is a minimum if a > 0 and a
maximum if a < g) A conic section formed by the intersection of a cone by a plane
parallel to its side. Standard equation: y2 = 4ax, where 2a is the distance between
focus and directrix.
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UNIT 8
Text 8. Functions

A function is a relation between a set of inputs and a set of permissible outputs
with the property that each input is related to exactly one output. An example is the
function that relates each real number xto its square x’. The output of a
function f corresponding to an input x is denoted by f(x) (read "fofx"). In this
example, if the input is —3, then the output is 9, and we may write f(—3) = 9. The
input variable(s) are sometimes referred to as the argument(s) of the function.

Functions of various kinds are "the central objects of investigation” in most
fields of modern mathematics. There are many ways to describe or represent a
function. Some functions may be defined by a formula or algorithm that tells how to
compute the output for a given input. Others are given by a picture, called the graph
of the function. In science, functions are sometimes defined by a table that gives the
outputs for selected inputs. A function could be described implicitly, for example as
the inverse to another function or as a solution of a differential equation.

The input and output of a function can be expressed as an ordered pair, ordered
so that the first element is the input (or tuple of inputs, if the function takes more than
one input), and the second is the output. In the example above, f(x) = x*, we have the
ordered pair (-3, 9). If both input and output are real numbers, this ordered pair can
be viewed as the Cartesian coordinates of a point on the graph of the function. But no
picture can exactly define every point in an infinite set.

In modern mathematics, a function is defined by its set of inputs, called
the domain; a set containing the set of outputs, and possibly additional elements, as
members, called its codomain; and the set of all input-output pairs, called its graph.
(Sometimes the codomain is called the function's "range", but warning: the word
"range" is sometimes used to mean, instead, specifically the set of outputs. An
unambiguous word for the latter meaning is the function's "image". To avoid
ambiguity, the words "codomain™ and "image" are the preferred language for their
concepts.) For example, we could define a function using the rule f(x) = x* by saying
that the domain and codomain are the real numbers, and that the graph consists of all
pairs of real numbers (x, x?). Collections of functions with the same domain and the
same codomain are called function spaces, the properties of which are studied in such
mathematical disciplines as real analysis, complex analysis, and functional analysis.
In analogy with arithmetic, it is possible to define addition, subtraction,
multiplication, and division of functions, in those cases where the output is a number.
Another important operation defined on functions is function composition, where the
output from one function becomes the input to another function.
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Introduction and examples

A function that associates to any of the four colored shapes its
color. Let X be the set consisting of four shapes: a red triangle, a
yellow rectangle, a green hexagon, and a red square; and let Y be the
set consisting of five colors: red, blue, green, pink, and yellow.
Linking each shape to its color is a function from X to Y: each shape is
linked to a color (i.e., an element in Y), and each shape is "linked", or
"mapped", to exactly one color. There is no shape that lacks a color
and no shape that has two or more colors. This function will be
referred to as the "color-of-the-shape function™.

The input to a function is called the argument and the output is called the value.
The set of all permitted inputs to a given function is called the domain of the
function, while the set of permissible outputs is called the codomain. Thus, the
domain of the "color-of-the-shape function” is the set of the four shapes, and the
codomain consists of the five colors. The concept of a function does not require that
every possible output is the value of some argument, e.g. the color blue is not the
color of any of the four shapes in X.

A second example of a function is the following: the domain is chosen to be the
set of natural numbers (1, 2, 3, 4, ...), and the codomain is the set of integers (..., =3,
-2, -1, 0, 1, 2, 3, ...). The function associates to any natural number n the number
4—n. For example, to 1 it associates 3 and to 10 it associates —6.

A third example of a function has the set of polygons as domain and the set of
natural numbers as codomain. The function associates a polygon with its number
of vertices. For example, a triangle is associated with the number 3, a square with the
number 4, and so on. The term range is sometimes used either for the codomain or for
the set of all the actual values a function has.

Definition

X The diagram represents a function with domain {1, 2,
3}, codomain {A, B, C, D} and set of ordered pairs

{(1,D), (2,C), (3,C)}. The image is {C,D}.

PN W g

X Y However, this second diagram doesnot represent a
\ / D function. One reason is that 2 is the first element in more

| E than one ordered pair. In particular, (2, B) and (2, C) are

A both elements of the set of ordered pairs. Another reason,

sufficient by itself, is that 3 is not the first element (input)
for any ordered pair. A third reason, likewise, is that 4 is
not the first element of any ordered pair.
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In order to avoid the use of the informally defined concepts of "rules" and
"associates", the above intuitive explanation of functions is completed with a formal
definition. This definition relies on the notion of the Cartesian product. The Cartesian
product of two sets X and Y is the set of all ordered pairs, written (x, y), where x is an
element of X and y is an element of Y. The x and the y are called the components of
the ordered pair. The Cartesian product of X and Y is denoted by X x Y,

A function f from X to Y is a subset of the Cartesian product X x Y subject to the
following condition: every element of X is the first component of one and only one
ordered pair in the subset. In other words, for every x in X there is exactly one
element ysuch that the ordered pair (x,y) is contained in the subset defining the
function f. This formal definition is a precise rendition of the idea that to each x is
associated an elementy of Y, namely the uniquely specified elementy with the
property just mentioned.

Considering the "color-of-the-shape” function above, the set X is the domain
consisting of the four shapes, while Y is the codomain consisting of five colors. There
are twenty possible ordered pairs (four shapes times five colors), one of which is
("yellow rectangle”, "red™).

The "color-of-the-shape™ function described above consists of the set of those
ordered pairs, (shape, color) where the color is the actual color of the given shape.
Thus, the pair ("red triangle”, "red") is in the function, but the pair ("yellow
rectangle™, "red") is not.

Notation. A function f with domain X and codomain Y is commonly denoted by

ffX=Y o xiyv

In this context, the elements of X are called arguments of f. For each argument X,
the corresponding uniqueyin the codomain is called the function value at x or
the image of x under f. It is written asf(x). One says that f associates y with x or

maps x to y. This is abbreviated by ¥ = f(z).

A general function is often denoted by f. Special functions have names, for
example, the signum function is denoted by sgn. Given a real number x, its image
under the signum function is then written as sgn(x). Here, the argument is denoted by
the symbol x, but different symbols may be used in other contexts. For example, in
physics, the velocity of some body, depending on the time, is denoted v(t). The
parentheses around the argument may be omitted when there is little chance of
confusion, thus: sinx; this is known as prefix notation.

In order to denote a specific function, the notation —+ (an arrow with a bar at its
tail) is used. For example, the above function reads

fTN=Z

T 4 — .
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The first part can be read as:

"f is a function from I (the set of natural numbers) to Z (the set of integers)" or

"f is a Z-valued function of an [N-valued variable".

The second part is read: "X maps to 4—X."

In other words, this function has the natural numbers as domain, the integers as
codomain. Strictly speaking, a function is properly defined only when the domain and
codomain are specified. For example, the formula f(x) = 4 —xalone (without
specifying the codomain and domain) is not a properly defined function. Moreover,
the function

g: L — 7

r—4—x.
(with different domain) is not considered the same function, even though the
formulas defining f and g agree, and similarly with a different codomain. Despite
that, many authors drop the specification of the domain and codomain, especially if
these are clear from the context. So in this example many just write f(x) = 4 —x.
Sometimes, the maximal possible domain is also understood implicitly: a formula

such as f(z) = Va? — br 46 may mean that the domain of fis the set of real
numbers x where the square root is defined (in this case x <2 or x > 3).

To define a function, sometimes a dot notation is used in order to emphasize the
functional nature of an expression without assigning a special symbol to the variable.
For instance, a(-? stands for the function = — aa?, Jo f@d stands for the integral

function =, fldx and so on.

Mathematical terminology

function - pynkuus

relation - otHomeHue

set - MHO>KECTBO

INputs — BXxoiHbIE (BBOHBIC) TaHHBIC

permissible — nomycTumebIit

outputs — BEIXOIHBIE TAHHBIE

input variable — BxomHas BenmuunHa, BXOIHAS IEpEeMEHHAsI
argument of the function — aprymenTt ¢pyHkuu

objects of investigation — 00beKT UccieT0BaHHS

graph of the function — rpaduk QpyHkIHN

INverse - oOpaTHasi BETMYUHA; OOPATHBIH, TPOTHBOIIOI0KHBIN
solution — pemienne

differential equation — quddepenimanpHOE ypaBHEHHE
ordered pair — ymopsgodeHHas mapa
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tuple —1) kopTek, MHOTOKOMIIOHEHTHBIH OOBEKT JaHHBIX; 2) JEKapTOBO Mpou3BeacHHe, N-Ka,
"snka"; 3) 3amuch

Cartesian coordinates — gekapToBbI [IIPSIMOYTOJIbHBIE] KOOPIHHATHI

domain - o6acth onpeaeacHus

codomain — o6aacte 3HadeHui (GyHKIHH), KOOOIACTh

range — cJI0BO MOKET 0003Ha4YaTh ¥ 00JIaCTh 3HAYCHHI ¥ BBIXO/IHbIC JaHHbBIC

unambiguous word — oHO3HaYHOE CIIOBO

avoid ambiguity — u36erats HEOHO3HAYHOCTH (HESICHOCTH, JBYCMBICIIEHHOCTH )

image of the function, image domain — o6yiacth 0TOOpaXXeHUs

function space — GpyHKIIMOHAIBHOE POCTPAHCTBO

real analysis — anaiu3 1eliCTBUTEIBHBIX YUCEI

complex analysis — KOMIUIEKCHBIH aHATN3

functional analysis — pyHKIMOHANBHBIN aHAIN3

triangle — tpeyroabHuK

rectangle — npsMoyrosbHHK

hexagon — mecTryroibHUK; IECTUTPAHHUK

square — kBajgpart

linked — cBs3anHbIi

mapped — oToOpaskeHHBII; 0TOOpakaeMbIii

value — 3HaueHue, BeNINHA

integer — 1emoe 4nciIo

polygon — MHOTOYTrOJIbHUK; MHOTOTPAHHHUK; TIOJIUTOH

vertice — BepiiHa

four shapes times five colors — 4 ¢guryps! yMHOXEHHbIC Ha 5 1IBETOB

notation — o6o3navenue; hopma 3amrcu

signum function - 3HakoBast GpyHKIHSI

velocity - ckopocTb

prefix notation - mnpedurcHas HoTtamms (O6eccKOOOYHAs 3amKCh), OJHA W3 BO3MOXHBIX
6eccK000YHBIX (OPM 3armuch apu(hMETHIECCKUX BBIPAKEHUH, QYHKIUN 1 UX OMEpPaH/IOB, B KOTOPOi
omneparop (uMst pyHKIUH) TPEIIISCCTBYET BCeM €€ OrepaHaM, T. €. CTAaBUTCS CJIeBa OT ONEPaHIOB.
B s10it HOTanmu anredpandeckoe Beipaxenue (A+B) * C Gyner Boirmsinets kak * + ABC.

dot notation - ToueuHas 3anuch (HOTAIHs)
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Grammar, Lexical, Translation and Speaking Exercises

Task 1. Match the English words and word combinations with their Russian

equivalents.

1. the undefined term
. to extend indefinitely
. the vertex of the angle

. distinguishing features
. the exterior part

. unless stated otherwise
. reflex angle

. perpendicular bisector
. adjacent angles

. intersecting lines

. parallel lines

. perpendicular lines

. acute angle

. right angle

. obtuse angle

. straight angle

O© 00 N O O b W N
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. the interior of the angle

a) BepIIMHa yria

b) oTaMYKTENBHBIC YEePTHI

C) ecJIM He yKa3aHO HHOE

d) HeomnpeneacHHBIN TEPMUH

) BHYTPCHHSIS YacTh yIiia

f) mpoieBaThcst 6ECKOHEUHO
Q) BHEIIHSS YacTh

h) cMexHBIe yTiIbI

1) yron mexy 180 u 360

J) nepnieHAUKYIIIpHAs OUCCEKTpHCa
K) meprieHaAuKysIsIpHbIC TIPSIMBbIC
|) mepecekaromuecs npsiMbie
M) mapesuieabHbIC MPSMbIC

N) TYmou yrou

0) OCTPBIiA yroj

p) IpsIMOM yToo

q) pa3BEPHYTHIH yrou

Task 2. Find out whether the statements are True or False according to the

information in the text.

Use the introductory phrases:

| think, it is right. Quite so. Absolutely
correct. | quite agree to it.

I am afraid, it is wrong. I don’t quite
agree to it. On the contrary. Far from it.

. A point has length, width or thickness.

. A line is limited and extends infinitely in one direction.
. A line unless stated otherwise is understood to be straight.
. A line is the shortest distance between two points.

. Equal angles are angles that have the same number of degrees.

. Right angles are not congruent.

. A perpendicular bisector of a line bisects the line and is perpendicular to the line.

1
2
3
4
5. A surface has length and width, it doesn’t have thickness.
6
7
8
9

. If two planes intersect, their intersection is a line.
10. A point is a location and it has size. 11. The size of the angle depends on the

lengths of the rays forming it.
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11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21,
22,
23.
24,
25,

Acute angle — an angle which measure is less than 90°.

Right angle — an angle which measure equals 90°.

A box in the vertex denotes a right angle.

Obtuse angle — an angle which measure is greater than 90° and less than 180°.
Straight angle — an angle which measure equals 180°.

Reflex angle — an angle which measure is greater than 180° and less than 360°
Equal angles are angles that have the same number of degrees.

A ray that bisects an angle divides it into 2 equal parts.

The line is called the angle bisector.

Congruent angles have the same measure.

Perpendiculars are lines that form right angles.

All right angles are congruent.

The sides of a straight angle lie on a straight line.

All straight angles are congruent.

A perpendicular bisector of a line bisects the line and is perpendicular to the line.

Task 3. Grammar revision. Choose the correct form of the Participle.
1. (to name) geometric ideas we usually use letters of the alphabet.

2. We insisted on the (to follow) notation of the geometric object.

3. (to divide) both the numerator and the denominator by x you will get the following
expression.
4. When (to speak) with my science adviser | got better understanding of the latest
development in my special field.
5. The properties of the material (to use) in the experiment now are given in the latest
article.

6. The advantages of the new system (to prove) by many tests are very important.
7. Two angles (to have) the same vertex and a common side are refered to as adjacent
angles.

8. The concepts (to introduce) at the seminar should be considered in detail.
9. The (to obtain) difference must be checked carefully.

10.

The (to expect) result must prove that this law holds for similar cases.

Task 4. Fill in the blanks with the necessary words.
1. To (u3meputhb) an angle, compare its side to the corner of this page.

2. The corner represents (mpsimMoit yroi), whose measurement is 90°.

3. If the angle is smaller than the corner, the angle is (ocTpbIit yromn).
4. If the opening is larger than the corner of the page, the angle is (Tymoii). Its
measure is more than 90°.
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5. Locate the point of your (Tpancnoptup) which represents the (Bepmmna) and align
the vertex with the point.

6. Rotate the protractor keeping the vertex aligned until one (cropona) of the angle is
on the 0° — 180° line of the protractor.

7. The angle measure that is (onpenensercs) by the side of the angle that is not on the
0° — 180° line of the protractor.

8. You may have to (mpomiuts) one side of the angle so that it crosses the scale.

9. Use the proper (0o603nauenue), m is the symbol for “measure of”.

Task 5. Match the left and the right parts of the following statements.

1. A group of two angles is known | a) two angles whose measures add up to 180°.

2. Adjacent angles are b) two nonadjacent angles formed by two
3. Vertical angles are intersecting lines.

4. Complementary angles are c) is the complement of the other.

5. One angle d) two angles whose measures add up to 90°.
6. Supplementary angles are e) as a pair of angles.

7. If an angle is cut into two | f) two angles that have the same vertex and a
adjacent angles common side. g. are congruent.

8. If the exterior sides of a pair of [ h) then the sum of the measures of the
adjacent angles are perpendicular adjacent angles equals the measure of the
9. If two angles are congruent and | original angle.

supplementary 1) then the angles are complementary.

10. Vertical angles are J) then each angle is a right angle.

Task 6. Grammar revision; the Continuous or Perfect Continuous Tenses.
1. 1 (to look for) a photographs my brother sent to me.

2. They (to have) a meeting now.

3. The phone always (to ring) when I (to have) a bath.

4. Friends always (to talk) to me when | (to try) to concentrate.
5. He (to watch) television when the door bell (to ring).

6. He (to build up) his business all his life.

7. They (to stay) with us for a couple of weeks.

8. By 1992 he (to live) there for ten years.

9. The video industry (to develop) rapidly.

10. He (to work) nights next week.

11. She (to spend) this summer in Europe.

12. Why are you so late? | (to wait) you for hours.

13. The boys must be tired. They (to play) football in the garden all afternoon.
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14. The old town theatre is currently (to rebuild). 15. I usually (to go) to work by car,
but I (to go) on the bus this week while my car (to repair).

Task 7. Match the definitions of the circles with their names.

1. Tangent circles a. are circles that have different centers.
2. Concentric circles | b. are both circles which are on the opposite sides of the
3. A circumscribed tangent line.

circle c. is a polygon that is inside a circle so that each of its
4. Externally tangent | vertices lies on the circle.
circles d. is a circle to which all the sides of a polygon are tangents.

5. An inscribed circle | e. is a polygon that is outside the circle in such a way that all
6. Eccentric circles of its sides are tangent to the circle.

7. Inscribed polygon | f. is a circle passing through each vertex of a polygon.

8. A circumscribed g. both circles which are on the same side of the tangent
polygon line.

9. Internally tangent | h. are two or more circles in a plane with the same center,
circles but the lengths of their radii vary. The annulus is the region
between concentric circles.

I. are two circles that intersect only at one point.

Task 8. Revise the Degrees of Comparison. Give the best English equivalents for
the words in parentheses.

1. A circle is (camas nipoctast) of all curved lines.

2. Every point at a distance (6omb11e) than radius (roBopsT) to be outside the circle.

3. A secant segment is a line segment with an endpoint in the exterior of a circle, and
the other endpoint on the circle, (camoii ganexoii) from the external point.

4. Tom comes top in all the exams — he must be (cambrit ymHbII) student in the group.
5. (Uem menbine) students think, (tem 6osbiiie) they talk.

6. How are you today? — I’m very (xopoo), thanks.

7. Is this proof (0onee npaBuIBHO)?

8. Peter speaks English (mau6omnee 6ermno) of all the students in this group.

9. (Yem 6ombie) I learn, (Tem 6ombie) I forget and (Tem mensiie) I know.

10. (Uem ckopee) the problem is solved, (Tem myurie).

11. This contribution of the ancient Greeks is (HamHoro 6osbie, yem) the formulas
of the Egyptians.
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UNIT 9
Text 9. Continuous function

A continuous function is, roughly speaking, a function for which small changes
in the input result in small changes in the output. Otherwise, a function is said to be
a discontinuous function. A continuous function with a continuous inverse function is
called a homeomorphism.

Continuity of functions is one of the core concepts of topology. This text focuses
on the special case where the inputs and outputs of functions are real numbers.

As an example, consider the function h(t), which describes the height of a
growing flower at time t. This function is continuous. By contrast, if M(t) denotes the
amount of money in a bank account at time t, then the function jumps whenever
money is deposited or withdrawn, so the function M(t) is discontinuous.

History. A form of this epsilon-delta definition of continuity was first given

by Bernard Bolzano in 1817. Augustin-LouisCauchy defined continuity of ¥ = f(z)
as follows: an infinitely small increment o of the independent variable x always

produces an infinitely small change flx + @) = f(z) of the dependent variabley .
Cauchy defined infinitely small quantities in terms of variable quantities, and his
definition of continuity closely parallels the infinitesimal definition used today. The
formal definition and the distinction between pointwise continuity and uniform
continuity were first given by Bolzano in the 1830s but the work wasn't published
until the 1930s. Eduard Heine provided the first published definition of uniform
continuity in 1872, but based these ideas on lectures given by Peter Gustav Lejeune
Dirichletin 1854.

Real-valued continuous functions. Definition.

A function from the set of real numbers to the real numbers can be represented
by a graph in the Cartesian plane; such a function is continuous if, roughly speaking,
the graph is a single unbroken curve with no "holes" or "jumps".

There are several ways to make this definition mathematically rigorous. These
definitions are equivalent to one another, so the most convenient definition can be
used to determine whether a given function is continuous or not. In the definitions
below, f: I — R. s a function defined on a subset | of the set R of real numbers.
This subset | is referred to as the domain of f. Some possible choices include | =R,
the whole set of real numbers, an open interval

I =(a,b) ={z € R|a <z <b}, oraclosed interval
I=labj={reR|a<x<b} Here aandb are real numbers.
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Definition in terms of limits of functions. The function f is continuous at
some point c of its domain if the limit of f(x) as x approaches c through the domain

lim f(z) = f(c).

of f exists and is equal to f(c). This is written as  z—c

In detail this means three conditions: first, f has to be defined at c. Second, the
limit on the left hand side of that equation has to exist. Third, the value of this limit
must equal f(c). The function f is said to be continuous if it is continuous at every
point of its domain. If the point ¢ in the domain of f is not a limit point of the domain,
then this condition is vacuously true, since x cannot approach c through values not
equal to c. Thus, for example, every function whose domain is the set of all integers
IS continuous.

Definition in terms of limits of sequences. One can instead require that for

anysequence(i?n)nEN of points in the domain which convergestoc, the

corresponding  sequence (f(Tn)) nem converges  tof(c). In  mathematical
notation, T )ner C 1 ﬂ,h_ﬂj In =C= T}‘_T}‘:}G (xn) = fle).

Weierstrass definition (epsilon-delta) of continuous functions.

Ilustration of the e-d-definition: for €=0.5, c=2, the
value 0=0.5 satisfies the condition of the definition.
Explicitly including the definition of the limit of a
function, we obtain a self-contained definition: Given
a functionfas above and an elementcof the
domain I, f is said to be continuous at the point c if the
following holds: For any number & >0, however
small, there exists some number 6 >0 such that for
all xin the domain offwithc—d<x<c+9, the
value of f(x) satisfies f(c) — ¢ < f(z) < f(c) + .

Y

Alternatively written, continuity of f: 1 — R at c € | means that for every ¢ >0

there exists a 6 > O such that forall x e 1. | —¢ < d=[f(z) — f(c)| <<

More intuitively, we can say that if we want to get all the f(x) values to stay in
some small neighborhood around f(c), we simply need to choose a small enough
neighborhood for the x values around ¢, and we can do that no matter how small
thef(x) neighborhood is; f is then continuous at c.

In modern terms, this is generalized by the definition of continuity of a function
with respect to a basis for the topology, here the metric topology.

Definition using the hyperreals. Cauchy defined continuity of a function in the
following intuitive terms: an infinitesimal change in the independent variable
corresponds to an infinitesimal change of the dependent . Non-standard analysis is a
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way of making this mathematically rigorous. The real line is augmented by the
addition of infinite and infinitesimal numbers to form the hyperreal numbers. In
nonstandard analysis, continuity can be defined as follows.

A real-valued function fis continuous at x if its natural extension to the
hyperreals has the property that for all infinitesimal dx, f(x+dx) — f(x) is infinitesimal.

In other words, an infinitesimal increment of the independent variable always
produces to an infinitesimal change of the dependent variable, giving a modern
expression to Augustin-Louis Cauchy's definition of continuity. Examples:

continuous. All polynomial functions,such as f (x)= x® + x* -5x + 3, are
continuous. This is a consequence of the fact that, given two continuous
functions S5 9 I — R defined on the same domain I, then the

sum f + g, and the product fg of the two functions are continuous (on the
same domain I). Moreover, the function

o / The graph of a cubic function has no jumps or holes. The function is

-19

y=(x+3)x=10" | 0
flx)

g(x) is continuous.

g: {x e Ig(x) #0} - R, x

v The graph of arational function. The function is not defined for x=—2.
/ The wvertical and horizontal lines are asymptotes. The function
2r—1
/ 7% =773 is defined for all real numbers x # —2 and is continuous at
every such point. The question of continuity at x= —2 does not arise,
" |sincex= —2is not in the domain off. There is no continuous
AR " | function F: R — R that agrees withf(x) for allx# —2. The sinc
function g(x) = (sin x)/x, defined for all x#0 is continuous at these points.
.‘ However, this function can be extended to a continuous function on all

sinl=) if @ == 0

a

| real numbers, namely Tl = {1 if = — 0. gince the limit
of g(x), when x approaches 0, is 1. Therefore, the point x=0 is called a

| removable singularity of g.

Given two continuous functions
f:I— J(CR).g: J = R, the composition 9© /: I = R,z g(f(z)) is continuous.
An example of a discontinuous function is the function f defined by f(x) = 1
if x> 0,f(x) = 0 ifx< 0. Pick for instance ¢ =%. There is no §-neighborhood
around x = 0 that will force all the f(x) values to be within ¢ of f(0). Intuitively we can
think of this type of discontinuity as a sudden jump in function values. Similarly,
the signum or sign function

y§ __|Plot of the signum function. The hollow dots indicate that
sgn(x) is 1 for all x>0 and —1 for all x<0.

~ 1 if =« = 0
sgn(x) = 0 if & = 0

—1 if @ << O

Is discontinuous at x = 0 but continuous everywhere else.
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Yet another example: the function

sin (%) ifx #0
fla)=q." (E‘f

Difx=20
IS continuous everywhere apart from x = 0.

D(z) 0 if = is irrational (€ R\ @)
;r =
1 if x is rational (€ Q)

Properties. Intermediate value theorem.

The intermediate value theorem is an existence theorem, based on the real
number property of completeness, and states:

If the real-valued function f is continuous on the closed interval [a, b] and k is
some number between f(a) and f(b), then there is some number cin [a, b] such
that f(c) = k.

For example, if a child grows from 1 m to 1.5 m between the ages of two and six
years, then, at some time between two and six years of age, the child's height must
have been 1.25 m.

As a consequence, if fis continuous on [a, b] and f(a) and f(b) differ in sign,
then, at some point ¢ in [a, b], f(c) must equal zero.

Extreme value theorem. The extreme value theorem states that if a function f is
defined on a closed interval [a,b] (or any closed and bounded set) and is continuous
there, then the function attains its maximum, i.e. there exists ¢ € [a,b] with f(c) > f(x)
for all x € [a,b]. The same is true of the minimum of f. These statements are not, in
general, true if the function is defined on an open interval (a,b) (or any set that is not
both closed and bounded), as, for example, the continuous function f(x) = 1/x, defined
on the open interval (0,1), does not attain a maximum, being unbounded above.

Relation to differentiability and integrability. Every differentiable function

fi(a,b) =R IS continuous, as can be shown. The converse does not hold: for

flz) = || = {I lf.I >0
example, the absolute value function 2 x <0 e overywhere
continuous. However, it is not differentiable atx= 0 (but is so everywhere
else). Weierstrass's function is everywhere continuous but nowhere differentiable.
The derivative f'(x) of a differentiable function f(x) need not be continuous.
If /() is continuous, f(x) is said to be continuously differentiable. The set of such
functions is denoted C'((a,b)). More generally, the set of functions Jf: € — R
(from an open interval (or open subset of R) Q to the reals) such that f is n times
differentiable and such that the n-th derivative of f is continuous is denoted C"(Q).
See differentiability class. In the field of computer graphics, these three levels are

68



sometimes  called G° (continuity of  position), G* (continuity of  tangency),
and G?(continuity of curvature).

Every continuous function fila,b] = R s integrable (for example in the
sense of the Riemann integral). The converse does not hold, as the (integrable, but
discontinuous) sign function shows.

Pointwise and uniform limit

A sequence of continuous functions f,(x) whose (pointwise) limit function f(x) is
discontinuous. The convergence is not uniform.

Given a sequence Jf1,/f2,--. 1 I — R of functions such that the limit
flr) = nh—rf:}o ful(z) exists for all x in I, the resulting function f(x) is referred to as

the pointwise limit of the sequence of functions (f,).en. The pointwise limit function
need not be continuous, even if all functions f,, are continuous, as the animation at the
right shows. However, fis continuous when the sequence converges uniformly, by
the uniform convergence theorem. This theorem can be used to show that
the exponential functions, logarithms, square root function, trigopnometric functions
are continuous.

Mathematical terminology

continuous function - HenpepsiBHAsE GYHKINS
discontinuous function — nuckperHasi, npepbiBHas HYHKIIHS
continuous inverse function — HenpepbIBHast 0OpaTHAsT PYHKITHS
homeomorphism — romeomopdusm, Tononoruaeckoe 0ToOpakeHne
height — BeicoTa, Bepmuna, Bepx
epsilon-delta definition — sricunon-nenpTa onpeneneHe
Bernard Bolzano — bepuapn bosnbnano (1781-1848), uemickuii matemaTtuk, ¢Guiocod, aBTOp
NIEpBOM CTPOTOH TEOPUH BEIIECTBEHHBIX YHCEI H OJJMH U3 OCHOBOIIOJIOXHUKOB TEOPUU MHOYKECTB.
Augustin-Louis Cauchy - Orrocren JIyn Kormm (1789-1857), Benukuit GppaHiry3ckuii MaTeMaTiK 1
MeXaHMK, wieH [lapmwkckoil akagemMuu Hayk, JIOHIOHCKOTO KOpOJEBCKOTO —OOINECTBa,
[TerepOyprckoit akamemun Hayk. Paszpabortan (yHZaMeHT MaTeMaTHYeCKOTO aHaiu3a, BHEC
OTPOMHBIA BKJIJ B aHaiu3, ainreOpy, MareMarndeckyro (u3uky. Ero Mms BHECEHO B CIIMCOK
BeNMMYalmmx y4éHbix @paHiyy, TOMEIEHHBIN Ha IEpBOM dTaxke DiideneBoii OanrHu.
uniform continuity - paBHOMepHas HENPEBBIBHOCTb
Curve - kpuBasi; U3rudarth; U3rud; rpaduk; ayra; 3aKpyricHue; HICKPUBICHUE
equivalent - skBHMBaJICHT, S5KBUBAJIICHTHBI
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open interval - otkperTeiii uaTepBai; closed interval - samMkHyTHII HHTEpBAT

limit point - mpeaenbHas Touka

vacuously true — 6eccoepkarebHO HCTUHHBIH; VACUOUS Set — IycToe MHOXKECTBO

neighborhood — okpectHOCTB (TOUYKH)

metric topology - MeTpuuecKast TOMOIOTUs

infinitesimal - 6eckoneuro manas (BenMyMHA)

Non-standard analysis - HecTanaapTHBII aHAIN3

hyperreal number - runepseriecTBeHHOE YHCITO

Augustin-Louis Cauchy's definition of continuity — onpenenenue HenpepbiBHOCTH 110 Korm
cubic function - kyouueckast hpyHKIUS

polynomial functions — nonmuHomMuanbHas GyHKIKS, TOTHHOM

rational function — pauuonanbHas GyHKIHSI

asymptote - acumnrora

sinc function ['sigk] sinus cardinalis (cardinal sine function) - «kapaAUHAIBHBIA CHHYCY,
MaTeMaTH4ecKasi GyHKIUs

signum (sign function) - curaym (dyHKIus), 3HaKOBast PyHKIIHS

intermediate value theorem - Teopema 0 IPOMEKYTOUHOM 3HAUCHUHU

existence theorem — reopema cyiecTBOBaHUS

property of completeness — cBoiicTBO MONHOTHI (HAMP. CUCTEMBI PYHKITHI)

closed interval — 3amkHyTBIIT HHTEpBAT

extreme value theorem — reopema 00 3KCTpeMaIbHOM 3HAYCHUH, IKCTPEeMyMax (yHKIIUH
differentiable function — muddepenmpyemas GyHkIuUs, riaakas GyHKIH

Weierstrass's function — ®ynxkuus Belieprirpacca, HenpepbiBHasT GYHKIHSI, HUTC HE UMEROIIast
IIPOU3BOHOU

derivative - npousBoaHas GpyHKIMs

open subset — OoTKpBITOE O IMHOMKECTBO

differentiability — muddepennupyemocts (cBOWCTBO (YHKIIMM, O3HAYANONICE BO3MOKHOCTH
BBIYMCIICHUS] TIPOM3BOIHON IO KAKOMYy-JI. apryMEHTY B KakKOW-J. TOYKe;, B ciydae ¢ (yHKIHEit
TIOJIE3HOCTH 03HAYAET, YTO MOBEPXHOCTH OE3Pa3TMIHBIX MHOKECTB HE HMEIOT U3JIOMOB)

integrable — unterpupyemsrii, cymmupyemsrii; absolutely integrable -a6comotHo uHTErpUpyeMBbIit
Riemann integral — unterpan Primana, onpeienénHblii nHTErpas

pointwise limit — TodeunsIii ipenesn

uniform convergence theorem — paBHOMEpHasi CXOAMMOCTb ITOCIEIOBATEIBHOCTH (PYHKIINI
(oToOpaskeHui) — CBOMCTBO IOCIIEIOBATEILHOCTH fo: X — Y, rie X — Tpou3BONBHOE
MHOX€ECTBO, Y = (Y d) - METPUYECKOE MPOCTPAHCTBO, It = 1,2,.. - CXOIUTCS K (YHKIHUU

(orobpaermo) J 1 X =Y osmauaromee, wro ams moGoroz > () cymectByer Taxoit

r T
HOMED ha:, 9TO JUI BCex Homepos Tt = Neu seex Touex T € X prmonmsiercs HEPaBEHCTBO

|f H(I) —f (T’)l <€ O6wumo obosnauaercs Jn = f. 310 YCIIOBHE PAaBHOCUJIBHO TOMY, YTO
Tim sup | fu(x) — £(2)| = 0.
oeX
exponential function — skcnoneHnManbHasE GYHKIMS, TOKa3aTeIbHAsT (PYHKIHS
logarithm — norapudm; common logarithm — necstuunsiii nmorapudm, natural logarithm —
HaTypalbHbIH Jorapudm; square root function — gpyHkums kBaxpaTHbIl KOPEHb
trigonometric function — tpuronoMeTpudeckas §yHKIHS
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Grammar, Lexical, Translation and Speaking Exercises

Task 1. Translate the definitions into Russian and find the suitable term from

the opposite column,

1) an interval on the real line including
its end points, as [0, 1], the set of reals
between and including 0 and 1,

2) any of the set of numbers formed by
the addition of infinite numbers and
infinitesimal numbers to the set of real
numbers;

3) a straight line that is closely
approached by a plane curve so that the
perpendicular distance between them
decreases to zero as the distance from
the origin increases to infinity;

4) the exponent indicating the power to
which a fixed number, the base, must be
raised to obtain a given number or
variable. It is used esp to simplify
multiplication and division: if ax = M,
then the logarithm of M to the base a
(written logaM) is x Often shortened to:
log;

5) a function whose value is a constant
raised to the power of the argument, esp.
the function where the constant is e.

a) closed interval

b) hyperreal number
Cc) asymptote

d) logarithm

e) exponential function

Task 2. Complete each of the sentences below by choosing one of the pronouns in

brackets.

1. ... arrived in good time and the meeting started promptly at 3.30 (anybody/

nobody/ everybody)

2. ... in the village went to the party but ... enjoyed it very much. (everybody/ no one/

some one), (anybody/ somebody/ nobody)

3. ... heard anything. (everyone/ nobody/ somebody)

4. “Who shall T give this one to? — You can give it to ...

(everyone/ nobody/ anybody)

. It doesn’t matter.”

5. That’s a very easy job. ... can do it. (everyone/ nobody/ somebody).
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6. Would you like ... to drink? (anything/ something/ nothing)

7. 1thought I’d seen you ... . (anywhere/ somewhere/ nowhere)

8. There was ... to hide. (anywhere/ somewhere/ nowhere)

9. You still haven’t told me ... . (anything/ something/ nothing)

10. Does ... agree with me? (anybody/ somebody/ nobody)

11. I want to introduce you to ... (no one/ someone/ any one)

12. The box was completely empty. There was ... in it. (nothing/ anything)

13. “Excuse me, you’ve dropped ... . Yes, look. It’s passport.” (Something/ anything/
everything)

14. 1t’s all finished. I am afraid there’s ... left. (nothing/ anything/ something)

15. I heard a noise, but I didn’t see ... . (any one/ no one)

16. It’s too late. We can’t do ... to help. (anything/ nothing)

17. | agree with most of what he said, but I don’t agree with ... . (something/
everything/ anything)

18. ... offered to help. They probably didn’t have the time. (anybody/ nobody/
everybody)

19. If ... asks, you can tell them I’1l be back soon. (somebody/ anybody/ everybody)
20. There was ... in the box, it was completely empty. (nothing/ anything/ something)

Task 3. Ask special questions to which the sentences below are the answers.

1. A statement satisfying certain conditions is true. (what)

2. Like terms being arranged in the following way will be enclosed in the
parenthesis.(where)

3. Reference is made to the commonly accepted system. (what ... to)

4. The force keeping all material bodies including people on the Earth is called
gravitation. (what kind)

5. Having used the classification suggested by my science adviser | found it very
convenient. (when)

6. Having been given little information they couldn’t continue the research. (why) 7.
Having followed the procedure they obtained the required results. (how)

8. Any fraction represents the quotient of its numerator divided by its denominator.
(what)

9. Having obtained a proper interpretation of this fact they realized the importance of
the problem. (when)

10. The created method has no advantages over the old one. (what)

11. Differential equation is an equation containing differentials or derivatives of a
function of one independent variable. (what)
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Task 4. Find the corresponding Russian sentence.

1. Geometry is a branch of mathematics concerned with questions of shape, size,
relative position of figures, and the properties of space.
a. I'eomempus — smo obnacme mamemamuxu, Komopas paccmampusana Gopmy,
pasmep, OMHOCUMENbHOE PACNOLONCEHUE huyp U CBOUCMBA NPOCMPAHCMEA.
b. I'eomempus — smo obracme Mamemamuky, paccmampugarwas 60nPocsl hopmol,
pasmepa, OmHOCUMENLHO20 PACNONIONCEHUS PUSYD U CBOUCMBA NPOCMPAHCNEA.
c. 'eomempus — smo pazden mamemamuxu, 8 KOMOPOM PACCMAMpuean ¢opmy,
pasmep, OMHOCUMENbHOE PACNONIONCEHUE Yuayp U c8OLICMEa NPOCMPAHCMEa.

2. From what you already know you may deduce that drawing two rays
originating from the same end point forms an angle.
a. W3 mozco, umo vl yoice 3Haeme, 8bl MOJCeme COeiamsp 6ble00, Umo, pucys 08d
JYYa, UCXOOAWUX U3 OOHOU KOHEYHOU MOUYKU, 8bl NOJyUaeme y2oil.
b. U3 mozco, umo 6éam uzeecmHo, 8bl MOJceme cOeiams 8bl800, Umo Uz0opadice- Hue
08yX Jiyuell, bepyuux Hayauo 8 0OHOU U MOU Hce KOHEYHOU mouKe, 00pazyem y2oi.
c. M3 moeo, umo 8vl yoice y3HANU, 8bl, BO3MOIICHO, COENANU 8blBOO, YMO PUCYHOK 08YX
nyyel, Oepyujux Havano 8 0OHOU KOHeUHOU mouKe, 00pazyem y2eoi.

3. The approach to the problem being considered remained traditional.
a. Paccmampusanca ocmaswuiicst nooxoo k mpaouyuorHot npooieme.
b. I1ooxo0 k ocmasuieticsi npobieme paccmampusancs mpaouyuoHHo.
c. [1o0x00 k paccmampusaemou npob.ieme ocmagancs mpaouyuoHHbIM.

4. Physical facts expressed in terms of mathematics do not seem unusual
nowadays.
a. Buipasicennvie mamemamuyeckue akxmsl Ka3anuco HeOObIYHbIMU 8 DUIUYECKUX
MepMUHAax 8 Hacmosujee 8PeMms.
b. Quzuueckue axmol, GblpadiceHHvle 6 MAMEMAMUYECKUX MEPMUHAX, HE KANCYMCS
HeOObIYHbIMU Ce20O0HS.
c. To, umo ¢u3suueckue ¢paxmer 6 Hacmoswee BpeMs  BbIPAACAIOMCA
MaAmemMamuyecKuMu mepMuHaml, He Kaxcemcs ce200Hs HeOObIYHbIM.

5. Having made a number of experiments Faraday discovered electromagnetic
induction.
a. [Ipo6oos psio sxcnepumenmos, Dapaoeti OMKPbLIL INEKMPOMASHUMHYIO UHOYKYUIO.
b. Ilpooenas pso skcnepumenmos, Dapadeti OMKpPvLL IIEKMPOMASHUMHYIO
UHOYKYUIO.
c. Coenas ps0 sxcnepumenmos, Qapadeil OMKPvLL INEKMPOMASHUMHYIO UHOVKYUIO.
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Task 5. Translate into English.

1. IlepBast MHUA, C KOTOPOH Mbl 3HAKOMHUMCS, U3y4yasi MaTeMaTUKy, — 3TO MpsMast
JVHHSL.

2. 1aTb cTpOroe onpeneaeHue 3Toro MOHATHUS COBCEM HETPOCTO.

3. B paborax Esximna (Euclid) muanst onpenensnacek kak aimHa O€3 TOJIUHBI.

4. Yron — camasi mpoctasi reoMeTpuueckas Qurypa mnocjae TOYKH, NpsIMOM, JTyda |
OTpe3Ka.

5. Eciin B utockoctu u3 Touku O npoBect Ba pazamyHbix jiyda OA u OB, To oHun
pa3zensT IUIOCKOCTh HA JIB€ YaCTH, KaXJash U3 KOTOPBIX HA3bIBAETCA YIJIOM C
BepuirHoi O u croponamu OA u OB.

6. Jlyu, nensuuit yron momnojaM U Oepylivii HayaJlo B BEpIIMHE yria, Ha3bIBAeTCsA
€ro OMCCEKTPUCOM.

7. buccekTpuca pa3BepHYTOr0 yria JIEJIUT €ro Ha JBa CMEKHBIX yIia, Ha3bIBaEMbIX
MPSMBIMH YTJIAMH.

8. borbiioe 3HaueHHE NI TEOPUU U MPAKTUKU UMEET ONpeJieJICHUE BETUYUHBI WU
MEpHI yIIa.

9. OCHOBHOE CBOMCTBO MEpHI yIila JOHKHO 3aKJIIOUAThCS B TOM, UTOOBI paBHbIE YIJIbI
UMEJH OJIMHAKOBYIO MEpY.

10. I'panycHast mepa HCHOJB3YETCSl B DJIEMEHTAapHON T'€OMETpUHU AJI HU3MEpPEHUs
yTJIOB.

11. Kaxnapiii, HaBepHOE, 3HAKOM C TPAHCHOPTHUPOM — H3MEPUTENIEM YIJIOB Ha
geprexax.

12. Yribl MeHbIe TPSIMOTO HA3BIBAIOTCS OCTPBIMHU, a YIJIbl OOJbIIE MPSIMOTO, HO
MEHBIIIE Pa3BEPHYTOTO, Ha3bIBAIOTCS TYTHIMHU.

13. TlepBas xkHura EBkiina HaunHaeTca ¢ 23 «ONpEEIEHUN», CPEeau HHUX TaKHe:
TOYKAa €CThb TO, YTO HE HMMEeT dYacTel; JUHHS €CTh IJIMHAa 0e3 IIWPHUHBI; JTHHUSA
OTpaHWYCeHa TOYKAMH; TpsMas €CTh JIMHUSA, OJWHAKOBO  PACIOJIOKEHHAs
OTHOCHTEIFHO CBOMX TOYEK; HAKOHEI, ABE MpSIMbIE, JICKAIINUE B OJHON TUIOCKOCTH,
HA3bIBAIOTCS MapajyIeNIbHBIMM, €CIM OHM, CKOJb YrOJHO NPOAODKEHHBIE, HE
BCTPEUAIOTCSI.

14. Uznoxenne reometpun B «Hauanax» EBknmma cuurtanochk o0pas3iom, KOTOPOMY
CTPEMUJINCH CIEIOBATh YUCHBIC U 3a TpeieiaMi MaTeMaTHKH.

15. D1y TeopeMy HCTHOJB3YIOT, YTOOBI TTOKA3aTh, YTO IKCHOHCHIIMAIbHBIE (DYHKIIUH,
JorapupMuuecKre, TPUTOHOMETPUIECKUE (PYHKIIMHA HETIPEPHIBHBI.

16. B xauecTBe ocHOBaHMs JorapudmMa 0OBIYHO HCTIONB3YIOT Yncio 10 uian yuco e;
COOTBETCTBEHHO TOBOPAT O gecatudyHoM (decimal logarithm) nubo o HatypaibHOM
norapudme (natural logarithm).
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UNIT 10
Text 10. Differential of a function

In calculus, the differential represents the principal part of the change in a
functiony =f(x) with respect to changes in the independent variable. The

differential dy is defined by @y = f () dz, where () is the derivative of f with

respect to x, and dx is an additional real variable (so that dy is a function of x and dx).
dy

The notation is such that the equation Y= ™ holds, where the derivative is

represented in the Leibniz notation dy/dx, and this is consistent with regarding the

derivative as the quotient of the differentials. One also writes df(z) = f'(x) dx.
The precise meaning of the variables dy and dx depends on the context of the
application and the required level of mathematical rigor. The domain of these
variables may take on a particular geometrical significance if the differential is
regarded as a particular differential form, or analytical significance if the differential
IS regarded as a linear approximation to the increment of a function. Traditionally, the
variables dx and dy are considered to be very small (infinitesimal), and this
interpretation is made rigorous in non-standard analysis.
History and usage. The differential was first introduced via an intuitive or heuristic
definition by Gottfried Wilhelm Leibniz, who thought of the differential dy as an
infinitely small (or infinitesimal) change in the value y of the function, corresponding
to an infinitely small change dx in the function's argument x. For that reason, the
instantaneous rate of change ofywith respect tox, which is the value of
dy
the derivative of the function, is denoted by the fraction dr  what is called
the Leibniz notation for derivatives. The quotient dy/dx is not infinitely small; rather
it is a real number.

The use of infinitesimals in this form was widely criticized, for instance by the
famous pamphlet The Analyst by Bishop Berkeley. Augustin-Louis Cauchy (1823)
defined the differential without appeal to the atomism of Leibniz's
infinitesimals. Instead, Cauchy, following d'Alembert, inverted the logical order of
Leibniz and his successors: the derivative itself became the fundamental object,
defined as a limit of difference quotients, and the differentials were then defined in
terms of it. That is, one was free to define the differential dy by an expression

dy = f'(x)dz in which dy and dx are simply new variables taking finite real values,
not fixed infinitesimals as they had been for Leibniz.
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Cauchy's approach was a significant logical improvement over the infinitesimal
approach of Leibniz because, instead of invoking the metaphysical notion of
infinitesimals, the quantities dy and dx could now be manipulated in exactly the same
manner as any other real quantities in a meaningful way. Cauchy's overall conceptual
approach to differentials remains the standard one in modern analytical
treatments, although the final word on rigor, a fully modern notion of the limit, was
ultimately due to Karl Weierstrass.

Following twentieth-century developments in mathematical analysis and
differential geometry, it became clear that the notion of the differential of a function
could be extended in a variety of ways. In real analysis, it is more desirable to deal
directly with the differential as the principal part of the increment of a function. This
leads directly to the notion that the differential of a function at a point is a linear
functional of an increment AX. This approach allows the differential to be developed
for a variety of more sophisticated spaces, ultimately giving rise to such notions as
the Gateaux derivative. Likewise, in differential geometry, the differential of a
function at a point is a linear function of a tangent vector , which exhibits it as a kind
of one-form: the exterior derivative of the function. In non-standard calculus,
differentials are regarded as infinitesimals, which can themselves be put on a rigorous
footing.

Definition. The differential of a function f(x) at a
point x0. The differential is defined in modern
foo] . treatments of differential calculus as follows.The
differential of a functionf(x) of a single real
variable x is the function df of two independent real

) def .r
variables x and Ax given by df (z, Az)=f'(z) Az.

One or both of the arguments may be suppressed, i.e., one may see df(x) or
simply df. Ify=1f(x), the differential may also be written asdy.
Since dx(x, Ax) = Ax it is conventional to write dx = AX, so that the following equality
holds: df (z) = f'(z)dx,

This notion of differential is broadly applicable when a linear approximation to a
function is sought, in which the value of the increment AX is small enough. More

precisely, if f is a differentiable function at x, then the difference in y-values

ﬁydéff(i’f + Az) — f(x) satisfies Ay = f'(x) Az +¢ =df(z) + ¢

where the error € in the approximation satisfies &/AX — 0 as Ax — 0. In other words,
one has the approximate identity A% = dy in which the error can be made as small
as desired relative to Ax by constraining 4x to be sufficiently small; that is to say,
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Ay —dy
Ax =0 as AX — 0. For this reason, the differential of a function is known
as the principal (linear) part in the increment of a function: the differential is a linear
function of the increment AX, and although the error € may be nonlinear, it tends to
zero rapidly as Ax tends to zero.
Differentials in several variables. For functions of more than one independent

variable, ¥ = @i, 2n), the partial differential of y with respect to any one of
the variables x; is the principal part of the change in y resulting from a change dx; in
dy

that one variable. The partial differential is therefore Oxy involving the partial
derivative of y with respect to x;. The sum of the partial differentials with respect to
all of the independent variables is the total differential

dy — a_ydxl 4+ -4 %drﬂ,

dx1 0Ty which is the principal part of the change

in y resulting from changes in the independent variables x;.

More precisely, in the context of multivariable calculus, if fis a differentiable
function, then by the definition of the differentiability, the increment

Ay= flor + Axq, ..., 20 + Axy) — flag, ..o, 20)
ﬁ&xlqt s Oy Axy, +1Ax) +-- -+, Ax,
81:1 aIﬂ

where the error terms € tend to zero as the increments AX; jointly tend to zero.
The total differential is then rigorously defined as
My Ay

Since, with this definition, dr;(Azy, ..., Az,) = Az, one  has
Iy dy

As in the case of one variable, the approximate identity holds 4y = Ay in
which the total error can be made as small as desired relative

to \/&x% +o-+ Ay by confining attention to sufficiently small increments.
Properties. A number of properties of the differential follow in a
straightforward manner from the corresponding properties of the derivative, partial
derivative, and total derivative. These include:
Linearity: For constants a and b and differentiable functions f and g,
d(af + bg) = adf + bdy.
Product rule: For two differentiable functions fand g, @(f9) = fdg + gdf.
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An operation d with these two properties is known in abstract algebra as

a derivation. They imply the Power rule d(f") = ”fn_ldf

In addition, various forms of the chain rule hold, in increasing level of
generality:

Ify=1f(u) is a differentiable function of the variableuandu=g(x) is a
differentiable function of x, then @y = f'(u) du = f'(g(x))g () dz.

Ify =f(Xq, ..., X,) and all of the variables x, ..., x, depend on another variable t,
then by the chain rule for partial derivatives, one has

d
dy = ~dt
y dy
- Y, oo L da,
3:121 o +8Iﬂ !
T omdt T T o

Heuristically, the chain rule for several variables can itself be understood by
dividing through both sides of this equation by the infinitely small quantity dt.

More general analogous expressions hold, in which the intermediate
variables x; depend on more than one variable.

Mathematical terminology

differential — nuddpepennman, muddepenmanbHbIi

derivative — npou3BoHas

variable — nepemennas

Leibniz notation — cucrema o6o3na4enuit Jleliouua

differential form — muddepenmansuas Gpopma

linear approximation — nuHeiHas anmpoKCUMAaIHs, TIMHSHHOE PUOJIMKEHIE

Gottfried Wilhelm Leibniz (1646 — 1716) — nemenkwuii ¢punocod, JOrMK, MAaTEMaTHK, MEXaHUK,
(bU3HK, FOPUCT, UCTOPUK, JUTIJIOMAT, U300peTaTens U sa3bikoBed. OCHOBATEb M TIEPBBIN MPE3UICHT
bepnuHckoli AkageMuu HayK, THOCTpaHHBIN 4ieH OpaHiy3ckoil AkaleMHH HAYK.

Baxneiimve Hay4dHbie qocTikeHus: JIeOHuMI, He3aBrucuMo oT HploTOHA , cO3/1a MaTeMaTHIECKUAN
aHanu3 - AuddepeHnnaIbHOe U HHTETPalbHOE UCUHMCIIEHUS, OCHOBaHHbIE HA OECKOHEYHO MaJIbIX;
JleitOHuUI co3a)1 KOMOMHATOPHUKY KaK HayKy; TOJbKO OH BO BCEM MCTOPUM MaTeMaTHUKU OJMHAKOBO
CBOOOJIHO paboTal KaKk C HENPEephIBHBIM, TaK ¥ C JUCKPETHBIM; OH 3aJOKUJ OCHOBBI
MaTeMaTUYeCKOW JIOTHKH; ONHKCAT JBOMYHYIO CHUCTeMY cumciieHus ¢ mudpamu 0 u 1, Ha KoTOpOM
OCHOBaHa COBPEMEHHAs KOMIBIOTEpHAs TEXHUKA; B MEXaHUKE BBET TOHSTHE <(OKHUBOM CHIIBI»
(mpooOpa3 COBPEMEHHOTO MOHATHS KUHETUYECKON SHEpruu) U chopMynrpoBai 3aKOH COXPAHEHUS
SHEPruu; B TICHXOJIOTMH BBIIBUHYJ MOHSATHE OECCO3HATENBHO «MallbIX MEpUENIuil» U pa3BHUll
y4eHHE 0 OECCO3HATEIHPHON MCUXUYECKON KU3HH.

appeal to — cceinatbes
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atomism - aromu3M, aroMucTHYecKas Teopusi (yd4eHHE O IHMCKPETHOM CTPOCHHHM MAaTepHH);
aTOMHUCTHKA (PeJIK.) — y4CHHUE O IPEPHIBHCTOM, JUCKPETHOM CTPOCHHU MaTEPHH, T. €. O PEATbHOCTH
KaK O COBOKYITHOCTH MHOYKECTBA HE3aBUCHUMBIX YACTHII.

Jean-Baptiste le Rond d'Alembert (1717 — 1783) — Xau Jlepon JI’Anam6ép (x’Anambep,
Janambep) dpaniy3ckuil yaéusiit-sHnukoneauct. LHInpoko u3BecTeH Kak MaTeMaTHK M MEXaHUK
Karl Theodor Wilhelm Weierstrass (1815 — 1897) — Kapxa Téomop Bunsrénsm Béiiepmrpace,
HEMEIKUI MaTeMaTHK, «OTell COBPEMEHHOTO aHAIIU3a»

linear functional — nmuHeliHbIH QyHKIIMOHAT

Géateaux derivative — mpousBoanas ['ato pacmmpsieT KOHUEMIHIO MPOM3BOJHONW HA JIOKAIBHO
BBIITYKJIbIE TOIOJIOIMYECKUE BEKTOPHBIC MPOCTpaHcTBa. HasBaHuwe jaHO B 4ecTh (PaHIy3CKOIO
MareMaruka Pene I'ato

differential geometry — nuddepenimansras reomerpus

tangent vector — TaHreHIUaNbHBIA BEKTOP

exterior derivative — BHeIIHsIsSI TPOU3BOIHAS

linear approximation — nuHeiHas anmpoKCUMAaIHs, JIMHSHHOE PUOJIMKEHHIE

differentiable function — nuddepentmpyemas Gpyukius, raaakas GyHKms

linear part — nuneitHas yacthb

partial derivative — yactHas mpou3BoOIHAS

differentiability — muddeperuupyemocts (CBOWCTBO (YHKIHMH, O3HAYAIOIIEE BO3MOXHOCTh
BBIYHCIICHUS TIPOU3BOJHON MO KAaKOMY-JI. apryMEHTY B KaKOW-JI. TOYKe; B ciydae ¢ (yHKIUCH
I0JIE3HOCTH 03HAYAET, YTO MMOBEPXHOCTH OE3Pa3IMUYHBIX MHOXKECTB HE HMCIOT U3JIOMOB)

linearity — nuHeiiHOCTH (CBOWCTBO JIMHEHHOW (YHKIUHM, TaKXe CBOWCTBO MM COCTOSIHUE
NEePEMEHHOM, Haxoas1Ielcs B TMHEHHON 3aBUCUMOCTH OT JIpYroi IEPEMEHHOM )

product rule — reopema ymuosxenusi; chain rule — nensoe npasuio

Grammar, Lexical, Translation and Speaking Exercises

Task 1. Combine the columns.

1) a theorem that may be used in the differentiation of the | a) chain rule

function of a function. It states that du/dx = (du/dy)(dy/dx), | b) partial derivative
where y is a function of x and u a function of y; c) differential geometry
2) a derivative of a function of two or more variables with
respect to one variable, the other(s) being treated as
constant;

3) the application of differential calculus to geometrical
problems; the study of objects that remain unchanged by
transformations that preserve derivatives.

Task 2. Read, memorize and translate into Russian.

1. Euler’s theorem: The relationship V - E + F = 2 for any simple closed polyhedron,
where V is the number of vertices, E the number of edges, and F the number of faces.
(A simple closed polyhedron is one that is topologically equivalent to a sphere) The
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expression V - E + F = 2 is called the Euler characteristic, and its value serves to
indicate the topological genus.

2. Euler’s formula:  The formula: e =cos X + i sin x

It was introduced by Euler in 1748, and is used as a method of expressing complex
numbers. The special case in which x = 7 leads to the formula e™"= -1.

Task 3. Match the left and the right parts of the sentences.

1. The interior angles of a triangle a. are all different in measure

2. A triangle is a polygon with b. is degenerate

3. In a scalene triangle c. two sides are equal in length
4. A right-angled triangle has d. always add up to 360°

5. The three angles of a scalene triangle e. the cosine rule and sine rule
6. A triangle with an interior angle of 180° | f. all sides have the same length
7. The exterior angles of a triangle g. always add up to 180°

8. In an equilateral triangle h. three vertices and three edges
9. In an isosceles triangle 1. all sides are unequal

10. Angles and sides in triangles are |j. one of its interior angles measuring
related by 90°

Task 4. Let’s revise Perfect Tenses. Complete the sentences using the following
words: already before ever for just by since so still yet never
1. Have you ... dreamt of going to London? 2. I haven’t worked out how to set the
timer on the video .... 3. My dad’s lived in the same house ... he was born. 4. The
film’s only been on ... a couple of minutes. 5. Kate has passed three exams out of
five ... far. 6. He will have translated the text ... 3 o’clock tomorrow. 7. He’s only
.. got home. 8. It’s eleven o’clock and he ... hasn’t come home. Where could he be?
9.’ve ... met Ann .... What’s she like? 10. He has ... finished doing his homework.

Task 5. Transform the sentences from Perfect Active into Perfect Passive.

1. She has just typed her report for the conference.

2. The teacher told us that she had checked all the tests.

3. The student will have written his degree work by May.

4. They have learnt a lot of new English words.

5. He hasn’t found the answer yet.

6. I’ve just received my exam results.

7. By the end of the conference, the participants had discussed a number of important
questions concerning the problem.

8. They will have read two books on topology by the end of the month.
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9.

We had planned the meeting months in advance, but we still had problems.

10. I had discussed the plan of my work with my science adviser before the end of the
class.

Task 6. Choose the correct variant of translation.

l.

It’s difficult to study a foreign language.

a) Omo mpyouwlil UHOCMPAHHBIU S3bIK 0151 U3YYUEHUSL.

b) Tpyono uzyuame unocmpanmwiil A3biK.

C) Uzyuamv unocmpanmbwlil 361K ObLIO MPYOHO.

c

R O6H &R 016 TR 0 T WH TTE DN

. He hopes to pass his examination in mathematical analysis.
. OH Hadeemc;l Cddﬂ’lb IK3aMeH no mamemamudecCKomy anajiusy .
. On nHaoesincs na caaqy IK3AMEHA NO MamemamuiecCKomy anaiusy.

On 6y0oem Hadessmbcs Ha cOayy IK3AMeHA N0 MAMeMamuiecKomy aHaiu3y.

. She was writing the dictation very carefully in order not to make mistakes.
. OHa nanucana OuKmMaum o4eHb OCMOPONCHO U He COeNaNd OUUOOK.
. OHa nucana Ouxmanm HUMAMENbHO U 8 NPABUIbHOM NOpsiOKe, He 0eldsl OUUOOK.

OHna nucana OUKMAaHm o4eHb GHUMAMENbHO, YmMoObl He cOelamb OUUOOK.

. I’'m sorry not to have seen this film in English at the lesson.

Mhne JACAIb, YN0 HA YPOKeE A HE nocmompela 3moni (ﬁlxl]lb]l/l HA AH2TUNICKOM S3bIKe.

. A coacanero o mom, umo He NOCMOMPIO IMOM AHSTUUCKULL PUTbM HA YPOKe.

A He cooicanero o mom, umo He nOCMOmpesn Smom QuibM HA YPOKe aAHIUNCKOZO.

. He read the rule several times to understand it better.
. OH yumaem npaeuﬂo HECKOJIbKO pLZS’, 'H’I’l05bl NOHAMb €20 lettme.
. OH npoqumaﬂ npaeuﬂo HECKOJIbKO pa3, '{m06bl Jzque NOHAMDBb €20.

Ou yuman npaesulo HeCKOJIbKO pd3 U NOHUMAI e2o JIydule.

. This is just the person to speak to on this problem.

. Bom uenosex, o komopom cosopumcs 6 smoti npooaeme.
b.

Omo xax paz mom uenosex, ¢ KOMopPbiM MOHCHO NO2OBOPUMb HA DMLY MEM).
Tonvko ¢ smum uenogexom 208opsm oo 3motl npooaeme.

Task 7. Match the columns.

1) Abbrevation and symbol for the imaginary part of a complex a)im
number. b) boolean
2) A square matrix in which all the entries not in the main diagonal are | ¢) diagonal
Zero. matrix

3) A variable or function which either takes the value true or false. d) family

4) A set whose elements are themselves sets may be called a family. In
certain other circumstances, for example where less formal language is
appropriate, the word ‘family’ may be used as an alternative to ‘set’.
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UNIT 11
Text 11. Specifying a function

Specifying a function. A function can be defined by any mathematical
condition relating each argument (input value) to the corresponding output value. If
the domain is finite, a function fmay be defined by simply tabulating all the
arguments x and their corresponding function values f(x). More commonly, a function
is defined by a formula, or (more generally) an algorithm — a recipe that tells how to
compute the value of f(x) given any x in the domain.

There are many other ways of defining functions. Examples include piecewise
definitions, induction or recursion,  algebraic  or analytic closure, limits, analytic
continuation, infinite series, and as solutions to integral and differential equations.
The lambda calculus provides a powerful and flexible syntax for defining and
combining functions of several variables. In advanced mathematics, some functions
exist because of an axiom, such as the Axiom of Choice.

Graph. The graph of a function is its set of ordered pairs F. This is an
abstraction of the idea of a graph as a picture showing the function plotted on a pair
of coordinate axes; for example, (3, 9), the point above 3 on the horizontal axis and to
the right of 9 on the vertical axis, lies on the graph of y=x’.

Formulas and algorithms. Different formulas or algorithms may describe the
same function. For instance f(x) = (x+ 1) (x— 1) is exactly the same function as f(x)
= x*— 1. Furthermore, a function need not be described by a formula, expression, or
algorithm, nor need it deal with numbers at all: the domain and codomain of a
function may be arbitrary sets. One example of a function that acts on non-numeric
inputs takes English words as inputs and returns the first letter of the input word as
output.

As an example, the factorial function is defined on the nonnegative integers
and produces a nonnegative integer. It is defined by the following inductive

algorithm: 0! is defined to be 1, and n! is defined to be n(n— 1) for all positive
integers n. The factorial function is denoted with the exclamation mark (serving as
the symbol of the function) after the variable (postfix notation).

Computability.

Functions that send integers to integers, or finite strings to finite strings, can
sometimes be defined by an algorithm, which gives a precise description of a set of
steps for computing the output of the function from its input. Functions definable by
an algorithm are called computable functions. For example, the Euclidean
algorithm gives a precise process to compute the greatest common divisor of two
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positive integers. Many of the functions studied in the context of number theory are
computable.

Fundamental results of computability theory show that there are functions that
can be precisely defined but are not computable. Moreover, in the sense of
cardinality, almost all functions from the integers to integers are not computable. The
number of computable functions from integers to integers is countable, because the
number of possible algorithms is. The number of all functions from integers to
integers is higher: the same as the cardinality of the real numbers. Thus most
functions from integers to integers are not computable. Specific examples of
uncomputable functions are known, including the busy beaver function and functions
related to the halting problem and other undecidable problems.

Basic properties. There are a number of general basic properties and notions.
In this section, f is a function with domain X and codomain Y.

Image and preimage

DI [E RN R T M ]
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The graph of the function f(x) =x*>— 9x*+ 23x— 15. The interval A = [3.5,
4.25] is a subset of the domain, thus it is shown as part of the x-axis (green). The
image of A is (approximately) the interval [-3.08, —1.88]. It is obtained by projecting
to the y-axis (along the blue arrows) the intersection of the graph with the light green
area consisting of all points whose x-coordinate is between 3.5 and 4.25. the part of
the (vertical) y-axis shown in blue. The preimage of B = [1, 2.5] consists of three
intervals. They are obtained by projecting the intersection of the light red area with
the graph to the x-axis.

If Ais any subset of the domain X, thenf(A) is the subset of the
codomain Y consisting of all images of elements of A. We say the f(A) is the image of
A under f. Theimageoffis given by f(X). On the other hand, the inverse
image or preimage, complete inverse image of a subset B of the codomain Y under a

function f is the subset of the domain X defined by f_l(B) ={re X : f(z) € B}.

So, for example, the preimage of {4, 9} under the squaring function is the set
{—3,-2,2,3}. By definition of a function, the image of an element x of the domain is
always a single elementy of the codomain. Conversely, though, the preimage of
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a singleton set (a set with exactly one element) may in general contain any number of
elements. For example, if f(x) = 7 (the constant function taking value 7), then the
preimage of {5} is the empty set but the preimage of {7} is the entire domain. It is

customary to write f ~'(b) instead of f ' ({b}), i.e. FHb)={z € X : f(z) = b}

Use of f(A) to denote the image of a subset A € X is consistent so long as no
subset of the domain is also an element of the domain. In some fields (e.g., in set
theory, where ordinals are also sets of ordinals) it is convenient or even necessary to
distinguish the two concepts; the customary notation is f [A] for the set { f(x): x € A }.
Real-valued functions. A real-valued function f is one whose codomain is the set
of real numbers or a subset thereof. If, in addition, the domain is also a subset of the
reals, fis a real valued function of a real variable. The study of such functions is
called real analysis.

Real-valued functions enjoy so-called pointwise operations. That is, given two
functions f, g: X — Y , where Y is a subset of the reals (and X is an arbitrary set), their
(pointwise) sum f+g and productf- gare functions with the same domain and
codomain. They are defined by the formulas:

(f +9)(z) = f(z) + g(z),

(f-9)(x) = f(z) - g(x).

In a similar vein, complex analysis studies functions whose domain and
codomain are both the set of complex numbers. In most situations, the domain and
codomain are understood from context, and only the relationship between the input

and output is given, but if flz) = \/E, then in real variables the domain is limited to
non-negative numbers.

The following table contains a few particularly important types of real-valued
functions:

Linear function 7 Quadratic function
= )/,,/, = . H T
A linear function: f(x) =ax +Db. A quadratic function: f(x) = ax® + bx + c.
Discontinuous function Trigonometric functions

The signum function is not continuous, since it
"jumps” at 0. Roughly speaking, a continuous
function is one whose graph can be drawn | The sine and cosine functions.

without lifting the pen. f(x) = sin(x) (red), f(x) = cos(x)
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Mathematical terminology

formula — 1) (mathematical formula; mu.a - formulae) - [maremarnueckas] hopmysa B MaTeMaTHKE
- (opmanuzoBaHHas 3amUCh HEKOTOPOH (YHKIMOHAIBHOW 3aBMCMMOCTH string formula 2)
ypaBHeHHEe Syn: equation 3) aHanuTHYECKOE BhIpakeHHe 4) hopMyIHpoBKa

algorithm — 1) anroput™m maremaruueckas (QYHKIHMS HJIM KOHCUHBIH YETKUII HAOOp ONMMCaHMii
JIOTUYECKOM MOCIJIEeI0BATEIbHOCTH ACUCTBUH (MPaBUJI, UHCTPYKIIUI), 2) METO/1, IPABUIIO

to compute the value of f(X) — Berunciauts 3HaueHue Gyukiuu f(X)

piecewise definability — kycounas onpenenumoctsb

induction - maTemaTHueckas HHAYKIHS — METOJl MATEMaTHYECKOT0 JJOKA3aTeIbCTBA, UCIIOIB3YeTC s
9TOOBI 10Ka3aTh HCTHHHOCTh HEKOTOPOTO YTBEPIKICHHUS JUI BCEX HATypallbHBIX uucen. Jis atoro
CHaYaja MpOBEPSIETCS] HCTHHHOCTD YTBEPXKICHHUS ¢ HOMepoM | — 6a3a (0a3uc) MHIYKIUH, a 3aTeM
JIOKa3bIBAaCTCS, YTO, €CIIU BEPHO YTBEPIKACHHE C HOMEPOM N, TO BEPHO U CIICAYIOILICE YTBEPIKICHUEC
C HOMEpOM N + | — mar UHAYKIMH, WIK UHIYKIUOHHBIA Tiepexo]. Jloka3aTelbCTBO M0 WHIYKIIUU
HArJISIHO MOXKET OBITh MPEJCTABJICHO B BHJIE TaK Ha3bIBAGMOTO MpPUHIMIA JOMHUHO. [lycTh Kakoe
YrOJIHO YMCIIO KOCTOYEK JJOMHHO BBICTABJIICHO B Psiji TAKAUM 00pa30M, UTO Kax/Jas KOCTOYKa, majasi,
00513aTeIbHO ONMPOKHU/IBIBACT CICAYIOIIYIO 32 HEl KOCTOYKY (B 3TOM 3aKJIFOYACTCS] WHIYKIIMOHHBIN
nepexon). Toraa, ecau Mbl TOJIKHEM HEPBYIO KOCTOUKY (3TO 0a3a MHAYKIHMH), TO BCE KOCTOYKU B
psny ynaayr.

Fecursion — pekypcust B ONpENCIICHUH, OIMMCAHHU, W300PAKCHUH KaKOro-mu0O0 OOBEKTa WM
nporecca BHYTPU CaMOro 3TOro 00beKTa MM MPOIIecca, TO €CTh CUTYAIs, KOTrJa OOBEKT SIBISETCS
4acThi0 camMoro ce0s. B MaremaTwke pekypcusi MMEET OTHOIICHHE K METOIy OINpEACiICHHS
(GYHKIHMI ¥ YUCIOBBIX PAIOB: PEKYPCHBHO 3a/laHHAs (QDYHKIHUS ONpeessieT CBOE 3HAUYCHHE 4yepe3
oOpailieHue K cedbe caMoil ¢ APyrMMHU apryMEeHTaMU.

algebraic or analytic closure - anrebpandeckoe WU aHATUTHIECKOE 3aMbIKAHHE

limit - mpenen

analytic continuation — anamuTHYeCKO€ MPOIOKCHIE

infinite series — 6eckoHeYHbIE PSIBI

integral and differential equations — uaterpasnbhbie u quddepeHnnaIbHbIC ypaBHEHUS

lambda calculus — nam0Ona-ucurcnenne mMaTemMaTHueckas cHCTeMa ISl OnpejaeneHus: GpyHKIuH,
BbIUKCJIEHMsI 3HaUeHUH BelpaxkeHui (lambda expression) u qoka3aTenbcTBa paBeHCTBA BbIPasKEHUN
flexible syntax — ruOkuii (a1anTHBHBIN) CHHTAKCHC

function of several variables — GpyHKIHs ¢ HECKOIBKMMHU MIEPEMEHHBIMU

Axiom of Choice — akcroma BeIOOpa

postfix notation — mocrpukcHas HOTaNMs, MOCTPHUKCHAS 3aIMCh M3BECTHA TAK)Ke TOJ HAa3BAaHHEM
"oOpaTHasi TOJbCKasi 3alHCh"; METOJ OECCKOOOYHOH 3alMCH MaTeMaTWYeCKUX BBIPAKEHHMU, TPH
KOTOPOM OIepaiys 3amuchIBaeTCs MOCJIe ONEpaHaoB, Hampumep, (2+3) * (4+5) B mocTduKCHON
HOTAIUH OYyAET BRITJISAACT Kak 2 3 +4 5 + *, Takas 3anuch ucnosb3yercs B sizbike Forth
computable function — Beruucnumas QyHKIMS (QYHKIHS BBIYACIAMA, €CJIM MOKHO HaWTH
QITOPUTM, TO3BOJISIFONIMIA BBIYUCIUTh €€ BBIXOJHOE 3HAYCHHUE ISl JI000r0 JCHCTBUTEIBHOIO
BXOJIHOTO; M3BECTHO, YTO CYIIECTBYET MHOTO (DYHKITHIA, TSI KOTOPBIX TO C/eIarh He yaaéres
Euclidean algorithm — eBkii10B aJiropuT™

greatest common divisor — HanOOoIBIINI OOIIMIA JCTUTEb

number theory — number theory Teopust 4mcen MareMaTHuecKas IHCIUILIMHA, W3ydaromias
cBoiicTBa yucen. [Ipumensercs, B 4aCTHOCTH, B KpUITOTpapuu
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computability theory — Teopusi BBYMCIMMOCTH, TaK)Ke HM3BECTHAas KaK TEOPHS PEKYPCHUBHBIX
(GyHKLUH, - 3TO pa3/ien COBPEMEHHOM MaTeMaTHKH, JISKAIIUNA Ha CTHIKE MaTeMaTUYeCKON JIOTHKH,
TEOPUH AJITOPUTMOB U MH(POPMATHKH, BOSHUKIINHN B PE3YJIbTATE U3YUYCHHS MOHSATHI BBIYUCIUMOCTH
U HEBBIYHUCIUMOCTH. V3HadanbHO Teopusi ObUla IMOCBAIICHA BBIYMCIMMBIM M HEBBIYMCIMMBIM
(GYHKIMSAM M CPaBHEHHIO Pa3JIMYHBIX Mojeseil Berauciennid. Celyac mose McciaeoBaHus TEOPUU
BBIYHCIMMOCTH PACIIUPUIIOCh — TOSBIISAIOTCS HOBBIE ONPEAEICHUsS] MOHSATHS BBIYUCIUMOCTU U
UIET CAMSHUE C MATEMAaTUYECKON JIOTHKOH, I'/Ie BMECTO BBIYMCIMMOCTH M HEBBIYMCIMMOCTH HUIET
pedyb O JI0Ka3yeMOCTH M HEHIOKa3yeMOCTH (BBIBOJMMOCTH M HEBBIBOJMMOCTH) YTBEPKICHHH B
paMKax KaKuX-1100 TEOPHIA.

cardinality — MOIITHOCTh MHOYKECTBA, YUCIIO SJICMEHTOB MHOYKECTBA, KapIHHATIHLHOE YHCIIO
countable — ucuncisiemblii, CUETHBIN (0 MHOKECTBE)

busy beaver function — nessruriciumas ¢pyuxius (A busy beaver function quantifies th upper
limits on a given measure, and is a noncomputable function.)

halting problem — mpoGnema ocraHoBa B TeOpHMH BBIUMCIEHHH - mpobiieMa OIpeaeeHus,
OCTaHOBHTCS JIU (3aBEPIINTCS JIM) JaHHAS IPOrpaMMa IPU BBIYMCICHUH JaHHOTO HA0Opa BXOHBIX
JaHHBIX. JTa mpo0sieMa OTHOCUTCS K YUCITY allTOPUTMUYECKH HEPa3pelIMMBbIX 3a/1ad.

undecidable problem — nepaspemumas 3agaua

inverse image or preimage — o6pa3 B MHBEpCHH WJIH IPOOOpa3

singleton set — ofHOBIEMEHTHOE MHOYKECTBO

in a similar vein — B ToM e ayxe, Mog00HBIM 00pa3oM

in a critical vein — B kputuyeckoM ayxe

Linear function — nmuneiinas bynkiust (GyHkims Buga y = kx + b; OCHOBHOE CBOWMCTBO TaKoif
(YHKIMH 3aKITF0YAETCs B TOM, YTO €€ NMPHUPAIICHUE TPOTOPLUUOHAIBFHO MPUPALICHUIO apTyMEHTa)
Trigonometric functions - Tpuronomerpudeckast GyHKIIHS

Discontinuous function — pa3spsiBHast GyHKIIHS

Quadratic function — kBagpaTuyeckas QyHKIHS

Grammar, Lexical, Translation and Speaking Exercises

Task 1. Irregular plural nouns of Latin and Greek origin. A lot of Latin and
Greek original nouns have the plural forms ending in —i (e.g. calculus — calculi) and —
ae (e.g. abscissa — abscissae). Put the words in the correct plural form using the
Model: focus —foci (-us — —i); hyperbola — hyperbolae (—a — —ae).

Focus, formula, corona, genius, locus, hyperbola, lacuna, radius, nebula, modulus,
nucleus, rhombus.

Task 2. Fill in the gaps using the words above.

a) Two equations are called equivalent if they have the same ............

b) Up until quite recently, when functions were mentioned in the mathematical
literature they were usually considered to be ............

C) In the figure, we can sketch the ............ determined by an equation of the form.
d) The simplest ............ , that of common hydrogen, has a single proton.

e) The area of an ellipse equals /4 times the product of the long and the short
diametres or 7 times the product of the long and the short ...... :
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Note: Besides that, some nouns always have similar forms, example: an apparatus —
apparatus a headquarters — headquarters; a means — means; news — news; a series —
series; a species — species.

Task 3. Match the columns.

1) The total distance travelled divided by the total time taken. | a) axiom

2) The total displacement (as a vector) divided by the total | b) axial plane
time taken. c) average velocity
3) One of the planes containing two of the coordinate axes in | d) average speed

a 3-dimensional Cartesian coordinate system. For example,
one of the axial planes is the yz-plane, or (y, z)-plane,
containing the y-axis and the z-axis, and it has equation x = 0.
4) A statement whose truth is either to be taken as self-evident
or to be assumed. Certain areas of mathematics involve
choosing a set of axioms and discovering what results can be
derived from them, providing proofs for the theorems that are
obtained.

Task 4. Find mistakes in the following sentences. Mind the use of Perfect Tenses
in the Active and Passive Voice.

1. They finished their experiment by 5 o’clock yesterday. 2. The production of such
computers has reduced by the end of the previous year. 3. | can’t do the exercise. |
had forgotten my text-book at home. 4. The article just translates by all the students.
5. By the time Kate returned from her studies, her brother goes to his friends. 6. His
graduation paper will present by 3 o’clock tomorrow. 7. He is doing this work by
tomorrow. 8. The solution for the problem is found by the end of the meeting
yesterday. 9. The students already pass their credits. 10. She is written her course-
paper by next month. 11. The advantages of this program already spoke of by the
scientists at the conference. 12. The algorithm carefully hadn’t worked out at the
recent seminar yet.

Task 5. Ask special questions using question words given in parentheses.

The development of geometry 1. The earliest recorded beginnings of geometry can be
traced to early predecessors. (to whom) 2. They discovered obtuse triangles in the
ancient Indus Valley and ancient Babylonia from around 3000 BC. (where; when) 3.
Early geometry was a collection of empirically discovered principles concerning
lengths, angles, areas, and volumes. (what collection) 4. In geometry a spatial point is
a primitive notion upon which other concepts may be defined. (where) 5. Points have
neither volume, area, length, nor any other higher dimensional analogue. (what
(question to the subject)) 6. In branches of mathematics dealing with a set theory, an
element is often referred to as a point. (where; how) 7. A point could also be defined
as a sphere which has a diameter of zero. (how)
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Task 6. Translate these sentences from Russian into English. 1. Tpeyroabsauk —
3TO IUIOCKas (urypa, OrpaHMYEHHas TpPeMs JUHUSAMHM U COJepiKallas Tpu yria. 2.
TpeyronbHUKM OBIBAIOT PaBHOCTOPOHHME, Pa3HOCTOPOHHHE, PABHOOEIpEHHBIE. 3.
Tpeyronbauk ¢ BepmmHamu A, B, C o6o3nauaetcst AABC. 4. YV paBHOOenpEeHHOTO
TPEYTOJbHUKA JBA yIila UMEIOT OJMHAKOBYIO BENUYMHY. 5. Ha3BaHue TpeyrojapHuKa
IIPOUCXOUT OT JATHHCKOTO CJIOBA «TPUAHTYJIYyM» — TpeyroybHbld. 6. CymiecTByer
CEMb BHUJIOB TPEYTOJIbHUKOB B 3aBUCUMOCTH OT (DOPMBI U TpajyCHOW MEpHI yrioB. 7.
PaBHOCTOPOHHHI TpPEYTrOJIBHUK — 3TO TOT, Yy KOTOPOI'O TPU CTOPOHBI PaBHBI. §.
Jlpyrue MaTeMaTUKU ONpPEAEIIsAOT paBHOOEIPEHHBIN TPEYTOJbHUK KaK TPEYTOJIbHUK,
110 KpalHel Mepe, ¢ AByMsI paBHbIMU CTOpOHaMH. 9. [1omans TpeyroabHUKa MOXKET
ObITh BbIUKCIEHA Npu noMomm ¢Gopmyisl. 10. TpeyronbHHK, y KOTOpPOro Bce
BHYTPEHHHE YIJIbl MeHbIIE 90°, ABISETCS OCTPOYTOIBHBIM.

Task 7. Make up the sentences with the words in their general non-mathematical
meaning: formulae, area, line, cube, nought, infinity, interval, series,

E.g.: The limit (informal) — a person or thing that is intolerably exasperating, i.e.
HeCHOCHbLI YenoeekK, UMo-1ubo He8bIHOCUMOE

It's the limit! — DTo yxe cnumkom!

That's the giddy limit! — Jla kax MOXHO Takoe TepIETh!

Oh, Harry, you are the limit. — Ox, I'appwu, kak Tl MeHs ToCcTaT!

You're the limit! Can't you make up your mind? — TsI npocTo HeBbiHOCHM! ThI UTO,
HUKAK HE PeIIUIb, 4TO Te0e HaIo?

That child is the limit! — C stum pebenkom ciamy HeT.

She does seem to be about the limit — Hy ona u naer!

Isn't he the limit? — Bo naer!

Well, aren't you the bloody limit! — Kak 161 ce0s Benerin?

| think you kids are the absolute limit. — C takuMu AeTbMH, KaK BbI, HY’)KHO aJICKOE
TEPIICHUE

He's the frozen limit — On coBepiieHHO HEBBIHOCUM,

This is the limit! — Do nmepexoauTt Beskue rpaHMIib!
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UNIT 12
Text 12. Fermat's Last Theorem

In number  theory, Fermat's Last Theorem (sometimes called Fermat's
conjecture, especially in older texts) states that no three positive integers a, b,
and c can satisfy the equation a" + b" = ¢" for any integer value of n greater than two.
This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a
copy of Arithmetica where he claimed he had a proof that was too large to fit in the
margin. The first successful proof was released in 1994 by Andrew Wiles, and
formally published in 1995, after 358 years of effort by mathematicians. The
unsolved problem stimulated the development of algebraic number theory in the 19th
century and the proof of the modularity theorem in the 20th century. It is among the
most notable theorems in the history of mathematics and prior to its proof it was in
the Guinness Book of World Records for "most difficult mathematical problems™.

Fermat's Last Theorem stood as an unsolved riddle in mathematics for over three
and a half centuries. The theorem itself is a deceptively simple statement that Fermat
stated he had proved around 1637. His claim was discovered some 30 years later,
after his death, written in the margin of a book, but with no proof provided.

The claim eventually became one of the most notable unsolved problems of
mathematics. Attempts to prove it prompted substantial development in number
theory, and over time Fermat's Last Theorem gained prominence as an unsolved
problem in popular mathematics. It is based on the Pythagorean theorem, which
states thata”+b®=c? whereaandbare the lengths of the legs of aright
triangle and c is the length of the hypotenuse.

The Pythagorean equation has an infinite number of positive integer solutions
for a, b, and c; these solutions are known as Pythagorean triples. Fermat stated that
the more general equation a" + b" = ¢" had no solutions in positive integers, if n is an
integer greater than 2. Although he claimed to have a general proof of his conjecture,
Fermat left no details of his proof apart from the special case n = 4.

Subsequent developments and solution. With the special case n =4 proven,
the problem was to prove the theorem for exponents n that are prime numbers (this
limitation is considered trivial to prove). Over the next two centuries (1637-1839),
the conjecture was proven for only the primes 3, 5, and 7, although Sophie
Germain innovated and proved an approach that was relevant to an entire class of
primes. In the mid-19th century, Ernst Kummer extended this and proved the theorem
for all regular primes, leaving irregular primes to be analyzed individually. Building
on Kummer's work and using sophisticated computer studies, other mathematicians
were able to extend the proof to cover all prime exponents up to four million, but a
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proof for all exponents was inaccessible (meaning that mathematicians generally
considered a proof to be either impossible, or at best exceedingly difficult, or not
achievable with current knowledge).

The proof of Fermat's Last Theorem in full, for all n, was finally accomplished,
however, after 357 years, by Andrew Wiles in 1994, an achievement for which he
was honoured and received numerous awards. The solution came in a roundabout
manner, from a completely different area of mathematics.

Around 1955 Japanese mathematicians Goro Shimura and Yutaka Taniyama
suspected a link might exist between elliptic curves and modular forms, two
completely different areas of mathematics. Known at the time as the Taniyama—
Shimura-Weil conjecture, and (eventually) as the modularity theorem, it stood on its
own, with no apparent connection to Fermat's Last Theorem. It was widely seen as
significant and important in its own right, but was (like Fermat's equation) widely
considered to be completely inaccessible to proof.

In 1984, Gerhard Frey noticed an apparent link between the modularity
theorem and Fermat's Last Theorem. This potential link was confirmed two years
later by Ken Ribet (see: Ribet's Theorem and Frey curve). On hearing this, English
mathematician Andrew Wiles, who had a childhood fascination with Fermat's Last
Theorem, decided to try to prove the modularity theorem as a way to prove Fermat's
Last Theorem. In 1993, after six years working secretly on the problem, Wiles
succeeded in proving enough of the modularity theorem to prove Fermat's Last
Theorem. Wiles' paper was massive in size and scope. A flaw was discovered in one
part of his original paper during peer review and required a further year and
collaboration with a past student, Richard Taylor, to resolve.

As a result, the final proof in 1995 was accompanied by a second, smaller, joint
paper to that effect. Wiles's achievement was reported widely in the popular press,
and was popularized in books and television programs. The remaining parts of the
modularity theorem were subsequently proven by other mathematicians, building on
Wiles's work, between 1996 and 2001.

Pythagorean triples. A Pythagorean triple — named for the ancient
Greek Pythagoras — is a set of three integers (a, b, ¢) that satisfy a special case of
Fermat's equation (n=2) a° +b° =%

Examples of Pythagorean triples include (3, 4, 5) and (5, 12, 13). There are
infinitely many such triples, and methods for generating such triples have been
studied in many cultures, beginning with the Babylonians and later ancient
Greek, Chinese, and Indian mathematicians. The traditional interest in Pythagorean
triples connects with the Pythagorean theorem; in its converse form, it states that

a triangle with sides of lengths a, b, and c has a right angle between the a and blegs
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when the numbers are a Pythagorean triple. Right angles have various practical
applications, such as surveying, carpentry, masonry, and construction. Fermat's Last
Theorem is an extension of this problem to higher powers, stating that no solution
exists when the exponent 2 is replaced by any larger integer.

Diophantine equations Fermat's equation, X" +y" =z" with positive integer
solutions, is an example of a Diophantine equation, named for the 3rd-century
Alexandrian mathematician, Diophantus, who studied them and developed methods
for the solution of some kinds of Diophantine equations. A typical Diophantine
problem is to find two integersx and y such that their sum, and the sum of their

squares, equal two given numbers A and B, respectively: 4 =z +y, B = r? + 3’

Diophantus's major work is the Arithmetica, of which only a portion has
survived. Fermat's conjecture of his Last Theorem was inspired while reading a new
edition of the Arithmetica, that was translated into Latin and published in 1621
by Claude Bachet.

Diophantine equations have been studied for thousands of years. For example,
the solutions to the quadratic Diophantine equation x* +y*=zare given by the
Pythagorean triples, originally solved by the Babylonians (1800 BC). Solutions to
linear Diophantine equations, such as 26x + 65y = 13, may be found using the
Euclidean algorithm (5th century BC). Many Diophantine equations have a form
similar to the equation of Fermat's Last Theorem from the point of view of algebra, in
that they have no cross terms mixing two letters, without sharing its particular
properties. For example, it is known that there are infinitely many positive
integers x, y, and z such that x" +y" = z" where n and m are relatively prime natural
numbers.

Fermat's conjecture. Problem I1.8 of the Arithmetica asks how a given square
number is split into two other squares; in other words, for a given rational number k,
find rational numbers u and v such that k* = u® + v2. Diophantus shows how to solve
this sum-of-squares problem for k = 4 (the solutions being u = 16/5 and v = 12/5).

Around 1637, Fermat wrote his Last Theorem in the margin of his copy of
the Arithmetica next to Diophantus’ sum-of-squares problem:

It is impossible to separate a cube into two cubes, or a fourth power into two

fourth powers, or in general, any power higher than the second, into two like

powers. | have discovered a truly marvellous proof of this, which this margin is
too narrow to contain.

After Fermat’s death in 1665, his son Clément-Samuel Fermat produced a new
edition of the book (1670) augmented with his father’s comments. The margin note
became known as Fermat’s Last Theorem, as it was the last of Fermat’s asserted

theorems to remain unproven.
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It is not known whether Fermat had actually found a valid proof for all
exponents n, but it appears unlikely. Only one related proof by him has survived,
namely for the case n =4, as described in the section Proofs for specific exponents.
While Fermat posed the cases of n = 4 and of n = 3 as challenges to his mathematical
correspondents, such as Marin Mersenne, Blaise Pascal, and John Wallis, he never
posed the general case. Moreover, in the last thirty years of his life, Fermat never
again wrote of his “truly marvellous proof” of the general case, and never published
it. Van der Poorten suggests that while the absence of a proof is insignificant, the
lack of challenges means Fermat realised he did not have a proof; he quotes Weil as
saying Fermat must have briefly deluded himself with an irretrievable idea.

The techniques Fermat might have used in such a “marvellous proof” are
unknown. Taylor and Wiles’s proof relies on 20th century techniques. Fermat’s proof
would have had to have been elementary by comparison, given the mathematical
knowledge of his time.

While Harvey Friedman’s grand conjecture implies that any provable theorem
(including Fermat’s last theorem) can be proved using only ‘elementary function
arithmetic’, such a proof need only be ‘elementary’ in a technical sense but could
involve millions of steps, and thus be far too long to have been Fermat’s proof.

Proofs for specific exponents. Only one relevant proof by Fermat has
survived, in which he uses the technique of infinite descent to show that the area of a
right triangle with integer sides can never equal the square of an integer. His proof is

equivalent to demonstrating that the equation ' —y' =2 has no primitive
solutions in integers (no pairwise coprime solutions). In turn, this proves Fermat's
Last Theorem for the case n=4, since the equationa®+b*=c" can be written
as c' —b* = (%)’

Alternative proofs of the casen=4 were developed later by Frénicle de
Bessy (1676), Leonhard Euler (1738), Kausler (1802), Peter Barlow (1811), Adrien-
Marie Legendre (1830), Terquem (1846), Bertrand (1851), Victor Lebesgue (1859,
1862), Theophile Pepin (1883),Tafelmacher (1893), David Hilbert (1897), Bendz
(1901), Gambioli (1901), Leopold Kronecker (1901), Bang (1905), Sommer (1907),
Bottari(1908), Karel Rychlik (1910), Nutzhorn (1912), Robert Carmichael (1913),
Hancock (1931), and Vranceanu (1966). For various proofs for n=4 by infinite
descent, see Grant and Perella (1999), Barbara (2007), and Dolan (2011).

After Fermat proved the special case n =4, the general proof for all n required
only that the theorem be established for all odd prime exponents. In other words, it
was necessary to prove only that the equation a" + b" = c" has no integer solutions
(a, b, ¢) when n is an odd prime number. This follows because a solution (a, b, c) for

a given nis equivalent to a solution for all the factors of n. For illustration, let n be
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factored intodande, n=de. The general equation a"+b"=c" implies that
@%, b?, ¢ is a solution for the exponent e: (a%)°® + (b%)° = (c%)®.

Thus, to prove that Fermat's equation has no solutions for n > 2, it would suffice
to prove that it has no solutions for at least one prime factor of every n. Each
integer n > 2 is divisible by 4 or an odd prime number (or both). Therefore, Fermat's
Last Theorem could be proved for all n if it could be proved for n = 4 and for all odd
primes p.

In the two centuries following its conjecture (1637-1839), Fermat's Last
Theorem was proven for three odd prime exponents p=3, 5 and 7. The case p=3
was first stated by Abu-Mahmud Khojandi (10th century), but his attempted proof of
the theorem was incorrect. In 1770, Leonhard Euler gave a proof of p = 3, but his
proof by infinite descent contained a major gap. However, since Euler himself had
proven the lemma necessary to complete the proof in other work, he is generally
credited with the first proof.

Independent proofs were published by Kausler (1802), Legendre (1823,
1830), Calzolari (1855), Gabriel Lamé (1865), Peter Guthrie Tait (1872), Giinther
(1878), Gambioli (1901), Krey (1909), Rychlik (1910), Stockhaus (1910),
Carmichael (1915), Johannes van der Corput (1915), Axel Thue (1917), and Duarte
(1944). The case p=5 was proven independently by Legendre and Peter Gustav
Lejeune Dirichlet around 1825. Alternative proofs were developed by Carl Friedrich
Gauss (1875, posthumous), Lebesgue (1843), Lamé (1847), Gambioli (1901),
Werebrusow (1905), Rychlik (1910), van der Corput (1915), and Guy Terjanian
(1987). The case p =7 was provenby Lamé in 1839. His rather complicated proof
was simplified in 1840 by Lebesgue, and still simpler proofs were published
by Angelo Genocchi in 1864, 1874 and 1876. Alternative proofs were developed by
Théophile Pépin (1876) and Edmond Maillet (1897).

Fermat's Last Theorem has also been proven for the exponents n = 6, 10, and 14.
Proofs for n = 6 have been published by Kausler, Thue, Tafelmacher, Lind, Kapferer,
Swift, and Breusch. Similarly, Dirichlet and Terjanian each proved the case n = 14,
while Kapferer and Breusch each proved the case n =10. Strictly speaking, these
proofs are unnecessary, since these cases follow from the proofs for n =3, 5, and 7,
respectively. Nevertheless, the reasoning of these even-exponent proofs differs from
their odd-exponent counterparts. Dirichlet's proof for n = 14 was published in 1832,
before Lamé's 1839 proof forn = 7.

All proofs for specific exponents used Fermat's technique of infinite
descent, either in its original form, or in the form of descent on elliptic curves or
abelian varieties. The details and auxiliary arguments, however, were often ad
hoc and tied to the individual exponent under consideration. Since they became ever
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more complicated as p increased, it seemed unlikely that the general case of Fermat's
Last Theorem could be proved by building upon the proofs for individual exponents.
Although some general results on Fermat's Last Theorem were published in the early
19th century by Niels Henrik Abel and Peter Barlow, the first significant work on the
general theorem was done by Sophie Germain.

Computational studies. In the latter half of the 20th century, computational
methods were used to extend Kummer's approach to the irregular primes. In
1954, Harry Vandiver used a SWAC computer to prove Fermat's Last Theorem for
all primes up to 2521. By 1978, Samuel Wagstaff had extended this to all primes less
than 125,000. By 1993, Fermat's Last Theorem had been proven for all primes less
than four million.

However despite these efforts and their results, no proof existed of Fermat's Last
Theorem. Proofs of individual exponents by their nature could never prove the
general case: even, if all exponents were verified up to an extremely large number X,
a higher exponent beyond X might still exist for which the claim was not true.

Wiles's general proof. Ribet's proof of the epsilon conjecture in 1986
accomplished the first of the two goals proposed by Frey. Upon hearing of Ribet's
success, Andrew Wiles, an English mathematician with a childhood fascination with
Fermat's Last Theorem, and a prior study area of elliptical equations, decided to
commit himself to accomplishing the second half: proving a special case of
the modularity theorem (then known as the Taniyama—Shimura conjecture) for
semistable elliptic curves.

Wiles worked on that task for six years in near-total secrecy, covering up his
efforts by releasing prior work in small segments as separate papers and confiding
only in his wife. His initial study suggested proof by induction, and he based his
initial work and first significant breakthrough on Galois theory before switching to
an attempt to extend Horizontal lwasawa theory for the inductive argument around
1990-91 when it seemed that there was no existing approach adequate to the
problem. However, by the summer of 1991, Iwasawa theory also seemed to not be
reaching the central issues in the problem. In response, he approached colleagues to
seek out any hints of cutting edge research and new techniques, and discovered
an Euler system recently developed by Victor Kolyvagin and Matthias Flach that
seemed "tailor made" for the inductive part of his proof. Wiles studied and extended
this approach, which worked. Since his work relied extensively on this approach,
which was new to mathematics and to Wiles, in January 1993 he asked his Princeton
colleague, Nick Katz, to check his reasoning for subtle errors. Their conclusion at the
time was that the techniques used by Wiles seemed to be working correctly.
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By mid-May 1993 Wiles felt able to tell his wife he thought he had solved the
proof of Fermat's Last Theorem, and by June he felt sufficiently confident to present
his results in three lectures delivered on 21-23 June 1993 at the Isaac Newton
Institute for Mathematical Sciences. Specifically, Wiles presented his proof of the
Taniyama—Shimura conjecture for semistable elliptic curves; together with Ribet's
proof of the epsilon conjecture, this implied Fermat's Last Theorem. However, it
became apparent during peer review that a critical point in the proof was incorrect. It
contained an error in a bound on the order of a particular group. The error was caught
by several mathematicians refereeing Wiles's manuscript including Katz (in his role
as reviewer), who alerted Wiles on 23 August 1993.

The error would not have rendered his work worthless — each part of Wiles'
work was highly significant and innovative by itself, as were the many developments
and techniques he had created in the course of his work, and only one part was
affected. However without this part proven, there was no actual proof of Fermat's
Last Theorem. Wiles spent almost a year trying to repair his proof, initially by
himself and then in collaboration with Richard Taylor, without success.

On 19 September 1994, on the verge of giving up, Wiles had a flash of insight
that the proof could be saved by returning to his original Horizontal Iwasawa theory
approach, which he had abandoned in favour of the Kolyvagin—Flach approach, this
time strengthening it with expertise gained in Kolyvagin—Flach's approach. On 24
October 1994, Wiles submitted two manuscripts, "Modular elliptic curves and
Fermat's Last Theorem" and "Ring theoretic properties of certain Hecke algebras",
the second of which was co-authored with Taylor and proved that certain conditions
were met that were needed to justify the corrected step in the main paper. The two
papers were vetted and published as the entirety of the May 1995 issue of the Annals
of Mathematics. These papers established the modularity theorem for semistable
elliptic curves, the last step in proving Fermat's Last Theorem, 358 years after it was
conjectured.

Subsequent developments. The full Taniyama—Shimura—Weil conjecture was
finally proved by Diamond (1996), Conrad, Diamond & Taylor (1999), and Breuil et
al. (2001) who, building on Wiles' work, incrementally chipped away at the
remaining cases until the full result was proved. The now fully proved conjecture
became known as the modularity theorem.

Several other theorems in number theory similar to Fermat's Last Theorem also
follow from the same reasoning, using the modularity theorem. For example: no cube
can be written as a sum of two coprime n-th powers, n>3. (The case n =3 was
already known by Euler.)

Exponents other than positive integers
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Reciprocal Integers (Inverse Fermat Equation)
The equation a*™ + b"/™ = ¢"/™ can be considered the “inverse” Fermat equation.
All solutions of this equation were computed by Lenstra in 1992. In the case in which

the m™ roots are required to be real and positive, all solutions are given by
a=rs", b=rt", c=71(s+1)" for positive integers r, s, t with s and t coprime.

Rational exponents. For the Diophantine equation a™™ + b™/™ = with
nnot equal to 1, in 2004, forn> 2, Bennett, Glass, and Szekely proved that
if nand m are coprime, then there are integer solutions if and only if 6 divides m,
1/m plim 1/m

.n,.-"m

and a »and ¢ /™ are different complex 6th roots of the same real number.
Negative exponents. n=-1. All primitive (pairwise coprime) integer solutions
toa t + b1 =c " can be written as @ =mn+m*, b=mn+n% ¢=mn
for positive, coprime integers m, n.
=-2. The casen=-2 also has an infinitude of solutions, and these have a
geometric interpretation in terms of right triangles with integer sides and an integer

altitude to the hypotenuse. All primitive solutions to a?+b % =dare given by
a= (v’ —u®)(v* +u?), b=2uww(v’+u?), d=2uw(® —u?), fo coprime

integers u, v with v>u. The geometric interpretation is that a and b are the integer
legs of a right triangle and d is the integer altitude to the hypotenuse. Then the

2 242
hypotenuse itself is the integer € = (v"+u")% 50 (a, b, ¢) is a Pythagorean triple.
Integer n<-2. There are no solutions in integers fora" + b" =c”" for
integersn<-2. If there were, the equation could be multiplied through

by a™p™ e to obtain (E’C)lﬂl + (ﬂ-ﬂ}lnl = (ﬂ-b)lﬂl, which is impossible by Fermat's
Last Theorem. Values other than positive integers Fermat's last theorem can easily
b

an " " ch
.. : —) + = |- :
be extended to positive rationals: (I) (y) (Z) can have no solutions,

because any solution could be rearranged as: (ayz)" + (bxz)" = (Ci’»y)ﬂ, to which
Fermat's Last Theorem applies.

Monetary prizes. In 1816 and again in 1850, the French Academy of
Sciences offered a prize for a general proof of Fermat's Last Theorem. In 1857, the
Academy awarded 3000 francs and a gold medal to Kummer for his research on ideal
numbers, although he had not submitted an entry for the prize. Another prize was
offered in 1883 by the Academy of Brussels.

In 1908, the German industrialist and amateur mathematician Paul
Wolfskehl bequeathed 100,000 gold marks, a very large sum at that time, to the
Gottingen Academy of Sciences to be offered as a prize for a complete proof of
Fermat's Last Theorem. On 27 June 1908, the Academy published nine rules for
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awarding the prize. Among other things, these rules required that the proof be
published in a peer-reviewed journal; the prize would not be awarded until two years
after the publication; and that no prize would be given after 13 September 2007,
roughly a century after the competition was begun. Wiles collected the Wolfskehl
prize money, then worth $50,000, on 27 June 1997.

Prior to Wiles' proof, thousands of incorrect proofs were submitted to the
Wolfskehl committee, amounting to roughly 10 feet (3 meters) of correspondence. In
the first year alone (1907-1908), 621 attempted proofs were submitted, although by
the 1970s, the rate of submission had decreased to roughly 3—4 attempted proofs per
month. According to F. Schlichting, a Wolfskehl reviewer, most of the proofs were
based on elementary methods taught in schools, and often submitted by “people with
a technical education but a failed career”.In the words of mathematical
historian Howard Eves, “Fermat's Last Theorem has the peculiar distinction of being
the mathematical problem for which the greatest number of incorrect proofs have
been published.”

Mathematical terminology

Fermat's Last Theorem — ITocneanss teopema @epma (wiu Benrikas teopéma depma)

number theory — Teopust umcen (mMaremaruyeckas AMCHMILIMHA, M3Y4YalOllas CBOWCTBA YHCEI,
NPUMEHSETCS, B YaCTHOCTH, B KpUIITOrpapru

positive integer — mojaokuUTeNIbHOE 1EI0e YHUCIIO

conjecture — rumotesa, A0raaKa, IPEIIOIOKECHHE

conjectured — TUMOTETHYECKHIA

Pierre de Fermat — Ileep me Depma (1601 — 1665) — dpaHiuy3ckuil MaTeMaTuK, OAWH U3
co3naTeneil aHaIMUTUYECKOH TEeOMETPHH, MAaTeMaTHYECKOTO aHalln3a, TEOPUU BEPOSTHOCTEH U
teopun uncen. [1o npodeccuu opuct, ¢ 1631 roga — coBetHuk napiamenta B Tymyse. baectsmmit
nonuryoT. Hanbonee usBecten Gpopmynuposkoit Bennkoit Teopembr depma.

successful proof — ycrerninoe qoka3areabcTBO

Andrew Wiles—Cap Dunpro [Ixon Yaiince (poaucst 11 anpens 1953, Kem6pumk, Bennkoopuranus
poiapb-komanaop Opaena bBpuranckoir Wwmmepuun ¢ 2000) — aHramMiicKuii W aMEpUKAaHCKUI
MaTeMaTHK, mpodeccop MaTeMaTuku [[pHHCTOHCKOrO yHUBEpCUTETa, 3aBelyIOIUN ero Kadeapoin
MaTeMaTUKH, YIeH HaydHoro coBeta MHcTHTyTa MatemaTiku Kias

algebraic number theory — anre6paundeckas Teopus dncen

modularity theorem — teopema 0 MOy ISIPHOCTH

Guinness Book of World Records — Kunra pexopmoB [iiHHecca, €KeroaHblii COOpPHHUK
MHPOBBIX PEKOPJIOB, JIOCTH)KEHHH 4YelOBEKa, JXMBOTHBIX W TPHPOIHBIX BEIWYHMH. BriepBbie
omybnukoBana B 1955 roy mo 3akasy mpiaHACKOW THBOBApEHHOM KoMmanuu «[ mHHECCY.
unsolved problem — nepeuienHsbIit Bonpoc

Pythagorean theorem — reopema [udaropa

right triangle — npsMoyroybHBII TpEeyroJIbHUK

hypotenuse [har'poti nju:z] — runorenysa

equation — ypaBHeH#He
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Pythagorean triple — IludaropoBa Tpoiika, B MaTeMaTuke Nu(paropoBoii TPOIKOW Ha3bIBACTCS
YIIOPSAJOYEHHBIH KOHEUHBIH HAabOp M3 TPEX HATypalbHBIX 4ucel (T ¥, Z). yIOBIETBOPSIONINX
ClIeAywlIeMy OJHOPOJHOMY KBaJpaTHOMY YPaBHCHUIO: x? 4 y® = 2%, IIpu osToM uyucna,
o0pasyroniue nugaropoBy TPOUKY, Ha3bIBAIOTCS MHU(PATOPOBLIMH YHCJIAMMU.

exponent — mokasaresb CTEICHH, ITOKa3aTellb, SKCIIOHCHTA

prime number — mpocTtoe 4KciIo

Sophie Germain — Codn XKepmen ( 1776-1831) — dpaniry3ckuit MareMaTuk, Gpriiocod U MEXaHHK.
Buecna Becomblii  BKiaa B TUPQPEPCHIMATIBHYIO T€OMETPHIO, TEOPUIO  YHCENl K MEXaHHKY.
CamocCTOsITeIbHO ~ ydwiiach B OMONHMOTEKE OTLA-OBEIMpa W C JIETCTBA  yBJeKajach
MaTeMaTHYECKUMHU COUYMHEHHUSIMU, OCOOCHHO HM3BECTHOM MCTOpHEH MareMaThka MOHTIOKIJA, XOTs
POIMTENH MPETATCTBOBAIH €€ 3aHITUSAM KaK HE IMOIXOSIIUM TSl dKCHIIUHBI.

regular prime — peryiasipHoe MpoCTOE YUCIIO

elliptic curve — siMnTHYecKas KpuBast

modular form — moaynspuas Gpopma

2 _ ¢ ¢
Frey curve — kpusas ®pes, T.e. SIUIMNTAHYIECKas KpuBast ¥ — z(x—a)(z+b ), accoluupyemas

¥ 4 ¥
¢ pemennenm ypasaenus depma @ + 0 = €.

Ribet's Theorem - Tecopema Pubera, panee HaspIBajach OSrcuUIoH-TUmore3a (epsilon
conjecture or e-conjecture)

succeed in proving — npeycreTh B J0Ka3aTeIbCTBE (U€ro-T0), 10Ka3aTh

peer review — sKcrepTHasl OICHKA, MPOBOAUTH KCIEPTHYIO OIEHKY; He3aBHCHMAs (BHCIIHSIS)
IKCIIepTH3a (OIEHKA)

Richard Taylor — Puuapn Jloypenc Teitnop (1962) — aHrnumiickuii MaTeMaTHK, 3aHUMAFOIIHIACS
npo0iieMaMu TEOPUH YUCEI.

surveying — oOmmii aHau3; BBITOJHEHHE OOIIEro aHaI13a

Diophantine equation [ darouv'feentain] — ruodantoBo ypaBHEeHHE

Euclidean algorithm — eBkiuioB anropurm

relatively prime — B3amHuO mpocToii

grand conjecture — Benukas goraaka (peanoaoKeHue)

elementary function — snemenTtapuas GyHKIusI

infinite descent — OeckoHeYHBIH crycK

proof by infinite descent— MeToq OECKOHEYHOTO CITyCKa, 3TO METOJ J0Ka3aTelbCTBA OT
POTUBHOTO, OCHOBAHHBI HA TOM, YTO MHOYKECTBO HATYypPAIbHBIX YHCEI BIIOJIHE YIOPSIOUYCHO.
pairwise coprime — monapHoO B3aMMHO ITPOCTHIC YUCIIA

odd prime number — HeueTHOE MPOCTOE YUCIIO

proof by induction — noka3zarenbcTBO MOCPEACTBOM UHAYKTUBHOTO METO/IA

Galois theory - Tteopms Tamya, pasnmen anreOpbl, MNO3BOJSIONIMN — 1epe)OpMyITUPOBATH
OIIpe/IeTICHHBIE BOIIPOCH TEOPUH TIOJICH Ha SI3BIKE TEOPUH TPYII, Jiesias UX B HEKOTOPOM CMBICIIE
0oJee MPOCTHIMH

Euler system — siinepoBa cucrema

COPrimes — B3auMHO MPOCTHIE YUCIIa

side — rpaHb TpeyrojbHUKA

altitude to the hypotenuse — BbicoTa, IpoBeieHHAs K THIIOTCHY3E
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Grammar, Lexical, Translation and Speaking Exercises
Task 1. Match the columns.

1) the branch of mathematics that deals with the properties and | a) hypotenuse
relationships of numbers; b) perpendicular
2) atriangle one angle of which is a right angle; c) trillion

3) the side in a right triangle that is opposite the right angle; d)number theory
4) At right angles to one another. Can be of two lines, two | e) right triangle
planes, a line and a plane, or a line and a surface; (right-angled

5) A million million (10"%). In Britain (10%). triangle)

Task 2. Translate from Russian into English the text: Beinkas Teopema ®@epma.
Jlis  mro00ro HaTypajdbHOTO —YHCHIA 1t > 2 ypaBHEHUE a’ +b" =c" ue umeer
HATYpaJIbHBIX pemieHuid @, b, €. depma mmMpPoKo wu3BeCTeH Ojaromaps Tak
Ha3bIBaeMoOM BeMMKOW (wim  mocieaneit) Teopeme Depma. Teopema Oblia
chopmynupoBana uM B 1637 roay, Ha mnomsx kHuru «Apudmeruxay Jnodanra c
HpHHHCKOfI, qTo Haﬁ,HeHHOG UM OCTPOYMHOC JOKa3aTCJIbCTBO 9TOM TCOPCMBI
CJIMIIKOM JIMHHO, YTOOBI INpUBECTH CT0 Ha II0JIAX. BCPO}ITHGG BCEro, €ro
J0Ka3aTeJIbCTBO HE OBLIO BCPHBIM, TAaK KaK IT0O3JHCC OH OHy6JII/IKOBaJ'I J0Ka3aTeIbCTBO
TOJBKO JUIs ciydas N = 4. JlokazaTenbCTBO, HaliienHoe B 1994 roxy Duapro Yaincowm,
conepxuT 129 ctpanull u omyoMKoBaHO B kypHaie «Annals of Mathematics» B 1995
rony. Ilpocrota (GopmyIUpOBKH 3TOM TEOpeMbl MPUBJIEKIA MHOIO MaTeMaTHUKOB-
Jro0uTenel, Tak Ha3bIBaeMbIX epmaTUCTOB. Jlake 1 mocie pemieHus Yaiica Bo Bce
AKaJICMHHU HAYK UAYT IIMCbMa C «I0Ka3aTCIbCTBAMU) BEJIMKOM TCOPCMBI CDepMa.
Task 3. Change the sentences using the Participle Forms, follow the model.
Model: | have got a book which deals with computers.

I’ve got a book dealing with computers.
1) I know the man who teaches you English. 2) Give me the journal which lies on the
table. 3) I must see the scientists who work in this lab. 4) The letters which name the
angles are A, B, C.
Model: The material which is used in the article is true.

The material used in the article is true.
1) The most prevalent calculator in the United States is the slide rule, which is based
on the principle of logarithms.
2) One of the original calculators was undoubtedly a version of the Japanese abacus,
which is still in use today.
3) Most calculators are based on the fundamental mathematical principle which is
called the binary number system.
4) The calculators which were traced back to the Tigris Euphrates Valley 5000 years
ago are original.
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Task 4. Choose the correct item.

1. She had the feeling of ... .

a) being deceived b) deceiving c¢) having deceived

2. It’s a waste of time ... over trifles.

a) having argued b) having been argued c) arguing

3. My watch doesn’t keep good time. It needs ... .

a) having been repaired b) being repaired c) repairing
4. He mentioned ... it in the paper.

a) being read b) reading c) having read

5. Is it worth while your ... to convince him of being wrong?
a) being tried b) trying c¢) having tried

6. He insisted on ... with a certain respect.

a) having been treated b) treating c) being treated

7. Father didn’t approve of my ... the offer.

a) having rejected b) having been rejected c) rejecting
8. Many apologies for not ... to your letter.

a) having replied b) replying c) being replied

9. She remembers ... him the message.

a) having been given b) giving c) being given

10. I’'m really looking forward to ... all your news.

a) being heard b) having heard c) hearing

Task 5. Join the two sentences to make one sentence, beginning with a gerund.
Model. She’s a teacher. It’s hard work. Being a teacher is hard work / Teaching is
hard work. 1. Capital letters are used to name geometrical objects. It is very
convenient. 2. You are to classify these quadrilaterals. It requires the knowledge of
some properties. 3. We are going to locate this point on the y axis. It will give us the
first point on the line. 4. The student intends to divide a circle into a certain number of
congruent parts. It will help him to obtain a regular polygon. 5. The base and the
altitude of a rectangle are to be multiplied. It will give the product of its dimensions or
the area of the rectangle. 6. Don’t argue! It’s no use. In a crossed quadrilateral, the
interior angles on either side of the crossing add up to 720°. 7. Don’t deny this fact! It
Is useless. A square is a quadrilateral, a parallelogram, a rectangle and a rhombus. 8.
You are going to divide a heptagon (a 7-sided polygon) into five triangles. Is it any
good?
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Task 6. Choose the right preposition. Make sensible sentences.

1. Are you interested a) disturbing you.

2. She is very good b) looking after the children.

3. He insisted c) learning foreign languages.

4. | apologize d) having more time for doing things he wants
5. The teacher is fed up to.

6. She succeeded e) understanding this — its too difficult.

7. My friend is keen ) answering our stupid questions.

8. Professor is looking forward g) studying.

9. This student is not capable h) considering his solution of the problem.
10. His sister is tired on of to at in | i) doing sums.

with for J) getting good education.

Task 7. Complete the sentences using a gerund as an attribute.
1. I didn’t very much like the idea of ... . 2. What is the purpose of ... ? 3. She had no

difficulty (in) ... . 4. You have made great progress in ... . 5. He was late, and he was
afraid of ... . 6. Can you imagine the pleasure of ... . 7. He always produces the
impression of ... . 8. I am afraid you do not realize the importance of ... . Ex. 5.

Complete the second sentence so that it has a similar meaning to the first one. Use the
word in bold and other words to complete each sentence. 1. I’ll be happy when I can
have a rest after exams. forward to I’m looking ... a rest after exams. 2. Learning new
geometric theorems is something I like doing. interested in I’'m always ... new
geometric theorems 3. If I study a lot at night, it keeps me awake. prevents from ... a
lot at night ... sleeping. 4. | often operate the computer at university. am used to | ...
the computer at university. 5. He didn’t want to take the books back to the library. feel
like He didn’t... the books back to the library. 6. He hates it if he has to do a lot of
boring exercises. can’t stand He ... a lot of boring exercises. 7. ‘I’m sorry. I’ve broken
the speed limit’, said Sue. apologized for Sue ... the speed limit. 8. Let us write a new
program. suggest | ... a new program.

Task 8. Find and correct the mistakes in the sentences. Some of them are right
sentences.

1. I’'m looking forward to go on holiday. 2. To cheat in examination is not allowed.

3. It was kind of you inviting me joining you. 4. It’s a waste of time watching TV.

5. She said she was too busy to do this. 6. Do you think that drawing a polygon is
easier than drawing a circle? 7. Please stop to make that noise, it’s driving me mad.
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UNIT 13

Text 13. Integral

A definite integral of a function can be represented as the signed area
of the region bounded by its graph.

The integral is an important concept in mathematics. Integration is
one of the two main operations incalculus, with its
inverse, differentiation, being the other. Given a function f of
areal variable x and an interval [a, b] of the real line, the definite

b
integral Ja is defined informally as the signed area of the
region in the xy-plane that is bounded by the graph of f, the x-axis
and the vertical lines x =a and x = b. The area above the x-axis adds
to the total and that below the x-axis subtracts from the total.

The term integral may also refer to the related notion of the antiderivative, a
function F whose derivative is the given functionf. In this case, it is called

an indefinite integral and is written: Flz) = /f(I) dz.

However, the integrals discussed in this article are those termed definite integrals.
The principles of integration were formulated independently by Isaac
Newton and Gottfried Leibniz in the late 17th century. Through the fundamental
theorem of calculus, which they independently developed, integration is connected
with differentiation: if fis a continuous real-valued function defined on a closed
interval [a, b], then, once an antiderivative F of f is known, the definite integral of over

b
that interval is given by fa_ f(z)dx = F(b) — F(a).

Integrals and derivatives became the basic tools of calculus, with numerous
applications in science and engineering. The founders of calculus thought of the
integral as an infinite sum of rectangles of infinitesimal width. A rigorous
mathematical definition of the integral was given by Bernhard Riemann. It is based on
a limiting procedure which approximates the area of a curvilinear region by breaking
the region into thin vertical slabs. Beginning in the nineteenth century, more
sophisticated notions of integrals began to appear, where the type of the function as
well as the domain over which the integration is performed has been generalised.
A line integral is defined for functions of two or three variables, and the interval of
integration [a, b] is replaced by a certain curve connecting two points on the plane or
in the space. In a surface integral, the curve is replaced by a piece of a surface in the
three-dimensional space.

Integrals of differential forms play a fundamental role in modern differential
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geometry. These generalizations of integrals first arose from the needs of physics, and
they play an important role in the formulation of many physical laws, notably those
of electrodynamics. There are many modern concepts of integration, among these, the
most common is based on the abstract mathematical theory known as Lebesgue
integration, developed by Henri Lebesgue.

Introduction. Integrals appear in many practical situations. If a swimming pool
Is rectangular with a flat bottom, then from its length, width, and depth we can easily
determine the volume of water it can contain (to fill it), the area of its surface (to cover
it), and the length of its edge (to rope it). But if it is oval with a rounded bottom, all of
these quantities call for integrals. Practical approximations may suffice for such trivial
examples, but precision engineering (of any discipline) requires exact and rigorous
values for these elements.

Approximations to integral of Vxfrom 0 to 1, with
5m (yellow) right endpoint partitions and
12 m (green) left endpoint partitions.

To start off, consider the curve y = f(x) between x =
0

and x = 1 with f(x) = Vx. We ask: What is the area
under the function f, in the interval from 0 to 1?and
call this (yet unknown) area the integral of f. The

_ . _ fi VT dz.
notation for this integral will be Jo

As a first approximation, look at the unit square given by the sides x = 0to x =
landy=1(0) =0andy=1f(1) = 1. Its area is exactly 1. As it is, the true value of the
integral must be somewhat less. Decreasing the width of the approximation rectangles
shall give a better result; so cross the interval in five steps, using the approximation
points 0, 1/5, 2/5, and so on to 1. Fit a box for each step using the right end height of
each curve piece, thus V1/5, V2/5, and so on to V1 = 1. Summing the areas of these
rectangles, we get a better approximation for the sought integral, namely
FEE-0+EE-1) + VB3~ 2) momio
We are taking a sum of finitely many function values of f, multiplied with the
differences of two subsequent approximation points. We can easily see that the
approximation is still too large. Using more steps produces a closer approximation, but
will never be exact: replacing the 5 subintervals by twelve in the same way, but with
the left end height of each piece, we will get an approximate value for the area of
0.6203, which is too small. The key idea is the transition from adding finitely
many differences of approximation points multiplied by their respective function

1

0.8 4

0.6 4

0.4 4

0.2
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values to using infinitely many fine, or infinitesimal steps.

As for the actual calculation of integrals, the fundamental theorem of calculus,
due to Newton and Leibniz, is the fundamental link between the operations of
differentiating and integrating. Applied to the square root curve, f(x) = x*?, it says to
look at the antiderivative F(x) = 2/3x*2, and simply take F(1) — F(0), where 0 and 1 are
the boundaries of the interval [0, 1]. So the exact value of the area under the curve is
computed formally as

2

1 1
d :f 2 gy = F(1) - F(0) = =.
.[ZI' AR 0 * ! (1) (0) 3 (This is a case of a general rule, that

for f(x) = x9, with g # —1, the related function, the so-called antiderivative is F(x) = x4*
1
/(q+1).)

The notation ./ fla)de conceives the integral as a weighted sum, denoted by the
elongated s, of function values, f(x), multiplied by infinitesimal step widths, the so-
called differentials, denoted by dx. The multiplication sign is usually omitted.

Historically, after the failure of early efforts to rigorously interpret infinitesimals,
Riemann formally defined integrals as alimitof weighted sums, so that
the dxsuggested the limit of a difference (namely, the interval width). Shortcomings of
Riemann's dependence on intervals and continuity motivated newer definitions,
especially the Lebesgue integral, which is founded on an ability to extend the idea of
"measure” in much more flexible ways. Thus the notation Lf(:t) ap refers to a
weighted sum in which the function values are partitioned, with x measuring the
weight to be assigned to each value. Here A denotes the region of integration.

Formal definitions

Integral example with irregular partitions | _. .
. Riemann sums converging
(largest marked in red)
There are many ways of formally defining an integral, not all of which are
equivalent. The differences exist mostly to deal with differing special cases which may
not be integrable under other definitions, but also occasionally for pedagogical

reasons. The most commonly used definitions of integral are Riemann integrals and
Lebesgue integrals.
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Riemann integral. The Riemann integral is defined in terms of Riemann
sums of functions with respect to tagged partitions of an interval. Let [a, b] be a closed
interval of the real line; then a tagged partition of [a, b] is a finite sequence
a=zSHh S S << <2 <, 2, =0
This partitions the interval [a, b] into n sub-intervals [x;_, xj] indexed by i, each of
which is "tagged" with a distinguished pointt; € [xi;, Xi]. A Riemann sum of a
function f with respect to such a tagged partition is defined as

t:) A

; Sl thus each term of the sum is the area of a rectangle with height equal to
the function value at the distinguished point of the given sub-interval, and width the
same as the sub-interval width. Let A; = x;—X;_; be the width of sub-interval i; then
the meshof such a tagged partition is the width of the largest sub-interval formed by
the partition, maxi-;_, A;. The Riemann integral of a function fover the
interval [a, b] is equal to S if:

For all &£ > 0 there exists 6 > 0 such that, for any tagged partition [a, b] with mesh less

5 — — f f‘a’ .&3' < £.
than o, we have g (£:)

When the chosen tags give the maximum (respectively, minimum) value of each
interval, the Riemann sum becomes an upper (respectively, lower) Darboux sum,
suggesting the close connection between the Riemann integral and the Darboux
integral.

Properties. Linearity. The collection of Riemann integrable functions on a
closed interval [a, b] forms avector space under the operations of pointwise
addition and multiplication by a scalar, and the operation of integration

b
s H’fa flx) dx iIs alinear functional on this vector space. Thus, firstly, the
collection of integrable functions is closed under taking linear combinations; and,
secondly, the integral of a linear combination is the linear combination of the integrals,

b b b
[(ar+89)@)dz=a [ f@)dz +5 [ g(x)dz.
Similarly, the set of real-valued Lebesgue integrable functions on a given measure
space E with measure u is closed under taking linear combinations and hence form a

vector space, and the Lebesgue integral 7 fg F 41 s a linear functional on this

vector space, so that L(a-f T S S o fs fdp+ 53 _[Eg dp.

Inequalities. A number of general inequalities hold for Riemann-
integrable functions defined on a closed and bounded interval [a, b]and can be
generalized to other notions of integral (Lebesgue and Daniell).
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1) Upper and lower bounds. An integrable function f on [a, b], is necessarily
bounded on that interval. Thus there are real numbers m and M so that m <f (x) < Mfor
all xin [a, b]. Since the lower and upper sums of f over [a, b] are therefore bounded
by, respectively, m(b —a) and M(b — a), it follows that

m(b — a) <:f (z)dx < M(b— a).

2) Inequalities between functions. If f(x) < g(x) for each x in [a, b] then each of the

upper and lower sums of fis bounded above by the upper and lower sums,

b b
respectively, of g. Thus fﬂ fla)dr < fa. g(z)d=.
This is a generalization of the above inequalities, as M(b — a) is the integral of the
constant function with value M over [a, b].
In addition, if the inequality between functions is strict, then the inequality between
integrals is also strict. That is, if f(x) < g(x) for each x in [a, b], then

f:f(:r,)d:t: < ngﬁx)dx.

3) Subintervals. If [c, d] is a subinterval of [a, b] and f(x) is non-negative for all x,

b
hen /- F@ dz < [ f(@) de.
4) Products and absolute values of functions. If f and g are two functions then we

may consider their pointwise products and powers, and absolute values:

(f9)(x) = f(x)g(2), f*(z) = (f(2))" |fl(z) = |f(2)].

If f is Riemann-integrable on [a, b] then the same is true for [f|, and
" f@)az| < [71f()da.
Moreover, if fand g are both Riemann-integrable then fg is also Riemann-integrable,

g (L@ an) = ([ rerzan) ([ a@rar) .

This inequality, known as the Cauchy-Schwarz inequality, plays a prominent role
in Hilbert space theory, where the left hand side is interpreted as the inner product of
two square-integrable functions f and g on the interval [a, b].

Conventions. In this section fis a real-valued Riemann-integrable function. The

b

integral /ﬂ f(z) dx over an interval [a, b] is defined if a < b. This means that the
upper and lower sums of the function f are evaluated on a partition a = Xy < X; <

<X, = b whose values x; are increasing. Geometrically, this signifies that integration
takes place "left to right™, evaluating f within intervals [x;, X;.;] where an interval with
a higher index lies to the right of one with a lower index. The values a and b, the end-
points of the interval, are called the limits of integration of f. Integrals can also be
defined ifa>b: Reversing Ilimits of integration. Ifa>bthen define
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/ﬂ (@) de = _/:f(:") - This, with a = b, implies: Integrals over intervals of length

zero. If a is a real number then fﬂ f(z)dz =0.

The first convention is necessary in consideration of taking integrals over
subintervals of [a, b]; the second says that an integral taken over a degenerate interval,
or a point, should be zero. One reason for the first convention is that the integrability
of fon an interval [a, b] implies that f is integrable on any subinterval [c, d], but in
particular integrals have the property that:

Additivity of integration on intervals. If ¢ is any element of [a, b], then

b e b
fﬂ f(z)dz :fﬂ f(z)dz +fc f(z)dz. With the first convention the resulting relation
Gcf(:c)dx = lbf(:c)d:r: — lbf(:t)d:t

= [r@ar+ [ r@d o then well-defined for any cyclic permutation
of a, b, and c.
Instead of viewing the above as conventions, one can also adopt the point of view that
integration is performed of differential forms on oriented manifolds only. If Mis such
an oriented m-dimensional manifold, and M'is the same manifold with opposed

orientation and w is an m-form, then one has: fM “ = 7 Jarr™  These conventions
correspond to interpreting the integrand as a differential form, integrated over a chain.
In measure theory, by contrast, one interprets the integrand as a function f with respect
to a measure x and integrates over a subset A, without any notion of orientation; one

writes Ja £ it = Jiay) T Ak 15 indicate integration over a subset A.

The fundamental theorem of calculus is the statement that differentiation and
integration are inverse operations: if a continuous function is first integrated and then
differentiated, the original function is retrieved. An important consequence, sometimes
called the second fundamental theorem of calculus, allows one to compute integrals by
using an antiderivative of the function to be integrated.

Fundamental theorem of calculus. Let f be a continuous real-valued function
defined on a closed interval [a, b]. Let F be the function defined, for all x in [a, b], by

F(z) = fﬂ F(t)dt. Then, Fis continuous on [a, b], differentiable on the open

interval (a, b), and F'(z) = f(x) forall xin (a, b).
Second fundamental theorem of calculus. Letfbe a real-valued function
defined on a closed interval [a, b] that admits an antiderivative F on [a, b].

That is, f and F are functions such that for all x in [a, b], f(z) = F'(x).
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f:f(:n)d:t — F(b) — F(a).

Mathematical terminology

If f is integrable on [a, b] then

antiderivative — HeonpeienE€HHBII HHTETPaJI, IEPBOOOPa3HAst QYHKITHSI
indefinite integral — HeonpeneneHHbI HHTErpa

derivative — mpou3BoHas1, MPOU3BOIHAS BEITMUNHA

fundamental theorem of calculus - ocHoBHast Teopema MmaTaHaHM3a
closed interval — 3aMkHyTBIIT HHTEpBAT

infinite sum of rectangles — 6eckoneuHast cyMMa IpSIMOYTOJILHUKOB
infinitesimal width — 6eckoneuno Manas mupuHa

curvilinear — xpuBOJIMHEHHBII

curve — kpuBas, rpadux

surface integral — uHTEerpaI 110 MOBEPXHOCTH

differential form — quddepenumanshas Gopma

differential geometry — nquddepeHinmanpaas reoMeTpust

physical law — ¢pusnueckas 3aKOHOMEPHOCTD

electrodynamics — siekTpoauHamMuKa

Lebesgue integral - unterpan JIe6éra, ato 06001mcHEe nHTErpaia Pumana Ha OoJiee MUPOKUI KI1acc
byHKIUH

precision engineering — To4HOE MAITHHOCTPOCHUE

differentiating — nuddepennupoBanue

limit of weighted sums — nipeyien B3BEIIEHHBIX CyMM

Riemann sum — cymma Pumana

Darboux sums — cymmst {apOy

Darboux integral — unrerpan J{apoy

VeCtor space — BEKTOPHOE ITPOCTPAHCTBO

pointwise addition — motouedHoe cIOXKEHUE

linear functional — nuneliHbIl GHyHKIIMOHAT

linear combination — nmuneitnas komOuHanus ((GYHKIIUH HIH BEKTOPOB)
real-valued Lebesgue-integrable (Riemann-integrable) function — neiicrButenbHas QyHKIws,
uHTerpupyemas 1o Jledery (Pumany)

measure space — IpocTpaHCTBO C MEPOU

closed and bounded interval — orpanrueHHBIN ¥ 3aMKHYTBII HHTEPBAJ
Cauchy-Schwarz inequality — nepaBenctBo Komu-IlIBapia

Hilbert space — riuns6epTOBO MPOCTPAHCTBO

inner product — ckanspHOE MPOU3BEICHNE

square-integrable functions — kBagpaTu4HO UHTErpUpYeMbIe () YHKIIUU
conventions - yciaoBHbIE 0003HAYEHUS

end-points of the interval — koHe4HbIe TOUKH HHTEpPBAIA

limits of integration — npenensl HHTErpUPOBAHHUS

oriented manifolds — opueHTHpPOBaHHOE MHOKECTBO

measure theory — teopus Mepbl

continuous function — venpepsiBHAs QyHKIHS
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Grammar, Lexical, Translation and Speaking Exercises

Task 1. Match the columns.

1) an interval on the real line including its end points, as [0,
1], the set of reals between and including 0 and 1;

2) another function, obtained by multiplying the image of
the two functions at each value in the domain. If f and g are
both functions with domain Xand codomainyY, and
elements of Y can be multiplied (for instance, Y could be
some set of numbers), then the pointwise product
of f and gis another function from X to Y which
maps X € X to f(x)g(x);

3) a line segment of a circle passing through the centre of
the circle;

4) the amount remaining after one quantity is subtracted
from another (e.g., in 5— 3 =2, 2 is the difference);

5) any one of the ten numerals: 0, 1, 2, 3,4, 5,6, 7, 8, or 9;

6) a space consisting of vectors, together with the
associative and commutative operation of addition of
vectors, and the associative and distributive operation of
multiplication of vectors by scalars;

7) measurements of a figure (e.g., the length, width, and
height of a 3-D object);

8) a series of points not connected in a line graph;

9) the length of the line segment joining two points.

a) pointwise product
of two functions;

b) closed interval;
C) vector space;

d) diameter;

e) difference;

f) digit;

g) dimensions;

h) discrete element;
1) distance

Task 2. Read the formulae and translate them into Russian.

(a, b) open interval a and b
[ab] closed interval a and b
(ab] half — open interval a b, open on the left and closed on the
right
X=(—00;+00) capital x equals the open interval minus infinite plus infinite
X— X, X approaches x nought; or x tends to x nought
x]i—>rarcllf(x) =L the limit of f x as x tends to x one is capital L
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lim,_,,, f(x) # f(x0) |the limit of f of x tends to x nought is not equal to f of x
nought
lim an =0 the limit of a sub n is zero as n tends to infinity

n—>oo

Task 3. Translate from English into Russian and retell the text.
FERMAT’S LAST THEOREM

Pierre de Fermat was born in Toulouse in 1601 and died in 1665. Today we think of
Fermat as a number theorist, infact as perhaps the most famous number theorist who ever
lived. The history of Pythagorean triples goes back to 1600 B.C, but it was not until the
seventeenth century A.D that mathematicians seriously attacked, in general terms, the
problem of finding positive integer solutions to the equation x" + y" = z". Many
mathematicians conjectured that there are no positive integer solutions to this equation if

n isgreater than 2. Fermat’s now famous conjecture was inscribed in the marginof his
g i g

copy of the Latin translation of Diophantus’s Arithmetica. The note read: “To divide a
cube intotwo cubes, a fourth power or in general any power whatever into two powers of
the same denomination above the second is impossible and | have assuredly found an
admirable proof of this, but the margin is too narrow to contain it”.

Despite Fermat’s confident proclamation the conjecture, referred to as “Fermat’s
last theorem™ remains unproven. Fermat gave elsewhere a proof for the case n = 4. it was
not until the next century that L.Euler supplied a proof for the case n = 3, and still another
century passed before A.Legendre and L.Dirichlet arrived at independent proofs of the
case n = 5. Not long after, in 1838, G.Lame established the theorem for n = 7. In 1843, the
German mathematician E.Kummer submitted a proof of Fermat’s theorem to Dirichlet.
Dirichlet found an error in the argument and Kummer returned to the problem. After
developing the algebraic “theory of ideals”, Kummer produced a proof for “most small
n”. Subsequent progress in the problem utilized Kummer’s ideals and many more special
cases were proved. It is now known that Fermat’s conjecture is true for all n < 4.003 and
many special values of n, but no general proof has been found.

Fermat’s conjecture generated such interest among mathematicians that in 1908 the
German mathematician P.Wolfskehl bequeathed DM 100.000 to the Academy of Science
at Gottingen as a prize for the first complete proof of the theorem. This prize induced
thousands of amateurs to prepare solutions, with the result that Fermat’s theorem is
reputed to be the maths problem for which the greatest number of incorrect proofs was
published. However, these faulty arguments did not tarnish the reputation of the genius —
P.Fermat. Richard Lawrence Taylor (born 19 May 1962) IS
a British mathematician working in the field of number theory. A former research student
of Andrew Wiles, he returned to Princeton to help his advisor complete the proof
of Fermat's Last Theorem. Taylor received a $3 million 2014 Breakthrough Prize in
Mathematics "For numerous breakthrough results in the theory of automorphic forms,
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including the Taniyama-Weil conjecture, the local Langlands conjecture for general linear
groups, and the Sato-Tate conjecture." He also received the 2007 Shaw Prize in
Mathematical Sciences for his work on the Langlands program with Robert Langlands.

Task 4. Answer the following questions.

How old was Pierre Fermat when he died?

Which problem did mathematicians face in the 17 century A.D?

What did many mathematiciansconjecture at that time?

Who first gave a proof to Fermat’s theorem?

What proof did he give?

Did any mathematicians prove Fermat’s theorem after him? Who were they?

Task 5. Are the statements True (T) or False (F)? Correct the false sentences.

The German mathematician E.Kummer was the first to find an error in the argument.
With the algebraic “theory of ideals” in hand, Kummer produced a proof for “most
small n”” and many special cases.

A general proof has been found for all value of n.

The German mathematician P.Wolfskehl won DM 100.000 in 1908 for the first
complete proof of the theorem.

Task 6. Memorize the fractions pronunciation.

Fractional numbers — /[po6nvie uuciumenvuoie

Common Fractions (IIpocteie npodu)

72 - a(one) half; 1/; - a (one) third; 2/; — two thirds;

Y4 - a (one) quarter, a (one) fourth; % - three quarters, three fourths;
1/ — a (one) fifth; 2/ — two fifths; 1/, — one sixth; 5/, — five sixths;

1 % -oneand a half; 2 ¥4 - two and a (one) quarter

Decimal Fractions — Jlecsmuunwsie opoou

0.1 - nought point one; point one (Br. Eng.); zero point one (Am. Eng.)
0.01 - nought point nought one; point nought one

2.35 — two point three five

32.305 — three two (or thirty-two) point three nought five

Task 7. Choose the correct variant of translation.

1. The numerator and the denominator of this fraction are sure to be divisible by two.
a) Yucaumenwv u 3namenameins Opoobu enumcs Ha 08d.

b) Muvi yeep:sem eac, 4nio Huciaunmeilb U SHAMeHAanelb MOICHO COKpamunib Ha osaa.

C) be3 comnenus, yuciumens u sHameHamenb Mo Opoou Oequmcs Ha 08d.
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2. Scientists were determined to develop further that idea.

a) Ipunsiiu pewenue, umo yuenvle 6y0ym coOeucmeosans pa3eumuito 3moi uoeu.

b) Yuenvie svruucnunu, mo neobxooumo 8 6yoywem pazeueams 3my uoero.

¢) Yuenvix 3acmasunu pazsueams 8 daivHeluem 3my uoero.

d) Vuenoie pewunu, umo 6yoym pazsusamv smy uoeio 8 OaibHeuueM.

3. Where there is a choice of two expressions, we should always choose the more
accurate one.

a) Tam, e0e cywecmsyem 8b100p U3 08YX BbIPANCEHUL, HAM 8Ce20a Cledyem 8bloUpamo
bonee mouHoe svipadiceHue.

b) Tam, 20e ecmb 6bI00p U3 08YX BbIPANCEHUU, Mbl 8ce20a 8vibepem Oonee MoyHOe
8bIpAdiCEHUeE.

c) Tam, 20e ecmo 6b160p U3 08X BbIPAHCEHUL, Mbl Obl 8Ce20a 8blOUpany Ooee MoYHOe
8bIPAdICEHUE.

4. Thus the circumference of a circle may be defined as the limit of the perimeter of an
inscribed regular n-gon as n increases.

a) Oxpyoichocmb onpedensiemcss Kak nepumemp GRUCAHHO20 MHO20SPAHHUKA, 20e
KOJIUYeCme0 CMopoH 0003Hayaemcs kax N.

0) [nuna okpyscHocmu Kpyea modxcem Ovlmb onpeoesieHa Kak npeoei om nepumempa
NPaBUIbHO20 BNUCAHHO20 N-Y20NbHUKA, 20e N — 8o3pacmaen.

¢) OKpysICHOCIb, ONUCAHHASL 8OKPY2 100020 MHO20Y20bHUKA, 20e N — KOIU4ecmeo
cmopon, onpedensemcs no popmyne C=2mr.

5. Very often a proposition is so worded that it requires thought to state the converse
proposition correctly.

a) Ouenvb wacmo ymeepaicoenue Gopmyaupyemcs makum oOpazom, Ymo HYHCHO KaK
cnedyem nooymams, 4moovl cqhopmyauposams 06pamuoe ymeepicoeHue npasuibHo.
b) 3auacmyro ymeepoicoenue cocmasnsiemes max, wmo mpebyemcsi nOpa3MblCIumy,
umoobbL NPABUTILHO 3A8UMb 00 0OPAMHOM YMBEPHCOCHUU.

c) Ouenv uacmo ymeepicoeHue 8blpadcaemcs mak, 4mo OHO mpeoyem pasmbliuleHUs]
HAO NpasuIbHOU YOPMYIUPOBKOU 0OPAMHO20 YIMBEPHCOCHUSL.

Task 8. Translate the following sentences into English.

1. B nanHoM ciydae o0e TeopeMbl — Kak mpsiMasi, Tak U oOpaTHasi — OKa3bIBAIOTCS
crpaBeyiuBbiMU. 2. IlaTh akcuom EBKIMma — 3TO NOPEAJIOKEHUS, BBOISIINEC
OTHOIIEHUS PABEHCTBA WM HEPABEHCTBAa BenWYMH. 3. YueOnwk EBxnmma mo
reomerpun «Hauvama» wywurtanmu, uyutaror U OyayT uuTath MHorue (moau). 4.
[Ipenyioxxkenne, KOTOPOE CHEAYET HENOCPEACTBEHHO W3 AaKCUOMBI, HA3bIBAETCSA
cineactBueM. 5. Clrenyromue aBe TEOpeMbl 00paTHBI Ipyr Apyry. 6. OIHO U TO Xe

MMPCIJIOKCHHUEC MOKET OBITb WM HE OBITh MCTUHHBIM OTHOCHTEIBHO Apyroro
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MHOXECTBa JONylleHuii. 7. B mo00il Teopeme ecTh JIB€ YacTU: TUIIOTE3a U BBIBOA. 8.
Bac npocar 3anucath KpaTko MpPEeInoioxKeHUs, KOTOpble Bbl clienanu. 9. Akcuoma —
3TO HMCTUHHOE, UCXOAHOE mnoyoxeHue Teopuu. 10. Iloctynatr — 3T0 yTBEpXk AECHUE,
IPUHUMAEMOE B KaKOU-IMOO HAYyYHOU TEOPUH KaK UCTUHHOE, XOTS M HE JI0Ka3yemoe
€€ CpeJICTBAMHU, U ITIOATOMY OH UI'PAET B HEM POJIb AKCUOMBI.

Task 9. Read the text and find the answers to the following questions.

1. What is logical deduction? 2. Do we proceed from the general to the particular or
from the particular to the general in induction? 3. Which method of thinking is more
useful: deductive or inductive?

Deduction and Induction

The scientists have proved a chain of theorems and have come to recognize the entire
structure of undefined terms, definitions, assumptions, and theorems as constituting an
abstract logical system. In such a system we say that each proposition is derived from
its predecessor by the process of logical deduction. This process of logical deduction is
scientific reasoning. This scientific reasoning must not be confused with the mode of
thinking employed by the scientist when he is feeling his way toward a new discovery.
At such times the scientist, curious about the sum of the angles of a triangle, proceeds
to measure the angles of a great many triangles very carefully. In every instance he
notices that the sum of the three angles is very close to 180°; so he puts forward a
guess that this will be true of every triangle he might draw. This method of deriving a
general principle from a limited number of special instances is called induction.

The method of induction always leaves the possibility that further measurement and
experimentation may necessitate some modification of the general principle. The
method of deduction is not subject to upsets of this sort. When the mathematician is
groping for (umer) new mathematical ideas, he uses induction. On the other hand,
when he wishes to link his ideas together into a logical system, he uses deduction. The
laboratory scientist also uses deduction when he wishes to order and classify the
results of his observations and his inspired guesses and to arrange them all in a logical
system. While building this logical system he must have a pattern (Moaenp) to guide
him, an ideal of what a logical system ought to be. The simplest exposition
(u3noxenue) of this ideal is to be found in the abstract logical system of demonstrative
geometry. It is clear that both deductive and inductive thinking are very useful to the
scientist.
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UNIT 14

Text 14. Improper integrals

/x' dx _
The improper integral /o (z+ 1)/ has
_unbounded intervals for both domain and range.

A "proper" Riemann integral assumes the integrand is defined and finite on a
closed and bounded interval, bracketed by the limits of integration. An improper
integral occurs when one or more of these conditions is not satisfied. In some cases
such integrals may be defined by considering the limitof a sequence of
proper Riemann integrals on progressively larger intervals.

If the interval is unbounded, for instance at its upper end, then the improper

o0 b
integral is the limit as that endpoint goes to infinity. /ﬂ fla)de = blﬂ}ofﬂ f(z) d
If the integrand is only defined or finite on a half-open interval, for instance (a, b],

. [ @de=tn [ f()da

then again a limit may provide a finite result. /a e—0 Jate

That is, the improper integral is the limit of proper integrals as one endpoint of
the interval of integration approaches either a specified real number, or o, or —oo. In
more complicated cases, limits are required at both endpoints, or at interior points.

Consider, for example, the function 1/((x + 1)Vx) integrated from 0 to o (shown
right). At the lower bound, as x goes to 0 the function goes to «, and the upper bound
IS itself oo, though the function goes to 0. Thus this is a doubly improper integral.
Integrated, say, from 1 to 3, an ordinary Riemann sum suffices to produce a result
of n/6. To integrate from 1 to oo, a Riemann sum is not possible. However, any finite
upper bound, say t (with t > 1), gives a well-defined result, 2 arctan(\'t) — 7/2. This has
a finite limit as t goes to infinity, namely /2. Similarly, the integral from 1/3 to 1
allows a Riemann sum as well, coincidentally again producing /6. Replacing 1/3 by
an arbitrary positive value s (with s < 1) is equally safe, giving n/2 — 2 arctan(\s).
This, too, has a finite limit as s goes to zero, namely /2. Combining the limits of the
two fragments, the result of this improper integral is
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This process does not guarantee success; a limit might fail to exist, or might be
unbounded. For example, over the bounded interval from 0O to 1 the integral of 1/x does
not converge; and over the unbounded interval from 1 to oo the integral of 1/\x does
not converge.

Multiple integration
Double integral as volume under a surface. Integrals can be
taken over regions other than intervals. In general, an

integral over a set E of a function f is written: S ) .

Here x need not be a real number, but can be another suitable quantity, for
instance, a vector in R®. Fubini's theorem shows that such integrals can be rewritten as
an iterated integral. In other words, the integral can be calculated by integrating one
coordinate at a time.

Just as the definite integral of a positive function of one variable represents
the area of the region between the graph of the function and the x-axis, the double
integral of a positive function of two variables represents the volume of the region
between the surface defined by the function and the plane which contains its domain.
(The same volume can be obtained via the triple integral — the integral of a function in
three variables — of the constant function f(x, y, z) = 1 over the above-mentioned region
between the surface and the plane.) If the number of variables is higher, then the
integral represents a hypervolume, a volume of a solid of more than three dimensions
that cannot be graphed. For example, the volume of the cuboid of sides 4 x 6 X 5 may
be obtained in two ways:

1) By the double integral S/, 5 4= ot the function f(x, y) = 5 calculated in
the region D in the xy-plane which is the base of the cuboid. For example, if a
rectangular base of such a cuboid is given via the xy inequalities 3 <x<7, 4 <y < 10,

10 T

our above double integral now reads /: M ° dz} 4y-

From here, integration is conducted with respect to either x or y first; in this example,
integration is first done with respect to x as the interval corresponding to xis the inner
integral. Once the first integration is completed via the F(b) — F(a) method or
otherwise, the result is again integrated with respect to the other variable. The result
will equate to the volume under the surface.
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2) By the triple integral / /Lboid 14w Y a2t the constant function 1 calculated on
the cuboid itself.

Line integrals
A line integral sums together elements along a curve.
The concept of an integral can be extended to more general
domains of integration, such as curved lines and surfaces. Such
integrals are known as line integrals and surface integrals

respectively. These have important applications in physics, as
when dealing with vector fields.

A line integral (sometimes called apath integral) is an integral where
the function to be integrated is evaluated along a curve. Various different line integrals
are in use. In the case of a closed curve it is also called a contour integral.

The function to be integrated may be a scalar field or a vector field. The value of the
line integral is the sum of values of the field at all points on the curve, weighted by
some scalar function on the curve (commonly arc length or, for a vector field, the
scalar product of the vector field with a differential vector in the curve). This
weighting distinguishes the line integral from simpler integrals defined on intervals.
Many simple formulas in physics have natural continuous analogs in terms of line
integrals; for example, the fact thatworkis equal to force, F, multiplied by
displacement, s, may be expressed (in terms of vector quantities) as: W = F - s.

For an object moving along a path Cin avector field Fsuch as an electric
field or gravitational field, the total work done by the field on the object is obtained by
summing up the differential work done in moving from s to s + ds. This gives the line

_ w:/F-ds.
integral o

Surface integrals Asurface integral is a definite integral taken over
NN N a surface (which may be a curved set in space); it can be thought
e ——
W‘ﬁ of as the double integral analog of the line integral. The function
ﬁ"""‘““\ to be integrated may be a scalar field or a vector field. The value
"%““‘““‘ of the surface integral is the sum of the field at all points on the
““ surface. This can be achieved by splitting the surface into surface

elements, which provide the partitioning for Riemann sums.
For an example of applications of surface integrals, consider a vector field v on a
surface S; that is, for each point x in S,v(x) is a vector. Imagine that we have a fluid
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flowing through S, such that v(x) determines the velocity of the fluid at x. The flux is
defined as the quantity of fluid flowing through S in unit amount of time. To find the
flux, we need to take the dot product of v with the unit surface normal to S at each

point, which will give us a scalar field, which we integrate over the surface: /s" - as
The fluid flux in this example may be from a physical fluid such as water or air, or
from electrical or magnetic flux. Thus surface integrals have applications in physics,
particularly with the classical theory of electromagnetism.

Integrals of differential forms. A differential form is a mathematical concept in
the fields of multivariable calculus, differential topology and tensors. The modern
notation for the differential form, as well as the idea of the differential forms as being
the wedge products of exterior derivatives forming an exterior algebra, was introduced
by Elie Cartan. We initially work in an open setin R". A O-form is defined to be
a smooth function f. When we integrate a function f over an m-

dzt ... dz™.
dimensional subspace S of R", we write it as L /

We can consider dx* through dx" to be formal objects themselves, rather than tags
appended to make integrals look like Riemann sums. Alternatively, we can view them
as covectors, and thus a measure of "density" (hence integrable in a general sense). We
call the dx', ..., dx"basic 1-forms. We define the wedge product, "A", a bilinear
"multiplication” operator on these elements, with the alternating property that
dx" A dx® =0 for all indices a.

Alternation along with linearity and associativity implies dx” A dx® = —dx® A dx".

This also ensures that the result of the wedge product has an orientation. We
define the set of all these products to be basic 2-forms, and similarly we define the set
of products of the form dx? A dx” A dx° to be basic 3-forms. A generalk-form is then a
weighted sum of basic k-forms, where the weights are the smooth functions f. Together
these form a vector space with basic k-forms as the basis vectors, and 0-forms (smooth
functions) as the field of scalars. The wedge product then extends to k-forms in the
natural way. Over R" at most n covectors can be linearly independent, thus a k-form
with k > n will always be zero, by the alternating property. In addition to the wedge
product, there is also the exterior derivative operator d. This operator maps k-forms to
(k+1)-forms. For ak-formw =fdx®overR", we define the action ofd by:
dw:igfdff\d:t“. ] ] ] _

i=1 OTi with extension to general k-forms occurring linearly.

This more general approach allows for a more natural coordinate-free approach to

integration on manifolds. It also allows for a natural generalisation of the fundamental

. diw = :
theorem of calculus, called Stokes' theorem, which we may state as /n “ o
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where o is a general k-form, and 6Q denotes the boundary of the region Q. Thus, in
the case that  is a 0-form and Q is a closed interval of the real line, this reduces to
the fundamental theorem of calculus. In the case that w is a 1-form and Q is a two-
dimensional region in the plane, the theorem reduces to Green's theorem. Similarly,
using 2-forms, and 3-forms and Hodge duality, we can arrive at Stokes' theorem and
the divergence theorem. In this way we can see that differential forms provide a
powerful unifying view of integration.

Summation. The discrete equivalent of integration is summation. Summations
and integrals can be put on the same foundations using the theory of Lebesgue
integrals or time scale calculus.

Computation. The most basic technique for computing definite integrals of one
real variable is based on the fundamental theorem of calculus. Let f(x) be the function
of x to be integrated over a given interval [a, b]. Then, find an antiderivative of f; that
Is, a function F such that F" =fon the interval. Provided the integrand and integral
have no singularities on the path of integration, by the fundamental theorem of
calculus, I3 f(z)dx = F(b) — F(a).

The integral is not actually the antiderivative, but the fundamental theorem
provides a way to use antiderivatives to evaluate definite integrals. The most difficult
step is usually to find the antiderivative of f. It is rarely possible to glance at a function
and write down its antiderivative. More often, it is necessary to use one of the many
techniques that have been developed to evaluate integrals. Most of these techniques
rewrite one integral as a different one which is hopefully more tractable. Techniques
include:

Integration by substitution Integration by reduction formulae
Integration by parts Integration using parametric derivatives
Inverse function integration Integration using Euler's formula
Changing the order of integration Euler substitution

Integration by trigonometric substitution Differentiation under the integral sign
Tangent half-angle substitution Contour integration

Integration by partial fractions

Alternative methods exist to compute more complex integrals.
Many nonelementary integrals can be expanded in a Taylor series and integrated term
by term. Occasionally, the resulting infinite series can be summed analytically. There
are also many less common ways of calculating definite integrals; for
instance, Parseval's identity can be used to transform an integral over a rectangular
region into an infinite sum. Occasionally, an integral can be evaluated by a trick.

Symbolic. Many problems in mathematics, physics, and engineering involve
integration where an explicit formula for the integral is desired. Extensive tables of
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integrals have been compiled and published over the years for this purpose. With the
spread of computers, many professionals, educators, and students have turned
to computer algebra systems that are specifically designed to perform difficult or
tedious tasks, including integration. Symbolic integration has been one of the
motivations for the development of the first such systems, like Macsyma.

A major mathematical difficulty in symbolic integration is that in many cases, a
closed formula for the antiderivative of a rather simple-looking function does not exist.

For  instance, it is known that the antiderivatives of the
functions exp(x?), x* and (sin x)/x cannot be expressed in the closed form involving
only rational and exponential functions, logarithm, trigonometric and inverse

trigonometric functions, and the operations of multiplication and composition; in other
words, none of the three given functions is integrable in elementary functions, which
are the functions which may be built from rational functions, roots of a polynomial,
logarithm, and exponential functions. The Risch algorithm provides a general criterion
to determine whether the antiderivative of an elementary function is elementary, and, if
it is, to compute it. Unfortunately, it turns out that functions with closed expressions of
antiderivatives are the exception rather than the rule. Consequently, computerized
algebra systems have no hope of being able to find an antiderivative for a randomly
constructed elementary function. On the positive side, if the 'building blocks' for
antiderivatives are fixed in advance, it may be still be possible to decide whether the
antiderivative of a given function can be expressed using these blocks and operations
of multiplication and composition, and to find the symbolic answer whenever it exists.
The Risch algorithm, implemented in Mathematica and other computer algebra
systems, does just that for functions and antiderivatives built from rational
functions, radicals, logarithm, and exponential functions.

Some special integrands occur often enough to warrant special study. In
particular, it may be useful to have, in the set of antiderivatives, the special functions
of physics (like the Legendre functions, the hypergeometric function, the Gamma
function, the Incomplete Gamma function and so on). Extending the Risch's algorithm
to include such functions is possible but challenging and has been an active research
subject.

More recently a new approach has emerged, using D-finite function, which are
the solutions of linear differential equations with polynomial coefficients. Most of the
elementary and special functions are D-finite and the integral of a D-finite function is
also a D-finite function. This provide an algorithm to express the antiderivative of a D-
finite function as the solution of a differential equation. This theory allows also to
compute a definite integrals of a D-function as the sum of a series given by the first

coefficients and an algorithm to compute any coefficient.
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Mathematical terminology

improper integral — onpeaeneHubiii (HeCOOCTBEHHBIN) HHTETPAT

limit of a sequence — npeen mociea0BaTEILHOCTH

limit of proper integral — npeaen co6cTBEHHOrO HHTErPA

iterated integral — moBTOpHBII HHTETpa

Fubini's theorem — teopéma Tonémmn-OyOrHN B MATEMAaTUYECKOM aHAJIM3€, TEOPUH BEPOSTHOCTEMH
U CMEXXHBIX JUCIUILIMHAX CBOJAMUT BHIYMCIICHUE IBOMHOIO HHTErPaia K MOBTOPHBIM

line integral (path integral) — nuneitHpIil HHTETpan (MHTETPA IO TPACKTOPHH)

contour integral — kpUBOJIMHEHHBIH HHTErPaJl, HHTErPAJ 110 KOHTYPY

scalar field — ckansproe mose

scalar product, dot product — ckansipHoe mpou3BeeHNE, BHYTPEHHEE IPOM3BEAEHNE (BEKTOPOB)
vector field — BekTopHO€ moe

differential vector in the curve — quddepeniuansHpIii HHTErpal Ha KPUBOM

electric field - snekrpuueckoe moJe

gravitational field - rpaBuTanonHoe mose

hypervolume — runepo6sém

cuboid — npsiMoyrosbHbII MapaIeaenue

iterated integral — moBTOpHBII HHTErpa

flux — nBMKeHHE, TOTOK, MATHUTHBIN TTOTOK

surface normal — Hopmasb K TOBEPXHOCTH

classical theory of electromagnetism — kiaccuueckast TeOpusi AIEKTPOMAarHeTH3Ma

multivariable calculus — ananu3 ¢yHkIMIE MHOTMX MEepeMEHHBIX (MHOTOMEPHBIH aHaIu3 (Takke
M3BECTHBIN KaK MHOTOMEPHOE MJIM MHOTOBApHAHTHOE HCUUCIICHHUE)

differential topology — nuddepenimansHas Tonoaorus

tensor — tensop; tensor calculus — Trer3opHOe UcuKcIICHHE

wedge product; exterior product — V-npoussenenne

tensor product — TeH30pHOE IPOM3BEICHUE

exterior derivative — BHeIIHsS TPOU3BOTHAS

exterior algebra — BHemHsist anreopa

Elie Cartan — Dmi XKo3éd Kapran (1869 — 1951), dpaHIy3ckuii MaTeMaTHK, OCHOBHbIE TPY/IBI IO
TEOPUH HENPEPBIBHBIX TPy, AuddepeHIatbHbIX ypaBHEHUH 1 T GepeHITHATBHON T€OMETPUH.
open set — OTKPBITOE MHOKECTBO

smooth function — riaakas GpyHkus

m-dimensional — m-mepHsIii

exterior derivative — BHeNIHsIS TPOU3BOIHAS

covector — KOBEKTOp

orientation — HampaBiicHHE, PACIOIOKEHHE, HAIIPABICHHOCTD

vector space — BEeKTOPHOE IIPOCTPAHCTBO

exterior derivative — BHeNIHsISI TPOU3BOIHAS

manifold — mHOXecTBO

Stokes' theorem — Teopema Crokca, oOaHa ©3 OCHOBHBIX TeopeM auddepeHInaIbHONR
TE€OMETPHUH U MATEMATHUYECKOTO aHanmn3a 00 MHTerpupoBaHuu nuddepeHmansHex GopM, KoTopas
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https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F
https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7
https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB
https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0

000011aeT HECKOJIbKO TeopeM aHayim3a. Ha3zpana B uects Jx. I'. Crokca.

boundary — npenen; rpanuna

Green's theorem — Teopema ['puHa ycTaHaBIMBaeT CBSI3b MEXITY KPUBOJIMHEHHBIM UHTETPAJIOM I10
3aMkHyTOMY KOHTYpy (' 1 JIBOMHBIM HHTErpajoM 1o oOfHOCBA3HOH o6mactu 1), orpanmdennoii >Tum
KOHTYpoM. DaKTHYECKH, 3Ta TEOpeMa SBIISICTCSl YaCTHBIM CliydaeM Ooiiee oOiei Teopembr CTOKCA.
TeopeMa Ha3BaHa B 4YECTh aHIVIMKMCKOro MaTemaTuka J[>xopxka I'puHa.

Hodge duality — 3Be3na XOmka, BaKHBIA JIMHEHHBIA OIEpaTOp M3 MPOCTPAHCTBA P-BEKTOPOB B
POCTPaHCTBO N-P-hopm.

divergence theorem — treopema o auBepreniuu, Teopema ['aycca-OcTporpaackoro

summation — cymMMHupOBaHHe, CJI0KEHHUE; IOJIBSICHUE UTOTa

time scale — 1) mkana Bpemenu 2) Maciitad BpeMeHH

singularity — 1) cMHT'YIIpPHOCTB, 0OCOOEHHOCTD 2) 0c00ast TouKa QYHKIMH

integration by substitution — uaTerpupoBaHue MOACTAHOBKOMA

integration by parts — uaTerpupoBanue 1Mo yacTIMm

inverse function integration — uxrerpupoBanie 0OpaTHOM HYHKITUH

Changing the order of integration — usmenenue nopsiika HHTErPUPOBAHKS

Integration by trigonometric substitution — uaTerpupoBanue MOCPEACTBOM TPUTOHOMETPUUIECKOM
MOJICTAHOBKH

Tangent half-angle substitution — moacTaHoBKa ¢ UCIOJIB30BAaHUEM TaHIEHCA MOJOBHHHOTO YIJIa.
VHuBepcaibHass TPUTOHOMETPHUYESCKAsl MOJICTAHOBKA, B aHIJIOA3BIYHON JIMTEpaType Ha3biBacMasl B
yecth Kapna Beiiepitpacca noacranoskoir Befiepintpacca, IpUMEHSETCS B HHTETPHUPOBAHUH IS
HAaXOX/ICHHS MEPBOOOPA3HBIX, OMPEACIEHHBIX U HEOIMPEACIEHHBIX HHTETPATOB OT PAIllMOHAIBHBIX
GyHKUMIT OT TpUroHOMeTpHuYecKuX (GyHKIMA. Be3 morepu OOIMIHOCTH MOXKHO CYUTATh B JTAHHOM
ciydae Takue pyHKIUH PalMOHAIBHBIMU (DYHKIIUSMH OT CHHYCA M KOCHHYCA.

Integration by partial fractions — uHTerprpoBaHre MOCPEICTBOM MPOCTEHIINX [dIEMEHTAPHBIX |
npobeit

Integration by reduction formulae - naTerpHpoBaHUe MOCPEACTBOM COKpaIeHus: Gopmy
Integration using parametric derivatives — wuHTerpupoBaHHE MOCPEICTBOM HCIOJIb30BAHHS
apaMeTPUIECKHX MPOU3BOTHBIX

Integration using Euler's formula — uaTerpupoBanue ¢ ucrnons3oBanueM Hopmysibl Ditiepa

Euler substitution — moxcranoBka Diinepa

Differentiation under the integral sign — muddepennmpoBanue 1Mo/ 3HAKOM UHTErpaa

Contour integration — koHTYpHOE UHTETPUPOBAHKE

nonelementary integrals — HeanemeHTapHbIE MHTETPAITBI

Taylor series— psaer Teitopa (an infinite sum giving the value of a function f(z) in the
neighborhood of a point a in terms of the derivatives of the function evaluated at a)

Parseval's identity — pasenctBo IlapceBans

solids of revolution — rena BpamieHus

list (table) of integrals — mepeuens (Tabnuia) UHTETPaIOB

computer algebra system (CAS) — cucrema kommbioteproii anredpsl (CKA) - 310 mpukiagHas
nporpaMma Jiiss CHMBOJIBHBIX BBIYHCIICHHI, TO €CTh BBIMOIHEHHs MPeoOpa3oBaHuil U pabOThI C
MaTeMaTHICCKUMHU BBIPAKCHUSIMU B QaHAITMTUIECKOH (CUMBOJIBHOIT) hopme.

Macsyma — Makcuma, cUcCTeMa KOMIIBIOTEPHOH anreOphl, mepBas Bepcusi KOTOpoil Oblia
paspaborana ¢ 1968 mo 1982 rox B MIT B naGopatopumu Project MAC, a BmnocnencTBuu
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https://ru.wikipedia.org/wiki/%D0%94%D0%B2%D0%BE%D0%B9%D0%BD%D0%BE%D0%B9_%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB
https://ru.wikipedia.org/wiki/%D0%9E%D0%B4%D0%BD%D0%BE%D1%81%D0%B2%D1%8F%D0%B7%D0%BD%D0%B0%D1%8F_%D0%BE%D0%B1%D0%BB%D0%B0%D1%81%D1%82%D1%8C
https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%A1%D1%82%D0%BE%D0%BA%D1%81%D0%B0
https://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B8%D0%BD,_%D0%94%D0%B6%D0%BE%D1%80%D0%B4%D0%B6
https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B8%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80
https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0

pacmpocTpaHsulachk Ha KOMMEpPYECKOH OCHOBEe. JTO ObUIa mepBas BCEOOBEMIIOINAs CHUCTEMA
CHMBOJIFHON MaTeMaTUKH M OJHA W3 PAHHUX CHCTEM, OCHOBAHHBIX Ha 3HaHMsAX. MHOTHE W3 HICH,
NOSBUBLIMXCS B Macsyma BIOCIHCICTBUM OBUIM 3aMMCTBOBaHbI TaKUMU CHCTEMaMH Kak
Mathematica, Maple, u npyrumu.

exponential functions — skcrionenimansHas GyHKIHUS, MOKa3aTeabHass O yHKIHS,

logarithm — norapudm

logarithm to the base e — marypanbsHbIii Torapudm

logarithm to the base ten — necstuunblit morapudm

taking the logarithm — B3stue norapupma

to take a logarithm — 6parsb sorapudm, orapupmMupoBathb

to take the logarithm of a number — naxoauts norapudm yrcia

inverse trigonometric function — odOparHast TpuroHomerpuveckas GyHKIus

elementary function — snemenrtapuas GpyHkuus

roots of a polynomial — xopuu nonunoma (MHOTOUNEHA)

Risch algorithm — Aunroputm Purmia, aaroputm Juis aHaJIMTHYECKOTO B3SATHS HEONMpPEACIEHHBIX
MHTErpajioB, HCIOJB3YIOIUN MeTonbl auddepeHnnanbHol anredpbl. OH Oasupyercss Ha TuUIe
UHTErpUpyeMOil (YHKIIMM W HAa METOAaX HMHTCIPUPOBAHUS PAIIMOHAIBHBIX (DYHKIMH, KOPHEH,
norapuMoB, ¥ SKCHOHEHIHMAIbHBIX (yHKuui. HazBan B yects PoGepra ['enpu Puma. Cam Pum,
KOTOpBIM pa3paboran anroput™ B 1968 roxay, HasplBal €ro «paspeliaroliedl MpoLesypoi»,
IIOCKOJIBKY METOJ] pellaeT, BISETCs I epBooOpa3Has oT (QyHKIUHU 3JIEMEHTapHON (yHKIIHUEH.
radical — pagukai, 3HaK KOpHs, KOPEHb

Legendre function — ¢pyukuus Jlexxanapa

hypergeometric function — runepreomerpudeckas GpyHKIus

Gamma function — ramma-¢ynxkums, [-pyrxums ompenenserc kak I'(x) = [o*t'e ™ dt, rae x —
JCUCTBUTEIILHOE YUCIIO OOJIBbINE HYJISL.

Incomplete Gamma function — HenonHas ramMmMa-QyHKIHs

linear differential equations — nuneiinoe qud hepeHanbHOe ypaBHEHUE

Grammar, Lexical, Translation and Speaking Exercises

Task 1. Answer the questions.

How can the improper integral be defined?

Give the definition to the line intergral.

What is the difference between the scalar field and the vector field?
What is a differential form in mathematics?

What do the techniques of summation and computation imply?
Task 2. Match the columns.

1) a function of a space whose value at each point is a scalar | a) scalar field
quantity; b) integral line
2) the integral, taken along a line, of any function that has a | c) tensor
continuously varying value along that line; d) Stokes'
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3) a mathematical object analogous to but more general than a | theorem
vector, represented by an array of components that are functions
of the coordinates of a space;

4) a theorem proposing that the surface integral of the curl of a
function over any surface bounded by a closed path is equal to
the line integral of a particular vector function round that path.
Task 3. Translate from Russian into English.
OHpG,Z[GJIéHHLIﬁ HHTCI'paJI HaA3bIBACTCA HGCO6CTB€HHLIM, CCJIM  BBIIIOJIHACTCA, IIO

KpaliHEN Mepe, OJTHO U3 CIIEYIOMNX YCIOBUM:
OOnacTe  MHTErpupoBaHUs  sBIsieTcsl  OeckoHeuHoil. Hampumep,  sBusercs

OeCKOHEYHBIM HHTEPBAJIOM la, +00),

OyHKIUA f (I) ABJIIETCSI HEOTPAHUYEHHON B OKPECTHOCTU HEKOTOPBIX TOYEK 00JacTH
HHTCTPUPOBAHUA.

Ecnu nnTepBan [ﬂ': b] KOHEYHBIN, U QYyHKIMS UHTETpUpyeMa 1o Pumany, To 3HaueHUE
HECOOCTBEHHOI'O HHTCI'pajia COBIIAAACT C 3HAYCHUCM OHpeI[GJIéHHOI‘O HHTCI'paa.

Task 4. Translate the types of logarithms into Russian and give the definition to
the each type.
binary logarithm
common logarithm

modulus of logarithm
monotonic logarithm

compositional logarithm
continuous logarithm
double logarithm
hyperbolic logarithm

multivalued logarithm
Napierian logarithm
natural logarithm
negative logarithm

integral logarithm seven-place logarithm

inverse logarithm subtracted logarithm

iterated logarithm sum logarithm

leading logarithm
Task 5. Translate the deffinions into Russian and memorize how the symbols are
pronounced.

fU—->V ffromUtoV

f(x) f of x

X — f(X) X mape to f(x)

of class C" of class C"

of class C” of class C infinity

the Lebesgue spaces L”, L” the Lebesgue spaces Lp , L infinity
the Sobolev spaces H*, W*? | the Sobolev spaces H k , W k p

Task 6. Ask special questions using the words in parenthesis.
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1. An arc is usually named by its endpoints. (how) 2. A chord is a line
segment connecting any two points on the circle. (what) 3. They attended
the lectures on geometry twice a week. (how often) 4. Most mathematical
proofs can be given in many different ways. (how) 5. In geometry we
separate all geometric figures into two groups: plane figures and space
figures or solids. (how many) 6. Later you ought to do some measurements
to check your calculations. (when) 7. We are already familiar with the basic
concepts of geometry through our high school studies of maths. (what) 8.
The points of geometry have no size and no dimensions. (what) 9. Numbers
became abstract when we began to reason about their nature and enumerate
their properties through arithmetical and logical operations. (when) 10. A
straight line extends indefinitely only in one direction. (where) 11. Every
math problem must be settled either in the form of a direct answer to the
question, or by the proof of the impossibility of its solution. (how) 12. The
Greeks were able to carry out many constructions with two tools. (how
many) 13. The theory in question was developed successively by different
scientists. (who)

Task 7. Choose the correct variant of translation.
. We expect them to solve this problem.

. Mb1 ooicudaem, umo onu pewam amy 3aoau).

. Mbt orcoanu, umo onu pewiam smy 3aoady.

o o0

. Mb1 orcoem ux, noxa onu pewiam smy 3a0ady.

. They are believed to have done their best.

. Onu eepAam, 4umo coenanu 6ce 803MONCHOE.

c HOJzaeaiom, UmMo OHU COeNANU BCE BOZMOINCHOE.

O S Q PN

. HOJZCZZCZJZM, UMmo OHU COeNanu 6ce 603MOIICHOE.

. They appear to have known all about the set theory.

. Onu NOAGJIAIOMCA, umoowl Y3HAanNnb 6Ce€ 0 meopuu MHOICeCme.

. Onu npuwiu u y3Hajlu ece o nieopuu MHO;Hcecmse.

. OKCIS’blGCl@I’I’lC}Z, OHU Y3HAJIU 6Ce O meopuu MHOIICeECne.

. What made the students do the test quickly?

Ymo coenanu cmyoenmol, 4mooOwvl 8bINOJHUMb Mech Obicmpo?

UYmo 3acmasnsem cmy()eHmoe 6blNOJIHAMb mecm 6blcmp0?

Ymo 3acmasunio cmyoenmos 8binoaHAMb mecm Oblcmpo?

. First-year students are thought to show very good results at the exams.
H€p60KprHl/lKu, KAk cyumarom, nokKkasvleédrom OUYE€Hb XxXopouiue

QU0 R DO >R W
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pesyiomambl HAd 9K3AMeEHe.

b. Clmmaiom, Umo nepeOKYpPCHUKU XomiAm noKAsdmb OUY€Hb Xxopouiue
pesyibmanivbl HA 9K3AMEHE.

C. Cqumaﬂu, Umo nepeOKYPCHUKU NOKAJICYNnl O4€Hb Xopouiue pes)yibmdanibl
HA K3AMeHe.

UNIT 15
Text 15. Vector calculus

Vector calculus (or vector analysis) is a branch of mathematics concerned with
differentiation and integration of vector fields, primarily in 3-dimensional
Euclidean space R*. The term "vector calculus” is sometimes used as a synonym for
the broader subject of multivariable calculus, which includes vector calculus as well
as partial differentiation and multiple integration. Vector calculus plays an important
role in differential geometry and in the study of partial differential equations. It is used
extensively in physics and engineering, especially in the description of electromagnetic
fields, gravitational fields and fluid flow.

Vector calculus was developed from quaternion analysis byJ. Willard
Gibbs and Oliver Heaviside near the end of the 19th century, and most of the notation
and terminology was established by Gibbs and Edwin Bidwell Wilson in their 1901
book, Vector Analysis . In the conventional form using cross products, vector calculus
does not generalize to higher dimensions, while the alternative approach of geometric
algebra, which uses exterior products does generalize, as discussed below.

Scalar fields. A scalar field associates a scalar value to every point in a space.
The scalar may either be a mathematical number or a physical quantity. Examples of
scalar fields in applications include the temperature distribution throughout space,
the pressure distribution in a fluid, and spin-zero quantum fields, such as the Higgs
field. These fields are the subject of scalar field theory.

Vector fields. A vector field is an assignment of a vector to each point in a
subset of space. A vector field in the plane, for instance, can be visualized as a
collection of arrows with a given magnitude and direction each attached to a point in
the plane. Vector fields are often used to model, for example, the speed and direction
of a moving fluid throughout space, or the strength and direction of some force, such
as the magnetic or gravitational force, as it changes from point to point.

Vectors and pseudovectors. In more advanced treatments, one further
distinguishes pseudovector fields and pseudoscalar fields, which are identical to vector
fields and scalar fields except that they change sign under an orientation-reversing
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map: for example, the curl of a vector field is a pseudovector field, and if one reflects a
vector field, the curl points in the opposite direction. This distinction is clarified and
elaborated in geometric algebra, as described below.

Vector operations. Algebraic operations. The algebraic (non-differential)
operations in vector calculus are referred to as vector algebra, being defined for a
vector space and then globally applied to a vector field, and consist of:
scalar multiplication multiplication of a scalar field and a vector field, yielding a vector
field: av;
vector addition addition of two vector fields, yielding a vector field: V1 + Va;
dot product multiplication of two vector fields, yielding a scalar field: ¥1 - Vz;
cross product multiplication of two vector fields, yielding a vector field: V1 X Vg
There are also two triple products: scalar triple product the dot product of a vector and

a cross product of two vectors: V1 - (v2 X 1'*“'3);
vector triple product the cross product of a vector and a cross product of two

vectors: V1 X (V2 X v3) or (V3 X V) X v, although these are less often used as
basic operations, as they can be expressed in terms of the dot and cross products.

Differential  operations.  Vector calculus studies various differential
operators defined on scalar or vector fields, which are typically expressed in terms of
the del operator (V), also known as "nabla". The five most important differential
operations in vector calculus are:

Operation Notation Description Domain/Range

Measures the rate

and direction  Of | \jang scalar fields

Gradient grad(f) =V f change in a scalar to vector fields
field, '
Measures the

tendency to rotate | Maps vector fields
about a point in a | to (pseudo)vector
vector field. fields.

Measures the scalar
of a source or sink
at a given point in a
vector field.

Curl curl(F) = V x F

Maps vector fields

Divergence | div(F) =V - F
to scalar fields.

Measures the
difference between
VF = V(V-F)-Vx (VxF) | the value of the | Maps between
vector field with its | Vector fields.
average on

Vector
Laplacian
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infinitesimal balls.

Measures the
difference between
the value of the
scalar field with its
average on
infinitesimal balls.

Maps between
scalar fields.

Laplacian |Af=V*f =V -Vf

The curl and divergence differ because the former uses a cross product and the
latter a dot product, f denotes a scalar field and F' denotes a vector field. A quantity
called the Jacobian is useful for studying functions when both the domain and range of
the function are multivariable, such as a change of variables during integration.

Theorems. Likewise, there are several important theorems related to these
operators which generalize the fundamental theorem of calculus to higher dimensions:

Theorem Statement Description

The line integral through a
gradient (vector) field equals the
difference in its scalar field at the
endpoints of the curve L.

Gradient

theorem [:[p_,q]m,, V- -dr =p(q) — @ (p)

The integral of the scalar curl of a
vector field over some region in

. oM L the plane equals the line integral
t(?\z\?)err; r?] [[ (3_ - 3_) 1A= % (Ldz+Mdy) | of the vector field over the closed
A\ 0T 0y 04 curve bounding the region

oriented in the counterclockwise
direction.

The integral of the curl of a vector

Stokes" fi%Id over a surf_ace ?n

. / VxF.dx :% F-dr | R® equals the line integral of the
ECR3 % vector field over the closed curve

bounding the surface.

The integral of the divergence of a

. _ vector field over some solid
DB //[VC]EE (?-F)W—#w equals  the  integral  of

W0 e F -dS the flux through the closed surface
bounding the solid.

Applications. Linear approximations. Linear approximations are used to replace
complicated functions with linear functions that are almost the same. Given a

differentiable  function F(T.¥) with  real values, one can approximate
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| . of , ., o ,
F(z,9) for (z,¥) close to (@ 0) by the formulaf(x'y)ﬁf(a'mé(a"b)(x_aﬂ%(a"b)(y_b)'
The right-hand side is the equation of the plane tangent to the graph
of # = f(z,y) at (a,b).

Optimization. For a continuously differentiable function of several real variables,
a point P (that is a set of values for the input variables, which is viewed as a point
in R") is criticalif all of the partial derivatives of the function are zero at P, or,
equivalently, if its gradient is zero. The critical values are the values of the function at
the critical points.

If the function is smooth, or, at least twice continuously differentiable, a critical
point may be either a local maximum, a local minimum or a saddle point. The different
cases may be distinguished by considering the eigenvalues of the Hessian matrix of
second derivatives.

By Fermat's theorem, all local maxima and minima of a differentiable function
occur at critical points. Therefore, to find the local maxima and minima, it suffices,
theoretically, to compute the zeros of the gradient and the eigenvalues of the Hessian
matrix at these zeros.

Different 3-manifolds. Vector calculus is initially defined for Euclidean 3-

space, R’ which has additional structure beyond simply being a 3-dimensional real
vector space, namely: an inner product (the dot product), which gives a notion of
length (and hence angle), and an orientation, which gives a notion of left-handed and
right-handed. These structures give rise to a volume form, and also the cross product,
which is used pervasively in vector calculus.

The gradient and divergence require only the inner product, while the curl and the
cross product also requires the handedness of the coordinate system to be taken into
account (see cross product and handedness for more detail).

Vector calculus can be defined on other 3-dimensional real vector spaces if they
have an inner product (or more generally a symmetric nondegenerate form) and an
orientation; note that this is less data than an isomorphism to Euclidean space, as it
does not require a set of coordinates (a frame of reference), which reflects the fact that
vector calculus is invariant under rotations (the special orthogonal group SO(3)).

More generally, vector calculus can be defined on any 3-dimensional
oriented Riemannian manifold, or more generally pseudo-Riemannian manifold. This
structure simply means that the tangent space at each point has an inner product (more
generally, a symmetric nondegenerate form) and an orientation, or more globally that
there is a symmetric nondegenerate metric tensor and an orientation, and works
because vector calculus is defined in terms of tangent vectors at each point.
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Mathematical terminology

Vector calculus — BekTopHOE HCUHCICHHE

differentiation and integration of vector field — nuddepennupoBanne u wuHTErpUpOBaHUE
BEKTOPHOTO MOJIS

primarily — rnaBabIM 00pa3oM; EpBOHAYAIBEHO

3-dimensional - tpéxmeproe (pocTpaHCTBO)

Euclidean space — eBkIMIOBO MPOCTPAHCTBO, T.€. NMPOCTPAHCTBO, B KOTOPOM MECTOIOJIOKEHHE
Ka)XJOW TOYKM 3a/laHO W PACCTOSHUS MEXIY TOYKAMH BBIYHMCIISIOTCS KaK KOPEHb KBAJpPaTHBIA W3
CYMMBI  KBaJpaTOB pa3HOCTEH KOOpAMHAT IO KaXIOMy HW3MepeHHo. B Maremaruke
paccMaTpHUBalOTCS M HEEBKIWAOBBI IMpocTpaHcTBa (non-Euclidean space), rae sTo mpaBmio He
BBITIOJTHSICTCSI

multivariable calculus — mHOrOBapHanTHOE HCUKCICHKE

partial differentiation — onpenenenue yacTHO# MPOU3BOIHOM

multiple integration — MHOroKpaTHOE€ HHTETPUPOBAHHIE

differential geometry — nuddepenumanpaas reomerpus

partial differential equation — gactusiii quddepennnan

electromagnetic field — snexTpomaruutHoe nose, SMII

gravitational field — rpaBuTanonnoe mose

fluid flow — moTok Tekyueii cpeibl, TCYCHUE KUIKOCTH, TCUCHNE KUIKOCTH HJIH Ta3a

qguaternion — KBaTEpPHHOH, YETHIPEXWICH — THIEPKOMIUICKCHOE YHCIO C TpPEeMsi MHHUMBIMHU
enuHUIAMHU 1, j, k, To ecth: q = wtx*ity*j+z*k, rtme w, X. y, U z - HCHCTBUTEIbHBIC YHUCIIA.
KBaTepHHOH HCNONB3yeTCs ISl IPEACTAaBICHUS BPALIEHUS] 0ObEKTOB B TPEXMEPHOM IPOCTPAHCTBE -
B CAIIP, B MammHHOM rparike, KOMIBIOTEPHBIX UTPAX U T. II.

geometric algebra — Anreopa Kmubdopaa - crmenmanbHOro Buaa accolMaTUBHas anredpa ¢
eqununeir CI(E,Q(,)) Hax HeKOTOpbIM KOMMYTaTUBHBIM KoiblloM K (E - BekTOpHOE NMpOCTpaHCTBO,
B JanbHeieM 0000meHun - cBoOboaHbli K-Momynb) ¢ HEKOTOpO# omepanuel [«yMHOXKEHHS»],
coBmajaroniel ¢ 3aganHoit Ha E Oununelnoit ¢popmoit Q.

exterior product — BHelIHee MPOU3BEACHUE

scalar field — ckansproe mosne

mathematical number (in linear algebra = real numbers = scalars) - ckanspuas BequurHa
physical quantity — ¢usnueckas Benudnna

spin-zero quantum fields — GeccriuHOBOE KBAaHTOBOE ITOJIC

scalar field theory — Teopus ckansipHOTO MOJIS

vector field — BekTopHOe nose

magnetic or gravitational force — marauTHas ¥ TpaBUTAIMOHHAS CHJIA

vector and pseudovector — BeKTOp ¥ MCEBIOBEKTOP

scalar multiplication — ckansipHoe yMHOXEHUE

vector addition — BeKTOpHOE CIIOKEHHE, CII0KEHHE BEKTOPOB

dot product — ckasnsipHOe pon3BeieHHe (BEKTOPOB)

cross product — BekTopHOE IPOU3BEACHUE

triple product — cmerrannoe npousBencHue (TpoitHOE CKalIsIpHOE mpousBeaenue) (a, b, ¢) Bekropos
a, b, ¢ — ckanspHOE MpOM3BEICHIE BEKTOpa @ Ha BEKTOPHOE MPOU3BecHHE BeKTopoB b u C: (a,b,c) =
a (bxc).

scalar triple product — cmerranHoe npou3sBeieHe (BEKTOPOB)

vector triple product — nBoitHOE BEKTOPHOE MPOU3BEICHHE

differential operator — guddepeHnmaIbHbIN omepaTop

del operator — onepatop UCIOIB3yeMblii B BEKTOPHOM aHask3¢e; Habaa, CiMBOJ V, CHMBOJI &
gradient — 1) rpamuenr (a) auddepeHHanbHBIA omeparop, D) TpamueHT CKaaAPHOTO HIIH
BEKTOPHOTO TIOJs, C) CKOPOCTh W3MCHCHHS KaKOW-TM00 BeJWYHMHBI ¢ paccrosHueM, d) kpuas
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3aBUCHMOCTH CKOPOCTH M3MEHEHHUS KaKOH-THOO BEIMYMHBI OT PACCTOSHHS, €) WHCTPYMEHT ISt
3aJIMBKU BBIJCJICHHON 00JAaCTH HECKOJIBKHUMH I[BETAMU C IUIABHBIMHU IEPEXOJaMU MEXAYy HHUMHU,
WHCTPYMEHT JiJ1s1 (MHOTOIIBETHOM ) TPAJMEHTHOM 3AJIMBKHU (B TpaUUECKUX peIaKTopax));

2) CKJIOH; YKJIOH; HAKJIOH; 3) HAaKJIOHHAsl TOBEPXHOCTh; HAKJIOHHASI TNIOCKOCTb.

curl — potop wiu BUXpb, T.e. BEKTOPHBIN AupdepeHInaIbHBI OlepaTop Haj BEKTOPHBIM MOJIEM.
O6o3HavaeTcs (B pYCCKOS3BIYHON JUTEpAType) WU curl (B aHIJIOSA3BIYHON JIUTEPATYpPE), a TAKKe
KaK BEKTOPHOE YMHOXeHHE TP PEepEHIIMATBLHOTO olleparopa Habjia Ha BEKTOPHOE IIOJIE: X .
Pesynbrar meWCTBUS ITOrO omepaTopa Ha KOHKPETHOE BEKTOpHOe Tojsie F HasbiBaeTcst pomopom
nona F i ipocto pomopom F 1 npeacrasisier coGoii Hooe Bexropuoe none: Tot F =V x F.
[Tone rot F (nmuHa 1 HampaBieHue BekTopa rot F B KaKa0H TOYKE MPOCTPAHCTBA) XapaKTEPU3YET B
HEKOTOPOM CMBICIIC BPAIATEIbHYIO COCTABIISIONIYIO MOJIsi FCOOTBETCTBEHHO B KaXK/I0# TOUKE.
divergence - 1) auBepreHius 2) HeCOBMAACHNE, HECXOACTBO 3) pacxokaeHue 4) OTKIOHCHHE
Laplacian — oneparop Jlaruiaca, namiacuan

change of variables — 3amena nepemeHHBIX

function of several real variables — ¢yHkIHS HECKOIBKUX BEIIECTBEHHBIX MEPEMEHHBIX

smooth function — rmaakas GyHKOUS WM HENpepbiBHO auddepeHnupyeMas (QYHKIHS T.e.
(bYHKIHSI, IMEIOIIasi HEIPEPBIBHYIO MPOM3BOIHYIO Ha BCEM MHOXECTBE OTIPE/ICIICHHSI.

local maximum / local minimum — jokanbHBI MakCUMyM (HauOOJbIIEEe 3HAYEHHE, KOTOPOE
npUHUMaeT QYHKIUS Ha HEKOTOPOM IPOMEKYTKE 3HAYCHUH ee apryMeHTOB) / JIOKAJIbHBI MUHUMYM
saddle point — cemnoBas ToYka, T.e. TOYKa, B KOTOPOW (YHKIMS JBYX apryMEHTOB SIBJISICTCSI
OJTHOBPEMEHHO MaKCUMYMOM OTHOCHTEJIBHO OJTHOM MEPEMEHHON 1 MUHUMYMOM JIJIsl IPYTOi
eigenvalue (EV) — coGcTBeHHOE 3HaYEHHE; XaPAKTEPUCTUIECKOE YUCIIO (MATPHIIBI)

Hessian matrix — reccuan, marpumna ['ecce

maxima and minima of a differentiable function — skctpémymsr (1at. extremum — KpaiiHuiA), T.€.
MaKCHMAJIbHOE WJIM MUHUMAJIbHOE 3HaYeHHE (DYHKIMHM Ha 33JlaHHOM MHOXecTBe. Touka, B KOTOPOii
JIOCTUTAETCS JKCTPEMYM, HA3bIBaeTCs TOYKOW HKCTpeMyMa. COOTBETCTBEHHO, €CIH JIOCTHTaeTCs
MaKCHMyM — TOYKa SKCTPEMyMa Ha3bIBACTCS TOYKOH MaKCHMyMa, a €ClIHi MUHUMYM — MHHUMYyMa
TOYKOW. B MaTemaTuyeckoM aHanmM3e BBIICISIOT TaKKe TOHSATHE JIOKAJIBHBIH 3KCTPEeMyM
(COOTBETCTBEHHO MUHUMYM WJIM MAaKCHUMYM).

inner product (the dot product) — BuyTpenHee [ckanspHOe] Tpou3BeICHUE

notion of length — monstHe npoTskeHHOCTH

orientation - HanpaBIeHHOCTb

left-handed and right-handed — neBocTopoHHUii, T€BOBUHTOBOI; BPAIIAIOIIUNACS TPOTUB YaCOBOM
CTpEJIKH/ TPaBOCTOPOHHHMIA, TIPABOBHHTOBOM; BPAIIAFOIIIUICS 10 YaCOBOM CTpEIIKE

give rise t0 — BbI3bIBAaTh, UMETh PE3YIbTATHI

volume form — ¢popma 06bsEMa

handedness of the coordinate system — kupajgbHOCTh CHCTEMBI KOOPIHHAT, XUPATLHOCTh CUCTEMBI
koopauHaT handedness mpaBoe WM JIeBOe HampaBiieHHE (HAmp. BpAICHHWs); HAlpaBJICHUE I10
4aCOBOW CTPENIKE WU IPOTUB HEE

symmetric nondegenerate form — cummeTpudHas HeBbIpOXKeHHas Gopma

special orthogonal group SO(3) — creruansHast OpTOrOHaIbHAS TPYIIa

Riemannian manifold — pumaHOBO MHOKECTBO;

pseudo-Riemannian manifold — niceB1opruMaHOBO MHOKECTBO

tangent space — xkacareabHOE IPOCTPAHCTBO

metric tensor — meTpuyecKuii TEH30p

Grammar, Lexical, Translation and Speaking Exercises

Task 1. Use the correct form of the degrees of comparison.

1) We all use this method of research because it is ................... (interesting) the
one we followed.
2) I could solve quicker than he because the equation given to me was.......... (easy)


https://ru.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)

the one he was given.

3) The remainder in this operation of division is ................. (great) than 1.

4) The name of Leibnitzis ................. (familiar) to us as that of Newton.

5) Laptops are ............ (powerful) microcomputers. We can choose either of them.
6) A mainframe is......... (large) and.............. (expensive) a microcomputer.

7) One of the ......... (important) reasons why computers are used so widely today is
that almost every big problem can be solved by solving a number of little problems.
8) Even the ............. (sophisticated) computer, no matter how good it is, must be

told what to do.
Task 2. Translate the sentences and note the form of the Infinitive.

We consider these two phenomena to be of the same origin. I expect this law to hold
for all similar cases. We understand this method to consist of several steps. They
wanted us to establish a certain correspondence between these two facts. We assume
the program to have been carefully developed. We suppose the particles to be
generated at very high speed. We expect this sentence to be true. We know
mathematics to have become man’s second language. We expect a variable or a
mathematical expression containing a variable to represent a number. We know two
numbers to be relatively prime to each other if their greatest common factor is 1. We
expect this solution to satisfy the given statement. Professor wants his students to
attend classes regularly. The students saw their instructor draw (drawing) a line
segment. We heard them discuss (discussing) similar questions. Professor wanted his
postgraduate students to take part in his research. For a proper correspondence
between these phenomena to be established they first have to be considered separately.
For correct conclusions to be drawn all the conditions must be observed. It was
impossible for the process to continue. | wonder if it is necessary for them to come.
For you to begin the work now is very important. For the problem to be understood it
must be read carefully.

Task 3. In the following sentences use the Complex Object.

| expect that these rules will be observed. | know that this work is of great importance.
He expects that the situation will be analysed carefully. We believe that the machine
has certain advantages. | thought she was ready. He expected that | knew the solution.
We found that they were interested in the problem. | expect that she will understand
me. We expected that he had completed the experiment. | knew that you had obtained
similar results. | believed that they had closely cooperated with you. We found that she
had studied the material properly. | suppose that he is involved in this discussion. |
assume that they have applied the previously obtained data.

Task 4. Ask general questions following the model. Replace the nouns with
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pronouns. Model: We expect the students to learn the material. - Do you expect
them to learn the material?

We expect the scientists to establish an appropriate pattern. He expects the student to
speak on the coordinate system. The students wanted their tutor to speak on number
relations. We found these statements to be mathematically incorrect. | believe this
result to be of some importance.

Task 5. Replace the Object Clause with the Complex Object. See the models.
Model: I want to label this number line with X. (he)

| want him to label this number line with X.
We expect to locate this distant object in the sky (she). | should like to draw both of
the axes (he). He expects to speak about the importance of coordinating our research
(they). I should like to interpret these facts correctly (he).

Task 6. Fill in the blanks with the necessary words and word combinations given
bellow. Mind there are two extra ones.

1. In algebra a square matrix is ...with real entries whose | a) finite-dimensional
columns and rows are ... . linear isometries;
2. The set of n x n orthogonal matrices forms a group O(n) | b) a linear
known as ... . transformation;
3. An orthogonal matrix is the real specialization of.... c) an orthogonal
4. Orthogonal matrices arise naturally from.... group;
5. Thus ... — rotations, reflections, and their combinations — | d) a unitary matrix;
produce orthogonal matrices. e) the special
6. Linear algebra includes orthogonal transformations | orthogonal group;
between .... f) determinant;
7. The inverse of every orthogonal matrix is again ... . g) orthogonal unit
8. The orthogonal matrices whose ...is +1 form ... . vectors;
h) spaces;
i) orthogonal;
j) an orthogonal
matrix;
K) inner products |

Task 7. Memorize the following word combinations

a square matrix — kBaJpaTU4Has MaTpuIa

an orthogonal unit vector — opToroHanbHbIH €AMHUIHBIN BEKTOP

an identity matrix — eqmuHIYHAS MaTpHIIA

a linear transformation — nuneitHOE MpeoOpa3oBaHue

a unitary transformation — yauraptoe (eAMHHYHOE) IIPEOOpa30BaHUE
an orthogonal group — oproronanesHast rpymma

to bring to identity — mpuBecTH K equHUIIC
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finite-dimensional linear isometries — koHeYHOMEpHBIE JIMHEHHBIE H30METPUHU
an inner product — ckajsipHOe MPOU3BEACHHE
a bottom right entry — snemeHT MaTpUIIBI, pACTIOIOKECHHBIN B HIDKHEM IPABOM YTITY
TaOJIUIBI
a matrix inverse — oOparHas MaTpuIia
simultaneous equations — coBMecTHBIC ypaBHEHHUSI, CHCTEMA YPaBHEHUIA
UNIT 16

Text 16. Vector field

A portion of the | In vector calculus, a vector field is an assignment of a vector to
vector field each point in a subset of space. A vector field in the plane, for
(siny, sin x) instance, can be visualized as a collection of arrows with a given
SIINSIIIZZZ4  magnitude and direction each attached to a point in the plane.
Piivi TTin | Vector fields are often used to model, for example, the speed
3’2:’;33/:”\:5 and direction of a moving fluid throughout space, or the strength
222222255333 and direction of some force, such as the magnetic or
gravitational force, as it changes from point to point.

The elements of differential and integral calculus extend to vector fields in a
natural way. When a vector field represents force, the line integral of a vector field
represents the work done by a force moving along a path, and under this
interpretation conservation of energy is exhibited as a special case of the fundamental
theorem of calculus. Vector fields can usefully be thought of as representing the
velocity of a moving flow in space, and this physical intuition leads to notions such as
the divergence (which represents the rate of change of volume of a flow)
and curl (which represents the rotation of a flow).

In coordinates, a vector field on a domain in n-dimensional Euclidean space can
be represented as a vector-valued function that associates an n-tuple of real numbers to
each point of the domain. This representation of a vector field depends on the
coordinate system, and there is a well-defined transformation law in passing from one
coordinate system to the other. Vector fields are often discussed on open subsets of
Euclidean space, but also make sense on other subsets such as surfaces, where they
associate an arrow tangent to the surface at each point (a tangent vector).

More generally, vector fields are defined on differentiable manifolds, which are
spaces that look like Euclidean space on small scales, but may have more complicated
structure on larger scales. In this setting, a vector field gives a tangent vector at each
point of the manifold (that is, a section of the tangent bundle to the manifold). Vector
fields are one kind of tensor field.
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Vector fields on subsets of Euclidean space

Tt Two representations of the same vector
333 o field: v(x, y) = —r. The arrows depict the field at
discrete points, however, the field exists
everywhere.

Given a subsetSinR", avector fieldis represented by a vector-valued
function V: S — R" in standard Cartesian coordinates (xi, ..., X,). If each component
of Vis continuous, then Vis a continuous vector field, and more generally V is
a C*vector field if each component V is k times continuously differentiable. A vector
field can be visualized as assigning a vector to individual points within an n-
dimensional space. Given two C*-vector fields V, W defined on S and a real valued C*-
function f defined on S, the two operations scalar multiplication and vector addition
(fV)(p) = f(p)V(p), (V+W)(p) = V(p)+ W(p)

define the module of C*-vector fields over the ring of C*-functions.

Coordinate transformation law. In physics, avectoris additionally
distinguished by how its coordinates change when one measures the same vector with
respect to a different background coordinate system. The transformation properties of
vectors distinguish a vector as a geometrically distinct entity from a simple list of
scalars, or from acovector. Thus, suppose that (xi,....x,) IS a choice of Cartesian
coordinates, in terms of which the components of the vectorV are

Vo =Mz, ..., Vaz) and suppose that (yi,...,yn) are nfunctions of the x; defining a
different coordinate system. Then the components of the vectorVin the new

cﬁyt

coordinates are required to satisfy the transformation law Z 3:1:3

Such a transformation law is called contravariant. A S|m|Iar transformation law
characterizes vector fields in physics: specifically, a vector field is a specification
of nfunctions in each coordinate system subject to the transformation law relating the
different coordinate systems.

Vector fields are thus contrasted with scalar fields, which associate a number
or scalar to every point in space, and are also contrasted with simple lists of scalar
fields, which do not transform under coordinate changes.

Vector fields on manifolds

S oo A vector field on a sphere
Given a differentiable manifold M, avector field on Mis an assignment of
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atangent vectorto each point inM. More precisely, a vector field Fis
a mapping from M into the tangent bundle TM so that P © £ is the identity mapping
where pdenotes the projection from TM to M. In other words, a vector field is
a section of the tangent bundle.

If the manifold M is smooth or analytic—that is, the change of coordinates is
smooth (analytic) — then one can make sense of the notion of smooth (analytic) vector
fields. The collection of all smooth vector fields on a smooth manifold M is often
denoted by I'(TM) or C*(M,TM) (especially when thinking of vector fields
as sections); the collection of all smooth vector fields 1is also denoted
by x(a1) (a fraktur "X").

Examples.

The flow field around an airplane is a vector field in R®,

here  visualized by  bubbles that follow

: the streamlines showing a wingtip vortex.

. A vector field for the movement of air on Earth will associate for every point on
the surface of the Earth a vector with the wind speed and direction for that point. This
can be drawn using arrows to represent the wind; the length (magnitude) of the arrow
will be an indication of the wind speed. A "high™ on the usual barometric pressure map
would then act as a source (arrows pointing away), and a "low" would be a sink
(arrows pointing towards), since air tends to move from high pressure areas to low
pressure areas.

. Velocity field of a moving fluid. In this case, a velocity vector is associated to
each point in the fluid.

. Streamlines, Streaklines and Pathlines are 3 types of lines that can be made from
vector fields. They are : a) streaklines — as revealed in wind tunnels using smoke;

b) streamlines (or fieldlines) — as a line depicting the instantaneous field at a given
time; c¢) pathlines — showing the path that a given particle (of zero mass) would follow.
* Magnetic fields. The fieldlines can be revealed using small iron filings.

+ Maxwell's equations allow us to use a given set of initial conditions to deduce, for
every point in Euclidean space, a magnitude and direction for the force experienced by
a charged test particle at that point; the resulting vector field is the electromagnetic
field.

* A gravitational field generated by any massive object is also a vector field. For
example, the gravitational field vectors for a spherically symmetric body would all
point towards the sphere's center with the magnitude of the vectors reducing as radial
distance from the body increases.
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Gradient field A vector field that has circulation about a point cannot be written as the
gradient of a function. Vector fields can be constructed out of scalar
fields using the gradient operator (denoted by the del: V).

A vector field V defined on a set Sis called a gradient field or a conservative
field if there exists a real-valued function (a scalar field) f on S such that
V=vf= (3f, o af,...,ﬂ).
dr,’ Oxy' Ox3 ]
The associated flow is called the gradient flow, and is used in the method of gradient
descent. The path integral along any closed curve y (y(0) = y(1)) in a gradient field is

$V(@).dz) = $(VS(@),d) = F((1)) = S((0):
zero: ¥ ¥ where the angular

brackets and comma: (, ) denotes the inner product of two vectors (strictly speaking -
the integrand V(x) is a 1-form rather than a vector in the elementary sense).

Central field A C”-vector field over R"\{0} is called acentral field if
V(T(p))=T(V(p)) (T €O0(n,R))where O(n, R) is the orthogonal group. We say
central fields are invariant under orthogonal transformations around O.

The point 0 is called the center of the field.

Since orthogonal transformations are actually rotations and reflections, the
invariance conditions mean that vectors of a central field are always directed towards,
or away from, O; this is an alternate (and simpler) definition. A central field is always a
gradient field, since defining it on one semiaxis and integrating gives an antigradient.

Operations on vector fields. Line integral. A common technique in physics is
to integrate a vector field along a curve, i.e. to determine its line integral. Given a
particle in a gravitational vector field, where each vector represents the force acting on
the particle at a given point in space, the line integral is the work done on the particle
when it travels along a certain path.

The line integral is constructed analogously to the Riemann integral and it exists
If the curve is rectifiable (has finite length) and the vector field is continuous.

Given a vector fieldVand a curve vy parametrizedby [a, b]
(where a and b are real) the line integral is defined as

ﬁ{vcx)..d@ = f (V (7 ().~ (t) dt).

Divergence. The divergence of a vector field on Euclidean space is a function (or

scalar field). In three-dimensions, the divergence is defined by
OF, | OF,  OF;
dxr ~ gy ~ 9z with the obvious generalization to arbitrary

dimensions. The divergence at a point represents the degree to which a small volume
around the point is a source or a sink for the vector flow, a result which is made precise
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by the divergence theorem.

The divergence can also be defined on a Riemannian manifold, that is, a manifold
with a Riemannian metric that measures the length of vectors.

Curl. The curl is an operation which takes a vector field and produces another
vector field. The curl is defined only in three-dimensions, but some properties of the
curl can be captured in higher dimensions with the exterior derivative. In three-
dimensions, it is defined by

curl F =V x F = 2 % an) €1 — (aFE aFl) 2 + OF aFl) e;.

oy dz

dx dy

The curl measures the density of the angular momentum of the vector flow at a point,
that is, the amount to which the flow circulates around a fixed axis. This intuitive
description is made precise by Stokes' theorem.

Index of a vector field. The index of a vector field is a way of describing the
behaviour of a vector field around an isolated zero (i.e. non-singular point) which can
distinguish saddles from sources and sinks. Take a small sphere around the zero so that
no other zeros are included. A map from this sphere to a unit sphere of
dimensions 7 — 1 can be constructed by dividing each vector by its length to form a
unit length vector which can then be mapped to the unit sphere. The index of the vector
field at the point is the degree of this map. The index of the vector field is the sum of
the indices of each zero. The index will be zero around any non singular point, it is +1
around sources and sinks and -1 around saddles. In two dimensions the index is
equivalent to the winding number. For an ordinary sphere in three dimension space it
can be shown that the index of any vector field on the sphere must be two, this leads to
the hairy ball theorem which shows that every such vector field must have a zero. This
theorem generalises to the Poincaré—Hopf theorem which relates the index to the Euler
characterlstlc of the space

- “'%fi“ ?/ 7 History. Magnetic field lines of an iron bar (magnetic dipole).

A .' ’Vector fields arose originally in classical field theoryin 19th

. == century physics, specifically in magnetism. They were formalized

N by Michael Faraday, in his concept of lines of force, who

31\ \\ | emphasized that the field itself should be an object of study, which
|t has become throughout physics in the form of field theory.

In add|t|on to the magnetlc field, other phenomena that were modeled as vector
fields by Faraday include the electrical field and light field.

Flow curves. Consider the flow of a fluid through a region of space. At any
given time, any point of the fluid has a particular velocity associated with it; thus there
Is a vector field associated to any flow. The converse is also true: it is possible to
associate a flow to a vector field having that vector field as its velocity.

Given a vector field V defined on S, one defines curves y(t) on S such that for
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eachtinaninterval 1: 7 (t)=V(v(?)).
By the Picard-Lindelof theorem, if Vis Lipschitz continuous there s

a unique C*-curve vy, for each point x in S so that Y=(0) ==

() = V(%) (€ (- +e) CR).

The curves yyare called flow curvesof the wvector field V and
partition S into equivalence classes. It is not always possible to extend the interval (—¢,
+¢) to the whole real number line. The flow may for example reach the edge of Siin a
finite time. In two or three dimensions one can visualize the vector field as giving rise
to a flow on S. If we drop a particle into this flow at a point p it will move along the
curve v, in the flow depending on the initial point p. If p is a stationary point of V then
the particle will remain at p.

Typical applications are streamline in fluid, geodesic flow, and one-parameter
subgroups and the exponential map in Lie groups.

Difference between scalar and vector field. The difference between a scalar
and vector field is not that a scalar is just one number while a vector is several
numbers. The difference is in how their coordinates respond to coordinate
transformations. A scalarisa coordinate whereas a vector can be described by
coordinates, but it is not the collection of its coordinates.

Example 1. This example is about 2-dimensional Euclidean space (R?) where
we examine Euclidean (x, y) and polar (r, 6) coordinates (which are undefined at the
origin). Thusx =r cos 6 andy =r sin 6 and also r* = x> + y?, cos 6 = x/(x* + y*)*? and
sin O = y/(x* + y*)2. Suppose we have a scalar field which is given by the constant
function 1, and a vector field which attaches a vector in the r-direction with length 1 to
each point. More precisely, they are given by the functions

Spolar - (1, 0) = 1, Upgiar & (1,0) — (1,0).

Let us convert these fields to Euclidean coordinates. The vector of length 1 in
the r-direction has the x coordinate cos 6 and the y coordinate sin 6. Thus in Euclidean

coordinates the same fields are described by the functions: “Euclidean - (z,y) = 1,

. T U
UEuclidean : (2, Y) —+ (cosf, sinf) = ( : .
\/1:2 + yﬂ V/IE + yi

We see that while the scalar field remains the same, the vector field now looks
different. The same holds even in the 1-dimensional case, as illustrated by the next
example.

Example 2. Consider the 1-dimensional Euclidean space R with its standard
Euclidean coordinate x. Suppose we have a scalar field and a vector field which are
both given in the x coordinate by the constant function 1,

SEuclidean : £+ 1,  URuclidean : T ++ 1.
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Thus, we have a scalar field which has the value 1 everywhere and a vector field
which attaches a vector in the x-direction with magnitude 1 unit of x to each point.

Now consider the coordinate & := 2X. If x changes one unit then & changes 2
units. Thus this vector field has a magnitude of 2 in units of & Therefore, in the §
coordinate the scalar field and the vector field are described by the functions

Sunusual * € = 1, Vunusual : € = 2 which are different.

Mathematical terminology

vector field — BekTopHOE mose

extend to vector fields — pacnipocranseTcst Ha BEKTOPHBIE MOJIS

line integral — muHelinbIi HHTErpAT

conservation of energy — coxpanenue sHeprum

vector-valued function — BekTopHO3HaYHAS PYHKIIHS

transformation law — 3akon npeoGpasoBanus

open subset of Euclidean space — oTKpbITOE IMOAMHOKECTBO €BKJIMI0BOIO IPOCTPAHCTBA
surface — miomab; MOBEPXHOCTH

tangent vector — kacateyibHbII BEKTOP; TAHT€HIIMATIbHbBIA BEKTOP

differentiable manifold — nuddepenmpyemoe Mmuoroobpasue

tangent bundle to the manifold - kacarensHOE paccioenne MHOrooOpasus

tensor field — ren3oproe mose

vector-valued function — BekropHO3HaUHAast HYHKIIHS

continuously differentiable — nenpepbiBHO AnbGepeHIEpYyeMbIit

transformation properties of vectors — cBoiicTBa peoOpa3oBaHs BEKTOPOB

covector — KoBeKTop

contravariant — KOHTpaBapHaHTHBIN

differentiable manifold — muddepenpyemoe muOro06pasue

wingtip vortex — BUXpb Ha KOHIIE KpbLIa

magnitude — 1) BennunHa; 3HaYeHUE (BEIMYMHBI); 2) aMILTUTY/Ia; 3) aOCOMIOTHOE 3HAYEHHE, MOIYIIb
(duucna) ; nIMHA, MOAYJNb (BEKTOPA)

barometric pressure — 6apomeTpuuecKoe TaBICHHE

velocity - ckopocTb

velocity vector — BekTop ckopocTH

streamline — nuHust 0OTEKaHUS, TUHUS TOTOKA, TIHHUS TCUCHUS

streakline, pathline — Tpaexropus

Magnetic field — maruuTHOE OIS

Maxwell's equations — ypaBaenust MakcBesia

electromagnetic field — snexTpomarauTHOE MIOITE

gravitational field — rpaBuTanmonHoe mose

gradient field — rpaguentHOe moINIE

conservative field — koncepBaTuBHOE 10JIE, MOTCHIIUATBHOE (0€3BUXPEBOE) TIOJIC
gradient descent — rpaagueHTHBIN (HauOBICTPEHIINI) CITyCK, AJITOPUTM TPAJAUSHTHOTO CITyCKa
WHKPEMEHTHBIH alTOPUTM ONTHMH3AIUH, M [TOUCKA ONTHMAIIBHOTO PELICHHS, T1e MPUOIMKEHHE K
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JIOKQJIBHOMY MHMHMMYMY QYHKIUM HWAET I[IaraMy, MPONOPLHUOHAIBHBIMU OOpaTHON BeIMYMHE
rpaJleHTa 3TON QYHKIIUU B TEKYIIEH TOUYKE.

path integral — rpagueHTHbIH (HAUOBICTPEHIIHIA) CIYCK, AITOPUTM TPATUCHTHOIO CIyCKa WM
MOMCKA ONTUMAJILHOTO peUIeHMs], Tae NpUOIMKEHHE K JIOKaJbHOMY MUHUMYMY (YHKUUU HIAET
raraMu, MponopIHOHaIbHBIMUA OOPATHOM BEIMYMHE IPaIMEHTa 3TOM (QYHKIIMU B TEKYILIEH TOUKE.
closed curve — 3amKkHyTast KpuBast

orthogonal group — oproronanbHbIC rpyIina

invariant — iHBapUaHTHBIH, TOCTOSHHBIN, HEU3MEHSIOIINICS; HHBAPHAHT

orthogonal transformation — oprorona;iabHoe npeodpa3oBanue

parametrize — napameTpu3oBarth, ol(pPOBLIBaTH (HaIp. reoMeTprueckyto Gurypy B CAIIP)
exterior derivative — BHeIIHsS1 IPOU3BOIHAS

angular momentum — MOMEHT KOJMYECTBAa IBW)KCHHS, MOMEHT HWMITyJbCa; YIJIOBOW MOMEHT;
BpAILIATEJIbHBIIT MOMEHT

winding number — mopsiiok KpuBoiA

hairy ball theorem — Teopema o mnpuuéchIBaHUU €XKa YTBEPKIACT, YTO HE CYIIECTBYET
HEIPEPBIBHOIO KacaTeJIbHOTO BEKTOPHOI'O IMOJISI Ha cepe, KOTOpOe HUTJE HE 00pallaercs B HOJIb.
Wnaue roBopsi, ecnu f — HempepbIBHAS (QYHKINSA, 33ar0Ias KacaTebHBINA K cpepe BEKTOp B KaXI0H
e€ TOUuKe, TO CYIIECTBYET XOTs OBl OJJHAa TOYKA p Takas, uto f(p)=0.

Poincaré—Hopf theorem — Teopema Ilyankape o BekTopHOM IoJie (Takke Teopema I[lyaHkape-
Xomda, TeopeMa 00 HHIEKCE) — OJHA M3 TEOPEM, OTHOCSIAsACA K oOnactu auddepeHnnarIbHon
TOTIOJIOTUU ¥ TEOPHH JHHAMUYECKUX CUCTEM.

Euler characteristic — DiinepoBa xapakTepucTHKa WM XapakTepucTuka Diinepa- [lyankape —
XapaKTepUCTHKA TOTOJIOTUYECKOTO MPOCTPAHCTBA. ODHIIEpOBa XapaKTEpUCTHKA IPOCTPAaHCTBA X

(X),

magnetic dipole — MarHuTHBIH AUITOIH

06BIUHO 0603HaYaETC X

magnetism — marHeTu3Mm (U3MYECKOe SBJIICHHE, NMPH KOTOPOM MaTepuayibl (Hampumep, Keneso,
HEKOTOpbIE BHUBI CTaJd W MPHUPOIHBIA MHUHEpPA]T MAarHETUT - MArHUTHBIA JKEIEe3HSIK) OKa3bIBAIOT
MPUTATHBAONLYIO WA OTTAIKMBAOIIYIO CHITY Ha APYTHe MaTepHaITbl HA PACCTOSHHH

light field — cBeroBoe mone

Picard-Lindelof theorem — Tecopema I[lukapa-Jlungeneda— MaTemaTudyeckas TeopemMa O
CYIIECTBOBAHMM W CIUHCTBE pelieHus 3agadn  Komw i 0ObIYHOTO  IH(EepeHIHATBEHOTO
YpaBHEHHSI IEPBOTO TOPSIIKA.

Lipschitz continuous — JlunmmuieBo otoOpaxkenue (Ha3BaHO B uecTh Pymonbda Jlummwia) -

0TOOpaxxeHue [ X =Y MEXIYy ABYMS METPUYECKMMHU IMPOCTPAHCTBAMM, IMPUMEHEHHE KOTOPOTO
YBEIIMYMBAaET pACCTOSHUS He Ooiee, YeM B HEKOTOPYIO KOHCTAaHTY pa3. A HMEHHO,

0TOOpaXkeHHe f Mertpuueckoro npoctpanctsa (X, Px) B Metpuueckoe mpoctpancteo (Y £v)
Ha3BIBACTCS JIMIIIMIEBBIM, €CTM HaWmSTCs HeKoTopas KoHcTaHTa L (koHcranTa JIMmmmuma 3Toro
oto6paerns), taxas, uro Py (f(x), f(¥)) < L-px(, ¥) npn motex T Y € X 910
YCIIOBHE HA3bIBAIOT ycioBrueM Jlummmiia.

equivalence classes — kacchl 5KBUBaJICHTHOCTH

real number line — BemecTBeHHast YMCIIOBAst OCh

geodesic flow — reoaesuueckuii moToK

one-parameter subgroup — ogHonapamMeTpuyeckas MoArpyIna
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Lie group — rpymma Jiu mag nonem I ([ = R wm C) naswBaercs rpynna (7, cHaGxkénnas
CTpyKTypoit muddepentmpyemoro(raaakoro) MEoroodpasus Haa A, mpuuém otobpakenus
mul y inv, OIIPEJENEHHBIE TAK:

mul: G X G —+ G; mul(z,y) =zy inv: G—=G; inve =z

apisrores rnankumu (B ciydae nons (C TpeGyror roromopdHOCTH BBEIEHHBIX OTOOPAKEHMIH).

Grammar, Lexical, Translation and Speaking Exercises

Task 1. Name the Complex Subject and the predicate in every sentence.Scientists
are sure to find a reliable method of detecting errors. The hypothesis proved to be
based on the wrong assumption. All the circumstances do not seem to have been
properly observed. Certain mistakes appear to have occurred. A proper interpretation
of this fact is likely to be obtained. The equipment we were interested in happened to
be produced on the line at this factory. Only a century ago the atom was believed to be
indivisible. The operator is sure to find errors in the program presented. This question
Is sure to arise. The computation is expected to have been carried out. Such a mistake
is unlikely to have remained unnoticed. This major occasion is known to have caused a
lot of argument. This phenomenon does not seem to obey the general law. This
solution is believed to be obviously absurd. The preparatory work proved to be very
slow and difficult.
Task 2. Change the sentences according to the model.

Model: It is believed that he is a reliable business partner.

He is believed to be a reliable business partner.

It is expected that they will detect the error. It is believed that he is very accurate in
making calculations. It is known that they have foreseen all the possible mistakes. It is
likely that he has given them explicit instructions. It is unlikely that they have supplied
this lab with such complex equipment. It appears that they are unable to account for
this absurd situation. It seems that he is an intelligent researcher. It happened so that
the error was quickly detected.
Task 3. Translate from Russian into English.
[IpenmonararoT, 4TO CTYAEHT 3HAET ITOT MATEMATUYECKUH 3aKOH. OJTOT NOAXOJ,
moJjiararoT, JacCTt ONpCACICHHLIC TPCHUMYIICCTBA. Ka>1<eTc>1, OH M3MCHHWJI CBOIO TOYKY
3perusi. Kaxkercs, 3TOT (akT yxke OOBICHWIM COOTBETCTBYIOIIUM 0Opa3oMm.
Brruncnenrne oka3anoch O4YE€Hb CIIOKHBIM. TaK CIyYUIIOCh, YTO MOM MPENOIaBaTEelb
IIpoYcI 9Ty CTAThIO. HNmeroTcs CBCACHUA, YTO OHH COIJIACHBI C HaleHn TCOpI/Ief/'I. 9T10T
IMPUHIOUIT OKa3aJICsA IIPOTHUBOIIOJIOKCH IPUHIMUITY, HPUBCICHHOMY BBIIIIEC B 3TOM

ucciaeqoBaHud. MOXKHO TPEANOJIOKUTh, YTO Kaxaas JpoOb MpeAcTaBiIseT COOOM
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https://ru.wikipedia.org/wiki/%D0%93%D0%BE%D0%BB%D0%BE%D0%BC%D0%BE%D1%80%D1%84%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F

YaCTHOE €€ YMCIUTENs U 3HaMeHaTens. DTH 3aKOHbI NMPUMEHUMBI KO BCEM BHIaM
HKCIOHEHTA: TOJIOKUTENBHOTO M OTPHULATENLHOr0, APOOHOTO M 1ienoro. OXuIaroT,
YTO OHHM OOHApY’KaT M YCTPAHAT 3Ty OMIMOKY B Onvkaiiiem Oyaymiem. [lonaraiot, uyto
OH OYEeHb TOYEH B pacuerax. M3BECTHO, UTO ATOT YYEHHBIH HpeABHIET BO3MOXKHBIC
omnOKu. ['0BOPST, UTO 3Ty TeopeMy Jl0Ka3zaliu CTO JieT ToMy Hazazd. Kaxercs, sTor
3aKOH CIIPaBEJINB I BCEX MPOU3BOIHBIX.

Task 4. Translate from Russian into English.

OxkaspIBaeTcsi, OHU HE MOTYT OOBSICHUTH 3Ty aOCypAHyIo cuTyaruio. M3BecTHo, 4To
3MIaHue YHHBepcuTeTa ObUI0 mocTpoeHo 150 net Hazan. Kaxkercs, UTO OH OIBITHBIN
paboTHUK. Tak CIy4wJioCh, YTO KOMIIBIOTEp OBUT 3apa’keH BHUPYCOM, M BCS
nHopmarusi Obula yHUUYTOXKEHA. OH, MO-BUIAMMOMY, YIOBJIETBOPEH pPE3YIbTaTOM
cBoell paboThl. OHa, Ka)keTcs, 3HAET ATOT MpeAMEeT ouyeHb Xopoimo. OH oka3zaics
XOpPOIIMM MAaTeMaTHKOM. JTa 3ajJada OKas3ajaach OYEHb CIIOKHOW. M3BECTHO, 4TO OH
MPUAECPKUBACTCA APYTOro MHEHUS 1O 3TOMY Borpocy. OXKUIA0T, 4TO TOTOBOP OyaeT
MOJNMCAaH YKPAUHCKUMH U POCCUUCKUMHU TPEACTABUTEIISIMU Mociie3aBTpa. CUUTaIoT,
YTO OH OJIMH U3 JY4YIIMX MAaTEMaTUKOB HAIIETO YHUBEPCUTETA. Bpsan v OH mpumer
y4acThe B 3Tol HaydyHou padote. OH, BuaguMo, yctai. OHu, 0e3 COMHEHUs, 3a0blIN O
cBoeM oOemranuu. S ciydaiiHo 3amien B Baml oQuC, KOrja TBOM HavyalbHUK
MpOCMATpUBAJl BCE pe3lOME. OTO COTJIallieHue, BEPOSITHO, OYyJeT 3aKIOYeHO B
ommkaiimem Oyaymiem. [loroma, BepositTHO, u3MeHHTCs. OH, HaBEpHSKA, MPUIET
BoBpeMsi. OHH, O€3yCIIOBHO, COIJIAcsATCA MPUHATH Yy4acTUE B MEXIAYHAPOIHOU
KoH(pepeHIuu. JIOKyMeHThI, HaBepHOE, OyAyT OTHpaBiieHbl 6e3 omo3gaHus. JIekmws,
0e3 coMHeHusi, OyaeT uHTepecHoi. Oka3aioch, 4TO TBOSI MaMa IpaBa. 3aMECTHUTEIb
JTUPEKTOpa, BEPOSTHO, BEpHETCA Ha crieayrwomen Hexaene. [lpemcraBurenu o0emx
CTOPOH, OKa3bIBAETCS, FOTOBHI BECTHM IEPEroBOpPHI MO 3TOMYy Bompocy. Mx maH,
MOX0Xe, He OynmeT o0CyX maThCs Ha COBETE JUPEKTOPOB BO BTOPHHUK. DTOT BOIPOC,
HaBEpHOE, He OyIyT 00CYyXKIaTh B Tpecce. Bpsa au oHU MpuUOYAYT K KOHILY HECIH.
MasoBeposTHO, YTO TOPOJICKME BJIACTH TOTOBBI MOTPATHTH OOJBINHE CPEICTBAa Ha
peMoHT jaopor. O4eHb BEPOSATHO, YTO OHHM HCIOJB3YIOT TPAJUIIMOHHBIC METOIbI IS
perIeHus 3TOH 3a1a4yn. ITU (PaKThI, €Ba JIM, OOBSICHAT HAM PEaTbHOE TTOJIOKEHHUE eI

B IIPaBUTCIIbCTBC. O)KI/IIIB,J'H/I, 4TO YJICHBI KOMUCCHUH NIPUAYT K COTTIAIICHUIO.

Task 5. Translate from English into Russian using the Model.

Model:  log,Xx — log to the base 2 of x (morapudm guciia X o ocHOBaHUIO 2)
Logarithm product rule logy(x - y) = logy(X) + logy(y) The logarithm of the
multiplication of x and y is the sum of logarithm of x and logarithm of y.

Logarithm quotient rule logy(x /y) = logy(X) - logy(y) The logarithm of the division
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of x and y is the difference of logarithm of x and logarithm of y.

Logarithm power rule logy(x”) =y - logy(x) The logarithm of x raised to the power
of y is y times the logarithm of x.

Derivative of natural logarithm The derivative of the natural logarithm function is
the reciprocal function. When f (x) = In(x). The derivative of f(x) is: f' (x) =1/x

Integral of natural logarithm

The integral of the natural logarithm function is given by: When f (x) = In(x)
The integral of f(x) is: | f (X)dx =] In(x)dx =x - (In(x) - 1) + C

Ln of O The natural logarithm of zero is undefined: In(0) is undefined

The limit near 0 of the natural logarithm of x, when x approaches zero, is minus

. lim In(z) = —oc

infinity: z—0t

Ln of 1 The natural logarithm of one is zero: In(1) =0
Ln of infinity

The limit of natural logarithm of infinity, when x approaches infinity is equal to
infinity: lim In(X) = c, when x—o

Task 6. Learn and pronounce the following rules.

Rule name Rule
Logarithm product rule logy(x - y) = logp(x) + logp(y)
Logarithm quotient rule logy(x /y) = logy(X) - logy(y)
Logarithm power rule logy(x?) =y - logy(X)
Logarithm base switch rule logy(c) = 1/ logc(b)

Logarithm base change rule logy(X) = loge(x) / log.(b)

Derivative of logarithm f(x) =logy(X) = f' (xX)=1/(xIn(b))

[ 1ogy(x) dx = x - (logy(x) - 1/ In(b) )
+C

Logarithm of negative number  10g,(X)is undefined when X< 0

Integral of logarithm

109, (0) is undefined
Logarithm of O

lim logy(zr) = —c¢
r—0 (@)
Logarithm of 1 logy(1) =0
Logarithm of the base logy(b) =1
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Logarithm of infinity lim logy(o0) = oo,when X—s00

Logarithm product rule

The logarithm of the multiplication of x and y is the sum of logarithm of x and
logarithm of y. logy(x - y) = logy(x) + logp(y)

Logarithm quotient rule

The logarithm of the division of x and y is the difference of logarithm of x and
logarithm of y.

logs(x /'y) = 10gs(x) - l0gx(y)

Logarithm power rule

The logarithm of x raised to the power of y is y times the logarithm of x.

logs(x*) = - l0gs(x)

For example: 1og10(2°) = 8- logi0(2)

Logarithm base switch rule

The base b logarithm of c is 1 divided by the base ¢ logarithm of b.

logy(c) =1/ log.(b)

For example: 10og,(8) = 1/ logg(2)

Logarithm base change rule

The base b logarithm of x is base ¢ logarithm of x divided by the base ¢ logarithm of b.
logs(x) = loge(x) / 1ogc(b)

For example, in order to calculate log,(8) in calculator, we need to change the base to
10: log2(8) = 10g10(8) / 10g10(2)

Logarithm of negative number

The base b real logarithm of x when x<=0 is undefined when X is negative or equal to
zero: logp(x) is undefined when x <0

Logarithm of 0

The base b logarithm of zero is undefined: logy(0) is undefined

The limit of the base b logarithm of x, when x approaches zero, is minus infinity:

Jim o) = =20

Logarithm of 1

The base b logarithm of one is zero: logy(1) =0

For example, teh base two logarithm of one is zero: log,(1) =0

Logarithm of the base

The base b logarithm of b is one: log,(b) = 1

For example, the base two logarithm of two is one: log,(2) =1

Logarithm of infinity

The limit of the base b logarithm of x, when x approaches infinity, is equal to infinity:
lim logy(X) = o0, when Xx—o0
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