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Abstract

In this paper we develop a mathematical model for the spread of the coronavirus disease 2019 (COVID-19). We
use a compartmental model (but not a SIR, SEIR or other general purpose model) and take into account the known
special characteristics of this disease, as the existence of infectious undetected cases. We study the particular case
of China (including Chinese Mainland, Macao, Hong-Kong and Taiwan, as done by the World Health Organization
in its reports about COVID-19), the country spreading the disease, and use its reported data to identify the model
parameters, which can be of interest for estimating the spread of COVID-19 in other countries. The model is also
able to estimate the needs of beds in hospitals for intensive care units. Finally, we also study the behavior of the
outputs returned by our model when considering incomplete data (by truncating them at some dates before and
after the peak of daily reported cases). By comparing those results with real observation we can estimate the error
produced by the model when identifying the parameters at early stages of the epidemic.

Keywords: Mathematical model, COVID-19, coronavirus, SARS-CoV-2, Pandemic, simulation

Background: Coronavirus disease 2019 (COVID-19) is an infectious disease emerging in China in December 2019
that rapidly spread around that country and subsequently many others. On 9 February 2020 our group developed
a first tentative mathematical model of the outbreak (see [12]), based on the Be-CoDiS model (see [11]) and the
background of our group in the mathematical modeling of epidemics (see https://www.ucm.es/momat/epidemics).
We calibrated the model with the available data reported by authorities by 8 February 2020 and reported a forecast.
It fitted the data well for 3 weeks (see [13]), even with a sudden unexpected increase of official reported cases on
17 February 2020 due to a change in the World Health Organization guidelines to count cases (see Figure 3). On
21 February 2020 COVID-19 started spreading locally around Italy (see [25]). This country became the epicenter of
COVID-19, which spread worldwide. WHO declared COVID-19 to be a pandemic on 11 March 2020 [24]. To the
best of our knowledge this fact was not forecasted for any scientific paper or report in early February 2020. The main
reason is the above-mentioned bad quality of the official reported data, due in part to the fact that COVID-19 is
a disease caused by a new virus, called SARS-CoV-2, which has generated a completely exceptional new worldwide
emergency situation.

Objective: The main goal of this paper is to develop a mathematical model well adapted to COVID-19 (not just
using a SIR, SEIR or other general purpose epidemic models), able to estimate, considering different scenarios, the
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number of cases, deaths and needs of beds in hospitals for intensive care, in territories where COVID-19 is (or may be)
a very serious health problem. We study here the case of China (including the Chinese Mainland, Macao, Hong-Kong
and Taiwan, as done by the World Health Organization in its reports about COVID-19; see [23]), which is the country
with more data available to date. A good identification of the model parameters for this study case may be of interest
for the application of the model to other territories. Finally, we also study the behavior of the outputs returned by
our model when considering incomplete data (by truncating them at some dates before and after the peak of daily
reported cases). By comparing those results with real observation we can estimate the error produced by the model
when identifying the parameters at early stages of the epidemic.

Limitations:

1. Bad quality of official reported data, mainly due to: a) changes in guidelines to count cases in China (as
mentioned above); b) Possible relevant number of undocumented infections; c) uncertainty about some of the
characteristics of SARS-CoV-2.

2. Since there is no clear scientific evidence of the effect of the humidity and the temperature on SARS-CoV-2, we
have not included these two factors in our model (this would need to be revised in case of new findings regarding
this topic).

3. We assume that the population inside the considered countries or territories is homogeneously distributed (this
could be improved by dividing some of them into a set of smaller territories with similar characteristics). Thus,
the spatial distribution of the epidemic inside a territory is omitted.

4. The current model is only suitable for countries or territories with a relevant number of people infected by
COVID-19, where local spread is very important. The between-country spread has not been modeled in this
work. We will do that in another work, based on the BeCoDis model (see [11] and [12]), but the movement of
people between countries or territories is not well documented.

5. This study has been done under the pressure of the urgency of the current situation due to COVID-19. Part of
the material developed here can be probably improved.

Summary of the results: From the model and simulations considered in this work, we found the following novelties
and results:

• The value of the basic reproduction number R0, for COVID-19 in China, is 3.3701. Additionally, the effective
reproduction number Re decreased, mainly due to the application of control measures, and reached values lower
than 1 after 1 February 2020.

• The model estimates that, including undetected cases, around 195700 persons could have been infected in China.

• Undetected cases could represent around 60% of the total number of cases.

• The undetected cases (i.e. asymptomatic cases), may have caused around 23% of the total infections.

• Model fits quite well the date and amount of persons of the peak of hospitalized people.

• We propose the use of a filtered version of the data reported by the WHO, in order to smoothly distribute during
the previous dates, the sudden increase of 17414 cases reported on 17 February 2020.

• We developed a compartmental model well adapted to the characteristics of COVID-19, taking into account
undetected cases and a method to estimate unknown parameters. The corresponding simulations returned
outputs fitting quite well the data reported by the WHO.

• Focusing on the parameter estimation procedure, results show that estimating the epidemic at early stages
(before the peak) could generate poorly estimated results.
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1 Introduction
Coronavirus disease 2019 (COVID-19) is an infectious disease emerging in China in December 2019 that has rapidly
spread around China and many other countries (see [34]). On 11 February 2020, the World Health Organization
(WHO) renamed the epidemic disease caused by 2019-nCoV as strain severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) (see [10, 26]).

This is a new virus and a completely new situation [36]. On 30 January 2020, WHO declared it to be a Public
Health Emergency of International Concern [30]. As of 11 March 2020, the disease was confirmed in more than 118,000
cases reported globally in 114 countries, more than 90 percent of cases are in just four countries (two of those – China
and the Republic of Korea - have significantly declining epidemics) and WHO declared it to be a pandemic, the first
one caused by a coronavirus [24]. To date, there are 332,930 and 14510 official reported cases and deaths, respectively,
and there is no vaccine specifically designed for this virus, with proven effectiveness.

The model developed here is based on the Be-CoDiS model (see [11]), designed to be able to study the spread of
human diseases worldwide. It was initially used for the 2014-2016 ebola outbreak (see [11]) and has also been used for
the 2018-2020 ebola outbreak in the Democratic Republic of the Congo (see [5, 6]), in both cases with very successful
forecasts. Other works of our group related with the mathematical modeling of epidemics can be seen on the website
https://www.ucm.es/momat/epidemics.

Here, we have adapted the model to the specific case of COVID-19. Only within-country disease spread is considered
in this paper for territories with a relevant number of people infected by COVID-19, where local spread is very
important. The between-country spread will be included in the model in another future work, based on the BeCoDis
model (see [11] and [12]).

We apply here the model to the case of China (including the Chinese Mainland, Macao, Hong-Kong and Taiwan,
as done by the World Health Organization in its reports about COVID-19; see [23]), which is the country with more
data available to date. A good identification of the model parameters for this study case may be of interest for the
application of the model to other territories.

2 Mathematical formulation of the model

2.1 Epidemiological characteristics of COVID-19
According to the known characteristics of the COVID-19 pandemic, we assume that each person is in one of the
following compartments:

• Susceptible (denoted by S): The person is not infected by the disease pathogen.

• Exposed (denoted by E): The person is in the incubation period after being infected by the disease pathogen,
and has no visible clinical signs. The individual could infect other people but with a lower probability than
people in the infectious compartments. After the incubation period, the person passes to one of the Infectious
states.

• Infectious that will be detected (denoted by Id): The person can infect other people, starts developing clinical
signs and will be detected and reported by authorities (when arriving to the compartments HR or HD). After
this period, people in this compartment are taken in charge by sanitary authorities and we classify them as
Hospitalized.

• Infectious that will not be detected (denoted by Iu): The person can infect other people and may start developing
clinical signs but will not be detected and reported by authorities. After this period, people in this compartment
pass to the Recovered state.

• Hospitalized or in quarantine at home (but detected and reported by the authorities) that will recover (denoted
by HR): The person is in hospital (or in quarantine at home) and can still infect other people. At the end of
this state, a person passes to the Recovered state.
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• Hospitalized that will die (denoted by HD): The person is hospitalized and can still infect other people. At the
end of this state, a person passes to the Dead state.

• Dead (denoted by D): The person has not survived the disease.

• Recovered (denoted by R): The person has survived the disease, is no longer infectious and has developed a
natural immunity to the disease pathogen.

The authorities may apply various control measures in order to control the COVID-19 spread (see [3]):

• Isolation: Infected people are isolated from contact with other people. Only sanitary professionals are in contact
with them. However, contamination of those professionals also occur (see [27]). Isolated patients receive an
adequate medical treatment that reduces the COVID-19 fatality rate.

• Quarantine: Movement of people in the area of origin of an infected person is restricted and controlled (e.g.,
quick sanitary check-points at the airports) to avoid that possible infected persons spread the disease.

• Tracing: The objective of tracing is to identify potential infectious contacts which may have infected a person
or spread COVID-19 to other people.

• Increase of sanitary resources: The number of operational beds and sanitary personal available to detect and
treat affected persons is increased, producing a decrease in the infectious period.

• Increase the number of tests in order to increase the percentage of detected infected people.

2.2 General description
The model is used to evaluate the spread of a human disease within some territories during a fixed time interval.

At the beginning of the simulation, the model parameters are set by the user (for instance, the values considered
for COVID-19 are described in Section 3). We consider as time t = 0 the 1 December 2019 (7 days before the date
that appears in the literature as the most probable date for the index case in China. Here we took into account that,
according to the World Health Organisation’s website, the first confirmed COVID-19 case in China was on December
8 (see [29]). Furthermore, according to [36], the earliest symptom onset of confirmed patients can be traced back to 7
December 2019. We set then t = 0 that day at 10AM CET (this is a technical adjustment, since each day the WHO
provides data as reported by national authorities by that hour; see [23]).

We can start our simulation at any initial time t0 ≥ 0, considering that only susceptible people live in the territories
that are free of the disease, whereas the number of people in states S, E, Id, Iu, HR, HD, R and D of the infected
territories are set to their corresponding values. Then, during the time interval [t0, t0 + Tmax], with Tmax ∈ IN being
the maximum number of simulation days, the within-country daily spread procedures (described in Section 2.3) are
applied. If at the end of a simulation day t all people in all the considered territories are in the susceptible state,
the simulation is stopped. Else, the simulation is stopped when t = t0 + Tmax. Furthermore, the control measures
are also implemented and they can be activated or deactivated, when starting the model, in order to quantify their
effectiveness to reduce the magnitude and duration of a COVID-19 epidemic.

A diagram summarizing the main structure of our model is presented in Figure 1.
The choice of using a deterministic model instead of a stochastic one is done as a first approach, since such kind

of models presents some advantages, such as: a low computational complexity allowing a better calibration of the
model parameters or the possibility of using the theory of ordinary differential equations for suitably analyzing and
interpreting the model. Furthermore, according to ([4]), deterministic models should be the first tool to be used when
modelling a new problem with few data. The authors of that work also note that the stochastic models are not suitable
when it is difficult or impossible to determine the distribution probability, are difficult to analyze and require more
data for the calibration of the model.

As said above, in this work we will only consider the within-country disease spread of territories where, starting from
suitable values of t0, the COVID-19 pandemic is already spreading by its own, with a relatively negligible dependence
of the international movement of people. The between-country disease spread will be considered in another work, as
soon as possible.
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Figure 1: Diagram summarizing the model for COVID-19 given by system (1).

2.3 The mathematical model
The dynamic disease spread within a particular contaminated territory i is modeled by using a deterministic compart-
mental model (see, for instance, [2]).

We assume that people in a territory are characterized to be in one of those states, described in Section 2.1: S,
E, Id, Iu, HR, HD, R or Dead D. For the sake of simplicity we assume that, at each time, the population inside a
territory is homogeneously distributed (this can be improved by dividing some territories into a set of smaller regions
with similar characteristics). Thus, the spatial distribution of the epidemic inside a territory is omitted. We also
assume that new births are susceptible persons. We do not consider here movement of people between territories.

Under those assumptions, the evolution of the compartments mentioned above is modeled by the following system
of ordinary differential equations:
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(1)

where:

• i ∈ {1, . . . , NC}, with NC ∈ N being the number of countries/territories/areas considered.

• N (i) is the number of people in territory i before the start of the pandemic.

• θ(t) is the percentage of infected people that is detected and documented by the authorities.

• µ(i)
n ∈ [0, 1] is the natality rate (day−1) in territory i: the number of births per day and per capita.

• µ(i)
m ∈ [0, 1] is the mortality rate (day−1) in territory i: the number of deaths per day and per capita (or,

equivalently, the inverse of the mean life expectancy (day) of a person).

• ω(i)(t) ∈ [0, 1] is the disease fatality percentage in territory i at time t: the percentage of persons who do not
survive the disease.
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• β(i)
E , β

(i)
Iu
, β

(i)
Id
, β

(i)
HR
, β

(i)
HD
∈ R+ are the disease contact rates (day−1) of a person in the corresponding states, in

territory i.

• γE , γInf are the transition rates (day−1) from state E to states Id or Iu and from state Id or Iu to state R,
respectively. They are the same for all the territories.

• We assume that the infectious time from the beginning of state Id or Iu to the beginning of state R is 1
γInf

, we
have that

1

γ(i)(t)
+

1

γ
(i)
HR

(t)
=

1

γInf
, which implies that γ(i)HR

(t) =
γInfγ

(i)
Id

(t)

γ
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.

We could have also assumed the case of γ(i)HR
not dependent on γInf and γ

(i)
Id

. In this case we would have needed
another compartment Ru for recovered people coming from state Iu, in order to be able to estimate the output
Hos(i)(t) described in Section 2.4.

• γ(i)Id (t), γ(i)HD
(t) ∈ (0,+∞) denote the transition rates (day−1) from states Id, HD to state HR, D, respectively.

• m(i)
E (t), m(i)

Iu
(t), m(i)

Id
(t), m(i)

HR
(t), m(i)

HD
(t) ∈ [0, 1] (%) are functions representing the efficiency of the control

measures applied to the corresponding states, in territory i at time t.

• τ (i)1 (t) is the people infected that arrives to territory i from other territories per day. τ (i)2 (t) is the people infected
that leaves territory i per day. Both can be modeled following the between-country spread part of the Be-CoDiS
model, see [11]).

System (1) is completed with initial data S(i)(t0), E(i)(t0), I(i)d (t0), I(i)u (t0), H(i)
R (t0), H(i)

D (t0), R(i)(t0) and D(i)(t0)
given in [0,∞), for i=1,.., NC .

We point out that the 8th equation of system (1) is not coupled with the other equations. Thus, we can solve the
first seven equations of that system and the solution of the last one can be computed as follows:

D(i)(t) = D(i)(t0) +

∫ t

t0

γ
(i)
HD

(s)H
(i)
D (s)ds. (2)

We could have also considered a different natality rate for the people infected (according to their age distribution).
Actually, since the natality and mortality (not from COVID-19) do not seem to be important factors for COVID-19
(at least for relatively short periods of time) one may consider the simplified model with µm = µn = 0. We will
consider this case in the rest of this paper. The corresponding new diagram summarizing the main structure of the
simplified model can be seen in Figure 2 and the resulting system equations, after removing the index i denoting
different territories for the sake of simplicity, is given by the system (3) below.
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Figure 2: Diagram summarizing the simplified version of the model for COVID-19 given by system (3).

dS

dt
(t) = −S(t)

N

(
mE(t)βEE(t) +mIu(t)βIuIu(t) +mId(t)βIdId(t)

)

−S(t)

N

(
mHR

(t)βHR
HR(t) +mHD

(t)βHD
HD(t)

)
,

dE

dt
(t) =

S(t)

N

(
mE(t)βEE(t) +mIu(t)βIuIut) +mId(t)βIdId(t)

)

+
S(t)

N

(
mHR

(t)βHR
HR(t) +mHD

(t)βHD
HD(t)

)
− γEE(t) + τ1(t)− τ2(t),

dId
dt

(t) = θ(t)γEE(t)− γId(t)Id(t),

dIu
dt

(t) = (1− θ(t))γEE(t)− γInfIu(t),

dHR

dt
(t) = (1− ω(t))γId(t)Id(t)− γHR

HR(t),

dHD

dt
(t) = ω(t)γId(t)Id(t)− γHD

(t)HD(t),

dR

dt
(t) = γHR

(t)HR(t),

dD

dt
(t) = γHD

(t)HD(t),

(3)

We remark that, with this simplification the 7th and 8th equation of system (3) are not coupled with the other
equations. Thus, we can solve the first six equations of that system and the solution of the last two equations can be
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computed by using (2) and

R(t) = R(t0) +

∫ t

t0

γHR
(s)HR(s)ds.

For the numerical simulations presented in section 4, the first six equations of System (3) were numerically solved
with the classic Runge–Kutta method of 4 stages and order 4 (RK4), with 4 h as time step (which was tested to see
that it is suitable to get stable results).

2.4 Outputs of the model
Here, we present the outputs of the mathematical model (for territory i; we continue avoiding the use of that index in
the notation, for the sake of simplicity), used to analyze the results of the simulations performed in Section 4:

• cm(t): The model cumulative number of COVID-19 cases (in country i) at day t, which is given by

cm(t) = HR(t) +HD(t) +R(t) +D(t)

and can be also computed as follows:

cm(t) = cm(t0) +

∫ t

t0

d
(
HR +HD +R+D

)
dt

(s)ds = cm(t0) +

∫ t

t0

γId(s)Id(s)ds.

• dm(t): The model cumulative number of deaths (due to COVID-19), at day t (in territory i), which is given by
D(t).

• R0 and Re: The basic reproduction number and the effective reproduction number of COVID-19 (for territory
i).
The basic reproduction number is defined as the number of cases one infected person generates on average over
the course of its infectious period, in an otherwise uninfected population and without special control measures.
It depends on the considered population (therefore, it may be different for different territories), but does not
change during the spread of the disease.
The effective reproduction number is defined as the number of cases one infected person generates on average
over the course of its infectious period. Part of the population can be already infected and/or special control
measures may have been implemented. It depends on the considered population and changes during the spread
of the disease. Furthermore, Re(0) = R0. Typically, the spread of the disease slows down when Re(i, t) < 1.
We apply the Next Generation Matrix method (see [32]) to system (3) and obtain that:

R0 =

(
(βHR

(1− ω) θγE + βEγInf + βIuγE (1− θ)) γId + (βId − βHR
(1− ω)) θγEγInf

)
γHD

+ βHD
ωθγEγIdγInf

γEγIdγHD
γInf

,

where, for the sake of simplicity of notation, all previous coefficients correspond to their particular values at time
t = 0. Furthermore,

Re(t) =
Ue(t)

γEγIdγHD
γInf

S(t)

N
,

where

Ue(t) =
(

(mHR
βHR

(1− ω) θγE +mEβEγInf +mIuβIuγE (1− θ)) γId
+ (mIdβId −mHR

βHR
(1− ω)) θγEγInf

)
γHD

+mHD
βHD

ωθγEγIdγInf ,

and, again in order to simplify the notation, all previous coefficients correspond to their particular values at time
t.
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• The number of people detected by the authorities as recovered from COVID-19 can be estimated from the model
as follows:

Rec(t) =
θ(1− ω)(

1− θ
)

+
(
θ(1− ω)

)R(t),

• Hos(t): The number of people in hospital considering only severe and critical cases is estimated as follows:

Hos(t) = HD(t) + p(t) (HR(t) + (Rec(t)− Rec(t− Co))) ,

where p(t) is the ratio, at time t, of people in state HR that are hospitalized and Co is the period of convalescence
(i.e. the time a person is still hospitalized after recovering from COVID-19). This function can help to estimate
and plan the number of clinical beds needed to treat all the COVID-19 cases.

• MHos: The maximum number of hospitalized persons at the same time (in territory i) during the time interval
[t0, T ]. It is computed as:

MHos = max
t∈[t0,T ]

Hos(t).

This number can help to estimate and plan the number of clinical beds needed to treat all the COVID-19 cases.

• ΓE(t),ΓIu(t),ΓId(t), and ΓH(t): which correspond to the amount of people infected during the time interval
[t0, T ], by contact with persons in state E, Iu, Is and H = HR +HD, respectively. They are given by:

ΓE(t) =

∫ t

t0

mE(s)βEE(s)
S(s)

N
ds,

ΓIu(t) =

∫ t

t0

mId(s)βIuIu(s)
S(s)

N
ds,

ΓId(t) =

∫ t

t0

mId(s)βIdId(s)
S(s)

N
ds,

ΓH(t) =

∫ t

t0

(
mHR

(s)βHR
HR(s) +mHD

(s)βHD
HD(s)

)S(s)

N
ds.

We point out that cm(t) and dm(t) can be compared with the corresponding values reported by WHO (see [27])

3 Model parameter estimation for COVID-19
Some of the parameters used in the simulations presented in Section 4 have been found in the literature. However,
despite the effort to use the maximum amount of robust parameters as possible and due to lack of information of
the behavior of the SARS-CoV-2, some of them have been estimated using empirical assumptions or techniques for
parameter identification. This part should be improved as soon as new information is available.

We now detail each kind of parameter by its category.

3.1 Territory indicators obtained from databases
We have built a database where we have recorded the following data, that we use to estimate the parameters of the
model and to compare with the outputs of the numerical simulations presented in Section 4

We obtain the countries’ population (N) for year 2018 from the World Data Bank, downloaded on 5 March 2020
(see [1]).

There are some studies about the relevance of humidity and temperature for the spread of COVID-19. In [18] it is
shown that the observed patterns of COVID-19 are not completely consistent with the hypothesis that high absolute
humidity may limit the survival and transmission of this virus. Furthermore, in ([35]) it has been found that the lower
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is the temperature the greater is the survival period of the SARS-CoV-2 outside the host. Since there is no clear
scientific evidence of the effect of the humidity and the temperature on the SARS-CoV-2, we have not included these
two factors in our model (this would need to be revised in case of appearing new findings regarding this topic).

Furthermore, from the WHO Coronavirus disease (COVID-2019) situation reports (see [23]) we have obtained the
reported cases per day (i.e. persons who enter each day in states HR or HD) and the reported COVID-19 deaths per
day. For each day t they are denoted by cr(t) and dr(t), respectively. We have those data starting from 21 January
2020. Data from 12 to 21 January 2020 were obtained from the following website:

https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/

We assume that the index case started his incubation period in China on 1 December 2019, as the earliest symptom
onset of confirmed patients can be traced back to 7 December 2019 (see [36]). In order to complete the missing
information for the days without data between 8 December 2019 and 10 January 2020, we use a cubic hermite
interpolation method considering the fact that before 8 December 2019 no cases were reported.

3.2 Parameters found in the literature
Data given in Table 1 were calibrated for the cases in China the first big source of COVID-19. However, due to
the spread of this disease, new studies should be performed to analyze the behavior of COVID-19 in other sanitary,
population and climatic conditions. Currently, very few studies accepted for the scientific community are available.

Table 1: Summary of some parameters calibrated for COVID-19 in China, which can be found in [9, 17, 27]. A brief
description (Description) and the range of the considered values (Value) are reported.

Notation Value Description Reference
γE 0.1818 Transition rate of a person in state E (day−1) [27]
γId(t) [0.1493,1.4286] Transition rate of a person in state I(day−1)

at time t [17]
γHR

(t) [0.0752,0.1370] Transition rate of a person in state H
to state R (day−1) at time t [27]

γHD
(t) [0.0493,0.0699] Transition rate of a person in state H

to state D (day−1) at time t [27]
γInf 0.0714 Transition rate of a person in state Iu

to state R (day−1) at time t [27]
Co 14 The period of convalescence (day) [9]

3.3 Control measures
Focusing on the application of the control measures, we multiply the disease contact rates (i.e. βE , βI , βHR

and βHD
)

by decreasing functions simulating the reduction of these rates as the control measures efficiency is increased. Here,
we have considered the functions (see [15]):

mE(t) = mI(t) = mH(t) = mD(t) =



(m0 −m1) exp

(
− κ1(t− λ0)

)
+m1 t ∈ [t0, λ1)

(m1 −m2) exp

(
− κ2(t− λ1)

)
+m2 t ∈ [λ1, λ2)

· · ·

(mq−1 −mq) exp

(
− κq(t− λq−1)

)
+mq t ∈ [λq−1,∞),

(4)
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where, for every j ∈ {0, ..., q}, mj ∈ [0, 1] measures the intensity of the control measures (greater value implies lower
value of disease contact rates), κj ∈ [0,+∞) (day−1) simulates the efficiency of the control measures (greater value
implies lower value of disease contact rates) and λj ∈ [t0,∞] denotes the first day of application of each control strategy
(λ0 ∈ [0,∞] is the first day of application of a control strategy that was being used before t0, if any). Here q ∈ N is
the number of changes of control strategy.

The values of λj are typically taken from the literature (using the dates when the territories implement special
control measures). Some of the values of mj can be also sometimes known. The rest of the parameters need to be
calibrated as explained in Section 3.7.

3.4 Fatality rate
The fatality rate ω(t) depends on the territory i and time t. As osbserved in other epidemics (see, e.g. [11]), it can be
affected by the application of control measures (such as: earlier detection, better sanitary conditions, etc.). Thus, we
propose to consider the following definition:

ω(t) = mId(t)ω + (1−mId(t))ω, (5)

where ω ∈ [0, 1] is the fatality rate observed when no control measures are applied (i.e. mId(t) ≡ 1); and ω ∈ [0, 1] is
the fatality rate observed when control measures are fully applied (i.e. mId(t) ≡ 0). Constants ω and ω are estimated
with the calibration process mentioned in Section 3.7.

We note that ω ≥ ω, thus, we consider ω = ω + δω, with δω ∈ [0, 1− ω].

3.5 Transition rates
We denote by dId , dIu = 1

γInf
, dHR

and dHD
the mean duration in days of a person from state Id to HR or HD, from

state Iu to R, from state HR to R and from state HD to D, respectively, without the application of control measures.
Additionally, we consider that:

• According to [16], the transition rate from E to Id or Iu depends only on the disease and, therefore, is considered
constant.

• According to [16, 17], it has been observed that the value of γId(t) can be increased due to the application of
control measures (i.e. people with symptoms are detected earlier). As a consequence, the values of γHR

(t) and
γHD

(t) are decreased (i.e. people with symptoms stay under observation more time).

• According to [16], dHR
is lower than dHD

. Thus, we consider dHD
= dHR

+ δR, where δR ≥ 0.

• As highlighted previously, we consider that dIu = dId(t) + dHR
(t).

To simulate those effects, following [11], we use the following functions:

γId(t) =
1

dId − g(t)
(day−1), γHR

(t) =
1

dIu − dId + g(t)
(day−1), γHD

(t) =
1

dHR
+ δR

(day−1),

where g(t) = dg(1−mId(t)) represents the decrease of the duration dId due to the application of control measures, at
time t; and dg is the maximum number of days that dId can be decreased due to the control measures.

3.6 Disease contact rates
Here, following the idea proposed in [11, 16], we assume that there exist a relationship between the contact rates βId ,
βIu , βE , βHR

and βHD
.

More precisely, it was reported that people in states E, Iu, HR and HD are less infective than people in state Id
(due to their lower virus load or isolation measures, see [16]). Thus, we consider that βE = CEβId , βIu = CuβId and
βHR

(t) = βHD
(t) = CH(t)βId(t), where CE , Cu, CH(t) ∈ [0, 1]. In Section 4.1 we show how to compute the function

CH(t) for the case of China (something similar can be done for other territories).

12



3.7 Identification of some parameter with a multiobjective technique
First, we determine the set of unknown model parameters to be identified by the approach presented here. We denote
this set by Ωp. Then, we follow the methodology proposed in [6].

More precisely, we define a multi-objective optimization problem. This problem is based on the minimization of
several objectives functions which compute the difference between some of the model outputs and reported data (such
as, the number of cases or deaths) for a particular set of values for Ωp.

To solve this multi-objective optimization problem, the algorithm called Weighting Achievement Scalarizing Func-
tion Genetic Algorithm (WASF-GA) is applied [7, 8, 31]. From a general point of view, WASF-GA is a population-based
evolutionary algorithm that explores the feasible region looking for efficient solutions using an iterative procedure. As
a result, WASF-GA obtains a set of solutions covering a region of the Pareto Optimal front. Finally, we must specify
a specific criteria to choose a particular point.

Here, we apply the WASF-GA configurations and parameters considered in [6], Section 4.1.2.

4 Numerical simulations and calibration of the model for the case of
China

4.1 Considered data
We performed several numerical simulations for the case of China. For all the cases below we have used N =
1.400.812.636 people and p(t) ≡ 1, as it was decided to hospitalize all cases to reduce onward transmission (see [33]).

Following [16, 17], we set dE = 5.5 days (i.e., γE = 1/5.5 days−1), dId = 6.7days, dg = 5.7 days, dIu=14 days (i.e.,
γinf = 1/14 days−1).

Additionally, according to [28], on 20 February 2020, 2055 healthcare workers were infected in China. At this date,
74651 cases were reported in China. From this data, we assume that the infection due to contact with persons in state
HR or HD should represent around 100 2055

74651% = 2.75% of the number of cases. Thus, we compute βH(t) = CH(t)βId
such that

CHβId((1− ω) 1
γHR

+ ω 1
γHD

)

CHβId((1− ω) 1
γHR

+ ω 1
γHD

) + βId
1
γI

+ βE
1
γE

= 0.0275.

In the previous expression, coefficients depend on territory i and time t. This implies that,

CH(t) =
0.0275(βId

1
γI(t)

+ βE
1
γE

)

(1− 0.0275)βId((1− ω(t)) 1
γHR

(t) + ω(t) 1
γHD

(t) )
.

Following data reported by the WHO, we have aggregated data from the Chinese Mainland, Macao, Hong-Kong
and Taiwan. Additionally, we assume that the movement of people in and out of China is negligible in orden to
estimate the number of cases and deaths in China. Therefore, for the sake of simplicity, we assume in this section that
τ1 = τ2 ≡ 0. Nevertheless, once the number of new cases is under small, one can include them in the model.

Reported data for China have some inconveniences for modeling purposes. On 13 February 2020, the Hubei (the
Chinese province with the largest number of cases and deaths) authorities decided to report as infected not only people
who was positive in laboratory tests, but also clinically diagnosed cases in that province (see [20]). This supposed a
sudden increase of around 15.000 cases in one day ([14]).

In addition, up to 16 February 2020, the WHO decided to continue reporting only cases confirmed with laboratory
tests in its situation reports ([19]). On 17 February 2020, the WHO changed its protocol to count cases and decided
(see [21]) to include in its reports the data provided by the Hubei province. This supposed a sudden increase of around
20.000 cases in one day ([20]).

On 21 February 2020 China (and WHO) informed that they have “revised their guidance on case classification
for COVID-19, removing the classification of ’clinically diagnosed’ previously used for Hubei province, and retaining
only ‘suspected’ and ‘confirmed’ for all areas, the latter requiring laboratory confirmation. Some previously reported
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‘clinically diagnosed’ cases are thus expected to be discarded over the coming days as laboratory testing is conducted
and some are found to be COVID-19-negative” (see [22]).

Thus, different criteria have been used in the official reports, with even different data in Chinese and WHO reports
from 13 February 2020 up to 16 February 2020. This hinders the calibration of our mathematical model and makes
very difficult an accurate forecast. Therefore we have filtered the data to get more reliable figures.

In order to smoothly distribute the sudden increase of 17410 cases in the number of cases reported before the 17
February 2020, we distributed those 17410 cases to previous dates according to the following formula:

car(t) = cr(t) + 17410

∑t
τ=t c(τ)∑ta
τ=t

cr(τ)
,

where car(i, t) denotes the adjusted number of reported cases in country i at time t, t =12 January 2020 is the date
of the first available data and ta=16 February 2020. This filtered function is the one used for the identification of
parameters mentioned in Section 3.7.

We report in Figure 3, the evolution of cr and car in China from 12 January 2020 up to 21 March 2020.
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Figure 3: Evolution of the number of cases in China: Reported (cr) and adjusted reported data (car).
.

According to [16], 86% of all infections were undocumented prior to 23 January 2020, when travel restrictions where
applied in Wuhan. Furthermore, after Wuhan’s closure measures (later extended to much of China), the dynamics of
the epidemic changes. Between 24 January 2020 and 8 February 2020, it is estimated that the percentage of invisible
infected people drops to 35% (see [16]). Therefore, we consider here that figures of deaths that we have in our database,
reported by authorities, are very close to the real ones, but the real total cases are underestimated. Actually, according
to the percentages given above, we take

θ(t) =


0.86 if 1 December 2019 ≤ t ≤ 24 January 2020

linear continuous if 24 January 2020 ≤ t ≤ 8 February 2020

0.35 if 8 February 2020 ≤ t
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Thus, even if the reported deaths dr(t) can be considered a good estimation of the real figures, neither the reported
cases cr(t) nor the adjusted reported cases cr(t) described above would be a good estimation of the real number of
infected cases creal(t), which can be computed as

creal(t) =
car(t)

1− θ(t)
.

In order to effectively prevent further exportation of infected individuals to the rest of the country, the Chinese
government decided to impose a cordon sanitaire (i.e. all public transportation and all outbound trains and flights
were halted) around Wuhan and neighboring municipalities on 23 January 2020 ([23]). Therefore, we considered the
implementation of control measures after this date, in order to represent the real situation of the measures imposed:

mE(t) = mIu(t) = mId(t) = mHR
(t) = mHD

(t) =

 1, if t ∈ [1 December 2019, λ1)

exp

(
− κ1(t− λ1)

)
, if t ∈ [λ1, 21 March 2020]

where λ1=23 January 2020 and the rest of parameters need to be identified.
Using the multiobjective optimization process mentioned in Section 3.7, we determine the following parameters:

βId , CE , Cu, δR, δω, ω and κ1. All those parameters are bounded according to values found in the literature (see [16]).
In Table 2, we recall the meaning of those parameters and their range of values considered during the optimization
process for the particular case of COVID-19 in China .

Table 2: Summary of the parameters to be identified with the multiobjective technique presented in Section (3.7), for
the COVID-19 in China. A brief description (Description) and the range of the boundary values (Range) considered
during the optimization process are reported.

Notation Range Description
βId [0,0.5] disease contact rate (day−1) of a person in states Id.
CE [0,1] used to estimate βE = CEβId
Cu [0,1] used to estimate βIu = CuβId
δR [7,14] used to estimate dHD

= dHR
+ δR

δω [0,0.2] used to estimate ω = ω + δω
ω [0.005,0.05] minimum fatality rate during the epidemic
κ1 [0,1] efficiency of the control measures

4.2 Results
We present and discuss the results returned by our model, considering the parameters that were fixed for the case of
China and the parameters to be identified (presented in Section 4.1).

In particular, to show the robustness of the proposed approach, we have run the experiment by considering data
car(t) and dr(t), from the index case up to different values of the final date tf . We set tf to the following particular
values:

• tf=21 March 2020: this date corresponds to that of the last data available before running the numerical experi-
ments. We denote this experiment by EXP21M.

• tf=25 February 2020: this date is a representative date for which the epidemic in China was decreasing (i.e. the
daily number of reported cases was decreasing during several days). We denote this experiment by EXP25F.

• tf=8 February 2020: this date is considered as the inflection point for which the daily number of reported cases
start to decrease, we denote this experiment by EXP08F.
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• tf=29 January 2020: this date is a representative date for which the epidemic in China was growing (i.e. the
daily number of reported cases was increasing during several days), we denote this experiment by EXP29J.

The objective is to show how the model and the parameter estimation methodology deal with incomplete data.
In Table 3, we report the values of the optimized parameters obtained at the end of each experiment. From those

results, on the one hand we observe that the values of βId , CE , Cu and κ1 show a progressive evolution to the value
obtained with EXP21M when increasing the amount of available data for fitting the model to observed data. There
is a noticeable difference between the values returned at the end of EXP21M and EXP29J. This indicates that a
reasonable amount of data should be available to estimate well some of the model parameters. Estimating those
parameters at an early stage of the epidemic could produce poorly estimated results.

Additionally, parameters δω and ω change drastically when comparing the outputs of EXP21M with those of
EXP25F, EXP08F and EXP29J. This is consistent with real observation reported by the WHO, where the number
of reported death drastically decreased during last month (see Figure 4). Finally, focusing on δR we observe that the
value generated with EXP21M clearly differs from the one obtained with EXP25F, EXP08F and EXP29J. We note
that this particular parameter was already reported in the literature (see, e.g. [16]) as being difficult to be estimated
(considering a range of one month). This radical change of value could be due to the clear decrease in the number of
daily reported cases observed since the end of February. Again, this shows that the estimation of some key parameter
could change dramatically during an epidemic and re-calibration should be performed periodically to capture the
recent behavior of the epidemic.

Table 3: Results obtained from the parameter identification step for experiments EXP21M, EXP25F, EXP08F and
EXP29J.

Notation EXP21M EXP25F EXP8F EXP29J

βId 0.3373 0.2771 0.4526 0.5000
CE 0.8450 0.9426 0.2665 0.1543
Cu 0.3622 0.6336 0.9255 0.9988
δR 7.0004 13.9 13.2 13.7
δω 0.1815 0.1070 0.1476 0.1128
ω 0.0050 0.0458 0.0330 0.0500
κ1 0.1200 0.1272 0.1647 0.2354

In Figure 4, we depict the evolution of the number of cases and deaths in China from 1 December 2019 to 21
March 2020 from observed data and results obtained at the end of experiments EXP21M, EXP25F, EXP25F and
EXP29J. We observe that EXP29J forecasts poorly and underestimates the evolution of the epidemic up to the 21
March 2020. However, this forecast captures reasonably the deceleration of the daily number of cases observed at the
end of February. This indicates that, as expected, forecasting at an early stage of the epidemic (before the inflection
point in the curve of the reported cases) is a quite difficult task. However, in all cases, it seems that our approach
underestimates the number of cases: −40% of final cases for EXP29J, −11% for EXP25F and less than −1% for
EXP25F and EXP21M. Thus, for forecast of COVID-19 epidemics performed at an early stage of the epidemic, results
could vary up to 40%.

Focusing on EXP25F and EXP08F, both forecasts could be considered as acceptable, with a total number of
reported cases at a reasonable distance of the real values. However, focusing on the number of deaths, it seems that
they overestimate the dynamic of the reported deaths near 21 March 2020. This is not a surprising result as, as said
previously, the number of reported daily deaths drastically decreased at the end of February.

We now focus in results returned at the end of Experiment EXP21M to analyze the main key factor that may
explain the dynamics of the COVID-19 epidemic in China up to 21 March 2020.

In Figure 5, we report the evolution of the reported cases and Iu(t), Id(t) and Iu(t)+Id(t) estimated by our model.
We observe that the final number of undetected cases (around 114.600 cases) estimated by our model represents
around 59% of the total number of cases (around 195.700 cases). Furthermore, it seems that control measures have
not contained their growing as fast as for the detected cases. This results is interesting as it seems to indicate that,
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Figure 4: Evolution of the number of (TOP) cases and (BOTTOM) deaths in China from 1 December 2019 to 21
March 2020: Adjusted observed data, and estimation obtained with EXP21M, EXP25F, EXP08F and EXP29J

.

despite the relative control of the epidemic in China, there may still exist an undetected source of infected people that
could cause an increase of the epidemic in a near future, if the control measures are significantly relaxed.
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Figure 5: Evolution of the number of cases in China from 1 December 2019 to 21 March 2020: Adjusted reported data
and Iu(t), Id(t) and Iu(t) + Id(t) obtained with EXP21M.

In Figure 6, we report the evolution of Hospitalized and Recovered people estimated by our model. The model
estimates that the peak of number of persons hospitalized at the same time has been reached around 16 February
2020, with around 54.485 hospitalized patients. According to data reported in

https://www.worldometers.info/coronavirus/country/china/

the peak was reached on 17 February 2020 with around 58000 hospitalized persons at the same time. The model
estimates quite reasonably the number of hospitalized people. However, the obtained results underestimate the real
observations by around 6%. Focusing on Recovered persons, our model return a final number of 47.884 persons, which
clearly underestimate the real observation (around 72.000 recovered people on 21 March 2020). Further investigation
on the recovery rate (and convalescence period) should be done to better estimate this particular output.

In Figure 7, we report the evolution of the effective reproduction number Re(t). We observe that this value
decreases since the application of the control measures and it remains below 1 after 1 February 2020. These results
are consistent with the fact that a decrease in the daily number of cases was observed at the beginning of February
2020.

In Table 4, we present some important parameters and threshold values related to this epidemic. In particular,
we observe that in our case the basic reproduction ratio R0 is 3.37, which is bigger than other values reported in the
literature (between 2.5 and 3.0, see [16]). This could be explained by the fact that we have taken into account the
undetected persons.

Additionally, persons in state E seem to be one of the main sources of infection and represent around 67% of the
infections. This could be explained by the fact that, due to the application of control measures, people in state Id
are quickly hospitalized. Persons in state Id caused around 23% of infections. Those results seem to indicate that
persons with no or few symptoms were the major source of infection. However it seems that our model underestimates
the infection due to hospitalized people with only 0.3% of the infections (it should be around 3%). A more precise
approach should be proposed to estimate better the value of CH .
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Figure 6: Evolution of the number of Hospitalized and Recovered people in China from 1 December 2019 to 21 March
2020 obtained with EXP21M.

Table 4: Results obtained from the parameter identification step for experiments EXP21M, EXP25F, EXP08F and
EXP29J.

Notation Value
R0 3.3701
βIE 0.2850
βId 0.3373
βIu 0.1222
βHR

[0.0038, 0.0126]
βHD

[0.0038, 0.0126]
ω(t) [0.0052, 0.1865]
ΓE(tf) 134710
ΓId(tf) 18471
ΓIu(tf) 46353
ΓH(tf) 520
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