UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET

Monika V. Jurković

ODREĐIVANJE FIZIČKIH PARAMETARA CEFEIDA TIPA II

Doktorska disertacija

Beograd, 2018.

UNIVERSITY OF BELGRADE FACULTY OF MATHEMATICS

Monika V. Jurković

DETERMINING PHYSICAL PARAMETERS OF TYPE II CEPHEIDS

Doctoral Dissertation

Belgrade, 2018

Mentor:

dr Olivera LATKOVIĆ, naučni saradnik Astronomska opservatorija, Beograd, Srbija

Članovi komisije:

dr Bojan ARBUTINA, vanredni profesor Univerzitet u Beogradu, Matematički fakultet, Srbija

dr László L. KISS, naučni savetnik MTA Csillagászati és Földtudományi Kutatóközpont Konkoly Thege Miklós Csillagászati Intézet, Budimpešta, Mađarska

dr Giuseppe BONO, redovni profesor Università degli Studi di Roma "Tor Vergata", Rim, Italija

Datum odbrane: _____

Mojim roditeljima, Ilonki i Vinku, čija ljubav i podrška nikada nisu dopustili da pokleknem. Martinu, jer bez njegove pomoći ne bih bila tu. Naslov disertacije: Određivanje fizičkih parametara cefeida tipa II

Sažetak: Ova doktorska disertacija se bavi određivanjem fizičkih parametara cefeida tipa II. Cefeide tipa II su pulsirajuće zvezde Populacije II sa masama od oko $0.5 - 0.6 M_{\odot}$. Njihova masa određuje njihovu poziciju na Hercšprung-Raselovom dijagramu (HRD), to jest njihovu luminoznost i efektivnu temperaturu. Ove zvezde je moguće pronaći u Mlečnom putu, Magelanovim oblacima, kao i drugim udaljenim galaksijama. One zauzimaju uzak deo HRD koji se zove traka nestabilnosti. Tu dolazi do periodičnih promena u poluprečniku i luminoznosti objekta, koje možemo da detektujemo u obliku karakterističnih krivih sjaja. Zbog svoje starosti i pozicije na HRD ove promenljive zvezde formiraju sopstvenu relaciju između perioda pulsacije i luminoznosti (relacija PL). Modeliranjem spektralne energetske raspodele u disertaciji su određene efektivne temperature i luminoznosti, a iz evolucionih modela su određene mase i poluprečnici za cefeide tipa II i anomalne cefeide u Malom i Velikom Magelanovom oblaku. U tezi je prikazana prva relaciju između perioda i luminoznosti koja koristi bolometrijsku magnitudu (M_{bol}) . U tezi je, takođe, prikazana reklasifikacija cefeida tipa II iz Mlečnog puta koristeći Furijeovu dekompoziciju krivih sjaja merenih u V filteru. Furijeovom dekompozicijom su dobijeni Furijeovi parametri za ispitane zvezde u Mlečnom putu. Ovi parametri su upoređeni sa Furijeovim paremetrima poznatih cefeida tipa II i anomalnih cefeida iz kataloga OGLE-III za Veliki Magelanov oblak. Od 59 zvezda u uzroku (preuzetom iz Opšteg kataloga promenljivih zvezda), 18 su anomalne cefeide koje pulsiraju u osnovnoj frekvenciji, 1 je anomalna cefeida koja pulsira u prvoj nadmodi, 11 su klasične cefeide, 2 su neobične zvezde tipa W Virginis ili klasične cefeide, a za 7 smo utvrdili da ne pulsiraju.

Ključne reči: astrofizika, pulsirajuće zvezde, cefeide tipa II

Naučna oblast: Astronomija

Uža naučna oblast: Astrofizika

UDK broj: 524.333(043.3)

Dissertation title: Determining physical parameters of Type II Cepheids

Abstract: The subject of this PhD thesis are Type II Cepheids. Type II Cepheids are pulsating Population II stars with masses of around $0.5 - 0.6 M_{\odot}$. Their mass determines where they are positioned on the Hertzsprung-Russell diagram (HRD), that is, their luminosity and effective temperature. These stars can be found in the Milky Way, the Magellanic Clouds, and in other distant galaxies. They occupy a narrow strip on the HRD which is called the instability strip. Here the radii and luminosity change periodically, and this change can be seen in the light curves. Because of their age, and their position on the HRD, these variables form a separate period-luminosity relation (*PL* relation). Using the spectral energy distribution models we determined in this thesis the effective temperatures and luminosities, and from evolutionary models the masses and radii, for Type II Cepheids and anomalous Cepheids in the Large and Small Magellanic Clouds. In the thesis, the first periodluminosity relation was constructed using bolometric magnitude (M_{bol}) . The thesis also presents the reclassification of Type II Cepheids from the Milky Way using the Fourier decomposition of the light curves measured in V filter. The Fourier decomposition was used to calculate the Fourier parameters, which were then used to compare the stars from the Milky Way with the sample of known Type II Cepheids and anomalous Cepheids from the OGLE-III catalogue for the Large Magellanic Cloud. From the 59 stars (taken from the General Catalogue of Variable Stars), 18 turned out to be anomalous Cepheids, 1 anomalous Cepheid pulsating in the first overtone, 11 classical Cepheids, 2 peculiar W Virginis stars or classical Cepheids, and 7 were found not to be pulsating stars at all.

Keywords: astrophysics, pulsating stars, Type II Cepheids

Research area: Astronomy

Research sub-area: Astrophysics

UDC number: 524.333(043.3)

Sadržaj

1	Uvod							
	1.1	1 Pulsirajuće zvezde						
	1.2	Cefeide tipa II	17					
		1.2.1 Zvezde tipa <i>BL Herculis</i>	21					
		1.2.2 Zvezde tipa W Virginis	21					
		1.2.3 Zvezde tipa <i>RV Tauri</i>	26					
	1.3	Anomalne cefeide: osobine i istorijat	27					
	1.4	Zvezdane pulsacije	30					
		1.4.1 Radijalne pulsacije	30					
		1.4.2 Modeli zvezdane pulsacije	33					
	1.5	κ -mehanizam - pokretačka snaga pulsacije \ldots \ldots \ldots \ldots \ldots	36					
	1.6	Evolucija zvezda malih masa	37					
	1.7	Relacija period-luminoznost	41					
	1.8	Doprinos razumevanju cefeida tipa II i anomalnih cefeida	47					
2	Pod	aci	50					
	2.1	Uzorci cefeida tipa II i anomalnih cefeida iz Velikog i Malog Magela-						
		novog oblaka	50					
	2.2	Uzorak cefeida tipa II i anomalnih cefeida iz Mlečnog puta $\ .\ .\ .$	52					
3	Met	code	54					
	3.1	Spektralna energetska raspodela	54					
	3.2	Izračunavanje poluprečnika zvezda	58					
	3.3	Određivanje masa	59					

	3.4	Furije	ovi parametri	. 61		
	3.5	Kinen	natički pristup određivanju pripadnosti individualnih zvezda ga-			
		laktičl	kim podsistemima	. 67		
4	Fizi	ički pa	rametri cefeida tipa II i anomalnih cefeida	69		
	4.1	Konst	ruisanje Hercšprung-Raselovog dijagrama iz izvedenih efektiv-			
		nih te	mperatura i luminoznosti	. 69		
		4.1.1	Poređenje sa literaturom	. 80		
	4.2	Prouč	avanje infracrvenog viška	. 83		
	4.3	Polup	rečnici i relacija period-poluprečnik za cefeide tipa II i anomalne			
		cefeid	e	. 87		
	4.4	Mase	iz evolucionih modela	. 90		
5	Rel	acija p	period-luminoznost	94		
6	Pojava menjanja oblika" krivih siaja kod zvezda tina W Virginis 10					
_						
7	And	omalne	e cefeide i drugi tipovi zvezda u uzorku galaktičkih krat-			
	kop	eriodi	čnih cefeida tipa II	109		
	7.1	Rezul	tati Furijeove analize	. 110		
		7.1.1	Anomalne cefeide	. 115		
		7.1.2	Kratkoperiodične cefeide tipa II - zvezde tipa BL Herculis .	. 123		
		7.1.3	Neobične zvezde tipa W Virginis ili klasične cefeide	. 127		
		7.1.4	Klasične cefeide	. 128		
	7.2	Nepul	sirajuće zvezde	. 131		
	7.3	Disku	sija o metaličnosti	. 133		
8	Pri	padnos	st sedam cefeida tipa II Galaktičkim podsistemima	138		
9	Zak	ljučak		142		
Za	hval	nice		146		
\mathbf{A}	Doo	laci		147		
	A.1	Bade-	Veselinkova metoda	. 147		

 $\mathbf{i}\mathbf{x}$

Biblio	mofile	204
	kom iz kataloga OGLE-III	202
A.6	Klasifikacija zvezda iz Mlečnog puta na osnovu podudaranja sa uzor-	
	Magelanovog oblaka i Mlečnog puta	198
A.5	Furijeovi pamarametri za cefeide tipa II i anomalne cefeide iz Velikog	
	tipa $RR \ Lyrae$ i klasične cefeide	191
	u Velikom i Malom Magelanovom oblaku koristeći modele za zvezde	
A.4	Procenjeni poluprečnici i mase za cefeide tipa II i anomalne cefeide	
A.3	Luminoznosti i efektivne temperature izračunate iz SER	184
A.2	Modelirane SER	149

Poglavlje 1

Uvod

Ova doktorska disertacija ima za cilj određivanje fizičkih parametara (efektivne temperature (T_{eff}) , luminoznosti (L), poluprečnika (R), masa (M)) pulsirajućih zvezda – cefeida tipa II (T2C) i anomalnih cefeida (AC) (vidi odeljke 1.2 i 1.3). Dok ovaj zadatak zvuči prilično jednostavno, ipak zahteva veliku količinu posmatračkih podataka, kao i primenu kompleksnih tehnika obrade. Većina ovih zvezda se ne nalazi u dvojnim sistemima, tako da nam nisu bile od koristi tehnike koje se mogu primenjivati u slučaju dvojnih sistema. Da bismo mogli odrediti luminoznosti (L) i efektivne temperature $(T_{
m eff})$ zvezda, bilo je neophodno da se nekoliko stvari poklopi do trenutka pisanja ove teze. To su dugoročna posmatranja Magelanovih oblaka (MO) tima OGLE (vidi odeljak 1.1 za detalje o posmatračkom projektu OGLE), razvoj koda More of Dusty (Groenewegen, 2012) za modeliranje prenosa zračenja koji uzima u obzir prašinu koja se nalazi oko posmatranog objekta (vidi odeljak 3.1) i posmatranja rađena u veoma širokom opsegu talasnih dužina za individualne objekte u Velikom i Malom Magelanovom oblaku (VMO i MMO), kako sa Zemlje tako i iz svemira. Daljine, koje su važan ulazni parametar za određivanje Li $T_{\rm eff}$ su već bile poznate iz drugih nezavisnih merenja (na primer eklipsno dvojnih sistema, za Veliki Magelanov oblak iz rada Pitržinjskog i saradnika (Pietrzyński et al., 2013), a za Mali Magelanov oblak iz rada Hildiča i saradnika (Hilditch et al., 2005)).

U okviru ove teze objavljena je prva bolometrijska relacija period-luminoznost (PL) za ovaj tip objekata. Prethodno objavljene relacije PL su koristile apsolutne magnitude u V filteru ili infracrvenom filteru, ali ne i u bolometrijskim magnitu-

dama. Uvođenje ove relacije je važno, jer nam pruža mogućnost da dobijemo luminoznosti za zvezde koristeći samo njihove periode, što omogućava direktno poređenje sa evolucionim modelima.

Postojanje pulsirajućih zvezda nam je poznato još od XVI veka. Zvezde koje su nam blizu (u Mlečnom putu) nam pružaju mogućnost da na njima detaljno proučavamo prirodu zvezdane pulsacije. Analiza prikazana u tezi se fokusira na kratkoperiodične cefeide tipa II, zvezde tipa *BL Herculis* (BLH) (u odeljku 1.2 smo dali detaljniji opis ovih zvezda). Tokom rada na karakterizaciji pulsacija zvezda tipa *BL Herculis* uz pomoć Furijeovih parametara (u odeljku 3.4 smo opisali metodu Furijeove dekompozicije), ispostavilo se da je taj podtip bio pomešan sa drugim vrstama promenljivih zvezda, kao što su anomalne cefeide, neobične zvezde tipa *W Virginis* (pWVir), klasične cefeide (DCEP) i zvezde koje ne pulsiraju.

U odeljcima 1.1, 1.2 i 1.3 se govori o istoriji otkrića pulsirajućih zvezda, njihovoj klasifikaciji i ističu se specifičnosti dva proučavana tipa, cefeida tipa II i anomalnih cefeida. Odeljak 1.4 opisuje osnove zvezdane pulsacije. Mehanizam, koji je odgovoran za promenu sjaja pulsirajućih zvezda, objašnjen je u odeljku 1.5, a opis njihove evolucije dat je u odeljku 1.6. Odeljak 1.7 govori o važnosti i istorijatu relacije *PL*. Odeljak 1.8 kratko opisuje doprinos ovde prezentovanog rada razvoju astronomije.

Sledeća poglavlja opisuju istraživanja vezana za tezu. Poglavlje 2 sadrži opis podataka koji su korišćeni, dok poglavlje 3 daje detaljniji opis korišćenih metoda. Poglavlja 4 i 5 prikazuju rezultate za cefeide tipa II i anomalne cefeide u Velikom Magelanovom oblaku i Malom Magelanovom oblaku. Poglavlja 7 i 8 sadrže rezultate za zvezde iz Mlečnog puta. Prvo je analizirana klasifikacija, a posle pripadnost individualnih zvezda galaktičkim podsistemima. Svi rezultati su objedinjeni u poglavlju 9.

1.1 Pulsirajuće zvezde

Istorijski, prva posmatrana pulsirajuća zvezda je bila Mira, *o* Ceti, koju je 1596. godine otkrio David Fabricius (1564 -1617). Kriva sjaja Mire prikazana na slici 1.1 preuzeta je od Američke asocijacije posmatrača promenljivih zvezda (*American As*-

Slika 1.1: Dugoperiodična kriva sjaja zvezde Mira preuzeta od AAVSO. Sa zahvalanšću dajemo priznanje posmatranjima promenljivih zvezda koja su bila dostupna u AAVSO Međunarodnoj bazi podataka i rezultat su rada posmatrača iz celog sveta, i koja su korišćena u okviru ovog istraživanj (Kafka, 2018).

sociation of Variable Star Observers¹ (AAVSO)).

Broj otkrivenih pulsirajućih zvezda je naglo rastao tokom XIX i XX veka. U knjizi Katelana i Smita (Catelan & Smith, 2015) može se naći tabela koja prikazuje neka od ovih otkrića, i koja je ovde reprodukovana u tabeli 1.1. Od XVI do XIX veka broj poznatih promenljivih zvezda je jako sporo rastao, kao što je predstavljeno u tabeli. Otkrića su se povećavala zajedno sa poboljšanjem posmatračkih instrumenta; teleskopi i instrumenti su postaji sve bolji. Fotografija je od kraja XIX veka počela da se koristi u posmatranjima čime je broj novootkrivenih pulsirajućih zvezda počeo rasti. Ovaj broj je od tada eksponencijalno rastao, naročito nakon što su počeli sa radom automatski pregledi neba. U najnovijem Opštem katalogu promenljivih zvezda (*General Catalogue of Variable Stars*² (GCVS)), (Samus et al., 2017), navedeno je 52 011 pojedinačnih promenljivih zvezda samo u Mlečnom putu.

Pulsirajuće zvezde su bile posmatrane pomoću različitih tehnika koje su se to-

¹http://aavso.org

²http://www.sai.msu.su/gcvs/gcvs/

Zvezda	Tip	Godina	Pronalazač	P (dana)	$V_{\rm max}$	$A_{\rm V}$	Spektralni tip
o Ceti	Mira	1596	Fabricius	331,96	2,0	8,1	M5e-M9e
P Cygni	S Dor	1600	Blau	-	3,0	3,0	B1Iapeq
β Persei	Algol	1667	Montanari	$2,\!8673043$	2,12	1,27	B8V
η Carinae	S Dor	1677	Halej	-	-0,8	8,7	pec(e)
χ Cygni	Mira	1686	Kirh	408,05	3,3	10,9	S6,2e-S10,4e(MSe)
R Hydrae	Mira	1704	Maraldi	388, 87	3,5	7,4	M6e-M9eS(Tc)
R Leonis	Mira	1782	Koh	309,95	4,4	6, 9	M6e-M8IIIe-M9.5e
μ Cephei	SRc	1782	V. Heršel	730	3,43	$1,\!67$	M2eIa
β Lyrae	β Lyrae	1784	Gudrik	$12,\!913834$	3,25	1,11	B8II-IIIep
δ Cephei	Cefeida	1784	Gudrik	5,366341	3,48	0,89	F5Ib-G1Ib
η Aquilae	Cefeida	1784	Pigot	7,176641	3,48	0,91	F6Ib-G4Ib
R Coronae Borealis	R CrB	1795	Pigot	-	5,71	9,09	C0,0(F8pep)
R Scuti	RV Tau	1795	Pigot	146,5	4,2	4,4	G0Iae-K2p(M3)Ibe
α Herculis	SRc	1795	V. Heršel	-	2,74	1,26	M5Ib-II
R Virginis	Mira	1809	Harding	$145,\!63$	6,1	6,0	M3.5IIIe-M8.5e
R Aquarii	Mira, Z And	1810	Harding	390	5,2	7,2	${ m M5e-M8.5e+pec}$
η Aurigae	Algol	1821	Fritš	9892	2,92	0,91	A8Ia-F2epIa+BV
R Serpentis	Mira	1826	Harding	356, 41	5,16	9,24	M5IIIe-M9e
S Serpentis	Mira	1828	Harding	$371,\!84$	7,0	7,1	M5e-M6e
R Cancri	Mira	1829	Šverd	$361,\!60$	6,07	5,73	M6e-M9e
α Orionis	SRc	1836	J. Heršel	2335	0,0	1,3	M1-M2Ia-Ibe

Tabela 1.1: Pregled nekih pulsirajućih zvezda. Tabela je preuzeta iz knjige Katelana i Smita (Catelan & Smith, 2015), strana 4. Zvezde su poređane po godini otkrivanja.

kom godina razvijale od vizuelnih posmatranja, preko fotografskih ploča i fotomultiplikatora, do CCD kamera. Posmatra se promena sjaja tokom vremena. Da bismo mogli da uporedimo posmatranja koja su vršena različitim teleskopima važno je da vreme u kome se snimaju merenja budu usklađena. Kod najvećeg broja savremenih posmatranja vreme se daje u julijanskim datumima (JD) (ili nekoj od modifikovanih verzija julijanskog datuma), koji se računa od podneva po Griniču 1. januara 4713 p. n. e. tako da je dan realan broj, a decimale predstavljaju delove dana kada je merenje rađeno.

Takođe su važni filteri koji se koriste za posmatranje. U slučaju pulsirajućih zvezda ovo je veoma značajno zato što kriva sjaja menja svoj oblik u zavisnosti od filtera koji je korišćen. Posmatrani oblik krive sjaja i amplituda pulsacije su osetljivi na temperaturu i, pošto različiti filteri uzorkuju različite talasne dužine u vidljivom spektru, u različitim filterima vide se slojevi unutar zvezdane atmosfere koji su različiti temperatura. Najčešće korišćeni filteri su Džonson-Kazinsovi U, B, V, R, I i J, H, K. Primer standardnih fotometrijskih filtara je prikazan na slici 1.2 iz Beselovog članka (Bessell, 2005). U ovoj tezi magnitude merene u raznim filterima su veoma značajne. Bez merenja magnitude u raznim filterima ne bi bilo moguće rekonstruisati spektralnu energetsku raspodelu. Za spektralnu energetsku raspodelu su nam bila jako važna i merenja rađena u bliskom infracrvenom delu spektra (*Near*

Slika 1.2: Standardni astronomski fotometrijski sistemi (Bessell, 2005).

Infrared (NIR)). U slučaju zvezda iz Mlečnog puta koristili smo samo merenja u V filterima da bismo mogli da uporedimo rezultate.

Međuzvezdana materija tj. prašina koja se nalazi između nas, kao posmatrača, i posmatrane zvezde uzrokuje da se sjaj posmatrane zvezde smanji. Smanjenje detektovanog sjaja zvezde može da se desi i zbog toga što se oko same posmatrane zvezde nalazi okozvezdana (cirkumstelarna) materija. Ovakvu okozvezdanu materiju možemo detektovati kao višak u infracrvenom delu spektra. Zvezde imaju raspodelu emitovanog elektromagnetnog zračenja koja se može opisati približno raspodelom zračenja za crno telo. Kada je prisutna okozvezdana materija onda se u infracrvenom delu spektra detektuje povećanje detektovanog intenziteta zračenja u odnosu na raspodelu crnog tela u istoj oblasti. Ovu pojavu nazivamo infracrveni višak i ona se može posebno modelovati. Modelovanjem se može saznati raspodela okozvezdane materije (da li u obliku sfere ili diska) i njen sastav. Ako je u pitanju pulsirajuća zvezda, kod koje okozvezdani materijal nastaje kao rezultat evolucije zvezda, može se utvrditi i brzina odbacivanja materijala sa zvezde.

Da bi se fenomen pulsacije mogao lakše interpretirati, fotometrijski podaci koji su prikupljani tokom dužeg vremenskog perioda se svode na fazu u intervalu od 0 do 1, koristeći period osnovne frekvencije:

$$\varphi = \frac{(t-t_0)}{P} - E(t), \qquad (1.1)$$

gde je t vreme posmatranja, t_0 je prihvaćeno referentno vreme, E(t) je ceo deo $(t - t_0)/P$, poznat kao "epoha" i P je period pulsacije.

Od otkrića promenljivih zvezda do pre par decenija njihovo posmatranje je bilo dugačak i mukotrpan posao. Ovo se promenilo kada su se posmatranja prebacila sa pojedinačnih zvezda na velike programe za pregled neba. Veliki programi za posmatranje neba na automatizovan način skeniraju nebo dugi niz godina, pa čak i po decenije ili dve, i proizvode dugoročna i precizna posmatranja mnogobrojnih objekata. Ovde ćemo navesti neke od ovih projekata.

MACHO (http://wwwmacho.anu.edu.au/): Projekat *The Massive Compact Halo Objects* (Alcock et al., 1993) je bio operativan između 1993-1999. i imao je osam 2048×2048 CCD kamera, koje su bile montirane na 1,27-metarski teleskop lociran na planini Stromlo u Australiji, sa dva spoljna kanala za merenja. Teleskop je iznova i iznova snimao oblasti Velikog i Malog Magelanovog oblaka. Oblast u kojoj je teleskop bio lociran je izgorela 2003. godine u velikom požaru.

EROS (http://eros.in2p3.fr/): Projekat *The Expérience pour la Recherche d'Objets Sombres* je imao dve faze, EROS-1 1990-1995. i EROS-2 1993-2002. Projekat je opisan u članku Bolijea i saradnika (Beaulieu et al., 1995). EROS-1 je imao dva paralelna posmatračka projekta. Jedan se odvijao na 40-centimetarskom teleskopu u opservatoriji La Sila (*La Silla Observatory*) Evropske južne opservato-

rije (*European Southern Observatory* (ESO³)) u Čileu koji je imao CCD kameru od 3,5 milion piksela, a drugi se sastojao od posmatranja na 1-metarskom Šmit ESO teleskopu sa opcijom plavog ili crvenog filtera. Na 380 fotografskih ploča su bila snimljena posmatranja, koja su kasnije digitalizovana i analizirana. EROS-2 je bio sproveden na 1-metarskom teleskop MarLy na La Sili sa CCD kamerom za snimanje neba.

NSVS (https://skydot.lanl.gov/): Projekat The Northern Variable Sky Survey je bio sproveden kao deo prve generacije programa Robotic Optical Transient Search Experiment (ROTSE-I, http://www.rotse.net). Ovaj pregled pokriva 2/3 neba sa posmatranjima rađenim bez filtera za objekte sjaja do 15,5 magnituda i daje 100 do 400 merenja po objektu (vidi https://skydot.lanl.gov/). Podaci su dostupni na https://skydot.lanl.gov/nsvs/nsvs.php (Woźniak et al., 2004).

SuperWASP (https://wasp.cerit-sc.cz/form): The Wide Angle Search for Plantes je međunarodni konzorcijum. SuperWASP posmatra veliki deo neba u potrazi za vansolarnim planetama. Dva kontinuirano operativna robotska teleskopa pokrivaju severnu i južnu hemisferu. SuperWASP-SEVER se nalazi u opservatoriji Roque de los Muchachos, na Kanarskim ostrvima. SuperWASP-JUG se nalazi u Južnoafričkoj astronomskoj opservatoriji, u Suterlandu. Oba teleskopa koriste osam širokougaonih kamera (rezolucije 2048 × 2048 piksela), koje simultano pregledaju nebo i nadgledaju milione zvezda.

ASAS (http://astrouw.edu.pl/asas/): *The All Sky Automated Survey* (ASAS) (Pojmanski, 2002) je počeo sa radom 1997. godine i još uvek je operativan. Sprovodi fotometrijski pregled celog neba sa oko 20 miliona zvezda svetlijih od 14. magnitude. Teleskopi na južnoj hemisferi se nalaze kod opservatorije Las Kampanas (*Las Campanas*) u Čileu, a odgovarajući duplikati na severnoj hemisferi su na Havajskim ostrvima.

³http://www.eso.org

OGLE (http://ogle.astrouw.edu.pl/): The Optical Gravitational Lensing Experiment (OGLE) (Udalski et al., 1992) je počeo sa radom 1992. godine i operativan je i danas. Projekat je sada u svojoj četvrtoj fazi. Prva faza, OGLE-I (1992-1995), je bila faza testiranja; za OGLE-II (1996-2000) fazu je bio specijalno konstruisan jedan teleskop, pa postavljen u Las Kampanas opservatoriju i posvećen projektu. Faza OGLE-III (2001-2009) je primarno bila posvećena detekciji mikro-gravitacionih sočiva i tranzitnih vansolarnih planeta u četiri polja: u galaktičkom centru, u sazvežđu Carinae i prema oba Magelanova oblaka. Između ostalih rezultata stalnog posmatranja stotina miliona zvezda, konstruisan je najveći katalog promenljivih zvezda i otkrivene su prve vansolarne planete koristeći metodu mikro-gravitacionih sočiva. Nakon tehničkih radova koji su bili obavljeni 2009. godine, 2010. godine počela je četvrta i trenutna faza – OGLE-IV. Podaci su dostupni u V i I filterima.

CSS (https://catalina.lpl.arizona.edu): The Catalina Sky Survey (CSS) je projekat finansiran od strane Nacionalne aeronautičke i svemirske administracije (National Aeronautics and Space Administration (NASA)⁴) (Drake et al., 2009, 2014a, 2017). CSS teleskopi su locirani u planinama Santa Katalina, u Arizoni. CSS upotrebljava tri teleskopa (1,5-metarski Kasegrin reflektor, 1,0-metarski Šmidt teleskop na planini Lemon i 0,7-metarski Šmidt teleskop na planini Bigelo) koji pripadaju Stjuvard opservatoriji Univerziteta u Arizoni, SAD. Podaci o promenljivim zvezdama posmatranim u okviru ovog projekta su dostupni na sajtu http: //crts.caltech.edu/.

VVV Survey (https://vvvsurvey.org/): The VISTA Variables in the Via Lactea koristi VISTA (The Visible and Infrared Survey Telescope for Astronomy) 4metarski teleskop koji je optimizovan da detektuje zvezde u infracrvenom delu spektra (Minniti et al., 2010).

U poslednjih nekoliko decenija proučavanje pulsirajućih zvezda je prošlo kroz revoluciju stavljanjem u rad svemirskih teleskopa. Fotometrijska preciznost svemirskih opservatorija je mnogo veća od onih koje posmatraju sa Zemljine površine jer nestaje uticaj atmosfere i posmatranja mogu da se obavljaju 24 časa bez prekida.

⁴https://www.nasa.gov/

Posmatranja se u većini slučajeva vrše ili bez filtera ili sa širokim filterom. Svemirski teleskopi su dizajnirani tako da imaju najmanji mogući broj pokretljivih elemenata, tako da bi filteri samo komplikovali dizajn i povećali masu samog teleskopa (a samim tim i cenu) i uvećali mogućnost da se nešto pokvari. Osim toga, pošto većina ovih teleskopa ima za cilj otkivanje novih vansolarnih planeta, njima je optimalno da posmatranja vrše bez filtera, jer bi u protivnom gubili jačinu svetlosnog signala prolaskom kroz dodatne optičke elemente.

Glavni cilj većine ovih satelita je traženje vansolarnih planeta, ali njihove baze podataka su od neprocenjive vrednosti za naučnike koji proučavaju osobine pulsirajućih zvezda. Sa ovako preciznim podacima postalo je moguće primeniti naša saznanja iz teorije zvezdanih oscilacija na udaljene zvezde, čime je oblast astroseizmologije doživela do sada neviđeni razvoj. Do tada je najveći deo posmatranja bio vezan za Sunce. Doba svemirskih teleskopa je zaista promenilo proučavanje pulsirajućih promenljivih otkrivajući najfinije promene sjaja ovih zvezda.

Svemirski teleskopi pružaju konstantnu, veoma stabilnu i preciznu fotometriju tokom dugih vremenskih intervala. Fotometrijska preciznost i stabilnost je moguća zbog dizajna stabilizirajućih motora i žiroskopa na ovim teleskopima. Ovde ćemo navesti nekoliko najvažnijih svemirskih teleskopa za oblast promenljivih zvezda. Izuzeci od malopre navedenog cilja traženja vansolarnih planeta su prvi satelit sa liste, INTEGRAL OMC, čija misija je proučavanje izvora gama zračenja i najmanji na listi, MOST, koji je posvećen isključivo posmatranju pulsacije u zvezdama.

INTEGRAL OMC (https://sdc.cab.inta-csic.es/omc/): International Gamma-ray Astrophysics Laboratory, The Optical Monitoring Camera (INTEGRAL OMC) posmatra optičku emisiju primarnih meta izabranih za instrumente koji posmatraju gama zračenje na svemirskom teleskopu Evropske svemirske agencije (European Space Agency (ESA)⁵) zvanom INTEGRAL (lansiran 17.10.2002. godine). OMC ima kapacitet istovremnog posmatranja velikog broja promenljivih objekta koji se nalaze u vidnom polju kamere. Svi podaci su dati u V filteru i mogu se preuzeti sa: https://sdc.cab.inta-csic.es/omc/.

⁵http://www.esa.int/ESA

MOST (http://astro-canada.ca/le_telescope_spatial_most-the_most_space_telescope-eng): The Microvariability and Oscillation of Stars Space Telescope je mali kanadski svemirski teleskop sa ogledalom od 15 cm. Lansiran je 2003. godine i operativan je do današnjeg dana. Zbog veličine svog ogledala, ograničen je na posmatranje sjajnih objekata na nebu.

CoRoT (http://sci.esa.int/corot/): *The Convection, Rotation and planetary Transits* je misija sa 27-centimetarskim teleskopom, koji je lansirala ESA, i bila je operativna između 2006. i 2013. godine. Napravila je značajan broj otkrića u polju vansolarnih planeta, i što je još važnije, u polju astroseizmologije.

Kepler (https://nasa.gov/missions_pages/kepler/main/index.html): Najuticajnija misija do sada je misija Kepler lansirana 2009. godine, a njena produžena misija K2 je počela sa radom 2012. godine. Plan misije je bio posmatranje jednog određenog dela neba u sazvežđima Cygnus, Lyra i Draco sa velikom CCD kamerom koja se sastoji od 42 čipa dimenzija 50 × 25 milimetara sa rezolucijom od 2200 × 1024 piksela (tako da je rezolucija za celu kameru 94,6 mega piksela). Sa glavnim ogledalom od samo 1,4 metara, preciznost Kepler misije daleko nadmašuje preciznost čak i najvećih teleskopa na Zemlji. Misiju Kepler je 2012. godine zamenila misija K2 nakon otkazivanja dva točka za pozicioniranje. U misiji K2 teleskop menja svoje vidno polje približno svakih 80 dana, čineći broj i raznovrsnost posmatranih objekata mnogo većim u odnosu na orginalnu misiju.

Gaia (http://sci.esa.int/gaia/): Gaia, čija arhiva podataka se može pronaći na http://gea.esac.esa.int/archive/ je lansirana 2013. godine. Podaci koji su do sada objavljeni sadrže položaje, paralakse, sopstveno kretanje, fotometrijska merenja i radijalne brzine za milione zvezda. Rezultati misije Gaia će omogućiti konstrukciju trodimenzionalne mape naše Galaksije, Mlečnog puta, i doprineti razumevanju kompozicije, strukture, nastanka i evolucije galaksije.

Nažalost, nijedna cefeida tipa II nije bila posmatrana *MOST* svemirskim teleskopom, pa ni originalnom misijom *Kepler*. Misija *CoRoT* je posmatrala kratkoperiodičnu cefeidu tipa II, zvezdu tipa *BL Herculis*: CoRoT 065946632 (Poretti et al., 2015). Misija *K2* je do sada posmatrala zvezde tipa *BL Herculis*, zvezde tipa *W Virginis* i deo zvezda tipa *RV Tauri* u centralnom ovalu Mlečnog puta, disku i globularnom jatu M80, kao i u galaksiji IC 1613. Ovi tipovi cefeida tipa II su detaljnije opisani u pododeljcima 1.2.1, 1.2.2 i 1.2.3.

Kada je reč o budućim posmatranjima, ona će se vršiti kako sa Zemljine površine, tako i uz pomoć novih svemirskih misija. Ovde ćemo spomenuti samo dva buduća projekta koji će značajno doprineti proširenju našeg znanja.

TESS (http://tess.gsfc.nasa.gov): The Transiting Exoplanet Survey Satellite je najnoviji svemirski teleskop koji je u potrazi za vansolarnim planetama i igraće važnu ulogu u detaljnom proučavanju promenljivih zvezda. TESS je lansiran 18.04.2018. godine i trenutno prolazi kroz period testiranja sistema na teleskopu. U poređenju sa misijom Kepler, oblast koju će pokrivati je 400 puta veća. Misija TESS će pratiti više od 200 000 zvezda.

LSST (https://lsst.org): Large Synoptic Survey Telescope je 8,4-metarski teleskop koji je trenutno u izgradnji u Čileu. LSST će kontinuirano snimati nebo počevši od 2022. godine. Jedan od ciljeva će mu biti obezbeđivanje novih informacija o do sada neotkrivenim promenljivim zvezdama.

Sada kada znamo na koji način i sa čime posmatramo promenljive zvezde u sledećim pasusima ćemo opisati koje vrste promenljivih zvezda poznajemo i kako se one međusobno razlikuju.

Zvezde koje pokazuju promene sjaja možemo razvrstati u dve kategorije - istinski (unutrašnje) i prividno (spoljašnje) promenljive zvezde - u zavisnosti od toga kakav proces uzrokuje promenu. Slika 1.3 prikazuje najnoviju detaljnu klasifikaciju promenljivih zvezda (Eyer & Mowlavi, 2008).

Pulsirajuće zvezde su istinski promenljive, što znači da se njihov sjaj tj. luminoznost menja zbog unutrašnjih promena u zvezdi, koje uzrokuju posmatrane promene. Ove promene se objašnjavaju tzv. κ -mehanizmom (vidi odeljak 1.5) i prouzrokovane su evolucijom zvezde (detalji su dati u odeljku 1.6).

Evolucija zvezda se često opisuje uz pomoć Hercšprung-Raselovog dijagrama (HRD). Pulsirajuće zvezde zauzimaju region koji se zove traka nestabilnosti (TN).

opisa pojmova na slici je sledeći: Variability tree: drvo vrsta promenljivih zvezda, Extrinsic: prividno (spoljašnje) promenljive zvezde, Intrinsic: istinski (unutrašnje) promenljive zvezde, Asteroids: asteroidi, Rotation: rotacija, Eclipse: eklipsa, Stars: zvezde, Microlensing: mikro-sočiva, Eruptive: eruptivne, Cataclysmic: kataklizmične, Pulsation: pulsacija, Secular: sekularne promene, Slika 1.3: Najnovija klasifikacija promenljivih zvezda data je u obliku razgranatog stabla. Ova slika je orginalno bila objavljena u članku Ejera i Movlavija (Eyer & Mowlavi, 2008), a ovde je prikazana poboljšana verzija dobijena ljubaznošću Lorena Ejera. Prevod Asteroid occultation: okultacija asteroida, Eclipsing binary: eklipsno dvojni sistem, Planetary transits: tranziti planeta, Photom. otometrijska, Period: period, Hot OB Supergiants: vrući OB superdžinovi, Solar-like: nalik Suncu.

Tip promenljive zvezde		Period	Vrsta pulsacije
Brzooscilirajuće zvezde			
klase Ap		5 - $25~{\rm min}$	\overline{NR}
SX Phoenicis		0,7 - 1,9 h	R, NR
$\gamma Doradus$		0,3 - $2,6$ d	\overline{NR}
$eta \ Cephei$		2,4 - $7,2$ h	R, NR
δ Scuti		0,03 - 0,3 d	R, NR
RR Lyrae		0,2 - $1,2$ d	R, NR
Anomalne cefeide		0,2 - 4 d	R
Klasične cefeide		1 - 50 d	R
Cefeide tipa II	BL Herculis	1 - $4/5 \ d$	R
	$W \ Virginis$	4 - 20 d	R
	RV Tauri	$20 - 150 \ d$	R

Tabela 1.2: Osnovne karakteristike pulsirajućih zvezda iz trake nestabilnosti HRD.

Slika 1.4 pokazuje položaj raznih vrsta promenljivih zvezda na HRD. Različite vrste promenljivih zvezda koriste se za različite relacije *PL*. Izuzetak od ovog pravila su interaktivni dvojni sistemi, pošto materijal koji se pretače sa jedne zvezde na drugu može da prouzrokuje ponašanje koje ne bismo mogli videti kada bi ista zvezda evoluirala kao izolovana.

Na slici 1.4 vidimo da se u istoj traci nestabilnosti mogu naći mladi obejkti Populacije I, kao što su klasične cefeide, i stari objekti Populacije II, kao što su cefeide tipa II. Populacijom I se nazivaju zvezde koje su nastale nakon što je međuzvezdani prostor obogaćen metalima koje su zvezde prethodnih generacija stvorile u eksplozijama supernovih. Zvezde Populacije II imaju nisku metaličnost, a one koje su imale malu masu postoje do danas (ovakve zvezde su, na primer, i cefeide tipa II (vidi odeljak 1.2) i zvezde tipa *RR Lyrae* (koje smo opisali u sledećem pasusu)).

Tipovi pulsirajućih zvezda sa nekoliko osnovnih parametara (period pulsacije (P), masa (M) i vrsta pulsacije) su prikazani u tabeli 1.2 (slične tabele mogu se pronaći na primer u knjigama Koksa (Cox, 1980), Kerola i Ostlija (Carroll & Ostlie, 2006) i Katelana i Smita (Catelan & Smith, 2015)). Većina ovde navedenih zvezda pulsira radijalno (R), što znači da zvezda održava svoju sfernu simetriju prilikom širenja i skupljanja. Kod neradijalnih pulsacija (NR), delovi zvezda se kreću suprotno u odnosu na centar mase, čineći da se na površini pojedini delovi šire, a drugi skupljaju u isto vreme. Detaljniji opis je dat u knjizi Erts i saradnika (Aerts

Slika 1.4: Hercšprung-Raselov dijagram koji pokazuje razne tipove pulsirajućih zvezda. Ljubaznošću Sajmona Džefrija (Simon Jeffery), zasnovano na slici 1 iz članka Džefrija i saradnika (Jeffery et al., 2015).

Slika 1.5: Kriva sjaja zvezde KIC 5559631 snimljena svemirskim teleskopom *Kepler*, preuzeta iz rada Kolenberg i saradnika (Kolenberg et al., 2010), slika 1: ⓒ AAS. Reprodukovano uz dozvolu.

et al., 2010).

U narednom delu dat je kratak opis pojedinačnih tipova promenljivih kojima smo se bavili ili koje su povezane sa zvezdama koje su proučavane u ovoj tezi.

Zvezde tipa *RR Lyrae*. Zvezde tipa *RR Lyrae* (RRL) su najbrojniji tip pulsirajućih zvezda (ima ih ~ 200 000 u Mlečnom putu). Ove zvezde i cefeide tipa II imaju iste zvezde-roditelje, tako da su te dve vrste pulsirajućih zvezda slične. Na primer, mase su za oba tipa oko $0.5 - 0.6 M_{\odot}$, ali imaju različite relacije *PL*. Zvezde tipa *RR Lyrae* se nalaze na delu HRD koji se zove horizontalna grana (HG). O ovoj fazi evolucije govorimo više u odeljku 1.6. Na slici 1.4 zvezde tipa *RR Lyrae* označene su sa "RR Lyr". Imaju A ili F spektralni tip. Podtipovi zvezda tipa *RR Lyrae* – RRc i RRd – pokazuju dodatne promene u amplitudi i obliku krivih sjaja za razliku od podtipa RRab. Neke od zvezda tipa *RR Lyrae* pokazuju modulacije amplitude koje imaju svoj sopstveni period. Ovaj fenomen zovemo "Blaškov efekat". Prisustvo malopre spomenutih dodatnih promena rezultuje u većim greškama u relaciji *PL*.

Zvezde tipa *RR Lyrae* su najviše proučavane pulsirajuće zvezde i mnoge metode, kao i zaključci koji proizilaze iz njihovog proučavanja mogu se primeniti i za cefeide tipa II. Slika 1.5 pokazuje kako izgleda kriva sjaja zvezde tipa *RR Lyrae*, KIC

HJD – 2400000

Slika 1.6: Krive sjaja zvezda tipa RR Lyrae koje pokazuju različite modulacije posmatrane svemirskim teleskopom Kepler. Preuzeto iz rada Benkoa i saradnika (Benkő et al., 2010), slika 1.

5559631, tokom jednog punog perioda pulsacije, snimljena svemirskim teleskopom *Kepler*, a preuzeta iz članka Kolenberg i saradnika (Kolenberg et al., 2010). Slika 1.6 preuzeta je iz članka Benkoa i saradnika (Benkő et al., 2010) i pokazuje dugoročne promene vidljive u krivama sjaja više zvezda tipa *RR Lyrae*, takođe snimljenih svemirskim teleskopom *Kepler*.

Klasične cefeide. Klasične cefeide (DCEP) su poznate po tome što imaju široki opseg perioda od 1 do 140 – 160 dana (a posmatrane su klasične cefeide i sa periodima do 200 dana) i pulsiraju radijalno. Njihove mase su između 4 i 12 M_{\odot} , a spektralni tipovi se menjaju između F6 i K2. One su zvezde koje pripadaju Populaciji I. Formiraju sopstvenu relaciju *PL* koja sadrži promenljive zvezde koje su sjajnije od cefeida tipa II. Zbog svog sjaja mogu se detektovati u okolnim galaksijama. U Mlečnom putu njihove paralakse je lako izmeriti (upravo zahvaljajući sjaju) i zato predstavljaju početnu tačku kalibracije relacije *PL* (za detalje vidi odeljak 1.7).

Klasične cefeide pulsiraju u osnovnoj frekvenciji (F), prvoj nadmodi (1O) i drugoj nadmodi (2O) i njihovim kombinacijama. Njihove krive sjaja se menjaju sa porastom perioda pulsacije. Krive sjaja zvezda koje pulsiraju u prvoj i drugoj nadmodi imaju oblik blizak sinusnoj funkciji, sa mnogo manjim amplitudama nego kod zvezda koje pulsiraju u osnovnoj frekvenciji. Kolekcija krivih sjaja klasičnih cefeida je prikazana na slici 1.7.

Slika 1.7: Krive sjaja klasičnih cefeida koje pulsiraju u osnovnoj frekvenciji, prvoj nadmodi i drugoj nadmodi, redom, posmatrane u Velikom Magelanovom oblaku iz kataloga OGLE-III, preuzete iz rada Sošinjskog i saradnika (Soszynski et al., 2008), slika 1.

1.2 Cefeide tipa II

U daljem tekstu ćemo fokusirati pažnju na cefeide tipa II (T2C). Valerštajn (Wallerstein, 2002) je dao dobar pregled opštih karakteristika koje su poznate, pa i onih koje do tada nisu bile razjašnjenje u vezi sa cefeidama tipa II, a napomenućemo i nekoliko činjenica koje su važne za rezultate objavljene u ovoj tezi.

Cefeide tipa II su radijalno pulsirajuće zvezde sa masama oko $0.5 - 0.6 M_{\odot}$. One pulsiraju samo sa osnovnom frekvencijom (F) i zbog toga nisu dobri kandidati za astroseizmološka ispitivanja (Aerts et al., 2010).

Cefeide tipa II se mogu pronaći u Mlečnom putu, globularnim jatima, sferoidalnim i patuljastim elipsoidnim galaksijama (UMi i Leo I), eliptičnim galaksijama (NGC 147, NGC 185, NGC 205) i nepravilnim galaksijama (IC 1613) (Wallerstein, 2002).

U prethodnim godinama Opšti katalog promenljivih zvezda (Samus et al., 2009a, 2017) je bio glavni izvor svih poznatih klasa promenljivih zvezda, ali je sa porastom količine podataka iz velikih posmatračkih programa njihova baza postepeno zaostajala u odnosu na nove objavljene podatke. U literaturi (naročito starijoj), kao i u Opštem katalogu promenljivih zvezda i u bazi podataka za pojedinačne astronomske objekte - $Simbad^6$, cefeide tipa II sa periodima od 1 do 35 dana se nazivaju zvezdama tipa W Virginis (CW). To je ujedno i naziv podtipa koji obuhvata zvezde sa periodima od 8 do 35 dana i koji se označava u Opštem katalogu promenljivih zvezda oznakom "CWA". U Opštem katalogu promenljivih zvezda oznaka za kratkoperiodične cefeide tipa II, poznate kao zvezde tipa BL Herculis, je "CWB", a za kandidate "CWB:". Zvezde tipa BL Herculis su definisane u Opštem katalogu promenljivih zvezda kao zvezde sa amplitudama od 0.3 do 1.2 magnitude u V filteru. Imaju relaciju PL koja je ispod od one za klasične cefeide za vrednost magnitude od 0,7 do 2. Oblik krive sjaja im se razlikuje od oblika krivih sjaja klasičnih cefeida za isti period. Pri kratkim periodima može se videti izbočina na silaznoj strani, a ponekad se vidi i široki, ravni maksimum.

Cefeide tipa II sa najdužim periodima se zovu zvezde tipa RV Tauri (RVT)

⁶http://simbad.u-strasbg.fr/simbad/

One su opisane u Opštem katalogu promenljivih zvezda kao radijalno pulsirajući superdžinovi sa spektralnim tipovima F - G u maksimumu i K - M u minimumu. Njihove krive sjaja pokazuju alternaciju u dubini susednih minimuma (primarni i sekundarni). Ponekad se može desiti da primarni i sekundarni minimumi toliko promene svoju amplitudu da im se zamene mesta. Amplituda pulsacije je 3 - 4 magnitude u V filteru. U Opštem katalogu promenljivih zvezda su periodi za zvezde tipa *RV Tauri* od 30 do 150 dana, gde se pod periodom podrazumeva interval između dva susedna primarna minimuma (takozvani formalni period). Prepoznatljiva su dva podtipa: RVA i RVB. Podtip RVA ne pokazuje promenu u prosečnoj magnitudi (npr. AC Her), a kod podtipa RVB se može detektovati promena srednje vrednosti magnitude do dve magnitude sa periodima od 600 do 1500 dana. Tačan opis je dat na veb stranici Opšteg kataloga promenljivih zvezda: http://www.sai.msu. su/gcvs/gcvs/iii/vartype.txt.

Sa velikim bazama podataka, nove specifikacije za klasifikaciju su postale sve važnije. Većina posmatračkih projekata ima svoj sopstveni klasifikacioni metod, ali se u osnovi oslanjaju na Furijeove parametre radi razlikovanja pojedinih tipova promenljivih zvezda. Furijeovi parametri daju opis oblika krive sjaja koristeći Furijeovu dekompoziciju. Ova metoda je detaljno opisana u odeljku 3.4.

Najznačajniji među ovim projektima je OGLE. Dužina, preciznost, konzistentnost i dostupnost podataka su faktori zbog kojih naučnici koriste OGLE podatke za proučavanje pulsacije i relacije *PL*. Tokom izrade ove teze prihvatili smo njihov kriterijum klasifikacije, čiji je kratak opis dat u sledećem pasusu.

Raspodela cefeida tipa II u centralnom ovalu Mlečnog puta je data u katalogu OGLE-III (Soszyński et al., 2011a), koju smo ovde prikazali na slici 1.8.

Slika 1.8: Raspodela cefeida tipa II na podtipove: zvezde tipa *BL Herculis*, zvezde tipa *W Virginis* i zvezde tipa *RV Tauri* u centralnom ovalu Mlečnog puta. Vertikalne isprekidane linije pokazuju granice između podtipova kod 5 i 20 dana. Raspodela je preuzeta iz članka Sošinjskog i saradnika (Soszyński et al., 2011a), slika 3.

Cefeide tipa II su na osnovu perioda pulsacije podeljene na sledeća tri podtipa:

- zvezde tipa *BL Herculis* (BLH): 1 < P < 4 5 dana,
- zvezde tipa W Virginis (WVir): 4 < P < 20 dana,
- zvezde tipa RV Tauri (RVT): 20 < P < 100 dana.

Primeri krivih sjaja za svaki podtip su date na slici 1.9 preuzetoj iz članka Sošinjskog i saradnika (Soszyński et al., 2011a).

Tim OGLE se uglavnom oslanjao na Furijeove parametre, ali je i pozicija svake zvezde na Vesenhajtovoj relaciji PL takođe bila uzeta u obzir. Svaka kriva sjaja je pojedinačno bila pregledana od strane članova tima OGLE pre nego što je krajnja klasa bila dodeljene svakom objektu.

Sledeća poglavlja opisuju svaki podtip posebno.

Slika 1.9: Fazne krive sjaja za zvezde tipa BL Herculis, zvezde tipa W Virginis i zvezde tipa RV Tauri, preuzete iz kataloga OGLE-III u I filteru, objavljene u radu Sošinjskog i saradnika (Soszyński et al., 2011a), slika 2.

1.2.1 Zvezde tipa *BL Herculis*

Kratkoperiodične cefeide tipa II se zovu zvezde tipa *BL Herculis* (BLH). Ove zvezde imaju vrlo prepoznatljiv oblik krive sjaja koji je prikazan na slici 1.9. Pojedini članovi ovog podtipa su bogati ugljenikom – V553 Cen i RT TrA (Wallerstein, 2002).

Šmit sa saradnicima (Schmidt et al., 2003) je objavio detaljnu studiju karakteristika spektralnih linija u zvezdama tipa *BL Herculis* i pronašao da je ponašanje linije H_{α} najverovatnije povezano sa kvrgama ili izbočinama koje se mogu videti na krivama sjaja. Prva zvezda ovog tipa koja je bila otkrivena je zvezda BL Her po kojoj je ceo podtip dobio ime. Kriva sjaja ove zvezde je prikazana na slici 1.10 (slika 2 iz članka Smita i saradnika (Smith et al., 1978)). Na slici 1.11 prikazan je je jedan primer upravo pomenutog ponašanja promene oblika linije H_{α} tokom jedne pulsacione faze za zvezdu BL Her, koju je Šmit sa saradnicima opisao u svom radu (Schmidt et al., 2003). Na slici 1.11 je prikazano 20 spektara zvezde BL Her merenih u različitim vremenskim intervalima, ali su prikazani poređani po fazi pulsacionog perioda.

Slika 1.10: Fazne krive sjaja zvezde BL Her u Stromgrenovim fotometrijskim indeksima preuzete iz članka Smita i saradnika (Smith et al., 1978), slika 2: © The Astronomical Society of the Pacific. Reprodukaovano sa dozvolom *IOP Publishing*. Sva prava zadržana.

Slika 1.11: Profili linije H_{α} zvezde BL Her poređane po fazi pulsacije (Jurkovity, 2006).

Spektre su merili Dr Jožef Vinko i njegovi saradnici u opservatoriji David Danlop u Kanadi između 1995-1998. godine. Slika je bila deo diplomskog rada autora teze prilikom završetka studija na Univerzitetu u Segedinu (Mađarska), 2006. godine (vidi http://astro.u-szeged.hu/szakdolg/JurkovityMonika.pdf). Jasno se može uočiti prelaz iz apsorpcije u emisiju i nazad, što je rezultat kretanja atmosfere zvezde usled pulsacije.

Slika 1.12: Krive sjaja zvezda KT Sco i M80-V1. Podaci su sa svemirskog teleskopa Kepler, misija K2. Sa leve strane se vide svi mereni podaci, a sa desne strane su fazne krive sjaja. Greške su manje od simbola na slici. Promene u amplitudama od ciklusa do ciklusa su dobro vidljive kod obe zvezde, naročito u slučaju M80-V1. Slika je preuzeta iz članka Plahi i saradnika (Plachy et al., 2017): slika 3.

1.2.2 Zvezde tipa W Virginis

Zvezde tipa *W Virginis* (WVir) tipično imaju periode između 4 - 5 dana i 20 dana, iako neke od njih mogu imati i duže periode. Njihove krive sjaja pokazuju promene u amplitudi, a periodi se menjaju zbog činjenice da ove zvezde prelaze traku nestabilnosti HRD u oba pravca naizmenično, dok u unutrašnjosti prolaze kroz termalne impulse (detalji se mogu naći u odeljku 1.6). Imaju sinusoidalne krive sjaja bez izbočina, prikazane na slici 1.9.

U članku Plahi i saradnika (Plachy et al., 2017) objavljeni su rezultati prvih merenja cefeida tipa II sa svemirskim teleskopom *Kepler*, misija *K2*. Posmatrane krive sjaja se nalaze na levoj, a krive sjaja svedene na fazu na desnoj strani slike 1.12.

1.2.2.1 Neobične zvezde tipa W Virginis

Neobične zvezde tipa *W Virginis (peculiar W Virginis* - pWVir) su detaljno opisane u projektu OGLE (Soszyński et al., 2008a, 2010a). Ove zvezde pokazuju pulsacione odlike u svojim krivama sjaja slične zvezdama tipa *W Virginis* i prema

Slika 1.13: Fazna kriva sjaja neobične zvezde tipa *W Virginis*: OGLE-LMC-T2CEP-019, preuzeta iz kataloga OGLE-III: http://ogle.astrouw.edu.pl/atlas/W_Vir. html.

periodima pripadaju tom podtipu, ali ih razlikuje to što imaju veću luminoznost. Oblik krive sjaja sugeriše da se ne radi o klasičnim cefeidama iako su dovoljno sjajne da bi mogle biti u grupi sa klasičnim cefeidama. Slika 1.13 pokazuje krivu sjaja OGLE-LMC-T2CEP-019, svedenu na fazu, u *I* filteru.

Jedan deo neobičnih zvezda tipa W Virginis je u dvojnom sistemu. Prisustvo sekundarne zvezde uzrokuje povećanje ukupnog sjaja sistema. Slika 1.14 pokazuje nekoliko primera. Pilecki i saradnici (Pilecki et al., 2017) i Gronevegen i Jurković (Groenewegen & Jurkovic, 2017a) su 2017. godine procenili mase obe komponente OGLE-LMC-T2CEP-098 uz pomoć dve različite metode i dobili masu pulsirajuće komponente. Koristeći model za klasične cefeide Pilecki i saradnici (Pilecki et al., 2017) dobili su masu od $1,51 \pm 0,09M_{\odot}$. Gronevegen i Jurković (Groenewegen & Jurkovic, 2017a) koristeći model za klasične cefeide dobili su masu od $1,37\pm0,04M_{\odot}$, a koristeći model za zvezde tipa RR Lyrae $1,52\pm0,07M_{\odot}$. Rezultati iz ova dva rada se slažu unutar greške. Važno ih je bilo ovde navesti, jer nema drugih objavljenih članaka u vezi sa neobičnim zvezdama tipa W Virginis.

1.2.3 Zvezde tipa RV Tauri

Zvezde tipa *RV Tauri* imaju karakteristične promene u dubinama naizmeničnih minimuma (Wallerstein, 2002) i periode između 20 i 100 dana. Gornja granica pulsacionog perioda može da bude i do 150 dana. Zvezde tipa *RV Tauri* su podeljene u dve podgrupe (iz Opšteg kataloga promenljivih zvezda):

Slika 1.14: Cefeide tipa II koje su u eklipsno dvojnim sistemima. Levo su prikazane pulsacione krive sjaja svedene na fazu, sa periodom pulsacije. U sredini su krive sjaja eklipsnih sistema. U desnom panelu su krive sjaja sekundarne komponente koja je ostala prisutna u Furijeovoj dekompoziciji nakon što je signal očišćen od perioda dvojnog sistema i perioda pulsacije. Čini se da je ova sekundarna komponenta rezultat reziduuma dvojnosti u signalu. Slika je preuzeta iz rada Sošinjskog i saradnika (Soszyński et al., 2010a), slika 5.

- RVa srednja vrednost sjaja se ne menja;
- RVb pokazuju periodične promene u srednjoj vrednosti sjaja sa periodima od 600 - 1500 dana.

Slike 1.15 i 1.16 pokazuju krive sjaja zvezde podtipa RVa OGLE-LMC-T2CEP-248 i zvezde podtipa RVb OGLE-LMC-T2CEP-345 preuzete iz baze podataka OGLE u *I* filteru (http://ogle.astrouw.edu.pl/atlas/RV_Tau.html).

Zvezde tipa *RV Tauri* u velikom broju slučajeva imaju infracrveni višak, što znači da gube masu prilikom poslednjeg prelaska na samom vrhu trake nestabilnosti. Na

Slika 1.15: Fazna kriva sjaja zvezde tipa *RV Tauri* podtipa RVa (OGLE-BLG-T2CEP-248) preuzeta iz baze podataka OGLE u *I* filteru: http://ogle.astrouw.edu.pl/atlas/RV_Tau.html.

Slika 1.16: Fazna kriva sjaja zvezde tipa *RV Tauri* podtipa RVb (OGLE-BLG-T2CEP-345) preuzeta iz baze podataka OGLE u *I* filteru: http://ogle.astrouw.edu.pl/atlas/RV_Tau.html.

ovom poslednjem prelazu trake nestabilnosti, zvezde koje pripadaju ovom podtipu cefeida tipa II postaju objekti posle asimptotske grane džinova (pAGDž) (više o ovome će biti reči u odeljku 1.6). Raspodela odbačenog materijala može imati oblik diska, što se objašnjava prisustvom druge komponente, ili materijal može biti sferno raspoređen oko zvezde što se očekuje kod zvezde koja nije u dvojnom sistemu i radijalno pulsira. U ovoj tezi se detaljno bavimo pitanjem prisustva i raspodele infracrvenog viška kod zvezda tipa *RV Tauri* u Velikom i Malom Magelanovom oblaku.

1.3 Anomalne cefeide: osobine i istorijat

Anomalne cefeide (AC) su pulsirajuće zvezde sa periodima između 0,4 i 4 dana, s tim što imaju veće mase od cefeida tipa II, u opsegu od 1,2 do 1,8 M_{\odot} . U Velikom Magelanovom oblaku i Malom Magelanovom oblaku one su sjajnije od cefeida tipa II i na njihovoj relaciji *PL* se vidi separacija između anomalnih cefeida koje pulsiraju u osnovnoj frekvenciji (F) i onih koje pulsiraju u prvoj nadmodi (10) (Soszyński et al., 2008a, 2010a,b). Njihove karakteristike su opisane u radovima Bonoa i saradnika, Fijorentino i saradnika i u radu Gronevegena i Jurković (Bono et al., 1997a; Fiorentino et al., 2006a; Groenewegen & Jurkovic, 2017a). Slika 1.17 prikazuje krive sjaja anomalnih cefeida koje pulsiraju u osnovnoj frekvenciji i onih koje pulsiraju u prvoj nadmodi iz kataloga OGLE-III (Soszyński et al., 2008a).

Broj identifikovanih anomalnih cefeida u Velikom Magelanovom oblaku i u Malom Magelanovom oblaku u katalogu OGLE-IV je 250, od čega 174 zvezde pulsiraju u osnovnoj frekvenciji i 76 zvezda pulsira u prvoj nadmodi. U radu Sošinjskog i saradnika (Soszyński et al., 2017a) je broj identifikovanih anomalnih cefeida u centralnom ovalu Mlečnog puta porastao na 20 (19 anomalnih cefeida koje pulsiraju u osnovnoj frekvenciji i jedna anomalna cefeida koja pulsira u prvoj nadmodi).

U knjizi Katelana i Smita (Catelan & Smith, 2015) stoji da se većina otkrivenih anomalnih cefeida može pronaći u patuljastim sferoidnim galaksijama, u Magelanovim oblacima i nekoliko njih u globularnim jatima, a znatno manji broj u Mlečnom putu. Cela podgrupa je poznata i pod oznakom *BLBOO* u Opštem katalogu promenljivih zvezda i dobila je ime po promenljivoj BL Boo. Smatralo se da je ovo jedina anomalna cefeida u Mlečnom putu, ali se ispostavilo da je ova zvezda član galaktičkog globularnog jata NGC 5466. Otkrili su je Zin i Dan (Zinn & Dahn, 1976), a kasnije je proučavana u radovima Mekartija i Nemeca (McCarthy & Nemec, 1997) i Nemeca i Mekartija (Nemec & McCarthy, 1998). Sabadoš i saradnici (Szabados et al., 2007) su objavili detaljnu studiju zvezde XZ Ceti i potvrdili da je ova zvezda anomalna cefeida koja pulsira u prvoj nadmodi, čime se broj poznatih anomalnih cefeida (ili zvezda tipa BLBOO, kako su tada bile nazivane) u Mlečnom putu povećao na dva.

U literaturi postoje članci o cefeidama tipa II koji dodatno komplikuju razumevanje klasifikacije, jer su zaključci o osobinama ovih zvezda, koji su doneseni na osnovu dostupnih podataka, bili drugačije interpretirani. U sledećih par redova ćemo dati

Slika 1.17: Primeri faznih kriva sjaja anomalnih cefeida u I filterima. Sa leve strane su anomalne cefeide koje pulsiraju u osnovnoj frekvenciji, a sa desne strane su anomalne cefeide koje pulsairaju u prvoj nadmodi. Slike su preuzete iz kataloga OGLE-III (Soszyński et al., 2008a), slika 4.

kratak pregled ovih članaka, dok se duži pregled može naći u knjizi Katelana i Smita (Catelan & Smith, 2015).

Dithelm (Diethelm, 1983) je objavio klasifikaciju pulsirajućih zvezda razlikujući ih na osnovu oblika njihovih krivih sjaja. U ovom radu on je za zvezde: V716 Oph, BF Ser, CE Her, VX Cap, XX Vir, EK Del, UY Eri i UX Nor, dao oznaku "zvezde tipa RR Lyrae podtipa d" (RRd). Petersen i Dithelm (Petersen & Diethelm, 1986) su zaključili da osobine tada poznatih cefeida tipa II nisu uniformne i u ovom članku su zvezde tipa "RRd" označene kao objekti koji formiraju zasebnu grupu. Da bi se stvar dalje komplikovala, nomenklatura za zvezde tipa *RR Lyrae* (RRL) je uključivala podtip takođe nazvan "RRd" koji opisuje zvezde tipa *RR Lyrae* koje u isto vreme pulsiraju u osnovnoj frekvenciji i prvoj nadmodi sa odnosom ova dva perioda od 0,745. Ustanovljeno je da je gornja granica perioda pulsacije za slučaj zvezda tipa *RR Lyrae* 1 dan (Catelan & Smith, 2015).

U katalogu CSS (Drake et al., 2014a) objavljena je detekcija sveukupno 64 anomalne cefeide (Drake et al., 2014b) u Mlečnom putu. Dakle, broj anomalnih cefeida je sa katalogom CSS porastao sa dva na 64. Zatim su Drejk i saradnici (Drake et al., 2017) objavili najnoviji katalog CSS i povećali broj poznatih anomalnih cefeida na 153 u Mlečnom putu. Katalog OGLE-IV je pronašao još 20 novih anomalnih cefeida u regiji centralnog ovala Mlečnog puta (Soszyński et al., 2017b).

Anomalne cefeide su zvezde niskih metaličnosti. Fijorentino i Moneli (Fiorentino & Monelli, 2012) su došli do zaključka da su anomalne cefeide zvezde koje su nastale kao rezultat evolucije individualnih zvezda sa srednjim masama od $1, 2 \pm 0, 2M_{\odot}$ i starosti od 1 do 6×10^9 godina. U Velikom Magelanovom oblaku su veoma retke u odnosu na celokupan broj zvezda u galaksiji. Prethodno objašnjenje u literaturi za nisku metaličnost anomalnih cefeida je bilo povezano sa mogućom evolucijom u dvojnom sistemu, ali to objašnjenje nije u saglasnosti sa činjenicom da se kod anomalnih cefeida u Velikom i Malom Magelanovom oblaku nije mogao naći infracrveni višak oko zvezda (koji bi bio očekivan ako je došlo do interakcije među komponentama dvojnog sistema).

1.4 Zvezdane pulsacije

1.4.1 Radijalne pulsacije

Na slici 14.5 u knjizi Karola i Ostlija (Carroll & Ostlie, 2006) (ovde slika 1.18) su prikazane osobine pulsacije zvezde δ Cep (podaci preuzeti iz Švarcšildovog članka, Schwarzchild (1938)). Promene u magnitudi (V), efektivnoj temperaturi (T_{eff}), poluprečniku (R/R_{min}) i radijalnoj brzini (V_r (kms⁻¹)) su prikazane tokom jednog ciklusa pulsacije. Kada zvezda ima minimalni poluprečnik, površina zvezde ima najveću radijalnu brzinu. Ovaj fenomen je poznat kao "fazno zaostajanje", a fizičko objašnjenje je dao Kastor (Castor, 1968) i opisano je u knjizi Koksa (Cox, 1980).

Pulsaciju možemo opisati kao zvučni talas u unutrašnjosti zvezde. Ova aproksimacija nam daje mogućnost da izračunamo pulsacioni period (Π) zvezde koristeći jednačinu:

$$\Pi = \frac{2 \times R}{v_s},\tag{1.2}$$

gde je R poluprečnik zvezde, to jest dužina koju zvučni talas treba da pređe, a v_s brzina zvuka u adijabatskoj aproksimaciji (što znači da nema razmene toplote sa okruženjem).

Dakle, ako je R poluprečnik zvezde, a P pritisak u zvezdi i ako pretpostavimo da je gustina ρ konstantna, dok je γ odnos specifičnih toplota za materijal u zvezdi (za jednoatomski gas γ iznosi 5/3), onda je adijabatska brzina zvuka, v_s :

$$v_s = \sqrt{\frac{\gamma P}{\rho}}.\tag{1.3}$$

Da bismo dobili promenu pritiska u zvezdi, krenućemo od jednačine hidrostatičke ravnoteže:

$$\frac{dP}{dr} = -G\frac{M_r\rho}{r^2} = -\rho g, \qquad (1.4)$$

gde je $g \equiv GM_r/r^2$ lokalna vrednost gravitacionog ubrzanja pri datom poluprečniku r. Prema poslednjoj jednačini, da bi zvezda bila u ravnoteži mora postojati gradijent

Slika 1.18: Posmatrane promene pulsirajuće zvezde δ Cep. Prikazani podaci su uzeti iz članka Švarcšilda (Schwarzchild, 1938). Preuzeto iz knjige Karola i Ostlija (Carroll & Ostlie, 2006), slika 14.5.

pritiska dP/dr, koji se suprostavlja gravitaciji. Masu možemo napisati ka
o $M_r = 4/3\pi r^3 \rho$, tako da jednačina postaje:

$$\frac{dP}{dr} = -G\frac{\frac{4}{3}\pi r^3\rho\rho}{r^2} = -\frac{4}{3}\pi G\rho^2 r.$$
(1.5)

Nakon integracije pritisak postaje:

$$P(r) = \frac{2}{3}\pi G\rho^2 (R^2 - r^2).$$
(1.6)

Na osnovu jednačine 1.2 srednji pulsacioni period (Π) je:

$$\Pi \approx 2 \int_{0}^{R} \frac{dr}{v_s} \approx 2 \int_{0}^{R} \frac{dr}{\sqrt{\frac{2}{3}\gamma\pi G\rho(R^2 - r^2)}},$$
(1.7)

$$\Pi \approx \sqrt{\frac{3\pi}{2\gamma G\rho}}.$$
(1.8)

Jednačina 1.8 pokazuje da je period pulsacije obrnuto proporcionalan kvadratnom korenu srednje gustine zvezde. Ova relacija između perioda i srednje gustine objašnjava zašto se period pulsacije smanjuje niz trake nestabilnosti od džinovskih zvezda do jako gustih belih patuljaka. Iako je ovo jako gruba procena ona je u dobrom slaganju sa posmatračkim podacima za klasične cefeide (Carroll & Ostlie, 2006).

Generalno, radijalne mode zvezdane pulsacije se mogu opisati pomoću zvučnih talasa i može se primeniti analogija sa prolaskom zvučnih talasa kroz cev orgulja koja je otvorena na jednoj strani (kao što je prikazano na slici 1.19). U slučaju osnovne frekvencije (*fundamental mode* (F)), sve čestice se kreću u jednom smeru. Kada postoji jedan čvor između centra i površine vidimo prvu nadmodu (*first overtone* (10)) a čestice gasa se kreću u oba smera gledano u odnosu na čvor. Kod druge nadmode (*second overtone* (20)) vidimo dva čvora, kao što je to opisano u knjizi Karola i Ostija (Carroll & Ostlie, 2006). Ilustracija ovog ponašanja je prikazana na slici 1.19.

Cefeide tipa II pulsiraju samo u osnovnoj frekvenciji, dok se ostale nadmode mogu pronaći u unutrašnjosti zvezde i njihova rezonancija može dovesti do pojave alternacije amplitude pulsacije od jednog ciklusa do drugog. Sledeći odeljak se bavi detaljnijim opisom fenomena i modela pulsacije (odeljak 1.4.2).

Anomalne cefeide pulsiraju u osnovnoj frekvenciji i prvoj nadmodi, kao što vidimo iz posmatranja. Kada zvezda pulsira tako da je prva nadmoda dominantna frekvencija onda oblik krive sjaja (u većini slučajeva) liči na sinusodialnu krivu ili ima manje strm nagib na uzlaznom delu, kao i manje amplitude u odnosu na osnovnu frekvenciju.

Slika 1.19: Kao analogija pulsacija u zvezdi može se koristiti ponašanje stojećih zvučnih talasa u cevi za orgulje, koje su otvorene na jednoj strani. Na gornjem delu je prikazana otvorena cev, a na donjoj slici analogija u zvezdi: (a) osnovna frekvencija, (b) prva nadmoda i (c) druga nadmoda. Strelice pokazuju pravac kretanja gasa, a isprekidane linije označavaju granice zona. Preuzeto iz knjige Karola i Ostija (Carroll & Ostlie, 2006), slika 14.7.

1.4.2 Modeli zvezdane pulsacije

Jedna od najuticajnijih knjiga napisanih na ovu temu je knjiga Koksa "Teorija zvezdane pulsacije" (*The Theory of Stellar Pulsation* (Cox, 1980)) u kojoj su dati detaljni opisi linearizovanih jednačina zvezdanih oscilacija i načina protoka energije kroz zvezdu tokom pulsacije.

Ovde ćemo prikazati samo najjednostavniji model, takozvani *model jedne zone*. On je prikazan u radu Štelingverfa (Stellingwerf, 1972), odakle smo preuzeli izvođenje. Model jedne zone tretira zvezdu kao da se satoji od dve sfere - jedne unutar druge. U ovoj aprkosimaciji zanemaruje se unutrašnja struktura zvezde. Unutrašnji sloj je deblji, stabilan sloj, dok je spoljašnji tanak i u njemu se proučavaju fenomeni povezani sa pulsacijom. Jednačinu kretanja spoljašnjeg sloja možemo napisati na sledeći način:

$$\frac{d^2r}{dt^2} = -4\pi r^2 \frac{\partial P}{\partial M_{\rm r}} - g, \qquad (1.9)$$

gde je r spoljašnji poluprečnik zvezde, a P je pritisak unutar spoljašnje ljuske. Pošto je ljuska mala možemo prepostaviti da je $\partial P/\partial M_r \approx -P/M_s$, gde M_s označava masu

ljuske. M_r je masa unutar poluprečnika r. Gravitaciono ubrzanje je $g = GM/r^2$, gde je G gravitaciona konstanta, M je ukupna masa zvezde. Koristići uslov za ravnotežno stanje $d^2r_0/dt^2 = 0$, jednačina 1.9 postaje:

$$\frac{d^2 X}{dt^2} = \frac{GM}{r_0^3} \left[\left(\frac{P}{P_0} \right) X^2 - X^{-2} \right].$$
(1.10)

U ovoj jednačini $X = r/r_0$, gde 0 označava vrednosti koje su u ravnotežnom stanju, a $P_0 = GMM_s/(4\pi r_0^4)$. Uzmimo da je $\tau = t/\Pi$, gde je Π period oscilacije zvezde i definišimo sledeću veličinu:

$$\xi = \frac{GM}{r_0{}^3}\Pi^2. \tag{1.11}$$

Da bismo uzeli u obzir geometriju modela jedne zone definišemo parametar m na sledeći način:

$$m = \frac{\log[(X^3 - \eta^3)/(1 - \eta^3)]}{\log X},$$
(1.12)

gde je $\eta = r_c/r_0$, r_c je zadati poluprečnik unutrašnjeg sloja u stanju ravnoteže, a r_0 je poluprečnik zvezde u stanju ravnoteže. Sa ovom definicijom parametra m odnos gustine, ρ , i gustine u stanju ravnoteže, ρ_0 , postaje:

$$\frac{\rho}{\rho_0} = X^{-m}.\tag{1.13}$$

Dodajući parametar h uključujemo neadijabatske efekte u obzir, kroz sledeću jednačinu:

$$\frac{P}{P_0} = \left(\frac{\rho}{\rho_0}\right)^{\Gamma_1} h,\tag{1.14}$$

gde je $\Gamma_1 = \left(\partial \ln P / \partial \ln \rho \right)_{\rm ad}$. Sa ovim definicijama jednačina 1.10 postaje:

$$\frac{d^2 X}{d\tau^2} = \xi (hX^q - X^{-2}), \qquad (1.15)$$

gde je $q = m\Gamma_1 - 2$. Pogledajmo sada jednačinu za promenu (unutrašnje) energije:

$$\frac{\partial P}{\partial t} = \frac{\Gamma_1 P}{\rho} \frac{\partial \rho}{\partial t} - \rho (\Gamma_3 - 1) \frac{\partial L}{\partial M_r}, \qquad (1.16)$$

35

gde je $(\Gamma_3 - 1) = (\partial \ln T / \partial \ln \rho)_{\rm ad}$, T temperatura ljuske, a L je luminoznost i $P \propto \rho kT$. Ako L dobijemo iz prenosa zračenja, onda možemo da napišemo sledeću jednačinu:

$$\frac{L}{L_0} = X^4 \left(\frac{T}{T_0}\right)^4 \left(\frac{\kappa}{\kappa_0}\right)^{-1},\tag{1.17}$$

gde je κ oznaka za neprozračnost o kojoj će više biti reči u sledećem odeljku 1.5. Pretpostavimo da se zakon za neprozračnost može napisati na sledeći način:

$$\frac{\kappa}{\kappa_0} = \left(\frac{\rho}{\rho_0}\right)^n \frac{T}{T_0}^{-s},\tag{1.18}$$

gde se n i s menjaju u zavisnosti od stanja gasa koje proučavamo. Ako kombinujemo jednačine 1.13 i 1.14 i jednačinu idealnog gasa (PV = NkT, gde su V zapremina i N broj čestica u gasu, a $k = 1,38 \times 10^{23}$ JK⁻¹ je Bolcmanova konstanta) luminoznost možemo izraziti sa sledećom jednačinom:

$$\frac{L}{L_0} = X^b h^{s+4}, (1.19)$$

gde je

$$b = 4 + m[n - (s + 4)(\Gamma_1 - 1)].$$
(1.20)

Da bismo dozvolili unutrašnjem sloju da ima promenljivu luminoznost, stavićemo L_i da bude luminoznost donje granice ljuske (unutar zvezde) i $(\partial L/\partial M_r) \approx (L - L_i)/M_s$. Koristeći ovu relaciju i jednačine 1.13 i 1.14, jednačina energije 1.16 postaje:

$$\frac{dh}{d\tau} = -\xi X^{m(\Gamma_1 - 1)} [X^b h^{s+4} - L_i/L_0], \qquad (1.21)$$

gde je

$$\xi = \Pi \frac{\rho_0 L_0}{P_0 M_s} (\Gamma_3 - 1) = \frac{L_0 \Pi}{E_s}$$
(1.22)

pri čemu je ξ (neadijabatski parametar) odnos ukupne emitovane energije tokom perioda jedne pulsacije i ukupne unutrašnje energije u ljusci, E_s .

Za model jedne zone jednačine 1.15 i 1.21 su krajnje jednačine sa nepoznatima X i h. Ostale parametre treba da definišemo.

Ovo je samo jedan od jednostavnih modela za opis pulsacije, ali postoje mnogi drugi. Najpoznatiji model za pulsirajuće zvezde je linearna adijabatska talasna jednačina (*linear adiabatic wave equation* (LAWE)) koja je detaljno opisana u knjizi Koksa (Cox, 1980). U slučaju cefeida tipa II prve hidrodinamičke modele su dali Buhler i Kovač (Buchler & Kovacs, 1987) i Kovač i Buhler (Kovacs & Buchler, 1988). U modelu *Florida-Budapest*, koji je opisan u radovima Buhlera i Moskalika (Buchler & Moskalik, 1992) i Moskalika i Buhlera (Moskalik & Buchler, 1993a) bio je prvi put primećen fenomen "udvostručenja perioda" (*period doubling*) u modelima za zvezde tipa *BL Herculis*. "Udvostručenje perioda" je uzrokovano 3:2 rezonancom između osnovne frekvencije i prve nadmode unutar zvezde. Relativno skoro su Smolec i Moskalik (Smolec & Moskalik, 2012, 2014) objavili rezultate hidrodinamičkih modela u kojima su tačno predvideli fenomen "udvostručenja perioda". Ovaj fenomen je prvi put posmatran kod zvezde u Mlečnom putu tipa *BL Herculis*: BLG184.7 133264, iz kataloga OGLE-II (Smolec et al., 2012).

1.5 κ -mehanizam - pokretačka snaga pulsacije

Glavni uzrok pulsacije u traci nestabilnosti na HRD je κ -mehanizam. Promene u temperaturi i sjaju zvezda su bile pripisane radijalnim pulsacijama u radu Šeplija (Shapley, 1914), ali ova ideja je postala prihvaćena tek nakon što joj je Edington dao matematički opis (Eddington, 1918a,b, 1919). Pre objašnjenja Šeplija i Edingtona astronomi su mislili da je promena sjaja koju vidimo prouzrokovana pomračenjima unutar dvojnog sistema, a ne procesima unutar same zvezde. Šeplijevo objašnjenje je bilo da su cefeide džinovske zvezde, što znači da bi njihov poluprečnik bio dovoljno velik da obuhvati pretpostavljenu orbitu dvojnog sistema (Catelan & Smith, 2015).

 κ je oznaka za neprozračnost. Neprozračnost (κ) zavisi od pritiska (p) i temperature (T) sloja koji se razmatra ($\kappa = \kappa(p, T)$). Pulsacioni modeli opisuju pulsaciju u adiabatskoj aproksimaciji. Za detalje vidi knjige Kipenhana i saradnika (Kippenhahn et al., 2012) i Koksa (Cox, 1980).

U slučaju slobodno-slobodne i vezano-slobodne apsorpcije u nedegenerisanom, delimično jonizovanom gasu, može se primeniti Kramers-Edingtonov zakon za neprozračnost ($\kappa = \kappa_0 \rho^n T^{-s}, n \sim 1, s \sim 7/2$) (Catelan & Smith, 2015):

$$\kappa \propto \rho T^{-7/2}.\tag{1.23}$$

Uopšteno govoreći, neprozračnost raste sa kompresijom. Mehanizam kojim unutrašnji sloj zvezde postaje još neprozirniji zbog kompresije se naziva Edingtonov mehanizam ventila (Eddington valve mechanism). Ovaj mehanizam dovodi do toga da se zvezda proširi kada se u datom sloju nagomila energija (ova energija može da pokrene ceo sloj naviše). Kada ovaj sloj opet postane prozračan zato što se zvezda raširila, što je dovelo do hlađenja sloja, nagomilana energija može da pobegne i sloj počinje da se skuplja zbog mase sloja koji je iznad njega (Carroll & Ostlie, 2006). Ovaj proces podseća na Karnoov ciklus, poznat iz termodinamike. Da bi promena u neprozračnosti mogla da se odvija ciklično potrebno je da u unutrašnjem sloju, koji smo malopre opisali, budu prisutni delimično jonizovani vodonik i helijum. Kada se gas sabija, onda porast temperature prvo uzrokuje da dođe do dodatne jonizacije. Tada čak i mali porast u temperaturi (u poređenju sa okolnim slojevima) dovodi do povećanja neprozračnosti. Kada se zvezda širi, temperatura se ne menja mnogo, pošto se prvo joni rekombinuju i otpuštaju energiju (Carroll & Ostlie, 2006). Ovo se naziva κ -mehanizmom. Pozicija zona gde se nalaze delimično jonizovani vodonik i helijum kao i tačan hemijski sastav ovih zona, je najvažniji faktor u κ -mehanizmu.

1.6 Evolucija zvezda malih masa

U ovom odeljku ćemo kratko opisati evoluciju zvezda malih masa. Promene u unutrašnjosti zvezde uzrokuju njihovu pulsaciju, tako da je evolucioni status isprepleten sa razumevanjem dinamike pulsacije u ovim zvezdama.

Katelan (Catelan, 2007) daje detaljno objašnjenje teorije zvezdane evolucije uključujući osnovne jednačine zvezdane strukture, mehanizme prenosa energije (radijativni ili konvektivni) unutar zvezde, brzine termonuklearnih reakcija i pregled evolucije zvezda malih masa. Za cefeide tipa II su autori Gingold, Valerštajn, Koks i Bono i drugi u nekoliko članaka (Gingold, 1976, 1985; Wallerstein & Cox, 1984; Wallerstein, 2002; Bono et al., 1997a) dali pojedinosti toka evolucije. Ovde ćemo dati samo kratak pregled evolutivnih procesa koji se dešavaju u zvezdama malih masa, naročito obraćajući pažnju na momenat dostizanja horizontalne grane (HG) na HRD (na slici 1.20 to je faza od tačke 9 do 10) i kasnije na početak faze posle asimptotske grane džinova (poslednji prelaz preko trake nestabilnosti sa crvenog na plavi deo, na vrhu slike 1.20). Traka nestabilnosti je označena vertikalnim linijama, a sa tačkama su naznačene faze i za zvezde tipa RR Lyrae i za cefeide tipa II.

Kada zvezde malih masa stignu do kraja svog života na glavnom nizu (GN), vodonik je u njihovim jezgrima potpuno pretvoren u helijum, uglavnom kroz pp-lanac termonuklearnih reakcija. Ovaj proces traje oko 10^{10} godina za zvezdu Sunčeve mase. Momenat u kome zvezda napusti glavni niz zove se "tačka preokretanja" (*turn-off point*) i označava momenat u kome nema više vodonika u jezgru zvezde. Proces sagorevanja vodonika se premešta u omotač oko jezgra i zove se "proces sagorevanja u omotaču" (*shell-burning process*). Helijumsko jezgro je izotermalno i raste do Šonberg-Čandrasekarove granice koja je približno jednaka 10 % od celokupne mase zvezde. Tada CNO-ciklus (CNO: ugljenik - azot - kiseonik) postaje dominantan u proizvodnji energije. U zvezdi se formira konvektivni sloj, jer je gradijent temperature previše strm i zračenje više ne može da prenese energiju iz jezgra na površinu.

U ovoj fazi zvezda postaje crveni džin (CDž) i sve je sjajnija. Kada je dostignuta kritična temperatura koja je potrebna za termonuklearne reakcije sagorevanja helijuma, onda takozvani 3α -sudar počinje da se dešava pri degenerisanim uslovima, ali ne u samom centru zvezde, nego u jednoj ljusci unutar jezgra koja je bogata helijumom. Ovo eksplozivno paljenje helijuma se naziva "He-bljesak" (*He-flash*). Istovremeno se nastavlja sagorevanje vodonika u omotaču dok se helijumsko jezgro dalje sažima. Kada zvezda nakon helijumskog bljeska pređe u mirno sagorevanje helijuma u jezgru i vodonika u omotaču, ona počinje da se spušta sa vrha grane crvenih džinova sve dok ne dostigne horizontalnu granu nulte starosti (HGNS). Ovaj momenat je označen brojem 9 na slici 1.20. Od ove faze evolucije pa nadalje, zvezde formiraju horizontalnu granu (HG) na HRD. Kada zvezda prelazi traku nestabilnosti u ovoj fazi, onda je možemo detektovati kao zvezdu tipa *RR Lyrae* ili zvezdu tipa *BL Herculis*. U zavisnosti od toga kolika je relativna efikasnost sagorevanja vodonika u omotaču u odnosu na jezgro u kom sagoreva helijum, zvezda može ući u tzv. "plave petlje" (blue-ward loops) u toku svoje evolucije (Catelan, 2007). Tokom ovih prelaza preko trake nestabilnosti možemo detektovati pulsacije u zvezdama tipa W Virginis. Kako se zvezda pomera ka asimptotskoj grani džinova njeno jezgro postaje sve inertnije (većim delom sačinjeno od ugljenika i kiseonika), a omotač u kome se sagoreva helijum i omotač u kome se sagoreva vodonik (koji se pomera sve više ka površini zvezde) postaju sve tanji. Ovo je označeno brojem 10 na slici 1.20. Pošto se najefikasniji izvor energije premešta iz jednog omotača u drugi, nastaju termalne nestabilnosti, koje se nazivaju "termalni impulsi na asimptotskoj grani džinova" (AGB thermal pulses). U poslednjoj fazi nastaje nagli gubitak mase koji se zove "faza super-vetra" (superwind phase) i dovodi do ulaska zvezde u fazu posle asimptotske grane džinova. Na kraju, ove zvezde još jednom, poslednji put, prelaze traku nestabilnosti u plavom smeru, gde se mogu posmatrati kao zvezde tipa RV Tauri. Ove zvezde završavaju svoj život kao beli patuljci (Catelan, 2007).

U upotrebi su mnogi modeli zvezdane evolucije. Ovde ćemo navesti nekoliko njih:

- Bag of Stellar Tracks and Isochrones (BaSTI⁷) (Pietrinferni et al., 2004a, 2006);
- Modules for Experiments in Stellar Astrophysics (MESA⁸) (Paxton et al., 2011, 2013, 2015, 2018);
- Dartmouth Stellar Evolution Program (DSEP⁹) (Dotter et al., 2008);
- *PARSEC*¹⁰ (Bressan et al., 2012, 2013).

Slika 1.21 prikazuje region na HRD u kome se nalaze razni tipovi cefeida tipa II, preuzeta iz knjige Persija (Percy, 2007). Kako se pomeramo prema zvezdama veće luminoznosti na HRD, period pulsacije postaje sve duži. Otud promena perioda pulsacije može da bude dobar indikator evolucionog statusa zvezde. Zvezda tipa BL

⁷http://basti.oa-teramo.inaf.it/index.html

⁸http://mesa.sourceforge.net/index.html

⁹http://stellar.dartmouth.edu/models/index.html

¹⁰http://people.sissa.it/~sbressan/parsec.html

Slika 1.20: Evolucija zvezde male mase na HRD. Slika je preuzeta iz Katelana (Catelan, 2007), slika 6. Pozicije tipova promenljivih zvezda, zvezda tipa RR Lyrae i cefeida tipa II, su preuzete iz knjige Katelana i Smita (Catelan & Smith, 2015), slika 4.3. Ispresecana crna linija sa tačkama je šematski prikaz trake nestabilnosti za pulsirajuće zvezde. Oznake na slici počinju brojem 7 i završavaju se brojem 10, jer na ovom grafiku nisu prikazane prethodne faze evolucionog razvoja (oznake od 1-6). Brojem 7 je označena faza u kojoj zvezda evoluira na granu crvenih džinova (GCDž) (red giant branch (RGB)). Kod tačke 8 je prekretnica i zvezda naglo gubi svoj sjaj i prelazi traku nestabilnosti po prvi put. Od tačke označene brojem 9, zvezda evoluira na horizontalnoj grani (horizontal branch (HG)) i prelazi traku nestabilnosti po drugi put. Nakon ovoga, zvezda stiže na asimptotsku granu džinova (emph asypthotic giant branch (AGDž)). Dok dalje evoluira u ovoj oblasti HRD zvezda može da doživi termalne impulse zbog kojih može još jednom da pređe traku nestabilnosti i da se vrati na evolucionu putanju zvezda koje se nalaze na asimptotskoj grani džinova. U poslednjoj fazi razvoja, posle asimptotske grane džinova, zvezda poslednji put prelazi traku nestabilnosti i tokom ovog procesa gubi veliki deo svoje mase. Evolucione trake su svetlo sive boje.

Slika 1.21: Slika 6.13 je preuzeta iz knjige Percija (Percy, 2007) i prikazuje položaj cefeida tipa II, uključujući i zvezde tipa *BL Herculis, W Virginis* i *RV Tauri* na HRD. Isprekidane linije označavaju evolucione putanje. Zvezde malih masa dolaze na ove položaje sa horizontalne grane (HG) gde sagorevaju helijum, usled prolaska kroz termalne impulse sa asimptotske grane džinova i još jednom u kasnijoj fazi evolucije kada poslednji put prelaze sa asimptotske grane džinova ka fazi belog patuljka.

Herculis prelaze traku nestabilnosti sa plave (toplije) ka crvenoj (hladnijoj) strani, počevši od horizontalne grane. U ovom prelazu period pulsacije raste. Zvezde tipa *W Virginis* prolaze kroz traku nestabilnosti sa crvene ka plavoj strani, ali i u suprotnom smeru kada prave svoje "plave petlje" (termalne impulse) u traci nestabilnosti. U njihovom slučaju detektovana promena perioda može biti i pozitivna i negativna, u zavisnosti od toga u kom delu petlje se nalaze. Konačno, traku nestabilnosti prelaze kao zvezde tipa *RV Tauri*. To su zvezde koje napuštaju asimptotsku granu džinova, da bi na svom putu ka krajnjoj fazi - belom patuljku, postale zvezde u evolucionoj fazi posle asimptotske grane džinova. Ovde zvezde gube najveći deo svoje mase i periodi pulsacije bi trebalo da im se smanjuju.

Iako ovde prikazana opšta slika predstavlja pravilo za većinu slučajeva, procesi koji se dešavaju prilikom ovih promena perioda su vredni detaljnijeg ispitivanja, da bismo se uverili u poklapanje modela sa posmatranjima.

1.7 Relacija period-luminoznost

Jedan od najvažnijih doprinosa pulsirajućih zvezda astronomiji je postojanje relacije između njihovog srednjeg perioda pulsacije i luminoznosti (PL), koja je kamen temeljac ekstragalaktičke skale rastojanja. Postojanje relacije PL omogućava da sa merenja daljina na osnovu geometrije u Mlečnom putu i njenoj okolini pređemo na merenje daljine u drugim galaksijama. Slika 1.22 prikazuje ekstragalaktičku skalu rastojanja u lokalnom Univerzumu za klasične cefeide i eksplozije supernovih (SN) (preuzeto iz članka Risa i saradnika (Riess et al., 2016)).

Prva relacija PL je bila ustanovljena između apsolutne magnitude i perioda pulsacije u radu Henrijete Levit i Edvarda Čarlsa Pikeringa (Leavitt & Pickering, 1912). Sledeći važan korak postignut je 1950-ih godina kada je Valteru Badeu postalo jasno da postoje dve posebne relacije za dve različite vrste pulsirajućih zvezda: klasične cefeide i cefeide tipa II. Glavni uzrok različitih relacija PL je to što su klasične cefeide zvezde Populacije I, a cefeide tipa II pripadaju zvezdama Populacije II. Pripadnost ovim različitim populacijama znači da su klasične cefeide 7-10 puta masivnije od cefeida tipa II, što ih čini sjajnijim. Nakon ove korekcija, veličina poznatog Univerzuma se udvostručila (Baade, 1956).

Sa našim teleskopima (kako sa Zemlje tako i iz svemira) možemo posmatrati Mlečni put, Veliki Magelanov oblak, Mali Magelanov oblak i nekoliko susednih galaksija u kojima možemo razlučiti pojedinačne pulsirajuće zvezde. Većina ovih merenja je data u nekom od standardnih filtara (V, I ili infracrvenom filteru, da bi se izbegao uticaj međuzvezdane prašine) ili u Vesenhajtovom indeksu ($W_I = I - 1, 55(V - I)$). Primer relacije PL u Vesenhajtovom indeksu prikazan je na slici 1.23, preuzetoj iz rada Sošinjskog i saradnika (Soszyński et al., 2015).

Jedan od rezultata ove teze je da smo nakon izračunavanja luminoznosti i efektivnih temperatura po prvi put izveli relaciju PL u bolometrijskim magnitudama za cefeide tipa II i anomalne cefeide u Velikom Magelanovom oblaku i Malom Magelanovom oblaku.

Objašnjenje za relaciju između perioda i luminoznosti pulsirajućih zvezda možemo videti iz veze između Štefan-Boltzmanovog zakona i jednačine koja povezuje

Slika 1.22: Potpuna ekstragalaktička skala rastojanja objavljena u članku Risa i saradnika (Riess et al., 2016) (slika 10.: ⓒ AAS. Reprodukovano sa dozvolom.) prikazuje progres skale rastojanja od rastojanja merenih iz paralaksi i pomoću cefeida (donji levi ugao), preko cefeida i supernova Ia (srednji panel) do supernova i rastojanja merenih pomoću crvenog pomaka (gornji desni ugao).

cefeide tipa II su ljubičaste i zvezde tipa RR Lyrae su zelene boje) iz Velikog Magelanovog oblaka (VMO, levo) i Malog Magelanovog kvencijom predstavljene su crvenom bojom, anomalne cefeide koje pulsiraju u prvoj nadmodi su narandžaste boje, klasične cefeide Slika 1.23: Relacije PL u Vesenhajtovom indeksu za razne pulsirajuće zvezde (anomalne cefeide koje pulsiraju sa osnovnom frekoje pulsiraju sa osnovnom frekvencijom su svetlo plave boje, klasične cefeide koje pulsiraju u prvoj nadmodi su tamno plave boje, oblaka (MMO, desno). Popunjeni simboli zvezda crne boje su anomalne cefeide iz Mlečnog puta iz kataloga OGLE-IV. Slike su preuzete iz rada Sošinjskog i saradnika (Soszyński et al., 2015), slike 5 i 6.

period i srednju gustinu. Razlika između klasičnih cefeida i cefeida tipa II je u njihovim gustinama, ali princip je isti. Štefan-Boltzmanov zakon glasi:

$$L = 4\pi R^2 \sigma T_{\text{eff}}^4, \tag{1.24}$$

gde je *L* luminoznost, *R* je poluprečnik i $T_{\rm eff}$ je efektivna temperatura zvezde, a σ je Štefan-Boltzmanova konstanta ($\sigma = 5,6704 \times 10^{-8} {\rm Wm}^{-2} {\rm K}^{-4}$).

Postoji nekoliko načina da odavde izvedemo relaciju PL. Ako pretpostavimo da je efektivna temperatura konstantna (vidi napr. lekcije Džil Knap na Univerzitetu Prinston¹¹ Stars and Star Formation), jer se sve ove zvezde nalaze u traci nestabilnosti koja je skoro vertikalna na HRD, što dovodi do toga da je $L \propto R^2$. Period pulsacije zvezde koja pulsira u osnovnoj frekvenciji, P, je jednoznačno određen srednjom gustinom zvezde, $\bar{\rho}$:

$$P \sim (G\bar{\rho})^{-1/2} \propto \left(\frac{M}{R^3}\right)^{-1/2},$$
 (1.25)

gde je G gravitaciona konstanta ($G = 6,67408 \times 10^{-11} \text{m}^3 \text{kg}^{-1} \text{s}^{-2}$), M je zvezdana masa, a R je poluprečnik zvezde. Kada zamenimo poluprečnik ($L \propto R^2$) iz prethodne jednačine, onda period postaje:

$$P \propto L^{3/4} M^{-1/2}.$$
 (1.26)

Iz jednačine 1.26 sledi da je $P \propto L^x$ sa $x \leq 3/4$, pošto je dlogM/dlogL > 0. Drugi način na koji se može opisati relacija PL je transformisanje Štefan-Boltzmanovog zakona (jednačina 1.24) u bolometrijske magnitude, M_{bol} , (detalji se mogu naći u knjizi Katelana i Smita (Catelan & Smith, 2015)):

$$M_{bol} = -5\log(R) - 10\log(T_{\rm eff}) + const,$$
(1.27)

Pulsacionu konstantu Q definišemo na sledeći način: $Q = P\sqrt{\langle \bar{\rho} \rangle}$. Ovom jednačinom se opisuje veza između perioda pulsacije (u osnovnoj frekvenciji) pulsirajuće zvezde i njene srednje gustine. Ova jednačina je poznata još i kao Riterova relacija.

¹¹https://www.astro.princeton.edu/~gk/A403/

Srednja zvezdana gustina se može napisati kao: $\langle \bar{\rho} \rangle = M/[(4\pi/3)R^3]$. Kombinujući jednačinu 1.27 sa Riterovom relacijom da bismo eliminisali R, dobijamo (Catelan & Smith, 2015):

$$\log(P) + 0.5\log(M) + 0.3M_{\text{bol}} + 3\log(T_{\text{eff}}) + const = \log(Q).$$
(1.28)

Ova jednačina je tačna u slučaju klasičnih cefeida. Pulsaciona konstanta (Q) se ne menja brzo u funkciji ostalih veličina. Iz jednačine 1.28 se vidi da kada je efektivna temperatura fiksirana, onda se period pulsacije povećava kako se i luminoznost povećava. Činjenica da vidimo empirijsku relaciju *PL* nam govori da je promena temperature u traci nestabilnosti zaista mala. Ako dva tipa cefeida iste luminoznosti imaju različite temprature, onda to znači da će im periodi biti različiti. Razlike u relacijama *PL* za klasične cefeide, anomalne cefeide i cefeide tipa II su prouzrokovane prevashodno njihovim različitim početnim masama (Catelan & Smith, 2015), ali iste jednačine važe za sve.

Pošto se cefeide tipa II i anomalne cefeide mogu pronaći u globularnim jatima i galaksijama (Catelan & Smith, 2015), one će se takođe moći koristiti za kalibraciju ekstragalaktičke skale rastojanja, ali za to je potrebno da budući posmatrački projekti sakupe dovoljnu količinu podataka. Cefeide tipa II su posebno korisne kada se klasične cefeide ne mogu naći u posmatranoj galaksiji ili kada su zvezde tipa *RR Lyrae* preslabog sjaja (vidi npr. pregled Sendidža i Tamana (Sandage & Tammann, 2006) i Valerštajna (Wallerstein, 2002)).

U članku Gronevegena i Jurković (Groenewegen & Jurkovic, 2017a) je dat kratak pregled najnovijih rezultata u vezi sa relacijom PL. Iz posmatranja pulsirajućih zvezda se videlo da na relaciju PL kod različitih vrsta pulsirajućih zvezda može uticati i njihova metaličnost. Relacije PL koje u obzir uzimaju metaličnost se zovu relacije period-luminoznost-metaličnost (P - L - [Fe/H]). Nemec i saradnici (Nemec et al., 1994) nam daju jedan od retkih primera relacije P - L - [Fe/H] za cefeide tipa II i anomalne cefeide (kao i za zvezde tipa RR Lyrae i zvezde tipa SX Phoenicis) u B, V i K filterima, izvedenih na osnovu objekata u globularnim jatima. Teorijske relacije koje su zavisne od mase su objavili Markoni i saradnici (Marconi

et al., 2004), za relacije period-magnituda-boja (Period-Magnitude-Colour, PMC), period-Vesenhajtov indeks (Period-Wessenheit index, u daljem tekstu PW) i periodmagnituda-amplituda (Period-Magnitude-Amplitude, PMA) za anomalne cefeide sa metaličnostima od Z = 0,0001 - 0,0004 (u teorijskim člancima se metaličnost označava sa Z, jer se odnosi na prisutnost svih metala, za razliku od posmatračke oznake, [X/H], gde je X jedan mereni element čija se zastupljenost meri u odnosu na zastupljenost vodonika). U istom članku je data i empirijska relacija između perioda i Vesenhajtovog indeksa merenog u V i I filterima, PW(VI), za anomalne cefeide koje su bile posmatrane u 7 patuljastih sferoidalnih galaksija (Marconi et al., 2004). U članku Ripepi i saradnika (Ripepi et al., 2014), kao deo VISTA pregleda Magelanovih oblaka (VISTA Magellanic Cloud (VMC) Survey (Cioni et al., 2011a)) data je relacija PL u K_s filteru i relacija između perioda i Vesenhajtovog indeksa merenog u V i K filterima, PW(V, K) za anomalne cefeide koje pulsairaju u osnovnoj frekvenciji i anomalne cefeide koje pulsiraju u prvoj nadmodi u Velikom Magelanovom oblaku, kao i relacije PL u V i I filterima, dok su relacija period-magnitudaamplituda, PMC i relacija između perioda i Vesenhajtovog indeksa merenog u V i Ifilterima, PW(V, I), bile zasnovane na originalnim podacima iz kataloga OGLE-III. Di Krišćienco i saradnici (Di Criscienzo et al., 2007) su objavili teorijsku relaciju period-magnituda (PM) za blizak infracrveni deo spektra (Near Infrared, NIR) i relaciju period-Vesenhajtovi indeksi (PW) za razne optičke i bliske infracrvene boje, kombinujući pulsacione modele i evolucione putanje za zvezde sa periodima do 8 dana, tj. zvezde tipa *BL Herculis* i deo zvezda tipa *W Virginis*. U članku Matsunage i saradnika (Matsunaga et al., 2011) predstavljena je relacija PL u bliskom infracrvenom delu spektra i relacija period-Vesenhajtovi indeksi za cefeide tipa II u Malom Magelanovom oblaku, te su ovi rezultati bili upoređeni sa njihovim rezultatima prehodno objavljenim u radovima Matsunage i saradnika za Veliki Magelanov oblak (Matsunaga et al., 2009) i za centar Mlečnog puta (Matsunaga et al., 2006). Relacija u K filteru za cefeide tipa II u centru Galaksije je bila predstavljena i u članku Gronevegena i saradnika (Groenewegen et al., 2008), a apsolutna kalibracija je bila razmotrena u radu Fista i saradnika (Feast et al., 2008). Nedavno je u radu Menika i saradnika (Manick et al., 2017) relacija period-Vesenhajtov indeks, PW, bila izvedena za cefeide tipa II u Velikom Magelanovom oblaku uz pomoć OGLE-III podataka. Skorašnji nebeski pregledi rađeni u bliskom infracrvenom delu spektra su pružili mogućnost ponovne procene relacije PL i to u radu Ripepi i saradnika (Ripepi et al., 2015). Autori su uzeli u obzir VMC podatke (Cioni et al., 2011a) da bi proizveli nekoliko relacija PL, PLC i PW, dok su autori iz članka Bardvaža i saradnika (Bhardwaj et al., 2017) uradili slično izvođenje relacije takođe koristeći merenja u bliskom infracrvenom delu spektra, ali iz Sinoptičkog pregleda Velikog Magelanovog oblaka (LMC Synoptic Survey, (Macri et al., 2015)).

Kao što se iz ovog pregleda literature vidi, mnogi autori su pokušali konstruisati relacije PL, ali niko to nije uradio u bolometrijskim magnitudama, kao u ovoj disrtaciji. Naš rezultat je prikazan u poglavlju 5.

1.8 Doprinos razumevanju cefeida tipa II i anomalnih cefeida

Cefeide tipa II i anomalne cefeide su važne za razumevanje procesa kroz koje zvezde malih i srednjih masa prolaze tokom svoje evolucije. Postojeći modeli ne daju potpuno razjašnjenje načina na koji ove zvezde prelaze preko trake nestabilnosti. Ova teza daje ograničenja u fizičkih parametara koja se mogu iskoristiti za poboljšanje evolucionih modela. U radu Gronevegena i Jurković (Groenewegen & Jurkovic, 2017b) su prvi put objavljene izračunate vrednosti luminoznosti i temperature za sve poznate cefeide tipa II i anomalne cefeide u Magelanovim oblacima iz kataloga OGLE-III. U istom radu se diskutuje poređenje rezultata sa poznatim evolucionim modelima. Takođe se pokazuje da oko 60% zvezda tipa *RV Tauri* i oko 10% neobičnih zvezda tipa *W Virginis* ima infracrveni višak koji može da se detektuje.

Najznačajniji doprinos pulsirajućih zvezda astronomiji je činjenica da one imaju relaciju period-luminoznost i mogu se koristiti kao standardne sveće u ektragalaktičkoj skali rastojanja od naše Galaksije do susednih galaksija. Istraživanja na ovom polju su do sada bila skoro isključivo fokusirana na određivanje relacije *PL* uz pomoć infracrvenih filtara ili Vesenhajtovih indeksa. Jedan od glavnih rezultata ove teze je da umesto toga koristi zvezdanu luminoznost kao parametar i na taj način proučava svojstva ovih zvezda na mnogo osnovnijem nivou.

Koristeći rezultate objavljene u radovima Gronevegena i Jurković (Groenewegen & Jurkovic, 2017b,a) u tezi se prikazuje relacija između perioda i poluprečnika za cefeide tipa II i anomalnih cefeida, kao i procenjene mase.

Dinamika pulsacija je polje astronomije u kome se modeliraju specifični uslovi koji dovode do pulsacije. Cefeide tipa II, osim promena sjaja zbog pulsacije i promena (rasta ili opadanja) dužine pulsacionog perioda zbog prelaza preko trake nestabilnosti na HRD, pokazuju dodatne modulacije u amplitudama pulsacije iz jednog ciklusa u drugi. Ovakav fenomen promene amplitude iz jednog ciklusa u drugi, zvan "udvostručavanje perioda", je bio predviđen iz modela Pavela Moskalika i Radeka Smoleca (Smolec & Moskalik, 2012, 2014), da bi tek nedavno bio posmatran u zvezdama tipa *BL Herculis* i *W Virginis*. U ovoj tezi je prikazano otkriće pojave "menjanja oblika" (*shape shifting*) u krivama sjaja zvezda tipa *W Virginis* (Groenewegen & Jurkovic, 2017b). Krive sjaja ovih zvezda u toku nekoliko godina promene oblik i u nekim slučajevima se vrate u prvobitno stanje, bez značajne promene perioda.

Takođe je važno razaznavanje različitih tipova pulsirajućih zvezda da bismo bili sigurni da date objekte modelujemo sa ispravnim masama, jer svaki tip ima svoje posebne fizičke karakteristike. Različite pulsirajuće zvezde obrazuju različite relacije PL tako da ako želimo da primenimo odgovarajuću relaciju za neku novu zvezdu potrebno je da nekako utvrdimo njen tip. Ispravna klasifikacija doprinosi i boljem razumevanju galaktičke strukture. Primer je slučaj klasifikacije zvezda tipa BLHerculis u Mlečnom putu, predstavljen u članku Jurković (Jurkovic, 2018). Od 59 ispitanih zvezda iz Opšteg kataloga promenljivih zvezda, za samo 19 je potvrđeno da su zvezde tipa BL Herculis. Među ostalima, 18 su anomalne cefeide koje pulsiraju u osnovnoj frekvenciji, 1 zvezda je anomalna cefeida koja pulsira u prvoj nadmodi, 2 zvezde koje su moguće neobične zvezde tipa W Virginis, 11 je klasičnih cefeida i konačno, 7 zvezda uopšte nisu pulsirajuće zvezde. U katalogu CSS iz 2014. godine (Drake et al., 2014a) identifikovano je 64 anomalnih cefeida. Od tih 64 zvezda šest se poklapaju sa našom klasifikacijom: FY Vir, V716 Oph, BF Ser, VX Cap, XX Vir, V1149 Her. U novom katalogu CSS (Drake et al., 2017) iz 2017. godine pojavile su se još dve anomalne cefeide koje su se poklopile sa našom klasifikacijom. Ovo znači da za osam anomalnih cefeida imamo nezavisno potvrdu da je naša klasifikacija tačna (vidi pododeljak 7.1.1). Pokazali smo, imajući u vidu mali broj spektroskopskih merenja, da zvezde tipa *BL Herculis* imaju metaličnost sličnu Suncu, a da su anomalne cefeide zvezde niske metaličnosti.

U radu Jurković (Jurkovic et al., 2016) ispitano je kinematičkom metodom 7 zvezda tipa *BL Herculis* iz Mlečnog puta da bismo ustanovili kojoj podstrukturi Mlečnog puta pripadaju i ustanovljeno je da sve ispitane zvezde, sa izuzetkom DQ And, pripadaju debelom disku Mlečnog puta. Iako je DQ And trenutno u halou, pretpostavljamo da ova zvezda nije cefeida tipa II.

Poglavlje 2

Podaci

2.1 Uzorci cefeida tipa II i anomalnih cefeida iz Velikog i Malog Magelanovog oblaka

U ovom poglavlju opisujemo uzorak cefeida tipa II i anomalnih cefeida za koje je urađena analiza spektralne energetske raspodele (SER) (metod analize SER je opisan u odeljku 3.1). Dobijeni rezultati su predstavljeni u poglavljenima 4 i 5. Lista cefeida tipa II i anomalnih cefeida iz Velikog i Malog Magelnovog oblaka uzeta je iz kataloga OGLE-III (Soszyński et al., 2008a, 2010a). Katalog je javno dostupan na adresi: http://ogledb.astrouw.edu.pl/~ogle/CVS/.

Katalog OGLE-III sadrži 203 cefeide tipa II u Velikom Magelanovom oblaku (64 zvezde tipa *BL Herculis*, 97 zvezda tipa *W Virginis* i 42 zvezde tipa *RV Tauri*), 83 anomalne cefeide (62 koje pulsiraju u osnovnoj frekvenciji i 21 koja pulsira u prvoj nadmodi) i 43 cefeide tipa II (17 zvezda tipa *BL Herculis*, 17 zvezda tipa *W Virginis* i 9 zvezda tipa *RV Tauri*), kao i 6 kandidata za anomalne cefeide (3 koje pulsiraju u osnovnoj frekvenciji i 3 koje pulsiraju u prvoj nadmodi) u Malom Magelanovom oblaku. Neke od pulsirajućih zvezda u katalogu OGLE-III su bile poznate kao eklipsne i elipsoidne dvojne zvezde i većinom su klasifikovane kao neobične zvezde tipa *W Virginis* (pWVir). Zbog prisustva dvojne komponente, ovi objekti imaju veće luminoznosti nego one zvezde tipa *W Virginis* koje su usamljene. Za sve zvezde u ovim uzorcima usvojeni su periodi dati u katalogu OGLE-III. U novom katalogu OGLE-IV klasifikacija nekih objekata je promenjena u odnosu na katalog OGLE-III. Katalog OGLE-IV sadrži 250 anomalnih cefeida, 141 u Velikom i 109 u Malom Magelanovom oblaku (Soszyński et al., 2015). Kada je katalog OGLE-IV objavljen, radovi u kojima smo modelirali spektralne energetske raspodele za cefeide tipa II i anomalne cefeide i konstruisali relacije PL (između ostalog) (Groenewegen & Jurkovic, 2017b,a) već su bili u procesu objavljivanja, tako da novootkriveni objekti nisu uključeni u analizu. Dve anomalne cefeide u Velikom Magelanovom oblaku su bile reklasifikovane u novom katalogu: OGLE-LMC-ACEP-022 i OGLE-LMC-ACEP-083 se sada smatraju zvezdama tipa RR Lyrae, dok je OGLE-LMC-T2CEP-114 (prethodno zvezda tipa BL Herculis) sada anomalna cefeida. Zbog potpunosti, zvezdani parametri i modeli SER su predstavljeni za sve objekte u prilogu A.2, ali dve reklasifikovane zvezde tipa RR Lyrae nisu dalje razmatrane u glavnom tekstu i slikama i isključene su iz fitovanja svih relacija.

Sema numerisanja za kataloge OGLE-III i OGLE-IV u Velikom Magelanovom oblaku je ostala ista za zvezde 1-83. Zvezda OGLE-LMC-T2CEP-114 je zadržala svoje ime iz kataloga OGLE-III u prilogu sa podacima (prilozi A.3 i A.4), ali na slikama (vidi slike 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.9, 5.1, 5.2) je prikazana kao anomalna cefeida koja pulsira u osnovnoj frekvenciji (ime u katalogu OGLE-IV: OGLE-LMC-ACEP-114). U slučaju Malog Magelanovog oblaka, šema numerisanja se promenila, ali je za svih 6 anomalnih cefeida bila potvrđena originalna klasifikacija. Mi smo zadržali numeraciju iz kataloga OGLE-III koja je predstavljena u tabelama u poglavljima 4 i 5. OGLE-SMC-ACEP 01-06 su prenumerisani redom u 32, 41, 57, 62, 68 i 81 u katalogu OGLE-IV (Soszyński et al., 2015).

Za konstrukciju SER smo koristili podatke iz baze podataka $VizieR^{12}$. Baza podataka VizieR je informacioni sistem koji pruža standardizovani opis astronomskih kataloga i podataka koje sadrži. Konkretno, koristili smo podatke iz sledećih kataloga: OGLE, EROS, MACHO, *Magellanic Cloud Photometric Survey* (MCPS, Zaritsky et al. (2002, 2004), Massey (2002), Sebo et al. (2002)), DENIS, 2MASS (Skrutskie et al., 2006), 2MASS6X (Cutri et al., 2012), IRSF (Kato et al., 2007), *LMC Synoptic Survey* (Macri et al., 2015), NIR fotometriju (Ciechanowska et al.,

¹²http://vizier.u-strasbg.fr/viz-ban/VizieR

2010; Ripepi et al., 2015), VMC Survey (Cioni et al., 2011b), WISE (Cutri & et al., 2014), Akari (Ita et al., 2010; Kato et al., 2012). U nekim slučajevima su korišćeni podaci iz kataloga IRAC i MIPS iz NASA/IPAC Infrared Science Archive¹³.

2.2 Uzorak cefeida tipa II i anomalnih cefeida iz Mlečnog puta

Lista kratkoperiodičnih cefeida tipa II za Mlečni put je preuzeta iz Opšteg kataloga promenljivih zvezda (Samus et al., 2009a, 2017). Kratkoperiodične cefeide tipa II u Opštem katalogu promenljivih zvezda katalogu su bile označene kao "CWB" i "CWB:" za objekte koji su verovatno zvezde tipa *BL Herculis*. U istom katalogu period pulsacije ovih zvezda je između 1 i 8 dana. Kategorije su uglavnom zasnovane na prethodno objavljenim člancima i katalozima o promenljivim zvezdama.

Lista sadrži 128 objekata, ali samo 59 je analizirano, zbog dostupnosti podataka za analizu. Lista zvezda je data u prilogu A.5 zajedno sa izračunatim Furijeovim parametrima i njihovim greškama (o računu Furijeovih parametara će biti reči u odeljku 3.4, a rezultati su predstavljeni u poglavlju 7). Analizu smo morali ograničiti na zvezde koje su imale podatke u V filteru. Da bismo mogli uraditi Furijeovu analizu, minimalni broj posmatranih podataka je morao biti veći od 34 (ili 32 za neke objekte).

Podaci su sakupljeni iz pojedinačnih kataloga dostupnih u bazi podataka VizieR. Dodatne informacije i podaci iz individualnih članaka koji su u vezi sa specifičnim zvezdama su prikupljeni pomoću baze podataka SIMBAD. Kada su podaci bili dostupni samo u skeniranoj verziji članaka, za pristup smo koristili bazu članaka SAO/NASA Astrophysics Data System (ADS): http://adsabs.harvard.edu/.

Katalog ASAS-3 sadrži podatke u V filteru za 34 zvezde od 59 koje su bile predmet proučavanja. Ova baza podataka nije imala posmatranja za sve objekte sa liste iz Opšteg kataloga promenljivih zvezda. Podaci za ostale zvezde su sakupljeni iz sledećih baza podataka: CSS, INTEGRAL OMC i individualnih članaka: Berdnikova (Berdnikov, 2008), Hendena (Henden, 1980), Kvija i Dithelma (Kwee & Diethelm,

¹³http://irsa.ipac.caltech.edu/

1984), Šmita i Rajsviga (Schmidt & Reiswig, 1993), Šmita i saradnika (Schmidt et al., 2005), Sošinjskog i saradnika (Soszyński et al., 2011a) i u jednom slučaju korišćeni su i podaci iz AAVSO.

Postoje i drugi izvori (kao što je na primer SuperWASP) sa jako dobrim podacima, ali ih nismo mogli koristiti u okviru naše Furijeove analize, jer su podaci bili prikupljeni koristeći široke filtere ili bez filtara. OGLE-III podaci za V filter su prikupljeni sa sajta: http://ogledb.astrouw.edu.pl/~ogle/CVS/. Tim OGLE je objavio Furijeove parametre za I filtar. Mi smo izračunali Furijeove parametre za V filter koji nisu bili objavljeni u prethodnim člancima. Izvori podataka za svaku zvezdu su navedeni u prilogu A.5.

Poglavlje 3

Metode

3.1 Spektralna energetska raspodela

Spektralna energetska raspodela je grafički prikaz gustine fluksa objekta po talasnoj dužini, frekvenciji ili energiji elektromagnetnog zračenja. U astronomiji SER se proučava u slučaju različitih posmatranih objekata, kao što su na primer sinhrotronsko zračenje, galaksije, protozvezde, zvezde, magline i može biti termalnog ili netermalnog porekla (npr. sinhrotronsko zračenje). Ako pretpostavimo da zvezda emituje energiju sa raspodelom koja odgovara raspodeli apsolutno crnog tela, onda možemo izračunati luminoznost i efektivnu temperaturu zvezde. Neke zvezde imaju oko sebe materijal koji se može detektovati u infracrvenom delu spektra kao infracrveni višak (fluks detekotvanog infracrvenog zračenja je veći nego kod modela crnog tela pri istim efektivnim temperaturama), što se takođe može modelovati. Kada modelujemo SER zvezde potrebna su nam merenja u različitim delovima elektromagnetnog spektra (od radio-merenja, preko merenja koja su rađena u raznim filterima u vidljivom delu spektra, do dalekog infracrvenog dela). Opis korišćenih merenih podataka je dat u poglavlju 2. Metoda koja je ovde predstavljena je objavljena u članku Gronevegena i Jurković (Groenewegen & Jurkovic, 2017b).

Sve SER su fitovane koristeći program *More of DUSTY* (MoD, Groenewegen (2012)), koji je proširenje modela za prenos zračenja *DUSTY* (Ivezić et al., 1999). MoD se razlikuje od koda *DUSTY* u tome što MoD modelira prividne veličine unutrašnjeg dela omotača, koji sadrži prašinu i nalazi se oko zvezde. Za to je potrebno da program zna konvolucionu jednačinu instrumenata koji su korišćeni za merenje i da intenzitet merene svetlosti bude korigovan za svaki instrument. MoD koristi opštiji opis za raspodelu prašine oko zvezde, da bi se mogle modelovati nagle promene u stopi gubitka mase. U MoD je uključeno fitovanja sa Bajesovskim informacionim kriterijumom radi efikasnijeg određivanja najboljeg modela. Za unapred izabrane parametre, program određuje luminoznost (L), optičku dubinu prašine (τ , na 0,55 μ m), temperaturu kod unutrašnjeg poluprečnika kondenzacije prašine (T_c) i nagib profila gustine prašine ($\rho \sim r^{-p}$) oko zvezde. Svaki od ovih parametara može zasebno da se fiksira.

Sve SER su određene pod pretpostavkom da se radi o usamljenim zvezdama. Ako je zvezda deo dvojnog sistema, prisustvo druge komponente će uticati na fotometriju i prouzrokovaće da računate luminoznosti i efektivne temperature budu veće nego kada je u pitanju usamljena zvezda.

Za Veliki Magelanov oblak i Mali Magelanov oblak su uzete daljine od 50 i 61 kpc, sa modulima rastojanja 18,49 i 18,93. Ove vrednosti su blizu najnovijim procenama iz članaka de Grijesa i saradnika (de Grijs et al., 2014; de Grijs & Bono, 2015).

Pocrvenjenje, E(B - V), nije bilo tretirano kao slobodan parametar. Umesto toga je prihvaćena vrednost E(B - V) = 0,15 za sve zvezde. Iako postoje prostorne varijacije u gustini međuzvezdane materije, u Magelanovim oblacima, a samim tim i pocrvenjenja, kao što je to opisano u člancima Haškea i saradnika (Haschke et al., 2012a,b) i Inoa i saradnika (Inno et al., 2016), one su male za ove zvezde jer se njihova SER uglavnom meri u bliskom infracrvenom delu spektra elektromagnetnog zračenja.

Ulazni modeli atmosfera, za većinu zvezda, su bili modeli MARCS (Gustafsson et al., 2008) sa metaličnošću [Fe/H] = -0,50 dex za Mali i -0,75 dex za Veliki Magelanov oblak. Osnovna mreža modela je imala efektivne temperature u intervalima od 250 K, ali su modeli interpolirani na mrežu od 125 K da bi se prilagodili malim promenama u $T_{\rm eff}$ koje su karakteristične za ove zvezde.

U slučajevima kada gornja granica efektivne temperature od 8000 K u modelima MARCS predstavljaju ograničenje, korišćeni su modeli atmosfera PHOENIX (Hauschildt et al., 1999), ali se ispostavilo da je samo jedna zvezda tipa *RV Tauri*, OGLE-LMC-T2CEP-199, zapravo imala T_{eff} iznad 8000 K (tačnije 8600 K).

Većina zvezda nema prašinu i one su najbolje predstavljene modelom tzv. "golih zvezda". U tim slučajevima optička dubina prašine je fiksirana na jedan jako mali broj (T_c i parametar p su takođe fiksirani na standardne vrednosti 1000 K i 2, u prethodno navedenom redosledu). Za svaki model atmosfere je fitovanjem SER dobijena optimalna luminoznost (i njena formalna greška) zajedno sa odgovarajućom vrednošću χ^2 , definisanom u članku Gronevegena (Groenewegen, 2012) kao:

$$\chi^2 = \sum_{i=1}^{i=n} \frac{(m_{obs}(i) - m_{pred}(i))^2}{\sigma_{m_{obs}(i)}^2},$$
(3.1)

gde su m_{obs} i m_{pred} posmatrana i pretpostavljena magnituda sa greškama od $\sigma_{m_{obs}}$, a n je broj korišćenih podataka. Model sa najmanjom vrednošću χ^2 daje nam najbolju efektivnu temperaturu i luminoznost. Za neke od zvezda bolji fit je postignut dodavanjem prašine. Bajesovski informacioni kriterijum (BIC, vidi rad Švarza (Schwarz, 1978)) korišćen je da se proveri da li je niži χ^2 , koji se dobija nakon uključivanja dodatnih parametara, statistički značajan.

Najveći broj zvezda koje imaju infracrveni višak su zvezde tipa *RV Tauri* i neke od njih su posmatrane sa svemirskim teleskopom *Spitzer*, pa imaju dostupne infracrvene spektre (*Infrared Spectra* (IRS)). Većina zvezda tipa *RV Tauri* koje imaju infracrveni višak pokazuju u svojim SER znakove da je materijal oko zvezde raspoređen u obliku diska. Kod zvezda tipa *RV Tauri* koje su usamljene, odbačeni materijal bi trebalo da formira omotač oko zvezde, koji bi se ujednačeno širio u svim pravcima.

Da bi se dobile realističnije procene luminoznosti dodata je komponenta prašine (Groenewegen & Jurkovic, 2017b). Dodavanje komponente prašine u SER je testirano na jednoj dobro poznatoj zvezdi tipa *RV Tauri*, AC Her (detalji se mogu naći u diskusiji nedavno objavljenoj u radu Hilena i saradnika (Hillen et al., 2015)). Fit dobijen pomoću MoD (koristeći dva omotača) je prikazan na slici 3.1 i veoma je dobar.

Prašina se sastoji od: amorfnih silikata, korunda, kristalizovanih silikata i čestica gvožđa, slično opisu u članku Hilena i saradnika (Hillen et al., 2015). Prašina ovog sastava je bila korišćena u svim fitovima SER za zvezde u Magelanovim oblacima.

Slika 3.1: Poklapanje SER sa merenim infracrvenim spektrom (Sloan et al., 2003) za zvezdu AC Her. Model SER za AC Her je sačinjen od dva različita zvezdana vetra da bismo mogli reprodukovati hemijski sastav prašine oko zvezde (koji znamo iz merenja). Oblik modelovane SER ilustruje sastav prašine koji je bio korišćen kod svih zvezda koje su imale infracrveni višak na srednjim infracrvenim talasnim dužinama. Na donjem panelu model je skaliran na posmatrani fluks da bismo mogli obuhvatiti interval 20,5-22,5 μ m i sprovesti upoređivanje sa delom gde se nalazi komponenta prašine.

3.2 Izračunavanje poluprečnika zvezda

Kako ne postoji teorijska relacija između mase (M), perioda (P), poluprečnika (R) i metaličnosti (Z) (*Period-Mass-Radius-Metallicity*, *PMRZ*) za cefeide tipa II i anomalne cefeide, upotrebljena je kombinacija modela za zvezde tipa *RR Lyrae* i za klasične cefeide. Svi detalji procedure su dati u radu Gronevegena i Jurković (Groenewegen & Jurković, 2017a) i ovde smo reprodukovali opis postupka.

U slučaju zvezda tipa *RR Lyrae* Markoni i saradnici (Marconi et al., 2015) su predstavili najnovije hidrodinamičke modele (koji su nelinearni, vremenski zavisni i uključuju konvekciju), koji imaju relacije *PMRZ* za zvezde koje pulsiraju u osnovnoj frekvenciji (F) i prvoj nadmodi (1O) (u njihovom članku jednačine 7 i 8). Oni su isključili najsjajnije modele (takozvane "modele iz serije D"), ali to su tačno oni modeli koji imaju vrednosti luminoznosti tipične za cefeide tipa II. U članku Gronevegena i Jurković (Groenewegen & Jurkovic, 2017a) autori su izveli relaciju *PMRZ* koristeći podatke iz prethodno opisanih modela sa log $L/L_{\odot} > 1,65$, gde luminoznost može da dostigne vrendost od log $L/L_{\odot} \sim 2,0$ i sa periodima do oko $P \sim 2,4$ dana za prosečne metaličnosti zvezda tipa *RR Lyrae* u Velikom Magelanovom oblaku od [Fe/H] = -1,5 dex (Gratton et al., 2004) (ili log Z = -3,23). Relacije su date jednačinama:

$$\log R = (0,763 \pm 0,003) - (0,037 \pm 0,001) \log Z + (0,560 \pm 0,004) \log P (N = 195)$$
(3.2)

za zvezde koje pulsiraju u osnovnoj frekvenciji i

$$\log R = (0,855 \pm 0,005) - (0,034 \pm 0,001) \log Z + (0,585 \pm 0,007) \log P \ (N = 63)$$
(3.3)

za zvezde koje pulsiraju u prvoj nadmodi. N je broj podataka iz rada Markoni i saradnika (Marconi et al., 2015) koji su korišćeni za izođenje nove relacije PMRZ.

Bono i saradnici (Bono et al., 2000) su objavili modele za klasične cefeide koje pulsiraju u osnovnoj frekvenciji (F) i prvoj nadmodi (10). Njihovi modeli su bili računati koristeći dve aprkosimacije: kanonsku i ne-kanonsku. Kanonska aproksimacija znači da na glavnom nizu u modelu nema prenosa materijala iz konvektivnog omotača u druge delove zvezde, dok ne-kanonska aproksimacija znači da može doći do prenosa materijala (Pietrinferni et al., 2004a, 2006). Da bismo izveli novu relaciju PRMZ, koju možemo primeniti na cefeide tipa II i anomalne cefeide, kombinovali smo kanonsku i ne-kanonsku aproksimaciju koje su bile objavljene u članku Bonoa i saradnika (Bono et al., 2000) pri srednjim metaličnostima za cefeide u Velikom Magelanovom oblaku (Romaniello et al., 2008) od [Fe/H] = -0, 33 (ili log Z = -2, 06). Nove relacije su:

$$\log R = (1, 115 \pm 0, 012) - (0, 039 \pm 0, 005) \log Z + (0, 653 \pm 0, 003) \log P \ (N = 202)$$
(3.4)

za zvezde koje pulsiraju u osnovnoj frekvenciji i

$$\log R = (1,257 \pm 0,028) - (0,003 \pm 0,014) \log Z + (0,706 \pm 0,016) \log P \ (N = 27)$$
(3.5)

za zvezde koje pulsiraju u prvoj nadmodi.

Svi izračunati poluprečnici su dati u prilogu A.4, a relacije period-poluprečnik za cefeide tipa II i anomalne cefeide su prikazane u odeljku 4.3.

3.3 Određivanje masa

Određivanje zvezdanih masa proučavanih objekata iz Velikog i Malog Magelanovog oblaka zahteva više ulaznih podataka, preciznije L i T_{eff} , koji su bili izračunati iz fitovanja SER opisanog u odeljku 3.1 ovog poglavlja, kao i pulsacioni period (P) i metaličnost.

Slično prethodno predstavljenoj relaciji PMRZ, koja je služila za računanje poluprečnika (odeljak 3.2), koristili smo teorijske modele da dobijemo jednačine koje se mogu koristiti za računanje masa.

Za zvezde tipa *RR Lyrae* koje pulsiraju u osnovnoj frekvenciji (F) koristeći modele iz rada Markoni i saradnika (Marconi et al., 2015) sa luminoznošću $\log L/L_{\odot} >$ 1,65 izveli smo sledeću jednačinu (Groenewegen & Jurkovic, 2017a):

$$\log P = (11, 468 \pm 0, 049) + (0, 8627 \pm 0, 0028) \log L$$

-(0, 617 ± 0, 015) log M - (3, 463 ± 0, 012) log T_{eff} (3.6)
+(0, 0207 ± 0, 0013) log Z (N = 195, \sigma = 0, 0044),

gde je N broj podataka iz objavljenog modela Markoni i saradnika (2015) korišćenih za izvođenje nove relacije, a σ je standardna devijacija.

U slučaju klasičnih cefeida koje pulsiraju u osnovnoj frekvenciji (F), na osnovu modela iz članka Bonoa i saradnika (Bono et al., 2000) u članku Gronevegen i Jurković (Groenewegen & Jurkovic, 2017a) smo objavili sledeću izvedenu jednačinu:

$$\log P = (10, 649 \pm 0, 085) + (0, 9325 \pm 0, 0053) \log L$$

-(0, 799 \pm 0020) \log M - (3, 282 \pm 0, 022) \log T_{eff} (3.7)
+(0, 0393 \pm 0, 0026) \log Z (N = 202, \sigma = 0, 0085).

Iz jednačina 3.6 i 3.7 sa Z = 0,004 (za Veliki i Mali Magelanov oblak) mogu se proceniti mase. U slučaju anomalnih cefeida dali smo jednačinu koja povezuje period pulsacije anomalnih cefeida koje pulsiraju u osnovnoj frekvenciji (F) i anomalnih cefeida koje pulsiraju u prvoj nadmodi (10), log $P_F = \log P_{10} + 0,127$. Ovo smo uradili kako bismo mogli primeniti jednačine 3.6 i 3.7 koje se odnose na zvezde koje pulsiraju u osnovnoj frekvenciji i na anomalne cefeide koje pulsiraju u prvoj nadmodi (10). Greške za mase su bile procenjene iz grešaka za $T_{\rm eff}$ i L, kao i iz grešaka koje su date u jednačinama 3.6 i 3.7 (Groenewegen & Jurkovic, 2017a). Rezultati su dati u prilogu A.4.

U istom članku (Groenewegen & Jurkovic, 2017a), da bismo proverili ispravnost rezultata dobijenih za masu iz gore opisanog postupka, uzeli smo jednu zvezdu, klasičnu cefeidu iz dvojnog sistema OGLE-LMC-CEP-0227, kojoj je poznata masa. Uporedili smo rezultate iz jednačina 3.6 i 3.7 i merenja objavljena u radovima Pileckog i saradnika (Pilecki et al., 2013) i Markoni i saradnika (Marconi et al., 2013).
Jednačina koja je bila zasnovana na klasičnim cefeidama je dala masu 4,41 ± 0,44 M_{\odot} , koja je u saglasnosti sa masom iz radova Pileckog i saradnika (Pilecki et al., 2013): 4,165 ± 0,032 M_{\odot} i Markoni i saradnika (Marconi et al., 2013): 4,14 ± 0,06 M_{\odot} . Jednačina za zvezde tipa *RR Lyrae*, takođe, daje masu koja je tačna u granicama greške, i to 5,86 ± 1,18 M_{\odot} (Groenewegen & Jurkovic, 2017a). Pošto se merene vrednosti mase i mase procenjene iz jednačina slažu u granicama greške, potvrdili smo validnost njihove upotrebe.

3.4 Furijeovi parametri

U ovoj doktorskoj tezi koristimo Furijeove parametre, koji su dobijeni Furijeovom dekompozicijom krivih sjaja pulsirajućih zvezda. Definicija Furijeovih parametara u matematici nije ista kao u oblasti pulsirajućih zvezda. Ovde korišćene definicije za Furijeove parametre ćemo objasniti u sledećim pasusima.

Furijeova dekompozicija se može primeniti na pulsirajuće zvezde, uključujući i cefeide tipa II i anomalne cefeide, jer ove zvezde pokazuju promene sjaja tokom vremena koje se periodično ponavljaju i oblik krivih sjaja im se može opisati sinusnom ili kosinusnom funkcijom osnovne frekvencije i njenim harmonicima. Dakle, ulazni parametri su sjaj zvezde i vreme kada je merenje rađeno. U astronomiji postoji mnogo programa koji mogu da urade Furijeovu dekompoziciju krive sjaja, ali ovde smo koristili program *Period04* (Lenz & Breger, 2004). Program *Period04* koristi sledeću jednačinu za Furijeovu dekompoziciju:

$$F(t) = Z + \sum_{i=1}^{N} A_i \sin(2\Pi(\omega_i t + \varphi_i)), \qquad (3.8)$$

gde je F(t) izračunati model krive sjaja, Z je srednja vrednost amplitude krive sjaja u magnitudama, A_i je amplituda *i*-tog detektovanog signala u magnitudama, $\omega_i = 2\pi/f_i$, gde je f_i frekvencija *i*-tog signala (period pulsacije je $P = 1/f_1$) i φ_i je faza *i*-tog signala. Pošto je ulazni podatak sjaj, koji se meri u magnitudama, pa su Z i A_i date u magnitudama. Program *Period04* ima opciju da računa amplitude i faze drugog harmonika $(2 \times f_1)$ i trećeg harmonika $(3 \times f_1)$. To se radi tako što se na osnovu unetih merenih podataka izračunaju vrednosti za frekvenciju (f_1) , amplitudu (A_1) i fazu (φ_1) najjačeg signala. Program izračuna sinusnu krivu sjaja sa malopre izračunatim ulaznim vrednostima i oduzme je od merenih vrednosti. Ovaj proces se zove "čišćenje" ili "izbeljivanje" podataka. Ako su u krivi sjaja prisutni harmonici drugog ili višeg reda onda se ovaj proces ponavlja, tako da je u svakoj sledećoj iteraciji uključeno sve više harmonika ili frekvencija, sve dok se modelirana kriva sjaja ne poklopi sa posmatranom i dok se u Furijeovom spektru više ne može razlikovati signal od šuma. Tako dobijamo vrednosti za amplitude drugog i trećeg harmonika $(A_2 i A_3)$ i njihove faze $(\varphi_2 i \varphi_3)$.

Na slici 3.2 je kao ilustracija prikazan snimak programa Period04 sa podacima za zvezdu VY Pyx. Osnovna frekvencija, f_1 , drugi i treći harmonici, $2 \times f_1$ i $3 \times f_1$, su prikazani na slici za podatke u V filteru iz baze podataka ASAS-3 (Pojmanski, 1997). Slika 3.3 prikazuje podatke, a fazna kriva sjaja je na slici 3.4. Spektar Furijeove dekompozicije za fotometrijske podatke je prikazan na slici 3.5.

Kada se kod pulsirajućih zvezda govori o Furijeovim parametrima, misli se na odnos amplituda (R_{i1}) i fazne razlike (φ_{i1}) :

$$R_{i1} = \frac{A_i}{A_1},\tag{3.9}$$

i

$$\varphi_{i1} = \varphi_i - i\varphi_1, \tag{3.10}$$

gde je i = 2, 3.

Ove definicije su uveli Sajmon i Li i Sajmon (Simon & Lee, 1981; Simon, 1986), koji su smatrali da su ovako definisani Furijeovi parametri korisni za karakterizaciju oblika krivih sjaja pulsirajućih zvezda.

Ovako definisani Furijeovi prametri su bili izračunati za cefeide tipa II u radu Petersena i Dithelma (Petersen & Diethelm, 1986). Oni su konstruisali grafike sa Furijeovim parametrima u odnosu na logaritam osnovnog perioda pulsacije ($\log P$) i pokušali da utvrde da li se razni tipovi pulsirajućih zvezda (klasičnih cefeida i cefeida tipa II) mogu razlikovati na osnovu pozicije na grafiku. Pomenuti autori su zaključili da je broj i preciznost podataka za cefeide tipa II i klasične cefeide bila premala da bi se ove dve vrste promenljivih zvezda mogle razlikovati na slikama sa

Slika 3.2: Slika programa *Period04* koji prikazuje otkrivene frekvenckije u krivoj sjaja zvezde VY Pyx. Podaci su preuzeti iz baze podataka ASAS-3 (Pojmanski, 1997).

Slika 3.3: Podaci u V filteru za zvezdu VY Pyx, preuzeti iz baze podataka ASAS-3 (Pojmanski, 1997).

Slika 3.4: Fazna kriva sjaja zvezde VY Pyx.

Slika 3.5: Furijeov spektar periodičnih signala u krivoj sjaja zvezde VY Pyx.

Furijeoivim parametrima, ali da unatoč tome mogu da se naslute razlike između njih. Zaključili su i da su Furijeovi parametri korisni za opis osobina pulsacije (Petersen & Diethelm, 1986).

Dok su Furijeovi parametri korisni za opisivanje oblika krivih sjaja za specifične pulsirajuće zvezde, i pružaju nam mogućnost da pomoću njih razlikujemo različite tipove promenljivih zvezda, ovaj metod nije savršen. U mnogim slučajevima postoje poznata preklapanja između tipova. Ovo se može videti na graficima Furijeovih parametara računatih za krive sjaja iz kataloga OGLE-III u I filteru (vidi slike 3.6 i 3.7). Boja označava razne tipove pulsirajućih zvezda i pomaže nam da ih razlikujemo, ali ako ne bismo imali boje njihovo razlikovanje ne bi bilo tako očigledno. U slučaju slika za zvezde iz kataloga OGLE-III za Veliki Magelanov oblak i Mali Magelanov oblak klasifikacija zvezda je bila potvrđena pomoću pozicije ovih pulsirajućih zvezda na relaciji perioda i sjaja u Vesenhajtovom indeksu.

Slika 3.6: Furijeovi parametri R_{21} i φ_{21} naspram log P izračunati za zvezde tipa BLHerculis, zvezde tipa W Virginis i neobične zvezde tipa W Virginis, zvezde tipa RVTauri, anomalne cefeide (koje pulsairaju u osnovnoj frekvenciji i u prvoj nadmodi) i klasične cefeide sa podacima iz kataloga OGLE-III u I filteru za Veliki Magelanov oblak. Preuzeto iz rada Sošinjskog i saradnika (Soszyński et al., 2008a), slika 8.

Slika 3.7: Furijeovi parametri R_{31} i φ_{31} naspram log P izračunati za zvezde tipa BLHerculis, zvezde tipa W Virginis i neobične zvezde tipa W Virginis, zvezde tipa RVTauri, anomalne cefeide (koje pulsairaju u osnovnoj frekvenciji i u prvoj nadmodi) i klasične cefeide sa podacima iz kataloga OGLE-III u I filteru za Veliki Magelanov oblak. Preuzeto iz rada Sošinjskog i saradnika (Soszyński et al., 2008a), slika 9.

Objavljivanjem podataka iz kataloga OGLE-III, postalo je moguće da uporedimo druge zvezde sa pulsirajućim zvezdama iz OGLE uzorka. Ovo upoređivanje je osnova nove klasifikacije koja je objavljena u radu Jurković (Jurkovic, 2018). Da bismo mogli direktno uporediti Furijeove parametre, uzeli smo podatke u V filteru iz kataloga OGLE-III i izračunali smo Furijeove parametre za njih na isti način kao što smo to uradili i za sve sakupljene podatke u V filteru za 59 zvezda iz Mlečnog puta. Svi Furijeovi parametri su bili konvertovani da se poklapaju sa onima iz kataloga OGLE-III, jer program *Period04* računa Furijeovu dekompoziciju sa sinusnom osnovom, a tim OGLE je koristio kosinusnu osnovu za Furijeovu dekompoziciju.

Pošto je nova klasifikacija uzorka od 59 zvezda iz Mlečnog puta (vidi opis uzorka u odeljku 2.2) rezultat analize grafika Furijeovih parametara kombinovane sa vizualnom inspekcijom i upoređivanjem sa literaturom, detalje klasifikacije i rezultate opisujemo u poglavlju 4.

3.5 Kinematički pristup određivanju pripadnosti individualnih zvezda galaktičkim podsistemima

Kako bismo odredili pripadnost individualnih zvezda galaktičkim podsistemima korišćen je kinematički pristup. U članku Jurković i saradnika (Jurkovic et al., 2016) autori su primenili ovu metodu na ograničen broj cefeida tipa II za koje su u datom momentu postojali potrebni posmatrački podaci.

U prvom koraku, daljine i položaji zvezda su pretvoreni u galaktocentrički Dekartov sistem galaktičkih koordinata (X, Y, Z). Za ovo su korišćene dobro poznate formule:

$$X = D \cos b \cos l - D_{\odot}$$
$$Y = D \cos b \sin l$$
$$Z = D \sin b,$$
(3.11)

gde je D heliocentrična daljina do zvezde, b i l su galaktičke koordinate zvezda, a D_{\odot} je rastojanje Sunca do centra galaksije.

Da bismo dobili radijus vektor položaja i vektor brzine zvezde u prostoru, potrebni su nam sledeći podaci: dve koordinate u nebeskom ekvatorskom sistemu, udaljenost, dve komponente sopstvene brzine i radijalna brzina. Pošto su ovo pulsirajuće zvezde, one tokom pulsacije menjaju radijalnu brzinu, tako da treba da budemo obazrivi kada uzimamo vrednosti radijalnih brzina. U idealnom slučaju bismo trebali imati fazno pokrivenu krivu radijalne brzine na osnovu koje bismo odredili srednju vrednost krive radijalne brzine, čime bismo eliminisali uticaj pulsacije na radijalnu brzinu koja se meri kao komponenta kretanja zvezde u Mlečnom putu. Ovo može da se eliminiše i fitovanjem modela radijalnih brzina na merene podatke, ali to ostaje za budući rad sa podacima svemirskog teleskopa *Gaia*. Kada smo uporedili red veličine (to jest uticaj na rezultat) pojedinih ulaznih komponenti, videli smo da je uticaj radijalnih brzina mali u odnosu na udaljenost i sopstveno kretanje, tako da je greška koju unosimo zanemarivanjem efekta pulsacije na radijalne brzine zapravo jako mala.

Svi ulazni podaci se transformišu u heliocentrični Dekartov sistem; za ovu svrhu koristimo proceduru opisanu u članku Džonsona i Soderbloma (Johnson & Soderblom, 1987). Nakon toga korigujemo brzine za kretanje Sunca. Ovako dobijene brzinske komponente U_{LSR} , V_{LSR} , W_{LSR} su izračunate u odnosu na lokalni standard mirovanja (*local standard of rest* (LSR)):

Intenzitet vektora brzine, v, u odnosu na LSR je:

$$v = \sqrt{U_{\rm LSR}^2 + V_{\rm LSR}^2 + W_{\rm LSR}^2}$$
(3.12)

Ova veličina je indikator za pripadnosti zvezde tankom ili debelom disku ili halou. Ako je vrednost v jako velika za jednu zvezdu (recimo, prelazi 250 km s⁻¹), onda prema ovom metodu ova zvezda pripada halou. Ako je v između 80 i 120 km s⁻¹, onda ona pripada tankom disku. Ako je v između 120 i 250 km s⁻¹ zvezda najverovatnije pripada debelom disku.

Poglavlje 4

Fizički parametri cefeida tipa II i anomalnih cefeida

4.1 Konstruisanje Hercšprung-Raselovog dijagrama iz izvedenih efektivnih temperatura i luminoznosti

Hercšprung-Raselov dijagram se može konstruisati na više načina, ako na xosi imamo veličinu za temperaturu, a na y-osi veličinu za luminoznost. Ako su umesto temperatura predstavljene boje, a umesto luminoznosti magnitude onda je rezultujuća slika tzv. dijagram boja-magnituda (*colour-magnitude diagram*), skraćeno DBM. Slika 4.1 prikazuje posmatran dijagram boja-magnituda u slučaju boje (V - I) naspram sjaja u I filteru za cefeide tipa II i anomalne cefeide iz kataloga OGLE-III, slično kao na slici 2 u radovima Sošinjskog i saradnika (Soszyński et al., 2008a, 2010a).

Da bismo videli kako dvojnost utiče na poziciju zvezde na dijagramu bojamagnituda detaljnije smo pogledali slučaj zvezde OGLE-LMC-T2CEP-098. Ova zvezda je bila klasifikovana kao neobična zvezda tipa *W Virginis* i znamo da je u eklipsno dvojnom sistemu (EDS). Prethodno je bila analizirana u radu Alkoka i saradnika (Alcock et al., 2002), gde su autori razdvojili posmatranu magnitudu na magnitude obe komponente. One su takođe prikazane na slici 4.1, gde je pulsirajuća

komponenta locirana sa ostalim zvezdama tipa *W Virginis*, dok druga, nepulsirajuća komponenta nalazi krajnje levo i čini da sistem izgleda plavlje nego ostale zvezde u uzorku.

Objekti OGLE-LMC-T2CEP-088 i OGLE-LMC-T2CEP-153 (blizu $I \sim 17, (V - I) = 0, 1$) su označene kao "spojene" (na CCD snimku se nalaze jako blizu jedne druge zvezde, tako da im je nemoguće izmeriti sjaj, a da to merenje ne sadrži i sjaj druge zvezde) u katalogu OGLE-III, što verovatno objašnjava njihovu plavu boju. Plava boja zvezde OGLE-LMC-T2CEP-199 (oko $I \sim 14$) je verovatno stvarna. Ova zvezda ima najveću efektivnu temperaturu (8600 K) u uzorku svih zvezda za koje smo radili fit SER i u prošlosti je bila klasifikovana kao zvezda spektralnog tipa B2III (vidi niže).

Cetiri zvezde na slici 4.1 koje su slabijeg sjaja od ostalih (OGLE-LMC-T2CEP-109, OGLE-LMC-T2CEP-165, OGLE-LMC-T2CEP-173 i OGLE-LMC-ACEP-059) nemaju nikakve specijalne osobine uočljive u krivama sjaja ili SER koje bi mogle objasniti njihovu poziciju na dijagramu boja-magnituda. Tri zvezde (OGLE-LMC-T2CEP-165, OGLE-LMC-T2CEP-173, OGLE-LMC-ACEP-059) su pozicionirane prema maglini Tarantula (30 Dor) i ekstinkcija u tom smeru bi moglo igrati ulogu u činjenici da u crvenije i slabijeg sjaja od ostalih zvezda u uzorku. Ovo je definitivno moguće, jer je ugaona daljina između OGLE-LMC-T2CEP-165 i 30 Dor oko 20 lučnih minuta, a za ostale objekte je oko 45 lučnih minuta. Sa druge strane, postoje objekti koji su bliži 30 Dor od 20 lučnih minuta i mnogi koji su unutar 45 lučnih minuta, ali nisu istaknuti.

Slika 4.2 prikazuje fizički Hercšprung-Raselov dijagram za razmatrane zvezde iz Velikog i Malog Magelanovog oblaka. Vidi se ista morfologija kao na dijagramu boja-magnituda I, (V-I) na slici 4.1. Zvezde su bile tretirane kao usamljeni objekti kada je rađen fit SER, tako da će dvojni sistemi izgledati sjajniji i topliji (pretpostavljajući da je pratilac zvezda na glavnom nizu) nego usamljena pulsirajuća zvezda. Metod izračunavanja L i $T_{\rm eff}$ pomoću modeliranja SER je predstavljen u odeljku 3.1. Izračunate vrednosti L i $T_{\rm eff}$, kao i SER za sve zvezde se mogu pronaći u prilogu A.3.

Evolucione putanje iz članka Vasiliadisa i Vudsa (Vassiliadis & Wood, 1993) sa inicijalnim masama zvezda od 0,945 M_{\odot} (za metaličnost Velikog Magelanovog

Slika 4.1: Posmatrani I, (V-I) dijagram boja-magnituda. Zvezde u Malom Magelanovom oblaku su prikazane crvenom bojom i pomerene su za -0, 432 mag u I filteru da bi se korigovale razlike u magnitudi koja je uzrokovana razlikom u daljinama između Velikog i Malog Magelanovog oblaka (50 i 61 kpc). Za neobičnu zvezdu tipa W Virginis OGLE-LMC-T2CEP-098, koja je poznata kao eklipsno dvojni sistem (Alcock et al., 2002), pozicija komponenata je naznačena tamno plavim linijama. Pulsirajuća zvezda je manjeg sjaja (crvenije je boje) od druge komponente dvojnog sistema (vidi tekst). Zvezde koje imaju infracrveni višak su prikazane zelenim plusevima. Zvezde koje je tim OGLE identifikovao kao eklipsno dvojne sisteme ili elipsoidalne promenljive zvezde su označene plavim krstićima. Neke zvezde su označene svojim identifikacionim brojevima iz kataloga OGLE.

Slika 4.2: Fizički HRD za zvezde iz Velikog Magelanovog oblaka, koje su prikazane crnom bojom i zvezde iz Malog Magelanovog oblaka, prikazane crvenom bojom. Zvezde koje imaju infracrveni višak su označene zelenim plusevima. Zvezde koje su u katalogu OGLE-III poznati eklipsno dvojni sistemi ili elipsoidalne promenljive zvezde su označene plavim krstićima. Modeli koji su prikazani simbolima \times su preuzeti iz rada Vasiliadisa i Vuda (Vassiliadis & Wood, 1993), za najmanje dostupne mase, $0,945~M_{\odot}$ za Veliki Magelanov oblak (označeni crnom bojom) i $0,89~M_{\odot}$ za Mali Magelanov oblak (označeni crvenom bojom). Krajnje mase modela su $0,555 M_{\odot}$ za Veliki Magelanov oblak i $0,558~M_{\odot}$ za Mali Magelanov oblak. Evolutivne trake prikazane simbolima * su modeli najmanjih početnih masa iz rada Milera Bertolamija (Miller Bertolami, 2016) za metaličnost Z = 0,01 (1,0 M_{\odot} , trenutna masa 0,534 M_{\odot}) i $Z = 0,001 \ (0.9 \ M_{\odot}, \text{ trenutna masa } 0.536 \ M_{\odot}, \text{ crvenom bojom}).$ Kod oba ova modela svaka tačka predstavlja skok u evoluciji od 500 godina. Plava i crvena granica trake nestabilnosti i predstavljene su punom linijom date su za osnovnu frekvenciju zvezda tipa *BL Herculis* (između $\log L/L_{\odot} \sim 1,81$ - 2,1 za mase 0,65 M_{\odot}) i za osnovnu frekvenciju anomalnih cefeida (između $\log L/L_{\odot} \sim 1,77$ - 2,4) (vidi tekst). Vertikalne isprekidane linije pokazuju položaj većine sjajnijih zvezda (vidi tekst).

oblaka, crnom bojom) i 0,89 M_{\odot} (za metaličnost Malog Magelanovog oblaka, crvenom bojom) su prikazane kao krstići na slici 4.2 radi poređenja. Nedavno je Miler Bertolami (Miller Bertolami, 2016) objavio nove evolutivne putanje za zvezde koje su u fazi razvoja posle asimptotske grane džinova. Najmanje dostupne inicijalne mase za putanje sa metaličnostima Z = 0,01 (1,0 M_{\odot} , trenutna masa 0,534 M_{\odot}) i Z = 0,001 (0,9 M_{\odot} , trenutna masa 0,536 M_{\odot} , crvenom bojom) su prikazane simbolom *. Za oba modela oznake su date sa korakom od 500 godina. Važno je napomenuti da se zvezde u kojima je posmatran infracrveni višak (označene sa zelenim plusevima) pojavljuju sa luminoznostima manjim od onih koje su dozvoljene na putanjama evolucije pojedinačnih zvezda, kao što je to bilo predstavljeno u radu Kamat i saradnika (Kamath et al., 2016).

Trake nestabilnosti za zvezde tipa *BL Herculis* i anomalne cefeide su predstavljene su na slici 4.2 plavim i crvenim linijama na donjem delu HRD. Traka nestabilnosti za zvezde tipa *W Virginis* (uključujući i neobične zvezde tipa *W Virginis*) i za zvezde tipa *RV Tauri* je ucrtana plavom i crvenom isprekidanom linijom, redom, tako da pokrije većinu zvezda. Crvena granica je ucrtana kod log $T_{\rm eff} = 3,67$ $(T_{\rm eff} = 4680 \text{ K})$, a plava granica kod log $T_{\rm eff} = 3,79$ ($T_{\rm eff} = 6160 \text{ K}$). Crvena ivica trake nestabilnosti je dobro određena granica za zvezde svih luminoznosti u ovom uzorku, a za plavu ivicu trake nestabilnosti se čini da je granica dobra aproksimacija samo do log $L/L_{\odot} \sim 3,3$.

Slika 4.3 prikazuje projekciju Hercšprung-Raselovog dijagrama na osu gde je luminoznost. Raspodela luminoznosti je kvalitativno slična onoj predstavljenoj u radu Gingolda (Gingold, 1985), gde su prikazane cefeide tipa II pronađene u globularnin jatima, sa minimumom raspodele oko $\log L/L_{\odot} \sim 2,2$ (ali sa malo većom luminoznošću za Mali Magelanov oblak, mada imamo samo nekoliko zvezda).

Slika 4.3: Histogram raspodele po luminoznosti. Na gornjem panelu crni histogram predstavlja sve zvezde, crveni zvezde iz Malog Magelanovog oblaka, a plavi zvezde iz Velikog Magelanovog oblaka. Donji panel pokazuje raspodelu za Mali Magelanov oblak i Veliki Magelanov oblak prema tipu promenljivih zvezda: zvezde tipa BL Herculis prikazane su crnom, zvezde tipa W Virginis i neobične zvezde tipa W Virginis crvenom i zvezde tipa RV Tauri plavom bojom. Histogrami su namerno malo pomereni u vrednostima luminoznosti da bi se bolje videli.

POGLAVLJE 4. FIZIČKI PARAMETRI CEFEIDA TIPA II I ANOMALNIH CEFEIDA

Slika 4.4: Slično kao na slici 4.2, ali za zvezde tipa *BL Herculis*. Plava i crvena granica trake nestabilnosti osnovne frekvencije za zvezde tipa *BL Herculis* (između $\log L/L_{\odot} \sim 1.81$ i 2.1 za mase od 0.65 M_{\odot}) su prikazane punom linijom i preuzete su iz rada Di Krišćiencoa i saradnika (Di Criscienzo et al., 2007). Isprekidana linija pokazuje plavu granicu trake nestabilnosti za zvezde tipa *RR Lyrae* koje pulsiraju u osnovnoj frekvenciji i crvenu granicu za zvezde tipa *RR Lyrae* koje pulsiraju u prvoj nadmodi (vidi tekst). Zvezde na horizontalnoj grani modelirani su programom PARSEC (Bressan et al., 2012). Koristili smo modele iz programa PARSEC za sledeće metaličnosti i mase: svetlo plava (Z = 0.001 i $M = 0.515, 0.56, 0.62 M_{\odot}$), ljubičasta (Z = 0.004 i $M = 0.505, 0.53, 0.57 M_{\odot}$) i žuta (Z = 0.008 i $M = 0.50, 0.52, 0.57 M_{\odot}$). Tačke u modelima su prikazane na svakih milion godina evolucije.

Slika 4.4 prikazuje HRD na kome su predstavljene samo zvezde tipa BL Her-

culis iz Velikog i Malog Magelanovog oblaka. Plava i crvena granica trake nestabilnosti za zvezde tipa *BL Herculis* koje pulsiraju u fundamentalnoj frekvenciji preuzete su iz rada Di Kriščiencoa i saradnika (Di Criscienzo et al., 2007) (između $log L/L_{\odot} \sim 1,81-2,1$), za mase od 0,65 M_{\odot} . Položaj trake nestabilnosti za zvezde tipa BL Herculis slabo zavisi od mase; ako bi se masa smanjila na $0.55 \ M_{\odot}$ traka nestabilnosti bi se pomerila ka plavljem (i toplijem) delu HRD samo za $\Delta \log T_{\rm eff} = 0,009$. Modeli za zvezde tipa *BL Herculis* su izračunati za metaličnosti između Z = 0,0001 i Z = 0,004 i izgleda da položaj trake nestabilnosti ne zavisi od metaličnosti u ovom opsegu (Di Criscienzo et al., 2007). Posmatranja su u dobroj saglasnosti sa teorijskom plavom ivicom, ali vidimo neke od zvezda koje su hladnije za 500 K u odnosu na temperaturu crvene ivice. Za poređenje, raspon efektivnih temperatura za zvezde tipa RR Lyrae sa sličnim masama je ilustrovan tako što je plavom ivicom data granica za zvezde koje pulsiraju u prvoj nadmodi, a za crvenu ivicu je data granica za zvezde koje pulsiraju u osnovnoj frekvenciji. Ove granice su zasnovane na modelima iz rada Markoni i saradnika (Marconi et al., 2015) za metaličnost od [Fe/H] = -1, 5. Slika 4.4 takođe prikazuje odabrane modele evolutivnih putanja zvezda na horizontalnoj grani izračunatih pomoću programa PARSEC¹⁴ (Bressan et al., 2012). Luminoznost najsjajnijih zvezda se može objasniti sa masama $(0,50-0,515 \ M_{\odot}, u$ zavisnosti od metaličnosti), dok su za većinu zvezda odgovarajuće mase između $0,52-0,56 M_{\odot}$.

Slika 4.5 prikazuje HRD za anomalne cefeide iz Velikog i Malog Magelanovog oblaka. Plave i crvene ivice trake nestabilnosti anomalnih cefeida koje pulsiraju u osnovnoj frekvenciji (puna linija) i prvoj nadmodi (isprekidana linija) preuzete su iz modela u radu Fijorentino i saradnika (Fiorentino et al., 2006b). Modeli, izračunati za Z = 0,0001, pokazuju izuzetno slaganje sa posmatranjima. Anomalne cefeide koje pulsiraju u prvoj nadmodi su uglavnom locirane u oblasti većih temperatura i konzistentne su sa trakom nestabilnosti. Osim dva izuzetka, zvezde koje pulsiraju u prvoj nadmodi imaju temperature između 5625 i 7375 K, sa srednjom vrednošću od 6500 K. Anomalne cefeide koje pulsiraju u osnovnoj frekvenciji imaju temperature između 5000 i 7000 K, sa srednjom vrednošću od 6250 K.

¹⁴http://people.sissa.it/~sbressan/parsec.html

Slika 4.5 takođe sadrži i evolucione putanje iz baze evolucionih modela BaSTI¹⁵ (Pietrinferni et al., 2004b) za mase i metaličnosti koje pokrivaju region na HRD gde se anomalne cefeide nalaze. Objašnjenje za poziciju anomalnih cefeida sa nižim luminoznostima u traci nestabilnosti se može naći u modelima zvezda malih masa (~ 1,1 M_{\odot}) i niskih metaličnosti (Z = 0,0001), a za poziciju anomalnih cefeida u traci nestabilnosti sa višim luminoznostima u modelima od oko ~ 2,3 M_{\odot} sa 10 puta većom metaličnošću. Za nekoliko posmatranih anomlanih cefeida sa najnižom luminoznošću ($logL/L_{\odot} \sim 1,8$) objašnjenje može biti da vidimo brzu evoluciju zvezda koje prelaze preko trake nestabilnosti na njihovom putu ka grani crvenih džinova.

Slika 4.6 prikazuje zvezde tipa W Virginis (uključujući i neobične zvezde tipa WVirginis), koje su locirane u oblasti relativno visokih luminoznosti na Hercšprung-Raselovom dijagramu. Neobične zvezde tipa W Virginis (pWVir) su prikazane popunjenim simbolima i skoro sve su toplije od ostalih zvezde tipa W Virginis. Radi poređenja, ucrtane su granice trake nestabilnosti za klasične cefeide iz rada Bonoa i saradnika (Bono et al., 2000). Vidimo da zvezde tipa W Virginis i neobične zvezde tipa W Virginis nisu jednostavno produženje klasičnih cefeida za male mase, iako možemo naći evolucione putanje koje prolaze kroz ovaj region na HRD. Slika 4.6 prikazuje još i modele BaSTI (Pietrinferni et al., 2004b) sa metaličnostima između Z = 0,001 i Z = 0,008 (videti opis slike za detalje) za zvezdane mase od 2,5, 3,0 i 4,0 M_{\odot} . Međutim, zvezde tipa W Virginis kao grupa ne mogu odgovarati tim modelima. Period pulsacije za klasične cefeide od 5 M_{\odot} (najniža masa koja je uzeta u obzir u radu Bonoa i saradnika (Bono et al., 2000)) koje pulsiraju u osnovnoj frekvenciji je otprilike 5 dana, dok je tipični period za zvezde tipa *W Virginis* sa $\log L/L_{\odot} = 2, 8 - 3$ i $\log T_{\rm eff} < 3,78$ oko 15 dana. Čak i gruba primena relacije period-luminoznost-masa za klasične cefeide iz rada Bonoa i saradnika (Bono et al., 2000) pokazuje da bi zvezde tipa W Virginis i neobične zvzede tipa W Virginis trebalo da imaju mase od oko 1 M_{\odot} (dostižu gotovo log $L/L_{\odot} = 3$) ili manje (kod nižih luminoznosti). Problem je što individualne zvezde sa masom od oko 1 M_{\odot} ili manje ne prelaze preko trake nestabilnosti kod ovih luminoznosti.

U odeljku 1.6 smo opisali da je moguće objašnjenje za postojanje zvezda tipa

¹⁵http://albione.oa-teramo.inaf.it/

Slika 4.5: Isto kao za sliku 4.2, ali samo za anomalne cefeide. Crvene i plave granice trake nestabilnosti, prikazane punom linijom za zvezde koje pulsiraju u osnovnoj frekvenciji i isprekidanom linijom za zvezde koje pusiraju u prvoj nadmodi, su iz članka Fijorentino i saradnika (Fiorentino et al., 2006b). Evolucione trake iz modela BASTI (Pietrinferni et al., 2004b) su prikazane sa sledećim metaličnostima: svetlo plava (Z = 0,0001), ljubičasta (Z = 0,0003), žuta (Z = 0,0006), braon (Z = 0,001), zelena (Z = 0,002) za zvezde sa masama 1,1 M_{\odot} (jedan model dostiže plavu granicu kod log $L/L_{\odot} \sim 1,9$), 1,5 M_{\odot} (dva modela se protežu do plave granice kod log $L/L_{\odot} \sim 2,2$) i 2,3 M_{\odot} (tri modela se protežu do plave granice između log $L/L_{\odot} = 2,25$ i 2,45). Tačke u modelima su prikazane za svakih milion godina evolucije.

Slika 4.6: Isto kao slika 4.2 samo za zvezde tipa W Virginis i neobične zvezde tipa W Virginis. Radi poređenja date su plava i crvena granica trake nestabilnosti za klasične cefeide, koje su preuzete iz članka Bonoa i saradnika(Bono et al., 2000). Punom linijom su označene granice za klasične cefeide koje pulsiraju u osnovnoj frekvenciji, a isprekidanom linijom granice za klasične cefeide koje pulsiraju u prvoj nadmodi. Evolucione trake iz modela BASTI (Pietrinferni et al., 2004b) su prikazane sa sledećim metaličnostima: svetlo plava (Z = 0,001), ljubičasta (Z = 0,002), žuta (Z = 0,004) i braon (Z = 0,008) za zvezde sa početnim masama 2,5 M_{\odot} (dva modela se protežu do plave granice između log L/L_{\odot} 2,35 i 2,8) i 4,0 M_{\odot} (dva modela se protežu do plave granice kod log L/L_{\odot} 3,0 i 3,2). Tačke u modelima su prikazane za svakih milion godina evolucije. Tamno plave evolucione trake predstavljaju zvezde sa masama od 0,6 M_{\odot} . Evolucione trake su dobijene ljubaznošću Marčela Miguela Milera Bertolamija.

W Virginis to da ove zvezde doživljavaju termalne impulse na asimptotskoj grani džinova, koje se dešavaju kada je masa omotača dovoljno mala da zvezde mogu da naprave ekskurziju ka nižim luminoznostima i višim temperaturama (Gingold, 1976, 1985). Moderni pogled na ovaj scenario je prikazan na slici 4.6. Evolucione putanje su prikazane za 0,60 M_{\odot} (i [Fe/H]= -1) u trenutku kada zvezde napuštaju horizontalnu granu nulte starosti (bazirano na modelu Milera Bertolamija (Miller Bertolami, 2016), privatna komunikacija). Ovaj primer je izabran da bismo pokazali da je ekskurzija moguća. Termalni impulsi se događaju kada je masa omotača 0,0073 M_{\odot} . Zvezda završava život kao beli patuljak sa masom od 0,522 M_{\odot} koja, kroz relaciju između početne i završne mase (Gesicki et al., 2014), sugeriše da je inicijalna masa bila manja od 1,25 M_{\odot} . Evolucija je svakako veoma brza i vreme provedeno u traci nestabilnosti je oko 100 godina. Ovaj scenario je moguće primeniti na retke individualne slučajeve zvezda tipa W Virginis (kod kojih bi bile posmatrane veoma velike promene perioda), ali ne može objasniti celu klasu ovih zvezda.

Da zaključimo: evolucioni status ovih zvezda ostaje nejasan. Pošto scenario evolucije usamljenih zvezda ne može objasniti postojanje zvezda tipa *W Virginis*, hipoteza o dvojnim sistemima treba da se uzme u obzir mnogo ozbiljnije, naročito u slučaju neobičnih zvezda tipa *W Virginis*.

4.1.1 Poređenje sa literaturom

Neke od zvezda u našem uzorku su bile analizirane koristeći spektroskopiju visoke rezolucije i tabela 4.1 sadrži njihove parametre, prikupljene iz literature. Kolone od 1 do 5 su ime, efektivna temperatura, površinska gravitacija i ukupna luminoznost, sa greškama, eksplicitno preuzete iz literature. Za zvezde koje su bile proučavane u člancima Kamat i saradnika (Kamath et al., 2014, 2015) sledeće dve kolone pokazuju njihovu klasifikaciju (dve zvezde su klasifikovane kao mladi zvezdani objekti (MZO) (*young stellar objects* (YSO)), tri zvezde su klasifikovane kao zvezde u evolucionoj fazi posle grane crvenih džinova i tri su zvezde u fazi evolucije posle asimptotske grane džinova. Zvezde koje su klasifikovane kao zvezde u evolucionoj fazi posle grane crvenih džinova i u fazi evolucije posle asimptotske grane džinova (sveukupno njih 6) pokazuju da je materijal oko zvezde raspoređen u obliku diska kao što to vidimo

u SER. Sedma kolona tabele 4.1 je trenutna masa zvezda. Poslednje tri kolone daju ime zvezde u katalogu OGLE, efektivnu temperaturu i luminoznost izračunate u okviru ove teze (vidi prilog A.3).

U većini slučajeva poklapanje je dobro (unutar greške 2σ), posebno imajući u vidu činjenicu da su spektri bili snimljeni samo jednom tokom pulsacionog ciklusa, dok su zvezdani parametri bili izvedeni na osnovu svih sakupljenih fotometrijskih podataka i trebalo bi da predstavljaju zvezdu kada je u fazi koja odgovara srednjem sjaju.

Najveće protivrečnosti u vrednostima se vide u luminoznosti OGLE-LMC-T2CEP-015 i efektivnoj temperaturi OGLE-LMC-T2CEP-119. Ne postoji očigledan razlog za ovo neslaganje. Fitovi SER za obe zvezde su dobri. Interesantno je da obe zvezde imaju infracrveni višak (vidi odeljak 4.2), koji je na neki način mogao uticati na rezultate u Kamatovim člancima. Rejnirs i saradnici (Reyniers et al., 2007) su fitovali SER za OGLE-LMC-T2CEP-015, ali su imali fotometrijske podatke samo do K filtera, tako da nisu mogli primetiti infracrveni višak. Van Arl i saradnici (van Aarle et al., 2011) su fitovanjem SER za zvezdu OGLE-LMC-T2CEP-015 našli $L = 3080 \pm 150 L_{\odot}$ i $T_{\rm eff} = 4750 \pm 250$ K, što je u dobroj saglasnosti sa našim nalazima, i spektralni tip G2-8(R)Ibe:, koji takođe ukazuje na temperaturu od oko 5000 K. Za OGLE-LMC-T2CEP-119 van Arl i saradnici (van Aarle et al., 2011) daju spektralni tip G0Ib i sugerišu temperaturu malo nižu od 6000 K, bližu onoj određenoj u našem članku, nego u člancima Kamat i saradnika.

Tabela 4.1: Zvezdami pæ Efektivne temperature (objekata su dati redom je ime istog objekta u k SER.	rametri T _{eff}), log u kolona atalogu	iz liter şaritam ma dva OGLE	ature za 1 površinsl 1, tri, četi -III. Kolc	ızorak iz Veli ke gravitacije ri, pet, šest i one deset i jec	kog i Malog Magelanovog na datoj zvezdi (log g), me sedam. Ovi podaci su uzet lanaest su efektivne temej	oblaka. staličnos ti iz refe pature (Prva sti ([F renci T _{eff}) i	kolona daje ime objekt e/H), luminoznosti (L_{\odot} koje su prikazane u osm luminoznosti (L_{\odot}) koji	a iz baze podat), klasifikacija i loj koloni. U de e smo dobili iz	aka Simbad. masa (M_{\odot}) vetoj koloni modeliranja
Ime	$T_{\rm eff}$	$\log g$	[Fe/H]	L	Klasifikacija	M	Ref.*	OGLE ime	$T_{\rm eff}^{\rm eff}$	
$J005107.19-734133.3^{(a)}$	5767	0,72	-1,56	3465	MMO disk u fazi pCGDž	0,43		T2CEP-018 (RVT)	(x) 5875 ± 375 Ξ	(L_{\odot}) 539 ± 166
		1			VMO					-
MACHO 47.2496.8 Inenda de 694094 7	4900 55 <i>06</i>	0,0 2	-1,5 0,6	5000 2951	-	- 0	4 c	T2CEP-015 (RVT) T9CEP-015 (RVT)	5000 ± 125 2 5750 ± 100 5	910 ± 53
J050738.94-682005.9	5320 5420	0,0 0,1	-2,3 -1,0	2201 859	disk u fazi pCGDž disk u fazi pCGDž	0,44 0,37	5 7	T2CEP-046 (WVIR)	3730 ± 125 5250 ± 125	879 ± 21
J051418.09-691234.9	6112	0,5	-1,6	6667	disk u fazi pAGDž	0,57	2	T2CEP-067 (RVT)	6125 ± 500 (3429 ± 305
(idem)	5750	0,5	-2,0	5000 ± 500	I	I	e.	T2CEP-067 (RVT)	:	:
J051845.47-690321.8	5860	1,5	-0,8	4001	mladi zvezdani objekat	I	2	T2CEP-091 (RVT)	6625 ± 625 3	3880 ± 319
J052519.48- 705410.0	8117	1,0	$-0,5^{(b)}$	3219	disk u fazi pAGDž	0,58	2	T2CEP-119 (RVT)	6250 ± 625 3	3325 ± 290
J053150.9-691146	6000	0,5	-2,5	4000 ± 500	I	I	c,	T2CEP-147 (RVT)	6375 ± 312 7	7160 ± 259
(idem)	6000	0,5	-2,5	I	I	I	S	T2CEP-147 (RVT)	:	÷
J053254.5-693513	6250	1,0	-1,5	4200 ± 500	I	I	c,	T2CEP-149 (RVT)	5750 ± 250 2	2741 ± 117
J054000.5-694214	5103	1,5	-1,9	4200 ± 500	I	I	c,	T2CEP-174 (RVT)	6000 ± 438 (5549 ± 342
J054312.86-683357.1	5103	1,5	-1,9	3085	mladi zvezdani objekat	I	2	T2CEP-180 (RVT)	5500 ± 500 3	3139 ± 182
J055122.52-695351.4	6237	1,5	-2,5	3780	disk u fazi pAGDž	0,56	2	T2CEP-191 (RVT)	5750 ± 250 \pm	3969 ± 127
Beleške: ^(a) Ovu zvezdu	su proi	ıčavali	Bojer i s	aradnici (Boy	er et al., 2011). Klasifiko	vali su j	je (pc	grešno, naša primedba)) kao ekstremn	ı zvezdu na
asimpototskoj grani dži *Reference: (1) Kamatl	nova (<i>eu</i> 1 et al. (:treme (2014).	4 <i>GB star</i> (2) Kami). ⁽⁹⁾ [Fe/H] j ath et al. (20)	e pretpostavljena. 5). (3) Gielen et al. (2009). (4) R	evnie	rs et al. (2007). Pollard	& Llovd Evans	s (2000), (5)
Reyniers & van Wincke	(2007).		~	/			•		2	

POGLAVLJE 4. FIZIČKI PARAMETRI CEFEIDA TIPA II I ANOMALNIH CEFEIDA

4.2 Proučavanje infracrvenog viška

Za deset zvezda iz uzorka su već postojali infracrveni spektri snimljeni svemirskim teleskopom *Spitzer* (Houck et al., 2004). Sve su u Velikom Magelanovom oblaku i sve su klasifikovane kao zvezde tipa *RV Tauri*. Spektri su bili detaljno diskutovani u radu Gilena i saradnika (Gielen et al., 2011) u kontekstu karakteristika silikata u galaktičkim i ekstragalaktičkim zvezdama u fazi posle asimptotske grane džinova. Slika 4.7 prikazuje fitovane SER zvezda tipa *RV Tauri* i njihove infracrvene spektre. Napominjemo da spektri nisu bili korišćeni u fitovanju SER. Spektri su nacrtani preko najboljeg fitovanog modela SER. Na donjem panelu model je skaliran na posmatrani fluks u regionu 20,5-22,5 μ m da bismo olakšali upoređivanje sa prašinom opisanom u modelu.

Broj zvezda koje pokazuju (slab) infracrveni višak je veći od gore navedenih 10 za koje postoji infracrveni spektar. Rezultati su prikazani na slici 4.8, gde je izračunata optička dubina naspram perioda (gornji panel) i luminoznosti (donji panel). U nekim slučajevima je teško sa sigurnošću isključiti prisustvo infracrvenog viška. U prilogu A.3 smo prikazali sve zvezde za koje je rađen fit SER i tu su uključene četiri zvezde kod kojih su podaci sa svemirskog teleskopa *WISE* u W4 filteru bili nepouzdani, ali je merena tačka u W3 filteru iznad modelovanog SER. Ove zvezde su označene sa "W3 višak" (*W3 excess*). Ako bi višak bio realan, onda bi to značilo da je optička dubina jako mala i ovi izvori bi mogli biti primeri zvezda kod kojih se omotač od prašine širi i udaljava od zvezde, što je u protivrečnosti sa većinom SER gde infracrveni višak upućuje na toplu prašinu i materijal raspoređen u obliku diska. Dodatna četiri objekta imaju naznaku "Infracrveni višak, ali njegovo prisustvo nije jednoznačno. Jedna od njih je zvezda tipa *RV Tauri*: OGLE-LMC-T2CEP-025, koja ima najduži period od svih zvezda u uzorku.

Infracrveni višak je odsutan (ili ga nije moguće detektovati) kod anomalnih cefeida i zvezda tipa *BL Herculis*, ali prisutan je u oko 10% zvezda tipa *W Virginis* (kod 3 od 24 neobične zvezde tipa *W Virginis* i kod 8 od 90 zvezda tipa *W Virginis*). U zvezdama tipa *RV Tauri* infracrveni višak je pronađen kod 30 od 52 objekta (plus

Slika 4.7: Fitovani modeli SER za zvezde tipa RV Tauri koje imaju infracrveni višak. Na donjem panelu modeli su skalirani da se podudaraju sa posmatranim fluksom u domenu od 20,5 do 22,5 μ m kako bi se potpomoglo upoređivanje sa karakteristikama prašine u modelu.

POGLAVLJE 4. FIZIČKI PARAMETRI CEFEIDA TIPA II I ANOMALNIH CEFEIDA

Slika 4.7: nastavak.

3 moguća). Od 41 zvezde sa detektovanim infracrvenim viškom samo je 6 locirano u Malom Magelanovom oblaku.

SER objekata u fazi evolucije posle asimptotske grane džinova i zvezda tipa RVTauri su tipično razdvojene na one koji pokazuju znake prisustva tople prašine (koja se interpretira kao prašina u cirkumbinarnom disku) i one koji pokazuju znake prisustva hladne prašine (interpretirane kao prašina koja se širi u obliku omotača oko zvezde), kao što je to objašnjeno u članku Gezer i saradnika (Gezer et al., 2015) na slici 2 i u citiranim referencama. Ova podela je uočljiva i na slici 4.8. Svi objekti kojima je izvedena optička dubina iznad 1 pokazuju u SER karakteristike izvora sa diskom. Za optičke dubine manje od 0,2, SER se poklapaju sa modelom sfernog omotača odbačene materije oko zvezde. Za nekoliko zvezda koje imaju optičke dubine između ove dve vrednosti nije jasno kojoj grupi pripadaju.

POGLAVLJE 4. FIZIČKI PARAMETRI CEFEIDA TIPA II I ANOMALNIH CEFEIDA

Slika 4.8: Zavisnost izračunate optičke dubine od pulsacionog perioda promenljivih zvezda i log L/L_{\odot} . Zvezde iz Velikog Magelanovog oblaka su prikazane crnom bojom, a zvezde iz Malog Magelanovog oblaka su prikazane crvenom bojom. Zvezde koje imaju infracrvene spektre su označene zelenim znakom plus. Zvezde kod kojih možemo da detektujemo infracrveni višak su označene svojim identifikacinim brojem iz kataloga OGLE-III.

 $\log(L/L\odot)$

2.5

З

3.5

2

Objekti koji pokazuju raspodelu materije u obliku diska se smatraju dvojnim sistemima. Katalog OGLE-III sadrži 10 eklipsno dvojnih zvezda unutar uzorka cefeida tipa II i anomalnih cefeida iz Velikog i Malog Magelanovog oblaka (koje su označene sa "EB" u tabeli A.3, od kojih je jedna zvezda tipa *RV Tauri*), ali ni u jednoj od njih nije detektovan infracrveni višak.

4

POGLAVLJE 4. FIZIČKI PARAMETRI CEFEIDA TIPA II I ANOMALNIH CEFEIDA

Slika 4.9: Relacija period-poluprečnik. Zvezde iz Velikog Magelanovog oblaka su prikazane crnom bojom, a zvezde iz Malog Magelanovog oblaka su prikazane crvenom bojom. Puna crna linija je relacija koja najbolje prolazi kroz podatke za zvezde tipa *BL Herculis*, zvezde tipa *W Virginis* i zvezde tipa *RV Tauri* u Velikom Magelanovom oblaku (isključili smo tačke koje odstupaju od prave za više od tri standardne devijacije oko medijane). Plava puna linija i isprekidane linije su teorijske relacije *PR* za zvezde tipa *RR Lyrae* koje pulsiraju u osnovnoj frekvenciji i prvoj nadmodi (kraći periodi) i klasične cefeide koje pulsiraju u osnovnoj frekvenciji i prvoj nadmodi (za modele zvezda iz Velikog Magelanovog oblaka). Vrednosti za cefeidu u eklipsno dvojnom sistemu OGLE-LMC-CEP-0227 (sa P = 3,79 dana) i cefeidu tipa II iz Mlečnog puta κ Pav (sa P = 9,08 dana) su prikazane plavim dijamantima. Svetlo plavom bojom su predstavljene zvezde iz članka Baloga i saradnika (Balog et al., 1997). Ove zvezde su detaljnije opisane u tekstu.

4.3 Poluprečnici i relacija period-poluprečnik za cefeide tipa II i anomalne cefeide

Poluprečnici za cefeide tipa II i anomalne cefeide iz Velikog Magelanovog oblaka i Malog Magelanovog oblaka su izračunati koristeći metod opisan u odeljku 3.2. Izračunati poluprečnici se nalaze u tabelama u prilogu A.4. Slika 4.9 prikazuje relaciju period-poluprečnik (relacija PR) koju smo dobili za ove poluprečnike.

Na slici 4.9 se vidi i teorijska relacija iz rada Markoni i saradnika (Marconi et al., 2015). Ova teorijska relacije PR je iznad relacije koju dobijamo iz posmatranja i

na slici vidimo da se proteže između vrednosti $\log P$ od -0,5 do 0,4 dana. Puna plava linija je teorijska relacija za zvezde tipa RR Lyrae koje pulsiraju u osnovnoj frekvenciji, a isprekidana plava linija je za zvezde tipa RR Lyrae koje pulsiraju u prvoj nadmodi. Nagib teorijskih relacija se slaže unutar grešaka sa posmatranom relacijom PR za zvezde tipa BL Herculis (vidi tabelu 4.2), ali im je nulta tačka malo viša. Osim relacije PR za zvezde tipa RR Lyrae, na slici 4.9 prikazana je i teorijska relacija za klasične cefeide iz modela Bonoa i saradnika (Bono et al., 2000). Relacija PR za klasične cefeide koje pulsiraju u prvoj nadmodi je prikazana isprekidanom plavom linijom za log P od 0, 4 do 0, 8 dana, a za zvezde koje pulsiraju u osnovnoj frekvenciji punom plavom linijom za log P od 0, 5 do 1, 4 dana.

Da bismo uporedili teorijske relacije PR sa vrednostima poluprečnika poznatih iz merenja dodali smo i njih na sliku 4.9. Za upoređivanje koristili smo komponentu iz dvojnog sistema OGLE-LMC-CEP-0227 koja je klasična cefeida, cefeidu tipa II iz Mlečnog puta κ Pav i sve zvezde iz članka Baloga i saradnika (Balog et al., 1997). Vrednosti za cefeidu OGLE-LMC-CEP-0227 i cefeidu tipa II iz Mlečnog puta κ Pav su prikazane kao plavi dijamanti. Brajtfelder i saradnici (Breitfelder et al., 2015) su za zvezdu κ Pav izveli projekcioni faktor (projekcioni faktor se koristi u Bade-Veselinkovoj analizi za konverziju merenih radijalnih brzina u brzinu pulsacije zvezde, vidi detalje u prilogu A.1) od $p = 1, 26 \pm 0,07$ i izračunali poluprečnik od $R = 22, 83 \pm 1, 14 R_{\odot}$. Velikim svetlo plavim simbolom zvezde predstavljene su cefeide tipa II iz Mlečnog puta čiji poluprečnici su računati pomoću Bade-Veselinkove metode i objavljeni u radu Baloga i saradnika (Balog et al., 1997). U slučaju κ Pav $(R = 19 \pm 5 R_{\odot})$, njihovi rezultati su u dobroj saglasnosti sa rezultatima iz rada Brajtfeldera i saradnika (Breitfelder et al., 2015).

Moramo napomenuti da su neki od objekata u međuvremenu reklasifikovani. To objašnjava zašto je njihovo rasejanje veliko. Po klasifikaciji datoj u Opštem katalogu promenljivih zvezda i Međunarodnom indeksu promenljivih zvezda (*International Variable Star Index* (VSX)¹⁶) izgleda da su KL Aql (P = 6, 1 dana), V733 Aql (P = 6, 2 dana), BB Her (P = 7, 5 dana) i DR Cep (P = 19, 1 dana) klasične cefeide. DQ And (P = 3, 2 dana) nema jasnu klasifikaciju, ali se čini da je i ona

¹⁶https://www.aavso.org/vsx/

klasična cefeida. Slučajevi TX Del (P = 6, 2 dana) i IX Cas (P = 9, 1 dana) su drugačiji, jer je na rezultate Bade-Veselinkove analize u njihovom slučaju moglo imati uticaja to što se nalaze u dvojnim sistemima. AU Peg (P = 2, 4 dana) je teško tačno interpretirati. U radu Jurković i saradnika (Jurkovic et al., 2007) je predloženo da ova zvezda možda nije cefeida tipa II. AU Peg se nalazi u dvojnom sistem, što može biti objašnjenje za činjenicu da poluprečnik od 19 ± 4 R_{\odot} stavlja ovu zvezdu iznad relacije PR za cefeide tipa II na slici 4.9. BL Her (P = 7, 5 dana), XX Vir (P = 1, 3 dana), SW Tau (P = 1, 6 dana), NW Lyr (P = 1, 6 dana), V553 Cen (P = 2, 1 dana, objekat bogat ugljenikom), κ Pav, AL Vir (P = 10, 3 dana), W Vir (P = 17, 3 dana) i V1181 Sgr (P = 21, 3 dana) su cefeide tipa II koje se nalaze na relaciji PR. Ovim se potvrđuje ispravnost ovde predstavljene relacije.

Relacije PR su izvedene za razne kombinacije podtipova cefeida tipa II, kao i za anomalne cefeide koje pulsiraju u osnovnoj frekvenciji i u prvoj nadmodi. Svi rezultati su prikazani u tabeli 4.2. Zvezde koje pokazuju eklipsne ili elipsoidalne varijacije nisu bile uključene u modeliranje i iterativno su odbačene tačke koje su bile izvan tri standardne devijacije od medijane. Zvezde tipa RV Tauri koje imaju prašinu oko sebe ne odstupaju od PR relacije.

Tabela 4.2 takođe uključuje stariju relaciju iz članka Burkija i Mejlana (Burki & Meylan, 1986) za zvezde iz Mlečnog puta. Autori nisu dali greške, ali se čini da se njihova relacija preklapa sa onom koju smo izveli za cefeide tipa II u Magelanovim oblacima. Kada se uzmu u obzir i cefeide tipa II iz Mlečnog puta iz rada Baloga i saradnika (Balog et al., 1997) vidimo još jednom potvrdu da PR relacija ne zavisi od metaličnosti.

Zaključak je da je relacija PR nezavisna od metaličnosti i potklase. U domenu datih grešaka sve predstavljene cefeide tipa II mogu se opisati jednom relacijom PR(rešenja 13-15 u tabeli 4.2). Pri karakterističnim periodima od oko 10 dana računati poluprečnici za cefeide tipa II iz Malog Magelanovog oblaka i Velikog Magelanovog oblaka su identični. Kombinujući sve zvezde iz obe galaksije rešenje (15) iz tabele 4.2 postaje ono koje preporučujemo kao relaciju PR za cefeide tipa II.

Tabela 4.2: Relacija period-poluprečnik. Prva kolona označava kom tipu zvezda pripada proučavani uzorak. Druga kolona je ime galaksije iz koje je uzorak (VMO: Veliki Magelanov oblak, MMO: Mali Magelanov oblak, MO: Magelanovi oblaci). Kolone tri i četiri su dobijeni koeficijenti, a i b, u relaciji PR, prikazane sa greškom. Rasejanje relacije PR je dato u petoj koloni. U šestoj koloni je data greška rešenja. N je broj zvezda koje su korišćene za dobijanje relacije PR (sedma kolona). U osmoj koloni je naveden broj tačaka koje su se našle van datog rešenja (n). Deveta kolona daje broj rešenja, da bi se u budućnosti lakše moglo pozvati na njih. Deseta kolona daje reference.

Uzorak	Galaksija	$\log(R/R_{\odot}) = a$	$+b \log P$	Disperzija	χ^2_r	Ν	n	Rešenje	Ref.*
							Tačke van rešenja		
BL Her	VMO	$0,830 \pm 0,013$	$0,564\pm0,049$	0,047	2,60	57	4	(1)	
BL Her	MMO	$0,852\pm0,028$	$0,574\pm0,117$	0,056	$12,\!4$	17	0	(2)	
BL Her	MO	$0,847\pm0,013$	$0,551\pm0,052$	0,058	5,43	76	2	(3)	
W Vir	VMO	$0,823 \pm 0,020$	$0,541\pm0,021$	0,037	1,74	77	2	(4)	
W Vir	MMO	$0,709 \pm 0,079$	$0,620\pm0,071$	0,038	4,11	10	0	(5)	
W Vir	MO	$0,828 \pm 0,020$	$0,531\pm0,020$	0,037	2,25	87	2	(6)	
RV Tau	VMO	$0,848 \pm 0,141$	$0,528\pm0,088$	0,076	5,72	41	1	(7)	
RV Tau	MMO	$0,977 \pm 0,188$	$0,440\pm0,124$	0,039	2,54	7	0	(8)	
RV Tau	MO	$0,864 \pm 0,112$	$0,517\pm0,071$	0,072	5,16	48	1	(9)	
BL Her $+$ W Vir	VMO	$0,837 \pm 0,007$	$0,528\pm0,008$	0,041	2,09	134	6	(10)	
BL Her $+$ W Vir	MMO	$0,869 \pm 0,015$	$0,480 \pm 0,022$	0,050	9,81	27	0	(11)	
BL Her $+$ W Vir	MO	$0,852 \pm 0,006$	$0,508\pm0,008$	0,044	3,46	161	6	(12)	
BL Her $+$ W Vir $+$ RV Tau	VMO	$0,833 \pm 0,007$	$0,535\pm0,007$	0,050	2,82	174	8	(13)	
BL Her $+$ W Vir $+$ RV Tau	MMO	$0,861 \pm 0,013$	$0,501\pm0,016$	0,050	8,75	34	0	(14)	
BL Her + W Vir + RV $Tau^{(a)}$	MO	$0,846 \pm 0,006$	$0,521\pm0,006$	0,053	3,91	209	7	(15)	
AC F	VMO	$0,972\pm0,005$	$0,692\pm0,034$	0,045	2,39	61	1	(16)	
AC 10	VMO	$1,113\pm0,016$	$0,733\pm0,073$	0,054	3,65	20	0	(17)	
T2C	Mlečni put	0,87	$0,\!54$						(1)
RV Tau RV Tau RV Tau BL Her + W Vir BL Her + W Vir BL Her + W Vir BL Her + W Vir + RV Tau BL Her + W Vir + RV Tau ^(a) AC F AC 10 T2C	MMO MO VMO MMO VMO WMO WMO VMO VMO VMO VMO MIečni put	$\begin{array}{c} 0,977\pm 0,141\\ 0,977\pm 0,183\\ 0,864\pm 0,112\\ 0,837\pm 0,007\\ 0,869\pm 0,015\\ 0,852\pm 0,006\\ 0,833\pm 0,007\\ 0,861\pm 0,013\\ 0,846\pm 0,006\\ 0,972\pm 0,005\\ 1,113\pm 0,016\\ 0,87\end{array}$	$\begin{array}{c} 0, 502\pm 0, 000\\ 0, 440\pm 0, 124\\ 0, 517\pm 0, 071\\ 0, 528\pm 0, 008\\ 0, 480\pm 0, 022\\ 0, 508\pm 0, 008\\ 0, 535\pm 0, 007\\ 0, 501\pm 0, 016\\ 0, 521\pm 0, 006\\ 0, 692\pm 0, 034\\ 0, 733\pm 0, 073\\ 0, 54\end{array}$	$\begin{array}{c} 0,039\\ 0,072\\ 0,041\\ 0,050\\ 0,044\\ 0,050\\ 0,050\\ 0,053\\ 0,045\\ 0,054\\ \end{array}$	2,54 5,16 2,09 9,81 3,46 2,82 8,75 3,91 2,39 3,65	$ \begin{array}{c} 11 \\ 7 \\ 48 \\ 134 \\ 27 \\ 161 \\ 174 \\ 34 \\ 209 \\ 61 \\ 20 \\ \end{array} $	0 1 6 0 6 8 0 7 1 0	$(1) \\ (8) \\ (9) \\ (10) \\ (11) \\ (12) \\ (13) \\ (14) \\ (15) \\ (16) \\ (17) \\ (17) \\ (11$	(1)

^(a) Preporučeno rešenje.

*Reference: (1) Burki & Meylan (1986).

4.4 Mase iz evolucionih modela

Mase za cefeide tipa II i anomalne cefeide su računate koristeći modele za zvezde tipa RR Lyrae i klasične cefeide. Metod za računanje i jednačine su opisane u odeljku 3.3. Mase iz modela za zvezde tipa RR Lyrae i klasične cefeide koje se međusobno slažu sa greškama unutar tri standardne devijacije od medijane, označene su sa "OK" u tabeli A.4, a mase koje se razlikuju za manje od 15% (bez obzira na greške) su označene sa "ok". Ako pogledamo koliki procenat podtipova cefeida tipa II i anomalnih cefeida imaju mase koje se slažu sa onima iz modela za zvezde tipa RRLyrae i klasične cefeide, dobijamo sledeće vrednosti: 90% zvezde tipa BL Herculis (72/80), 82% anomalnih cefeida koje pulsiraju u osnovnoj frekvenciji (53/65), 74% anomalnih cefeida koje pulsiraju u prvoj nadmodi (17/23), 58% neobičnih zvezda tipa W Virginis (17/24), ali samo 22% zvezda tipa W Virginis (20/90) i 18% zvezda tipa RV Tauri (9/51).

Takođe je razmatran i uticaj metaličnosti. Da bismo ga testirali, vrednost me-

taličnosti je smanjena na Z = 0,0012 kako bi model za klasične cefeide dao masu za zvezdu OGLE-LMC-DCEP-227 koja se poklapa sa vrednostima iz posmatranja. Ovo je poboljšalo slaganje između masa određenih iz oba modela (model za zvezde tipa *RR Lyrae* i model za klasične cefeide) za zvezde tipa *BL Herculis* i zvezde tipa *W Virginis*, ali je malo pogoršalo slaganje za anomalne cefeide koje pulsiraju u osnovnoj frekvenciji, dok su ostali procenti ostali nepromenjeni.

Za procene masa rađene na osnovu metaličnosti od Z = 0,004 izračunata je geometrijska srednja vrednost procenjenih masa za cefeide tipa II i anomalne cefeide iz modela za zvezde tipa RR Lyrae i klasične cefeide. Za razne klase pulsirajućih zvezda dobili smo sledeće domene masa: BL Her (0,36, 0,49, 0,87 M_{\odot}), W Vir (0,31, 0,41, 0,57 M_{\odot}), pW Vir (0,37, 0,74, 1,29 M_{\odot}), RV Tau (0,25, 0,43, 0,82 M_{\odot}) i AC (0,89, 1,29, 1,90 M_{\odot}), sa istim domenom za F i 10 pulsirajuće zvezde. Prvi broj u zagradi je srednja vrednost najmanjih 10% masa iz celog uzorka, drugi broj je srednja vrednost za zvezde koje su izvan najmanjih 10% i najvećih 10%, što je 80% uzorka, dok je treći broj srednja vrednost masa za najveće mase, koje su gornjih 10% svih masa. Poznate eklipsne i elipsoidalne promenljive zvezde nisu uzete u obzir. Metaličnost Z = 0,0012 smanjuje procenjene mase za oko 5%. Za zvezde tipa RVTauri nema značajnog efekta ako zvezde razdvojimo na grupu u kojoj jeste, odnosno nije detektovana prašina.

Uzimajući u obzir samo zvezde kod kojih se procene masa iz modela za zvezde tipa *RR Lyrae* i modela za klasične cefeide slažu (označene sa "OK" i "ok" u tabeli A.4), dobijamo da su mase za zvezde tipa *BL Herculis* i anomalne cefeide u suštini iste za oba modela u odnosu na prethodnu procenu kada su bile uzete u obzir sve zvezde iz jednog podtipa. Za zvezde tipa *W Virginis* mase postaju 0,43, 0,50, 0,66 M_{\odot} na osnovu 20 zvezda. Neobične zvezde tipa *W Virginis* su većinski u dvojnim sistemima. Ako uključimo i eklipsne i elipsoidalne dvojne zvezde, dobijamo značajno veće mase (0,72, 1,22, 1,77 M_{\odot} , za 14 zvezda). Broj zvezda tipa *RV Tauri* gde se procene slažu (i nisu eklipsni niti elipsoidalni dvojni sistemi) je samo 7, sa srednjom masom od 0,82 M_{\odot} .

Klase objekata za koje se procene masa iz modela za zvezde tipa $RR \ Lyrae$ i modela za klasične cefeide najbolje slažu (i u najvećem broju slučajeva) su zvezde tipa *BL Herculis* i anomalne cefeide. Za ove klase naše procene se slažu i sa prethodno objavljenim vrednostima u literaturi. Za zvezde tipa *W Virginis* situacija nije tako jasna, ali su dobijene mase slične onima kao za zvezde tipa *BL Herculis*. Najnejasniji je slučaj neobičnih zvezda tipa *W Virginis* i zvezda tipa *RV Tauri*. Procena mase za neobične zvezde tipa *W Virginis* je definitivno veća nego za zvezde tipa *BL Herculis* i zvezde tipa *W Virginis*.

Za sledeće dvojne zvezde dobijamo velike mase: OGLE-LMC-T2CEP-098 (3 M_{\odot} , pWVir) u Velikom Magelanovom oblaku i OGLE-SMC-T2CEP-007 (1,9 M_{\odot} , RVT), OGLE-SMC-T2CEP-010 (2,3 M_{\odot} , pWVir), OGLE-SMC-T2CEP-028 (1,6 M_{\odot} , pWVir) i OGLE-SMC-T2CEP-029 (2,5 M_{\odot} , RVT) u Malom Magelanovom oblaku. Zasnovano na ovome, čini se da sledeće zvezde takođe mogu da budu u dvojnom sistemu (nijedna od ovih zvezda nije anomalna cefeida): OGLE-LMC-T2CEP-032 (RVT, 1,9 M_{\odot}), OGLE-LMC-T2CEP-123 (BLH, 2,2 M_{\odot}), OGLE-LMC-T2CEP-136 (BLH, 2,0 M_{\odot}), OGLE-LMC-T2CEP-153 (BLH, 1,6 M_{\odot}), OGLE-LMC-T2CEP-185 (WVir, 4,5 M_{\odot}) u Velikom Magelanovom oblaku i OGLE-SMC-T2CEP-001 (pWVir, 1,7 M_{\odot}) i OGLE-SMC-T2CEP-011 (pWVir, 1,8 M_{\odot}) u Malom Magelanevom oblaku. Prvih 5 zvezda koje su ovde navedene su bile isključene iz relacije PR, jer su se previše udaljile od ostalih objekata, a OGLE-LMC-T2CEP-153 i OGLE-LMC-T2CEP-185 su takođe bile uklonjene i iz relacije $P - M_{bol}$ (za detalje o ovome vidi poglavlje 5). Zvezda OGLE-LMC-T2CEP-153 je označena u katalogu OGLE-III kao zvezda koja se preklapa sa još jednom zvezdom koja se nalazi toliko blizu promenljive da ih je bilo nemoguće razdvojiti prilikom fotometrijske analize (http://ogledb.astrouw.edu.pl/~ogle/CVS/). Na slici dela neba gde se nalazi OGLE-LMC-T2CEP-156 (koja može da se vidi na sajtu baze podataka OGLE-III za svaku promenljivu zvezdu¹⁷) takođe možemo da uočimo jednu drugu zvezdu blizu ovoj promenljivoj. Za ove dve zvezde uticaj nerazlučenih objekata iz pozadine može da se vidi u fotometriji, jer izgledaju sjajnije nego ostale zvezde iz iste klase. Sa druge strane, za zvezdu OGLE-LMC-T2CEP-123, iz činjenice da su procenjena masa, period i sjaj veći od vrednosti tipičnih za zvezde tipa BL Herculis, zaključujemo da je najverovatnije anomalna cefeida koja pulsira u osnovnoj frekvenciji, a ne zvezda

 $^{^{17} \}tt{http://ogledb.astrouw.edu.pl/\$\sim\$ogle/CVS/}$

tipa BL Herculis.

Procena masa zvezda tipa RV Tauri je dala ili jako velike ili jako male vrednosti. Kao što je gore navedeno, mnoge zvezde tipa RV Tauri imaju procenjene mase ispod onih koje očekujemo za zvezde u evolucionoj fazi posle asimptotske grane džinova $(0,55 - 1,1 M_{\odot})$. Dodatno, za oko 30 zvezda koje imaju mase ispod $0,35 M_{\odot}$, 10 su zvezde tipa RV Tauri i 6 imaju infracrveni višak. Ne očekuje se da tako male mase budu rezultat evolucije individualnih zvezda malih masa. Raspodela prašine koja se vidi u SER u obliku diska oko zvezde je jak indikator da se radi o dvojnom sistemu. Moguće je da su neke od ovih zvezda povezane sa dvojnim evolucionim pulsatorima (*Binary Evolutionary Pulsators* (BEP)). To su dvojne zvezde koje se mogu naći u traci nestabilnosti tek nakon što je u sistemu došlo do značajnog transfera mase. Nedavno su Karčmarek i saradnici (Karczmarek et al., 2017) uradili obimnu simulaciju i pronašli da je kontaminacija uzorka zvezda tipa RR Lyrae dvojnim evolucionim pulsatorima 0,8%, a kontaminacija uzorka klasičnih cefeida 5%. U članku Gronevegena i Jurković (Groenewegen & Jurkovic, 2017b) ustanovili smo da je moguća kontaminacija uzorka cefeida tipa II ovakvim sistemima nekoliko procenata.

Tabela u prilogu A.4 sadrži poluprečnike i mase (sa greškama) za individualne zvezde izračunate na osnovu pulsacionih modela za klasične cefeide i zvezde tipa RR Lyrae (koristeći jednačine 3.6 i 3.7). Kao podsetnik data je informacija o tome da li zvezda ima infracrveni višak (Prašnjava=1) ili je poznata dvojna zvezda (Dvojnost=1).

Poglavlje 5

Relacija period-luminoznost

U ovom poglavlju predstavljamo relaciju period-luminoznost izvedenu za bolometrijske magnitude koje su računate iz luminoznosti dobijene fitovanjem SER.

Slika 5.1 prikazuje klasičnu relaciju PL koja koristi Vesenhajtov indeks, W = I - 1, 55(V - I), dobijenu kombinujući sliku 1 iz rada Sošinjskog i saradnika (Soszyński et al., 2008a) i sliku 1 iz rada Sošinjskog i saradnika (Soszyński et al., 2010a). U članku Gronevegena i Jurković (Groenewegen & Jurkovic, 2017b) za modeliranje SER korišćene su fiksirane daljine od 50 kpc za Veliki Magelanov oblaka i 61 kpc za Mali Magelanov oblak, pa smo zbog toga pomerili magnitude zvezda iz Malog Magelanovog oblaka za 0,432 mag (što odgovara razlici u modulu rastojanja između ove dve galaksije: 18,927 – 18,495 = 0,432) da bismo sve zvezde imali na istoj skali magnitude i to za Veliki Magelanov oblak. Zvezde koje najviše odstupaju od većine su označene svojim brojevima iz kataloga OGLE-III.

Vesenhajtova relacija PL je izračunata za različite kombinacije podtipova cefeida tipa II i za anomalne cefeide u Velikom i Malom Magelanovom oblaku posebno, kao i zajedno ("@LMC" znači da su objekti iz Malog Magelanovog oblaka stavljeni na daljinu objekata u Velikom Magelonovom oblaku) i rezultati su dati u tabeli 5.1. Zvezde koje pokazuju eklipse ili elipsoidalnu varijaciju (identifikovane u podacima iz kataloga OGLE-III, a na slici 5.1 prikazane plavim krstovima) su izostavljene iz procedure pronalaženje najbolje relacije koja se poklapa sa podacima. Osim ovoga, primenjeno je i iterativno odbacivanje tačaka koje su bile izvan tri standardne devijacije od rešenja. Već smo opisali u odeljcima 4.3 i 3.3 da postoje zvezde koje su sjajnije od ostalih u uzorku, jer se nalaze u dvojnim sistemima ili su jako blizu neke druge zvezde na nebu. Ovakve zvezde moraju da se uklone, jer nam je cilj da izvedemo relaciju PL za cefeide tipa II. Broj uklonjenih tačaka je naveden u devetoj koloni (N tačaka van rešenja) u tabeli 5.1.

Tabela 5.1 uključuje i druge Vesenhajtove relacije PL koje su bile prethodno objavljene u literaturi, kako teoretske, tako i posmatračke. Vesenhajtova relacija PLizgleda da ne zavisi od metaličnosti. Pri karakterističnim periodima od log P = 0, 5dana za zvezde tipa BL Herculis, log P = 1, 0 dana za zvezde tipa W Virginis i log P = 1, 5 dana za zvezde tipa RV Tauri razlike u magnitudama između rešenja za Mali i Veliki Magelanov oblak su unutar granica grešaka.

Izvedene relacije se, takođe, dobro slažu i sa onima koje su date u literaturi, mada ovo nije iznenađujuće pošto su sve bazirane na podacima iz kataloga OGLE-III i razlikuju se samo u nekim detaljima. Zvezde tipa RV Tauri koje pokazuju infracrveni višak su sjajnije u indeksu W nego one koje ga ne pokazuju (ovo su primetili i Menik i saradnici (Manick et al., 2017)). Ako izostavimo ove objekte tada vidimo dobro definisanu Vesenhajtovu relaciju PL za zvezde tipa BL Herculis, zvezde tipa W Virginis i zvezde tipa RV Tauri koje nemaju prašinu oko sebe, kao što je ilustrovano na slici 5.1.

Upoređivanje modela sa posmatranjima zahteva usvajanje daljine do Velikog Magelanovog oblaka i modeli imaju unapred fiksirane vrednosti za metaličnosti objekata. Za [Fe/H] = -1 i moduo rastojanja od 18,50 mag, teorija i posmatranja u slučaju zvezda tipa *BL Herculis* se slažu unutar greške. Slaganje nije toliko dobro u slučaju anomalnih cefeida, kod kojih se teoretski nagib relacije razlikuje za skoro 3σ od onog koji možemo izvesti na osnovu posmatranja.

Slika 5.2 prikazuje relaciju PL sa bolometrijskim magnitudama, za čije izračunavanje su korišćene luminoznosti izračunate u poglavlju 4. Donji deo tabele 5.1 prikazuje bolometrijsku relaciju PL. Ono što odmah možemo da primetimo je da je rasturanje tačaka u bolometrijskoj relaciji PL mnogo veće nego u Vesenhajtovoj relaciji. Može postojati nekoliko razloga za ovo. Prvo, Vesenhajtova relacija se izvodi na osnovu dve magnitude (V, I) koje su usrednjene po intenzitetu (pošto se u relaciji PL koristi srednja vrednost sjaja tokom ciklusa pulsacije), dok su SER računate na

Slika 5.1: Vesenhajtova relacija PL. Zvezde iz Malog Magelanovog oblaka su prikazane crvenom bojom i pomerene su na daljinu Velikog Magelanovog oblaka (prikazani crnom bojom). Zvezde koje se ne grupišu kod većine ostalih zvezda su date svojim identifikacionim brojevima. Zvezde koje imaju infracrveni višak iz članka Gronevegena i Jurković (Groenewegen & Jurkovic, 2017b) su označene zelenim plusom. Zvezde za koje je tim OGLE utvrdio da su eklipsne ili su elipsodialne promenljive zvezde, označene su plavim krstom. Zvezde prikazane sa plavim dijamantima su OGLE-LMC-CEP-0227 (klasična cefeida u eklipsnom dvojnom sistemu, sa P = 3,79dana) i cefeida tipa II iz Mlečnog puta κ Pav (sa P = 9,08 dana), skalirane na daljinu Velikog Magelanovog oblaka (vidi tekst). Za OGLE-LMC-CEP-0227 prikazana je merena vrednost Vesenhajtove magnitude (W) za ceo sistem (manja, svetlija tačka) i Vesenhajtova magnituda samo za klasičnu cefeidu (preuzeto iz rada Pileckog i saradnika (Pilecki et al., 2013)). Crna puna linija je Vesenhajtova relacija PL za zvezde tipa BL Herculis, zvezde tipa W Virginis i zvezde tipa RV Tauri zajedno, bez prašine, sa periodima ispod 50 dana u Velikom Magelanovom oblaku, (vidi tabelu 5.1), ucrtane za ceo opseg perioda iz uzorka. Plava linije je Vesenhajtova relacija PL za klasične cefeide koje pulsiraju u osnovnoj frekvenciji u Velikom Magelanovom oblaku preuzeta iz rada Sošinjskog i saradnika (Soszyński et al., 2008b), a za klasične cefeide koje pulsiraju u prvoj nadmodi ista ova relacija je prikazana isprekidanom linijom. Vidimo još i relaciju za zvezde tipa RR Lyrae, podtipa RRab, (sa $\log P < -0.08$) iz rada Sošinjskog i saradnika (Soszynski et al., 2003), prikazanu kratkom punom plavom linijom.
Tabela 5.1: Vesenhajtova i bolometrijska relacija period-luminoznost. Prva kolona daje tip pulsirajućih zvezda koje su u uzorku. U drugoj koloni je ime galaksije: VMO je Veliki Magelanov oblak, a MMO je Mali Magelanov oblak - vidi još i belešku ^(a). "Mag" u trećoj koloni označava o kom tipu magnitude se radi: W je Vesenhajtova magnituda, a $M_{\rm bol}$ je bolometrijska magnituda računata iz dobijenih luminoznosti. Kolone četiri i pet su dobijeni koeficijenti, a i b, u relaciji PL, prikazane sa greškom. Rasejanje relacije PL je dato u šestoj koloni. U sedmoj koloni je data greška rešenja. N je broj zvezda koje su korišćene za dobijanje relacije PL (osma kolona). U devetoj koloni je naveden broj tačaka koje su se našle van datog rešenja. Deseta kolona daje reference.

Uzorak	Galaksija ^(a)	Mag	Mag= a	$+b \log P$	Disperzija	$\chi_r^{2(b)}$	Ν	Ν	Ref.*
					(mag)			Tačaka	
								van	
								rešenja	
BL Her	VMO	W	$17,359 \pm 0,022$	$-2,576 \pm 0,080$	0,089	9,18	55	6	
BL Her	MMO	W	$17,558 \pm 0,134$	$-2,429 \pm 0,480$	0,241	76,0	17	0	
BL Her	@VMO	W	$17,347 \pm 0,038$	$-2,669 \pm 0,137$	0,170	32,8	74	4	
W Vir	VMO	W	$17,402 \pm 0,064$	$-2,558 \pm 0,063$	0,093	9,91	76	2	
W Vir	MMO	W	$18,329 \pm 0,168$	$-3,009 \pm 0,158$	0,091	11,5	10	0	
W Vir	@VMO	W	$17,471 \pm 0,061$	$-2,624 \pm 0,060$	0,098	10,8	86	2	
RV Tau	VMO	W	$18,101 \pm 0,557$	$-3,142 \pm 0,352$	0,249	72,6	41	1	
RV Tau	MMO	W	$17,707 \pm 1,049$	$-2,585 \pm 0,674$	0,164	42,1	7	0	
RV Tau	@VMO	W	$18,004 \pm 0,494$	$-3,077 \pm 0,313$	0,240	66,9	48	1	
BL Her + W Vir	VMO	W	$17,363 \pm 0,017$	$-2,522 \pm 0,021$	0,102	11,6	133	6	
BL Her + W Vir	MMO	W	$17,597 \pm 0,072$	$-2,356 \pm 0,103$	0,209	53,0	26	1	
BL Her + W Vir	@VMO	W	$17,335 \pm 0,017$	$-2,496 \pm 0,021$	0,108	13,2	153	13	
BL Her + W Vir + RV $Tau^{(c)}$	VMO	W	$17,358 \pm 0,014$	$-2,530 \pm 0,017$	0,089	$_{9,00}$	136	10	
BL Her + W Vir + RV $Tau^{(c)}$	MMO	W	$17,577 \pm 0,073$	$-2,388 \pm 0,097$	0,232	64,9	28	0	
$BL Her + W Vir + RV Tau^{(c)}$	@VMO	W	$17,355 \pm 0,017$	$-2,526 \pm 0,020$	0,118	15,8	162	12	
AC F	VMO	W	$16,612 \pm 0,020$	$-3,158 \pm 0,141$	0,150	25,7	62	0	
AC 10	VMO	W	$16,029 \pm 0,058$	$-3,373 \pm 0,247$	0,140	24,2	19	0	
BL Her $+$ W Vir	VMO	W	$17,364 \pm 0,015$	$-2,521 \pm 0,022$	0,105		131		1
BL Her + W Vir	MMO	W	$17,554 \pm 0,083$	$-2,304 \pm 0,107$	0,230		27		2
BL Her + W Vir + RV $Tau^{(d)}$	VMO	W	$17,33\pm0,03$	$-2,53\pm0,03$					3
BL Her	teorija	W	$17,30\pm0,07$	$-2,43\pm0,02$					4
AC F	VMO	W	$16,59\pm0,02$	$-3,41\pm0,16$	0,15				5
AC 1O	VMO	W	$16,05\pm0,05$	$-3,44\pm0,22$	0,13				5
AC F	teorija	W	16, 55	-2,94					6
BL Her	VMO	M_{bol}	$+0,141 \pm 0,051$	$-1,749 \pm 0,200$	0,274	33,0	57	4	
BL Her	MMO	M_{bol}	$-0,250 \pm 0,176$	$-0,691 \pm 0,717$	0,302	64,9	15	2	
BL Her	MO	M_{bol}	$-0,027 \pm 0,065$	$-1,326 \pm 0,257$	0,282	89,5	72	6	
W Vir	VMO	M_{bol}	$0,723 \pm 0,115$	$-2,358 \pm 0,119$	0,186	36,8	74	5	
W Vir	MMO	M_{bol}	$0,965\pm0,318$	$-2,589 \pm 0,319$	0,210	33,2	10	0	
W Vir	MO	M_{bol}	$0,743\pm0,109$	$-2,379 \pm 0,112$	0,201	37,1	85	4	
RV Tau ^(d)	VMO	M_{bol}	$+1,442 \pm 1,146$	$-2,919 \pm 0,750$	0,301	91,1	15	0	
RV Tau ^(d)	MMO	M_{bol}	$-1,088 \pm 0,433$	$-1,367 \pm 0,290$	0,041	4,6	4	0	
RV Tau ^(d)	MO	M_{bol}	$+0,951 \pm 0,974$	$-2,620 \pm 0,639$	0,298	78,4	19	0	
BL Her + W Vir	VMO	M_{bol}	$+0,199 \pm 0,035$	$-1,827 \pm 0,042$	0,230	40,6	130	10	
BL Her + W Vir	MMO	M_{bol}	$-0,087 \pm 0,100$	$-1,561 \pm 0,182$	0,349	256,0	26	1	
BL Her + W Vir	MO	M_{bol}	$+0,068 \pm 0,037$	$-1,704 \pm 0,049$	0,267	83,1	159	8	
BL Her + W Vir + RV $Tau^{(c)}$	VMO	M_{bol}	$+0,226 \pm 0,033$	$-1,870 \pm 0,039$	0,233	40,5	136	11	
BL Her + W Vir + RV $Tau^{(c)}$	MMO	M_{bol}	$-0,048 \pm 0,101$	$-1,686 \pm 0,172$	0,370	275,0	27	1	
BL Her + W Vir + RV $Tau^{(c)}$	MO	M_{bol}	$+0,119 \pm 0,036$	$-1,787 \pm 0,044$	0,276	81,8	166	9	
AC F	VMO	M_{bol}	$-0,436 \pm 0,033$	$-3,122 \pm 0,213$	0,255	71,3	61	1	
AC 10	VMO	Must	-1.126 ± 0.074	-3.248 ± 0.305	0.244	53.2	20	0	

*Reference:(1) Matsunaga et al. (2009); (2) Matsunaga et al. (2011); (3) Manick et al. (2017); (4) Di Criscienzo et al. (2007) za $[Fe/H] = -1, l/H_p = 1, 5$ i modulom rastojanja za Veliki Magelanov oblak od 18, 50 mag; (5) Ripepi et al. (2014) ; (6) Marconi et al. (2004) za $M = 1, 3 M_{\odot}$ i moduo rastojanja za Veliki Magelanov oblak od 18, 50 mag.

Beleške:^(a) Za *PL* relaciju u Vesenhajtovom indeksu "@LMC" znači da su u obzir uzete zvezde iz Velikog Magelanovog oblaka zajedno sa zvezdama iz Malog Magelanovog oblaka koje su svedene na istu daljinu pomeranjem od 0, 432 magnitude; ^(b) Smanjena vrednost χ^2 se zasniva na pretpostavljenoj grešci u Vesenhajtovom indeksu i bolometrijskoj magnitudi od 0, 03 mag; ^(c) zvezde tipa *RV Tauri* koje imaju prašinu oko sebe i *P* > 50 dana nisu uključene; ^(d) zvezde tipa *RV Tauri* koje imaju prašinu oko sebe nisu uključene.

osnovu fotometrijskih podataka dobijenih iz celog elektromagnetnog spektra, koji nisu vremenski koordinisani (nisu mereni ni u isto vreme ni za istu fazu pulsacije). Drugo, za zvezde kod kojih postoji problem u određivanju sjaja, npr. jer je posmatrana zvezda jako blizu nekoj drugoj zvezdi ili ako se radi o dvojnoj zvezdi, i dalje se može izračunati dobar Vesenhajtov indeks ako se koristi kombinacija posmatranja u različitim filterima. Ovakvi Vesenhajtovi indeksi će ostati blizu same srednje Vesenhajtove relacije. U slučaju kada se modelira cela SER veća je verovatnoća da će rezultati više odstupati od srednje vrednosti.

Da bismo utvrdili validnost naše relacije PL pogledali smo da li će se vrednosti sjaja merene za eklipsno dvojne sisteme i iz paralakse podudarati sa našom relacijom PL. Oslonili smo se na dve jako dobro proučene zvezde i kroz diskusiju ćemo ih više puta spominjati kao referentne tačke: najbolje proučenu klasičnu cefeidu u eklipsnom dvojnom sistemu u Velikom Magelanovom oblaku, OGLE-LMC-CEP-0227, i jednu od najpoznatijih cefeida tipa II u Mlečnom putu, κ Pav (zvezda tipa W Virginis, sa periodom P = 9,09 dana).

Zvezda κ Pav ima daljinu izmerenu svemirskim teleskopom Hubble, $d = 180 \pm 9$ pc (Benedict et al., 2011) i metaličnost od [Fe/H] = 0.0 (Luck & Bond, 1989). Fotometrijska merenja u V i I filterima su dostupna u članku Berdnikova (Berdnikov, 2008), i iz njih smo izračunali srednje prividne V i I magnitude. Na slici 5.1 se vidi položaj κ Pav u odnosu na našu relaciju PL, ako bi se nalazila na udaljenosti Velikog Magelanovog oblaka. U radu Britfeldera i saradnika (Breitfelder et al., 2015) se daje efektivna temperatura od $T_{\rm eff} = 5739 \pm 107$ K, koja posredno daje i vrednost za luminoznost od $L = 508 \pm 65 L_{\odot}$. Na slici 5.1 pozicija zvezde κ Pav je blizu procenjene relacije PL u Vesenhajtovom indeksu, ali je sjajnija od relacije u bolometrijskoj magnitudi. Izvedeni poluprečnik i efektivna temperatura iz članka Brajtfeldera i saradnika (Breitfelder et al., 2015) daju vrednost bolometrijske magnitude od $M_{\rm bol} = -2,01\pm0,13$, dok razne PL relacije daju vrednosti između -1,53i -1,59 mag. Ovo može biti zbog širine trake nestabilnosti, pretpostavljene udaljenosti (mada je daljina iz paralakse merena svemirskim teleskopom Hubble tačna do 5%), zavisnosti relacije PL od metaličnosti (ovo nije očigledno kada uporedimo rezultate za objekte iz Velikog Magelanovog oblaka i Malog Magelanovog oblaka) ili zbog činjenice da se radi o dvojnom sistemu. Matsunaga i saradnici (Matsunaga et al., 2009) detaljno razmatraju κ Pav i daju predlog da bi je trebalo reklasifikovati kao neobičnu zvezdu tipa W Virginis.

U radu Pileckog i saradnika (Pilecki et al., 2013) su izračunate V i I magnitude za obe komponente u dvojnom sistemu OGLE-LMC-CEP-0227. Vesenhajtove magnitude za klasičnu cefeidu posebno, kao i za čitav sistem su prikazane na slici 5.1 (sa log P = 0, 58 dana), zajedno sa Vesenhajtovom relacijom za klasične cefeide u Velikom Magelanovom oblaku koje pulsiraju u osnovnoj frekvenciji i prvoj nadmodi, iz članka Sošinjskog i saradnika (Soszyński et al., 2008b). Pilecki i saradnici (Pilecki et al., 2013) su takođe izračunali log $L = 3, 158 \pm 0, 049 L_{\odot}$ i $T_{\rm eff} = 6050 \pm 160$ K, koje su u saglasnosti sa rezultatima iz rada Markoni i saradnika (Marconi et al., 2013) (log $L = 3, 16 \pm 0, 02 L_{\odot}, T_{\rm eff} = 6100 \pm 50$ K). Na slici 5.2 klasična cefeida iz sistema OGLE-LMC-CEP-022 je iznad naše relacije PL.

Cefeide tipa II koje ne padaju na relacije *PL* prakazane na slikama 5.1 i 5.2 su većinom neobične zvezde tipa *W Virginis* i već su bile klasifikovane kao dvojni sistemi u katalogu OGLE-III: OGLE-LMC-T2CEP-098 i OGLE-LMC-T2CEP-023, OGLE-SMC-T2CEP-007, OGLE-SMC-T2CEP-010, OGLE-SMC-T2CEP-028. U članku Gronevegena i Jurković (Groenewegen & Jurkovic, 2017b) je predstavljena metoda za identifikovanje dvojnosti u krivama sjaja pulsirajućih zvezda, koja koristi korekciju vremena za pređeni put svetlosti (*Light-Time Efect* (LITE)). Ovom metodom je utvrđeno (Groenewegen & Jurkovic, 2017b) da su OGLE-SMC-T2CEP-001 i OGLE-SMC-T2CEP-029, koje takođe ne padaju na izvedenu relaciju *PL*, zapravo dvojni sistemi. Ostale zvezde koje odstupaju od relacije imaju detektovani infracrveni višak tj. prašinu oko sebe su neobične zvezde tipa *W Virginis*: OGLE-LMC-T2CEP-016, OGLE-LMC-T2CEP-011, i zvezde tipa *RV Tauri*: OGLE-LMC-T2CEP-016, OGLE-LMC-T2CEP-067, OGLE-LMC-T2CEP-147, OGLE-LMC-T2CEP-174, OGLE-LMC-T2CEP-199.

Slika 5.2: Bolometrijska relacija PL. Greške u $M_{\rm bol}$ su manje od simbola na slici. Zvezde koje su izvan relacije su date svojim identifikacionim brojevima. Zvezde koje imaju infacrveni višak su označene zelenim plusevima. Zvezde koje su u eklipsnim dvojnim sistemima ili su elipsoidalne promenljive zvezde u katalogu OGLE su označene plavim krstićima. Klasična cefeida u eklipsno dvojnom sistemu OGLE-LMC-CEP-0227 (kod P = 3,79 dana) i cefeida tipa II iz Mlečnog puta κ Pav (kod P = 9,08 dana) su prikazane plavim dijamantima. Crna puna linija je relacija izvedena za sledeće tipove zvezda: zvezde tipa *BL Herculis*, zvezde tipa *W Virginis* i zvezde tipa *RV Tauri* zajedno, bez prašine, sa periodima ispod 50 dana u Velikom Magelanovom oblaku (vidi tabelu 5.1).

Poglavlje 6

Pojava "menjanja oblika" krivih sjaja kod zvezda tipa *W Virginis*

Poznata odlika zvezda tipa W Virginis je da pokazuju varijacije u amplitudama krivih sjaja tokom pulsacije (Soszyński et al., 2008a, 2010a), koje je detaljnije opisano npr. u člancima Templetona i Hendena (Templeton & Henden, 2007) i Plahi i saradnika (Plachy et al., 2017)). Neke od ovih promena mogu se objasniti fenomenom "udvostručavanja perioda" (Moskalik & Buchler, 1990, 1993b; Smolec & Moskalik, 2014; Smolec, 2016). U slučaju nekoliko zvezda primetili smo nov oblik promene u krivama sjaja. Jedan od najizraženijih primera ovog ponašanja je zvezda OGLE-LMC-T2CEP-127, čija kriva sjaja je prikazana na slici 6.1. Podaci su preuzeti iz kataloga OGLE-III. Dok pojedinačne sekcije (prikazane raznim bojama) imaju različite amplitude, period pulsacije kojim možemo konstruisati faznu krivu sjaja ostaje nepromenjen tokom vremena koje pokrivaju podaci iz kataloga OGLE-III i iznosi P = 12,67 dana. Fazna kriva sjaja očigledno menja oblik, a ne samo amplitudu. Ovo do sada nije bilo uočeno i razjašnjenje ovog fenomena će biti predmet budućih istraživanja.

U članku Gronevegena i Jurković (Groenewegen & Jurkovic, 2017b) primenili smo metodu koja koristi korekciju vremena za pređeni put svetlosti za pronalaženje dodatnih kandidata za dvojne zvezde u uzorku cefeida tipa II i anomalnih cefeida u Velikom Magelanevom oblaku i Malom Magelanovom oblaku. U toj analizi su bile detektovane i zvezde tipa *W Virginis* "promenljivog oblika", koje poka-

Slika 6.1: Segmentirana kriva sjaja zvezde OGLE-LMC-T2CEP-127 koja pokazuje promene u amplitudi je prikazana u gornjem panelu, a fazna kriva sjaja ove zvezde dobijena, koristeći period P = 12,67 dana, je prikazana u donjem panelu. Svi podaci su preuzeti iz baze podataka OGLE-III.

POGLAVLJE 6. POJAVA "MENJANJA OBLIKA" KRIVIH SJAJA KOD ZVEZDA TIPA W VIRGINIS

Tabela 6.1: Podaci koji su bili dostupni iz kataloga OGLE-III su bili podeljeni u 6 segmenata, gde svaki segment ima sličnu amplitudu pulsacione krive sjaja. Tačna podela je prikazana u prvoj koloni. Sledeće kolone su: osnovna frekvencija (f_0) , amplituda (A_0) i faza (φ_0) za svaki segment.

111D 0450000	ſ		٨	Q ×1	D	
HJD-2450000	f_0	Greška f_0	Amp.	Greska amp.	Faza	Greska faze
	$(1/\mathrm{dan})$	$(1/\mathrm{dan})$	(mag)	(mag)		
2166,84886-2387,49452	0,073116	0,000051	$0,\!195$	0,004	$0,\!057$	0,003
$2521,\!91435 \!-\! 2735,\!50111$	0,073684	0,000037	0,201	0,003	0,775	0,002
2841, 92511 - 3453, 50289	0,073506	0,000009	0,206	0,002	$0,\!340$	$0,\!002$
3574, 93733 - 3820, 49656	0,074024	0,000034	$0,\!152$	0,002	$0,\!461$	$0,\!002$
3961,92688-4183,52499	0,074232	0,000042	0,118	0,002	$0,\!612$	$0,\!003$
4340,89943-4540,60444	0,074390	0,000045	$0,\!120$	0,002	$0,\!080$	0,002

zuju velike promene u krivama sjaja od jednog do drugog ciklusa pulsacije. To su zvezde: OGLE-LMC-T2CEP-026, OGLE-LMC-T2CEP-034, OGLE-LMC-T2CEP-044, OGLE-LMC-T2CEP-072, OGLE-LMC-T2CEP-100, OGLE-LMC-T2CEP-127 i OGLE-SMC-T2CEP-14, OGLE-SMC-T2CEP-32, OGLE-SMC-T2CEP-34. Svi podaci su iz baze podataka OGLE-III. Analiza je rađena programom *Period04*. Kao deo istraživanja koje je još uvek u toku, u ovom poglavlju će biti prikazane krive sjaja sa heliocentričnim julijanskim datumom i fazom na apscisi za navedene zvezde (slika 6.2).

Detaljnije predstavljamo samo rezultate za OGLE-LMC-T2CEP-026. Dugoročna kriva sjaja i fazna kriva sjaja OGLE-LMC-T2CEP-026 sa podacima iz kataloga OGLE-III su prikazane na slici 6.3. Fazna kriva sjaja je svedena na fazu sa osnovnom frekvencijom $f_0 = 0,073723 (1/\text{dan})$ koju smo računali koristeći sve podatke. Na faznoj krivi sjaja (slika 6.3, panel (b)) se vidi da jedino podaci koji imaju svetlo plavu boju značajno odstupaju od ostalih tačaka. Za podatke prikazanim ostalim bojama mogli bismo reći da detektovana osnovna frekvencija nije sasvim dobra. Da bismo ispitali šta se tačno dešava u pojedinačnim segmentima podataka podelili smo posmatranu krivu sjaja iz uzorka OGLE-III u šest posebnih skupova podataka, trudeći se da svaki skup ima sličnu amplitudu. Za svih šest skupova tj. segmenata posebno su izračunati elementi Furijeove dekompozicije, uključujući osnovnu frekvenciju, koju su prikazani u tabeli 6.1.

Promenu svakog elementa Furijeove dekompozicije (f_0 je osnovna frekvencija računata za svaki segment, A_0 je amplituda za osnovnu ferkvenciju, a φ_0 je odgo-

OGLE-LMC-T2CEP-100.

Slika 6.2: Zvezde tipa *W Virginis* iz uzorka OGLE-III koje menjanju oblik. Na levim panelima je kriva sjaja u HJD-245000, dok je na desnim fazna kriva sjaja u *I* filteru. Prikazane zvezde, odozgo nadole su: OGLE-LMC-T2CEP-034 (P = 14,911 dana), OGLE-LMC-T2CEP-044 (P = 13,270 dana), OGLE-LMC-T2CEP-072 (P = 14,514 dana), OGLE-LMC-T2CEP-100 (P = 7,432 dana).

OGLE-SMC-T2CEP-34.

Slika 6.2: Nastavak. Prikazane zvezde, odozgo nadole su: OGLE-SMC-T2CEP-14 (P = 13,879 dana), OGLE-SMC-T2CEP-32 (P = 14,246 dana), OGLE-SMC-T2CEP-34 (P = 20,120 dana).

Slika 6.3: Kriva sjaja OGLE-LMC-T2CEP-026 u I filteru iz kataloga OGLE-III sa leve strane (a) i fazna kriva sjaja iste zvezde, P = 13,564 dana, sa desne strane (b).

varajuća faza) tokom posmatračkog projekta OGLE-III (u trajanju od 2347 dana) možemo videti na slikama 6.4, 6.5, 6.6. Osnovna frekvencija za ceo set podataka $f_{0,TOT} = 0,073723 \ (1/dan)$ se razlikuje od individualno detektovanih osnovnih frekvencija tek na četvrtoj decimali, a greška Furijeove dekompozije se javlja tek na petoj decimali. Razlika je veća od greške merenja, ali dovoljno mala da $f_{0,TOT}$ može da bude primenjena na sve podatke, jer pri svođenja na fazu ovolika razlika (na petoj decimali) neće značajno izemniti izgled fazne krive sjaja (tako su napravljenje fazne krive sjaja na slikama 6.1, 6.2 i 6.3). Na slici 6.4 se vidi kako osnovna frekvencija pojedinačnih segmenata raste sa vremenom. Na slici 6.5 je prikazana promena amplitude osnovne frekvencije. Kada uporedimo promenu osnovne frekvencije i amplitude možemo da uočimo da kad osnovna frekvencija raste, amplituda opada tj. ove dve veličine su u anti-korelaciji. Promena faze osnovne frekvencije, koja je prikazana na slici 6.6, ne pokazuje korelaciju sa prethodne dve veličine (osnovnom frekvencijom i odgovarajućom amplitudom). Na slici 6.3 se vidi da je poslednji segment (svetlo plave boje) taj kod koga fazna kriva sjaja značajno odstupa od većine ostalih podataka. Taj skok vidimo i na slici 6.6 u poslednjoj tački na grafiku. Nije nam poznat mehanizam koji može da uzrokuje ovakvu promenu. Na relacijama PLi PR koje smo predstavili u prethodnim poglavljima ove zvezde se nisu izdvojile ni na koji način i nije detektovana prašina oko njih. Može se naslutiti da je ovaj fenomem povezan sa promenama u unutarašnjoj strukturi zvezde, stvarajući mogućnost rezonance između osnovne frekvencije i prve nadmode tzv. "udvostručenje perioda", kao što je to opisano u radu Smoleca i saradnika (Smolec et al., 2018).

Slika 6.4: Promena u osnovnoj frekvenciji f_0 , za zvezdu OGLE-T2CEP-LMC-026.

Slika 6.5: Promena u amplitudi A_0 za osnovnu frekvenciju, za zvezdu OGLE-T2CEP-LMC-026.

Slika 6.6: Promena u fazi osnovne ferkvencije, φ_0 , za zvezdu OGLE-T2CEP-LMC-026. Greške za fazu su manje od simbola na slici.

Poglavlje 7

Anomalne cefeide i drugi tipovi zvezda u uzorku galaktičkih kratkoperiodičnih cefeida tipa II

U ovoj tezi je predstavljena prva komparativna studija koja je koristila Furijeove parametre (detalje metode određivanja Furijeovih parametara vidi u odeljku 3.4, a rezultate u odeljku 7.1) za ceo uzorak kratkoperiodičnih cefeida tipa II sa periodima do 4 - 5 dana, poznatim kao zvezde tipa *BL Herculis*. Tokom našeg istraživanja ispitivali smo oblike krivih sjaja ovih promenljivih zvezda da bismo se uverili da sve pripadaju navedenom tipu i bili sigurni da je uzorak iz Opšteg kataloga promenljivih zvezda homogen. U sledećim odeljcima predstavili smo rezultate našeg rada (vidi u pododeljcima 7.1.1, 7.1.2, 7.1.3, 7.1.4 i odeljku 7.2).

Način klasifikacije pulsirajućih zvezda je usko povezan sa istorijom njihovih otkrića. Kako je tokom XIX i XX veka rastao broj otkrivenih zvezda, postajalo je sve jasnije šta uzrokuje njihovu pulsaciju i kako mogu da se okarakterišu. Primarna osnova klasifikacije jedne promenljive zvezde je izgled njene krive sjaja. U slučaju pulsirajućih zvezda promena sjaja je vrlo pravilna i uzrokovana je unutrašnjim promenama u samoj zvezdi. Drugi važni kriterijumi su: period promene, sjaj u maksimumu i u minimumu (to jest amplituda promene), koliko je strma promena oblika krive sjaja. Do sada nabrojene karakteristike se mogu dobiti iz fotometrijskih merenja. Ako su dostupna dodatna spektroskopska merenja, onda se mogu ispitati

dodatne karakteristike: temperatura, spektralna klasa, hemijski sastav, prisustvo ili odsustvo emisionih linija vodonika, helijuma i drugih elemenata. U odeljku 1.2 smo dali opis kriterijuma za cefeide tipa II na osnovu podataka iz Opšteg kataloga promenljivih zvezda. Noviji članci i veliki pregledi neba koriste Furijeove parametre za opis oblika krivih sjaja, ali vizuelna inspekcija je još uvek važan deo procesa klasifikacije. U sledećim odeljcima smo opisali metodu koju smo mi koristili za ispitivanje homogenosti uzorka, kao i naše rezultate.

7.1 Rezultati Furijeove analize

Cilj nam je bio da istražimo da li je uzorak zvezda tipa *BL Herculis* u Mlečnom putu iz Opšteg kataloga promenljivih zvezda potpun i homogen. Ukupan broj zvezda tipa *BL Herculis* (sa periodima do 8 dana) u pomenutom katalogu je 128, uključujući i one sa nesigurnom klasifikacijom. Samo 59 zvezda je imalo dovoljno dobar skup podataka (više od 32-34 merenih tačaka) u V filteru za Furijeovu analizu i izračunavanje Furijeovih parametara (odeljak 2.2 opisuje podatke, a odeljak 3.4 metod analize).

Izračunati Furijeovi parametri su dati u tabelama u prilozima A.5.1, A.5.2 i A.5.3. Njihova zavisnost od logaritma perioda je prikazana na slikama 7.1, 7.2, 7.3 i 7.4. Na slikama su prikazana dva uzorka, i to anomalne cefeide i cefeide tipa II iz kataloga OGLE-III i zvezde iz Mlečnog puta koje su bile klasifikovane kao cefeide tipa II u Opštem katalogu promenljivih zvezda. Anomalne cefeide iz oba uzorka (iz Velikog Magelanovog oblaka iz kataloga OGLE-III i iz Mlečnog puta) su prikazane ljubičastom bojom, cefeide tipa II zelenom bojom, klasične cefeide su tamno sive, a kandidati za neobične zvezde tipa W Virginis su narandžaste boje. Oblasti koje su naznačene na slikama 7.1, 7.2, 7.3, 7.4, 7.5 i 7.6 ograničavaju Furijeove parametre za anomalne cefeide (označene ljubičastom bojom) i zvezde tipa BL Herculis (označene zelenom bojom). Kao što se vidi na slikama, oblasti Furijeovih parametara za zvezde tipa BL Herculis i anomalne cefeide se preklapaju.

Osim Furijeovih parametara pogledali smo kako izgledaju amplitude detektovanih harmonika (A_2 i A_3) naspram logaritma perioda. Slike 7.5 i 7.6 prikazuju kako

Slika 7.1: Furijeov parametar R_{21} sa greškama naspram logaritma perioda pulsacije, log(P[d]). Zeleni krstići označavaju zvezde tipa *BL Herculis* (BLH) iz kataloga OGLE-III za Veliki Magelanov oblak (VMO), dok su zvezde tipa *BL Herculis* iz Mlečnog puta (MP) označeni zelenim "x" znakovima. Ljubičastim punim romboidima su predstavljene anomalne cefeide u VMO koje pulsiraju u osnovnoj frekvenciji (AC F) iz kataloga OGLE-III, ljubičastim otvorenim romboidima su predstavljene anomalne cefeide u VMO koje pulsiraju u prvoj nadmodi (AC 10) iz kataloga OGLE-III, puni ljubičasti kvadrati predstavljaju anomalne cefeide iz Mlečnog puta koje pulsiraju u osnovnoj frekvenciji, a jedina anomalna cefeida u Mlečnom putu koja pulsira u prvoj nadmodi se vidi kao ljubičasti prazan kvadrat. Tamno sivi krugovi su klasične cefeide iz Mlečnog puta (DCEP). Narandžasti trouglovi sa tačkom su moguće neobične zvezde tipa *W Virginis* (pWVir). Naznačene oblasti ograničanavuju Furijeove parametre za anomalne cefeide (ljubičastom bojom) i zvezde tipa *BL Herculis* (zelenom bojom).

Slika 7.2: Furijeov parametar R_{31} sa greškama naspram logaritma perioda pulsacije, $\log(P[d])$. Opis je isti kao i za sliku 7.1.

se razdvajaju cefeide tipa II i anomalne cefeide za zvezde iz Velikog Magelanovog oblaka i Mlečnog puta (boje su iste kao i na slikama 7.1, 7.2, 7.3 i 7.4). Anomalne cefeide imaju veće amplitude harmonika nego cefeide tipa II. Nekoliko zvezda iz oba uzorka se preklapaju, ali je preklapanje manje nego u slučaju Furijeovih parametara na slikama 7.1, 7.2, 7.3 i 7.4. U slučaju BQ CrA i V745 Oph ovo može biti posledica velikog šuma u posmatranim podacima koji su korišćeni za Furijeovu analizu. U slučaju UY Eri odstupanje od grupe anomalnih cefeida na slikama 7.5 i 7.6 se može pripisati ponašanju same zvezde. Zvezdu UY Eri smo detaljno opisali u posebnom pragarafu u pododeljku 7.1.1.

Uzorak iz kataloga OGLE-III je služio kao referentna tačka za upoređivanje, radi reklasifikacije zvezda iz Mlečnog puta. Tabela sa klasifikacijom na osnovu podudaranja uzorka iz Mlečnog puta i poznatog uzorka cefeida tipa II i anomalnih cefeida

Slika 7.3: Furijeov parametar φ_{21} sa greškama naspram logaritma perioda pulsacije, $\log(P[d])$. Opis je isti kao i za sliku 7.1.

iz Velikog Magelanovog oblaka iz kataloga OGLE-III je data u tabeli u prilogu A.6. Slike prikazuju situaciju nakon reklasifikacije uzorka iz Mlečnog puta. Na njima se vidi da je teško razgraničiti pojedinačne tipove pulsirajućih zvezda samo na osnovu njihovih pozicija na graficima sa Furijeovim parametrima, ali ovde to nije ni bio cilj. Najvažniji parametar za njihovu klasifikaciju je bio oblik krive sjaja.

Nova klasifikacija zvezda u Mlečnom putu je zasnovana na sledećem procesu. U bazi podataka OGLE-III zvezde tipa *BL Herculis* i anomalne cefeide razdvojene na relaciji *PL*, što čini njihovu klasifikaciju pouzdanom, uzeli smo njihove Furijeove parametre kao uzorak za upoređivanje. Da bismo bili sigurni da su svi Furijeovi parametri homogeni, koristili smo samo podatke prikupljene u V filteru za svaku zvezdu, kako za one iz Velikog Magelanovom oblaku u katalogu OGLE-III, tako i za zvezde u Mlečnom putu. Sve zvezde iz Mlečnog puta u uzorku su bile klasifikovane

Slika 7.4: Furijeov parametar φ_{31} sa greškama naspram logaritma perioda pulsacije, $\log(P[d])$. Opis je isti kao i za sliku 7.1.

u Opštem katalogu promenljivih zvezda kao cefeide tipa II. U prvom koraku smo pogledali da li se zvezde iz Velikog Magelanovog oblaka u OGLE-III uzorku i zvezde iz Mlečnog puta preklapaju na svih šest slika sa Furijeovim parametrima. Zvezde tipa *BL Herculis* i anomalne cefeide se najbolje razdvajaju na slikama 7.5 i 7.6. Ova metoda ne daje jasnu klasifikaciju za svaki objekat, pošto se Furijeovi parametri različitih zvezda u nekim slučajevima preklapaju. Zbog ovoga nismo primenili statističke kriterijume za klasifikaciju.

Kada klasifikacija nekog objekta nije bila jednoznačna, pogledali smo oblik krive sjaja (detaljan opis oblika krivih sjaja sa ilustracijama za cefeide tipa II i anomalne cefeide se može pronaći u odeljcima 1.2 i 1.3) da bismo vizuelno potvrdili pripadnost nekom podtipu. Štaviše, pregledali smo i svaki članak objavljen u vezi sa svakom zvezdom pojedinačno. U slučajevima gde smo videli da zvezde pokazuju neke speci-

Slika 7.5: Amplituda prvog harmonika, A_2 , naspram logaritma perioda pulsacije, $\log(P[d])$. Opis je isti kao i za sliku 7.1.

fične karakteristike, proširili smo diskusiju o našim nalazima u posebnim pasusima u nastavku.

Za osam anomalnih cefeida (od 19 koje smo otkrili ovom metodom) imamo nezavisnu potvrdu iz kataloga CSS (Drake et al., 2014a, 2017), u kome su takođe klasifikovane kao anomalne cefeide. Detaljna diskusija sledi u narednom pododeljku.

7.1.1 Anomalne cefeide

U člancima Sošinjskog i saradnika pokazano je da u njihovim katalozima postoji posmatračka granica u raspodeli promenljivih zvezda kod perioda od 1 dana (Soszyński et al., 2011b,c). Ova veštačka granica je usvojena kao granica između zvezda tipa *RR Lyrae* i cefeida tipa II. Anomalne cefeide sa svojim periodima zalaze u zonu zvezda tipa *RR Lyrae*, cefeida tipa II, pa čak i klasičnih cefeida. U Mlečnom putu je

Slika 7.6: Amplituda drugog harmonika, A_3 , naspram logaritma perioda pulsacije, $\log(P[d])$. Opis je isti kao i za sliku 7.1.

teško razdvojiti ove tipove zvezda na relaciji PL, jer velika količina međuzvezdane materije često značajno utiče na detektovani sjaj zvezde. Zato je bolje koristiti karakterizaciju krive sjaja (npr. Furijeovim parametrima) za klasifikaciju.

U katalogu CSS (Drake et al., 2014a) korišćen je Velč-Stetsonov indeks promenljivosti¹⁸ (J_{WS}) da se identifikuju promenljive zvezde među posmatranim objektima, da bi zatim za njih bila primenjena analiza preko Lomb-Skarglovog periodograma. Drejk i saradnici su ukupno našli 64 anomalne cefeide i većina tih zvezda su novootkrivene, ali šest promenljivih zvezda se poklapa sa našim uzorkom: FY Vir, V716 Oph, BF Ser, VX Cap, XX Vir, V1149 Her, za koje smo potvrdili klasifikaciju. Kada je 2017. godine objavljen novi katalog CSS (Drake et al., 2017) videli smo da se broj anomalnih cefeida koje su detektovane povećao na 156. U katalogu CSS iz

¹⁸Metod dodeljuje statističku verovatnoću promeni srednje magnitude, gde ta verovatnoća može da se poveže sa tipovima promenljivih zvezda (Welch & Stetson, 1993).

2014. godine šest zvezda se poklopilo sa našim uzorkom, a u katalogu CSS iz 2017. godine pojavile su se još dve zvezde: V563 Cen i BI Tel. Ukupan broj anomalnih cefeida u katalozima CSS koje se poklapaju sa rezultatima naše analize je postao osam.

Osim malopre navedenih osam anomalnih cefeida, pronašli smo još i sledeće anomalne cefeide među kratkoperiodičnim cefeidama tipa II iz Mlečnog puta koje pulsiraju u osnovnoj frekvenciji: FY Aqr, PP Tel, DF Hyi, BQ CrA, BH Cet, V2733 Oph, CE Her, MQ Aql, V745 Oph, UY Eri, UX Nor i jednu zvezdu koja je verovatno anomalna cefeida koja pulsira u prvoj nadmodi: V742 Cyg. Njihove krive sjaja su prikazane na slici 7.7. Zvezda V742 Cyg je detaljno opisana u kasnijem pasusu, gde joj je prikazana i kriva sjaja (vidi sliku 7.8).

U tabeli 7.1 smo predstavili listu anomalnih cefeida sa koordinatama (RA (h:m:s), DEC (d:m:s), eq=J2000) preuzetim iz baze podataka *Simbad*, izračunatim srednjim V magnitudama i dodatnim podacima iz literature: $T_{\rm eff}$, log g, [Fe/H] i klasifikacijom iz kataloga CSS. Furijeovi parametri za sve zvezde se mogu pronaći u prilogu A.5.

Za nekoliko individualnih objekata u nastavku dajemo detaljni opis. Svaki objekat ovde naveden se razlikuje od većine anomalnih cefeida po sledećim kriterijumima: Furijeovi parametri im nisu bili konzistentni na svih šest slika, nalaze se jatu, a ne izolovani u Mlečnom putu, imaju neku dodatnu odliku u krivi sjaja ili su prethodno imale drugačiju klasifikaciju.

V742 Cyg. Zejda i saradnici (Zejda et al., 2012) su izložili da je V742 Cyg (P = 0, 936 dana) član otvorenog jata *Dolidze 37*. Podaci koje smo koristili u našoj analizi su objavljeni u radu Šmita i Rajsviga (Schmidt & Reiswig, 1993). U bazi podataka *VizieR* podaci za zvezdu V742 Cyg su bili pogrešno navedeni pod imenom V741 Cyg, a to je poznata eklipsno dvojna zvezda sa periodom P = 4, 649850 dana. Fazna kriva sjaja V742 Cyg sa ispravnim periodom je prikazana na slici 7.8. Vasil'Jankovskaja (Vasil'Yanovskaya, 1978), Šmit i saradnici (Schmidt et al., 1990) i Šmit (Schmidt, 1991) su diskutovali činjenicu da V742 Cyg pokazuje značajnu promenu perioda, ali ta promena se razlikuje od Blaškovog efekta u zvezdama tipa *RR Lyrae*. Na osnovu Furijeovih parametara, V742 Cyg je anomalna cefeida i to vero-

Slika 7.7: Fazne krive sjaja anomalnih cefeida u Mlečnom putu sa greškama fotometrijskih podataka.

Slika 7.7: nastavak.

Slika 7.7: nastavak.

Tabela 7.1: Identifikovane anomalne cefeide među zvezdama tipa *BL Herculis* u Mlečnom putu iz Opšteg kataloga promenljivih zvezda. Prva kolona je ime zvezde, dok su druga i treća kolona (RA i DEC) koordinate zvezde na nebu. U kolonama 4 i 5 srednja magnituda zvezde tokom perioda pulsacije < V > i period pulsacije P, računati iz posmatranih podatak. Do sada publikovane efektivne temperature ($T_{\rm eff}$), logaritam površinskog gravitacionog ubrzanja (log g) i metaličnost ([Fe/H]) su dati u kolonama 6, 7 i 8, redom, a reference iz kojih su preuzete su u devetoj koloni. Deseta kolona označava da li je zvezda poznata u katalogu CSS kao anomalna cefeida.

Ime	RA	DEC	$\langle V \rangle$	Р	$T_{\rm eff}$	$\log g$	[Fe/H]	Ref.*	CSS
	(h:m:s)	(d:m:s)	[mag]	[dana]	[K]	[cgs]	[dex]		
V742 Cyg	20:02:32,77	+37:46:34,8	15,886	0,936					
FY Aqr	22:16:34,99	-03:48:55,41	12,359	1,023					
V563 Cen	14:49:50,89	-38:53:08,40	14,798	1,077					
FY Vir	12:14:13,52	$+06{:}01{:}17{,}10$	16,419	1,082					AC
PP Tel	20:16:56,51	-51:15:11,40	$13,\!622$	1,091					
V716 Oph	16:30:49,47	-05:30:19,50	12,169	1,116	6550	2,500	-1,870	1	AC
DF Hyi	01:40:49,20	-67:29:41,90	14,336	1,123					
BH Cet	$00:\!50:\!02,\!80$	-17:36:26,90	15,490	1,138					
BF Ser	15:16:28,50	$+16:\!26:\!39,\!70$	12,093	1,165					AC
BI Tel	18:18:17,56	-53:22:19,80	12,814	1,166	-	-	-1,96	2	
V2733 Oph	17:31:21,88	-17:43:39,51	14,469	1,172					
CE Her	17:41:56,55	$+15:04:30,\!20$	12,170	1,209					
VX Cap	21:06:22,51	-18:49:39,80	$14,\!859$	1,327					AC
XX Vir	14:16:48,59	-06:17:15,06	12,326	1,348					AC
V1149 Her	16:03:43,36	+50:13:33,43	13,995	1,409	-	-	-2,32	3	AC
MQ Aql	$19:\!40:\!55,\!69$	$+12:\!37:\!10,\!10$	13,812	1,481					
V745 Oph	17:20:02,93	$+03:\!48:\!56,\!00$	13,942	1,596					
UY Eri	03:13:39,13	-10:26:32,40	11,294	2,213	6800	1,800	-1,430	1	
					6389	3,25	0,01	4	
					6280	2,58	0, 10	4	
					9978	4,15	0, 30	4	
					6000	1,5	-1,8	5	
UX Nor	16:27:44,70	-56:47:08,10	$13,\!644$	2,386					

^{*}Reference: 1: Soubiran et al. (2016), 2: Layden (1994), 3: Allende Prieto et al. (2000), 4: Schmidt et al. (2011), 5: Maas et al. (2007).

vatno anomalna cefeida koja pulsira u prvoj nadmodi, što čini ovu zvezdu prvom anomalnom cefeidom otkrivenom u otvorenom jatu.

Slika 7.8: Fazna kriva sjaja zvezde V742 Cyg sa periodom od P = 0,936 dana.

FY Vir. U faznoj krivi sjaja FY Vir (P = 1,082 dana), koja je prikazana na slici 7.7 (c), vidimo modulaciju sličnu Blaškovom efektu u zvezdama tipa RR Lyrae. Ovo je prvi put da vidimo ovakvu modulaciju u amplitudi jedne anomalne cefeide.

V716 Oph. V716 Oph (P = 1, 116 dana) je članica globularnog jata ω Centauri (NGC 5139) (Dinescu, 2002). Procenjena starost globularnog jata NGC 5139 je 11, 52×10⁹ godina. Iz naših Furijeovih parametara vidimo da je V716 Oph anomalna cefeida, što potvrđuje rezultate iz rada Drejka i saradnika (Drake et al., 2014a). Anomalne cefeide imaju starost od 1 do 5×10⁹ godina, što znači da ova zvezda nije nastala u isto vreme kada i ostali članovi globularnog jata. Objašnjenje za ovo može biti u tome da je globularno jato gravitaciono privuklo zvezdu među svoje članove ili da V716 Oph zapravo nije anomalna cefeida.

BI Tel. Klasifikacija ove zvezde se menjala tokom godina. Lajden (Layden, 1994) navodi da je BI Tel (P = 1,166 dana) zvezda tipa *RR Lyrae*, podtipa "RRab" (za opis vidi odeljak 1.1) sa metaličnošću od [Fe/H]=-1,96 dex. U katalogu ASAS-3 klasifikovana je kao "DCEP-FU" (klasična cefeida koja pulsira u osnovnoj frekvenciji) (Pojmanski et al., 2005), da bi u radu Ričardsa i saradnika (Richards et al., 2012)

POGLAVLJE 7. ANOMALNE CEFEIDE I DRUGI TIPOVI ZVEZDA U UZORKU GALAKTIČKIH KRATKOPERIODIČNIH CEFEIDA TIPA II

Slika 7.9: Krive sjaja BQ CrA (levo) i V745 Oph (desno) svedene na fazu, kao primeri zvezda koje imaju veliku grešku u fotometrijskim podacima. Podaci su iz baze podataka ASAS-3.

opet bila reklasifikovana kao zvezda tipa "RR Lyrae FM" (FM - osnovna frekvencija). Naši Furijeovi parametri je stavljaju u grupu anomalnih cefeida.

XX Vir. U članku Valerštajna i Huanga (Wallerstein & Huang, 2010) autori su prokomentarisali pripadnost zvezde XX Vir (P = 1,348 dana) globularnom jatu ω Centauri, ali nisu bili jednoznačni. Da bismo utvrdili tačnost navedene pripadnost kontaktirali smo Dr Danu Kaseti (Casetti) (koja je bila navedena kao izvor informacije) u privatnoj komunikaciji (2016), koja je potvrdila da XX Vir nije član globularnog jata ω Centauri (NGC 5139). Anomalne cefeide su važne zbog proučavanja evolucije galaksije i predstavljaju vrlo specifičan deo zvezdane populacije, jer pripadaju srednjoj populaciji zvezda u Mlečnom putu. Dakle, nije svejedno da li ove zvezde pripadaju samom Mlečnom putu ili su deo globularnog jata, koje ima drugačiji evolucioni put. Slažemo se sa rezultatom iz članka Drejka i saradanika (Drake et al., 2014a) da je XX Vir anomalna cefeida.

BQ CrA i V745 Oph. BQ CrA (P = 1, 128 dana) i V745 Oph (P = 1, 596 dana) imaju fotometrijske podatke sa velikim greškama, što se vidi na slici 7.9, tako da naša klasifikacija može biti pogrešna i potrebna su dodatna merenja da bi se utvrdili njihovi tipovi. Mi smo ih klasifikovali kao anomalne cefeide. **UY Eri.** Metaličnost za UY Eri (P = 2,213 dana) je merena u tri članka (Maas et al., 2007; Schmidt et al., 2011; Soubiran et al., 2016) i svi rezultati merenja su prikazani u tabeli 7.1. Velike razlike u merenim vrednostima [Fe/H] čini bilo koji zaključak za ovu zvezdu otvorenim za dalju interpretaciju. Dok se većina Furijeovih parametra zvezde UY Eri slažu sa parametrima anomalnih cefeida iz uzorka u katalogu OGLE-III, kada pogledamo amplitude vidimo da se UY Eri nalazi među zvezdama tipa *BL Herculis* (vidi slike 7.5 i 7.6). Dalja merenja su potrebna da se razjasni tačna priroda ove zvezde.

7.1.2 Kratkoperiodične cefeide tipa II - zvezde tipa *BL Herculis*

Rezultati klasifikacije za zvezde tipa *BL Herculis*, su dati u tabeli 7.2, sa koordinatama položaja preuzetim iz baze podataka *Simbad*, izračunatim srednjim *V* magnitudama, T_{eff} , $\log g$ i [Fe/H] iz literature. Sve vrednosti za metaličnost, sa izuzetkom dve zvezde, su bile objavljene kao rezultat spektroskopskih merenja. Izuzeci su V527 Sgr ($M = 1,025M_{\odot}, R = 1,366R_{\odot}$) i V1287 Sco ($M = 0,963M_{\odot},$ $R = 2,933R_{\odot}$), čiji parametri su bili izvedeni kao kombinacija fotometrijskih posmatranja i modeliranja putem sinteze zvezdanih populacija u Mlečnom putu (Sharma et al., 2011), za zvezde iz kataloga EPIC K2 (Huber et al., 2016).

Nekoliko zvezda tipa *BL Herculis* u našem uzorku treba detaljnije opisati, jer pokazuju odlike koje nisu tipične za ovaj podtip. Ove zvezde su navedene u sledećim paragrafima.

BL Her. Literatura za zvezdu BL Her (P = 1, 307 dana) je prilično opširna. Žije i saradnici (Gillet et al., 1994) su opisali ponašanje linije H_{α} i analizirali je detaljnije u članku Fokina i Žijea (Fokin & Gillet, 1994). Rezultat njihove analize je bio da u zvezdi BL Her postoji prisustvo 2:1 rezonance između osnovne frekvencije i potisnute prve nadmode, kao što je to bilo predviđeno modelima cefeida tipa II. Šmidt i saradnici (Schmidt et al., 2003) su konstatovali prisustvo emisije u liniji H_{α} i dali su potvrdu prethodno objavljenim rezultatima iz radova Žijea i saradnika (Gillet et al., 1994) i Vinkoa i saradnika (Vinko et al., 1998) kao i iz starijih radova koji se u njima

citiraju. Sva dosadašnja merenja $T_{\rm eff}$, log g i [Fe/H] su nabrojana u tabeli 7.2. Osim ovoga, Balog i saradnici (Balog et al., 1997) su uradili Bade-Veselinkovu analizu za zvezdu BL Her i dobili poluprečnik: $R = 9, 4 \pm 2R_{\odot}$. Koristeći metodu koja ukupan sjaj pretvara u poluprečnik (ako je daljina zvezde poznat parametar) Arelano Fero i Rosencvajg (Arellano Ferro & Rosenzweig, 2000) su dobili poluprečnik: $R = 15, 4 \pm 1, 5R_{\odot}$. U radu Gronevegena i Jurković (Groenewegen & Jurkovic, 2017a) uz pomoć relacije *PR* određen je poluprečnik $R = 8,066R_{\odot}$, što stavlja ovaj objekat van njihove relacije *PR* za zvezde tipa *BL Herculis*. Pozicija BL Her u poređenju sa ostalim zvezdama tipa *BL Herculis* na graficima Furijeovih parametara nije jednoznačna. Prava priroda ove zvezde je još uvek nepoznata, bez obzira na to što je dala ime celom podtipu.

KZ Cen. Furijeovi parametri i oblik krive sjaja stavljaju KZ Cen (P = 1,520 dana) među zvezde tipa *BL Herculis*, ali metaličnost od 0,67 dex, koja je data u tabeli 7.2, je previše visoka za ovaj podtip. Ovo čini KZ Cen odličanim kandidatom za dalja spektroskopska merenja kako bi se potvrdila tačnost i otkrili razlozi za ovakvu metaličnost koja se razlikuje od većine ostalih zvezda tipa *BL Herculis*.

V2022 Sgr. Dithelm (Diethelm, 1983) je posmatrao V2022 Sgr (P = 1, 529 dana) i utvrdio period pulsacije od P = 1,533 dana, dok su Kvi i Dithelm (Kwee & Diethelm, 1984), odredili period od P = 1,533171 dana. Provenkal (Provencal, 1986) je primetio da je period porastao na P = 1,5530160 dana. Ova sekvenca promene perioda nam daje mogućnost da potvrdimo evolucioni status ove zvezde (vidi odeljak 1.6).

U radu Jurković (Jurkovic, 2015) pogrešno je navedeno da V2022 Sgr nije cefeida tipa II. Zabuna se desila zbog reference u online katalogu *The ASAS Catalogue of Variable Stars*, koji ima link na objekat pod brojem: 184041-2523.7. Ovaj objekat je promenljiv, ali sa periodom od $P = 290,71001 \pm 0,52327$ dana. Pravi ASAS identifikacioni broj za V2022 Sgr je 184039-2523.0 i on se korektno pojavljuje u katalogu *ASAS All Star Catalogue*.

Potvrđujemo da je V2022 Sgr zvezda tipa *BL Herculis* sa periodom koji se menja (koristili smo merenja iz članka Kvija i Dithelma (Kwee & Diethelm, 1984)).

Tabela 7.2: Lista zvezda tipa *BL Herculis* u Mlečnom putu. Prva kolona je ime zvezde, dok su druga i treća kolona (RA i DEC) koordinate zvezde na nebu. < V > u koloni 4 je srednja magnituda zvezde tokom perioda pulsacije i *P* u koloni 5 je period pulsacije, računati iz posmatranih podataka. Do sada publikovane efektivne temperature ($T_{\rm eff}$), logaritam površinskog gravitacionog ubrzanja (log *g*) i metaličnost ([Fe/H]) su dati u kolonama 6, 7 i 8, redom, a reference iz kojih su preuzete su u devetoj koloni. Deseta kolona nam daje dodatne informacije o zvezdi.

Ime	RA	DEC	< V >	P	$T_{\rm eff}$	$\log g$	[Fe/H]	$\operatorname{Ref.}^*$	Beleške
	(h:m:s)	(d:m:s)	[mag]	[dana]	[K]	[cgs]	[dex]		
BX Del	20:21:18,97	$+18:\!26:\!16,\!28$	12,412	1,092	6250	1,0	-0,2	1	
BV Cha	13:02:21,18	-79:45:26,40	$12,\!284$	1,238					
VY Pyx	$08:\!54:\!29,\!63$	-23:31:18,57	$7,\!245$	1,240	5750	1,5	-0,4	1	
$V527 \ Sgr$	19:16:10,99	$-20:\!55:\!55,\!80$	14,918	1,255	5816	4,159	-0,042	2	
V5614~Sgr	17:55:43,81	-29:44:50,20	$16,\!656$	1,354					
HQ CrA	18:11:53,74	-37:39:15,00	14,741	1,415				3	Možda ima plavog pratioca
KZ Cen	12:01:55.19	-46:16:41,48	12,293	1,520	6261	-	0.67	4	•
	,	, , , , , , , , , , , , , , , , , , ,	<i>.</i>	<i>.</i>	6021		<i>'</i>	4	
SW Tau	04:24:32.97	+04:07:24.08	9.721	1.584	7036	3.10	0.20	5	
	,	,	- ,- = -	-,	7482	3.54	0.22	5	
					6322	1.92	0.12	5	
					6250	2.0	0.2	1	
NW Lyr	19.15.5634	+34.27.08.08	12520	1 601	0100	2,0	0,2	-	
VZ Aql	19.05.02.96	-06:50:58 70	14 002	1 685					
V714 Cyg	10.41.48.62	$\pm 37.50.3380$	14 148	1 888					
V/14 Oyg	17.41.40,02 17.43.33.97	+03.35.36.08	14,140 19 179	1,000	5547.61		-0 /03	6	
CK Cen	13:46:20.04	40.35.50.10	12,172 19 090	1,050	0041,01		0,400	0	
V477 Oph	17:50:08 16	$\pm 05.38.96.90$	12,323 12.046	2,016					
V1987 Sco	16.26.52.85	28.05.34.20	13,340	2,010	5498	3 5 4 9	0 3 4 3	9	Ρ το πουσέρινη
	10.50.52,85	-20.05.54,20	13,400 14.916	2,030 1.070	0420	0,042	-0,545	2	1 se povecava
V5608 Sar	13.50.02,04 17.54.00,11	-01.38.04,00	14,210 16.274	1,970					
V617 Are	17.04.09,11	-29.39.39,00	10,374 11,709	2,212					DCFP 11 Cimbad
VOIT AIA	17.10.00,51	-00.39.43,40 01.05.07.00	11,192	2,022					DOLLI U Simouu
V405 Opn	17:52:07,50	-01:00:07,00	13,312 12.057	2,044					
DE UIA	10:04:04,00	-40.23.13,30	10,907	0,007 9 # 40					
V5009 Sgr	17:04:00,07	-29:07:01,00	10,919	0,042 0.061	5000	9 100	0 500		Densie wellen it en
vəəə Cen	14:40:55,04	-52:10:15,25	0,400	2,001	5000	5,100	-0,300	4	Dogata ugijemkom
					0000 ECE4	-	0,10	4	
					3034	-	-	4	
					-	- 0.1	0,04	8	
	10 0 4 00 00	69.00.01	0.041	1.0.40	5600	3,1	-0,5	9	
RT TrA	16:34:30,89	-63:08:00,81	9,841	1,940	5996	-	0,48	4	Bogata ugljenikom
					5868	-	-	4	
					6200	2,0	0,34	10	
					6040	2,5	0,54	10	
					6360	2,3	0,43	10	
BL Her	18:01:09,22	+19:14:56,70	10,219	1,307	6121	-	-	11	
					6256	-	-	12	
					6500	2,0	-0.1	1	
					6497	-	-0,17	4	
					6464	-	-	4	
					6350	2,5	0,0	13	
V2022 Sgr	18:40:39,00	-25:22:50,00	13,516	1,529					

*Reference: 1: Maas et al. (2007), 2: Huber et al. (2016) koristeći rezultate iz rada Sharma et al. (2011), 3: Madore & Fernie (1980), 4: Ammons et al. (2006), 5: Schmidt et al. (2011), 6: Luo et al. (2016), 7: Soubiran et al. (2016), 8: Wallerstein & Gonzalez (1996), 9: Wallerstein et al. (1979), 10: Wallerstein et al. (2000), 11: Muñoz Bermejo et al. (2013), 12: McDonald et al. (2012), 13: Caldwell & Butler (1978).

V1437 Sgr. V1437 Sgr (P = 1,748 dana) je najverovatnije član globularnog jata NGC 6522 (V8), kao što je objavljeno u najnovijem katalogu promenljivih zvezda u jatima (Clement, 2017) (za detalje vidi rad Klementa i saradnika (Clement et al., 2001)). Ovo je potvrđeno i u radu Samusa i saradnika (Samus et al., 2009b). Udalski i saradnici (Udalski et al., 1994) su u katalogu u bazi podataka *VizieR* (Udalski, 1996) dali ovoj zvezdi oznaku BWC V1, a za njen tip navode "ACEP". Tu je još napomenuto da je zvezda već bila identifikovana kao V58 u članku Blankoa (Blanco, 1984) i označena kategorijom "CW" (zvezda tipa *W Virginis*). Krive sjaja u *I* i *V* filterima su objavljene u katalogu OGLE-III (Soszyński et al., 2011a), gde je V1437 Sgr opet reklasifikovana kao zvezda tipa *BL Herculis*. Furijeovi parametri potvrđuju ovu poslednju klasifikaciju, ovo je zvezda tipa *BL Herculis*.

RT TrA. RT TrA (P = 1,946 dana) je promenljiva zvezda bogata ugljenikom (Lloyd Evans, 1983; Wallerstein et al., 2000; Wallerstein, 2002). Osim RT TrA, V553 Cen je jedina druga poznata cefeida tipa II u Mlečnom putu bogata ugljenikom. Kriva sjaja RT TrA iz rada Dithelma (Diethelm, 1983) je stavlja među zvezde tipa *BL Herculis* (slika 7.10 (a)), ali sa ispupčenjem na uzlaznoj grani krive sjaja koje je čini drugačijom od zvezda tipa *BL Herculis* sa istim periodom. Furijeovi parametri R_{21} , R_{31} su blizu nuli (kao što je slučaj i sa V553 Cen). Evolucioni modeli nam ne daju jasan odgovor na pitanje porekla ovakvih cefeida tipa II koje su bogate ugljenikom (Wallerstein, 2002).

Slika 7.10: Krive sjaja svedene na fazu za zvezde tipa *BL Herculis* koje su bogate ugljenikom na osnovu podataka iz baze ASAS-3.

V477 Oph. Furijeovi parametri stavljaju V477 Oph (P = 2,016 dana) među zvezde tipa *BL Herculis*, time potvrđujući prethodnu klasifikaciju za ovu zvezdu. Zejda i saradnici navode da je V477 Oph član otvorenog jata *Collinder 359* (Zejda et al., 2012). Ako je V477 Oph zaista član otvorenog jata onda ne može biti zvezda tipa *BL Herculis*, jer je starost jata mnogo manja od starosti zvezda tipa *BL Herculis* ($\approx 30 - 60 \times 10^6$ godina (Bobylev, 2008)).

V553 Cen. Valerštajn i Gonzales (Wallerstein & Gonzalez, 1996) su nakon detaljne spektroskopske analize (Wallerstein & Gonzalez, 1996) utvrdili da je V553 Cen (P = 2,061 dana) cefeida tipa II bogata ugljenikom i azotom (za objavljene metaličnosti merene u drugim člancima vidi tabelu 7.2). U isto vreme V553 Cen je siromašna kiseonikom i ima samo umerenu količinu natrijuma. Valerštajn i Gonzales (Wallerstein & Gonzalez, 1996) su testirali ideju da je V553 Cen u dvojnom sistemu (da bi objasnili ovaj hemijski sastav), ali nisu pronašli nikakav dokaz za to. Čudna odlika koja odvaja V553 Cen od tipičnih cefeida tipa II je da su joj parametri R_{21} i R_{31} bliski nuli, slično onome što smo videli kod druge ugljenikom bogate cefeide tipa II, RT TrA. Slika 7.10 pokazuje fazne krive sjaja RT TrA i V553 Cen, gde se vidi da one imaju veoma sličan oblik.

7.1.3 Neobične zvezde tipa *W Virginis* ili klasične cefeide

Neobične zvezde tipa W Virginis su posebna podklasa zvezda tipa W Virginis, koje su podtip cefeida tipa II sa periodima između 4 i 20 dana. Mnoge neobične zvezde tipa W Virginis iz Velikog Magelanovog oblaka u katalogu OGLE-III su poznate dvojne zvezde. Na relaciji PL mogu preći u domen klasičnih cefeida, jer su uglavnom sjajnije od običnih zvezda tipa W Virginis. U našem uzorku naišli smo na dve ovakve zvezde: UY CrA i IT Cep. Njihove fazne krive sjaja su prikazane na slici 7.11. Do sada nije bila poznata nijedna neobična cefeida tipa W Virginis u Mlečnom putu, tako da su oba ova objekta veoma važna.

UY CrA. Podaci sa svemirskog teleskopa *INTEGRAL OMC* imaju velike greške za ovu zvezdu, ali bez obzira na to uspeli smo izračunati Furijeove parametre, koji

stavljaju UY CrA (P = 6,995 dana) među neobične zvezde tipa W Virginis ili klasične cefeide. Regioni na dijagramima Furijeovih parametara za ova dva tipa sa periodom pulsacije od oko 7 dana se preklapaju, pa zato ne možemo sa sigurnošću da klasifikujemo ovakve zvezde. Oblik krive sjaja više liči na klasičnu cefeidu, ali su za definitivnu klasifikaciju potrebna dodatna merenja veće preciznosti.

IT Cep. Sudeći po Furijeovim parametrima IT Cep (P = 7,349 dana) se može klasifikovati kao neobična zvezda tipa W Virginis, ali kao i u prethodnom slučaju bila bi potrebna dodatna merenja da se potvrdi ova klasifikacija. Amons i saradnici (Ammons et al., 2006) su objavili efektivnu temperaturu, $T_{\rm eff} = 6622$ i 6497 K, i metaličnost, [Fe/H]= 0,16 dex. Efektivna temperatura je viša od zvezda tipa WVirginis sa istim periodom.

Slika 7.11: Krive sjaja svedene na fazu za zvezde za koje se pretpostavlja da su neobične zvezde tipa W Virginis ili klasične cefeide - UY CrA levo strane i IT Cep desno.

7.1.4 Klasične cefeide

Klasične cefeide su zvezde srednjih masa $(4 - 12 \ M_{\odot})$ koje pulsiraju u osnovnoj frekvenciji (F), prvoj (1O) i drugoj nadmodi (2O) sa periodima između 1 i 140 – 160 dana (kao što je to opisano u odeljku 1.1). Klasične cefeide koje su pronađene u uzorku Galaktičkih kratkoperiodičnih cefeida tipa II (na osnovu Furijeovih parametara i oblika kriva sjaja) su navedene u tabeli 7.3, gde su date koordinate položaja (RA i DEC za eq=J2000 iz baze podataka *Simbad*), srednja vrednost V magnitude,

Tabela 7.3: Identifikovane klasične cefeide u uzorku zvezda tipa *BL Herculis* u Mlečnom putu iz Opšteg kataloga promenljivih zvezda. Prva kolona je ime zvezde, dok su druga i treća kolona (RA i DEC) koordinate položaja zvezde na nebu. $\langle V \rangle$ u koloni 4 je srednja magnituda zvezde tokom perioda pulsacije i *P* u koloni 5 je period pulsacije, računati iz posmatranih podataka. Do sada publikovane efektivne temperature ($T_{\rm eff}$), logaritam površinskog gravitacionog ubrzanja (log *g*) i metaličnost ([Fe/H]) su dati u kolonama 6, 7 i 8, redom, a reference iz kojih su preuzete su u devetoj koloni. Deseta kolona nam daje dodatne informacije o zvezdi.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
FM Del 20:33:44,26 +16:16:17,50 13,957 3,337 Le Borgne & Klotz (2014): BD Cas 00:09:51,39 +61:30:50,55 11,110 3,651 6200 2,50 -0,07 4
FM Der 20:35:44,20 +10:10:17,50 13,557 3,557 Le Borgne & Klotz (2014): DCEP BD Cas 00:09:51,39 +61:30:50,55 11,110 3,651 6200 2,50 -0,07 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
6075 4
0070 4
0.07 5
6069 2.40 -0.03 2
6601 - 4.70 - 0.02 - 2
6278 1 72 -0.09 2
0.07 1
$V572 \text{ Ad} = 20.02.32.68 \pm 0.0.42.50.05 \pm 11.207 \pm 3.756 \pm 6250 \pm 1.0 \pm 0.2 \pm 3$
$V_{1} = 1.01 +$
Schmidt et al. (2005):
DCEP
$V_{383} C_{yg} = 20:28:58.15 + 34:08:06.36 = 10.909 = 4.612$
V675 Cen 14:24:50.90 -34:39:45,00 12,411 4,629
Berdnikov et al. (2014) :
DCEP
V394 Cep 22:02:40,91 +59:27:09,04 14,008 5,688
AB Ara 16:42:08,99 -57:18:44,80 13,355 5,958 ASAS, VSX, Fernie (1968),
Berdnikov et al. (2015):
DCEP
TX Del $20:50:12,69 + 03:39:08,36 9,158 6,166 6217 1,8 0,24 4$
0,24 5
5738 1,32 0,23 2
5485 1,06 0,11 2
0,24 1
5500 $0,5$ $0,1$ 3
5553 - $0,29$ 6
5593 6
5900 1,6 -0,18 7

*Reference: 1: Luo et al. (2016), 2: Schmidt et al. (2011), 3: Maas et al. (2007), 4: Andrievsky et al. (2013), 5: Acharova et al. (2012), 6: Ammons et al. (2006), 7: Galazut dinov & Klochkova (1995).

efektivna temperatura (T_{eff}) , logaritam površinskog gravitacionog ubrzanja $(\log g)$ i metaličnost ([Fe/H]) iz literature.

Zvezde koje su navedene u sledećim pasusima su imale dugu istoriju posmatranja i njihova klasifikacija se često menjala. Ovaj istorijat je prikazan da bi pružio dodatnu verifikaciju naše klasifikacije ovih zvezda.

V351 Cep. Zvezda V351 Cep (P = 2,807 dana) je član galaktičkog otvorenog jata [KPR2005] 1120 (Zejda et al., 2012), čija starost je procenjena na 0,012×10⁹ godina. Galazutdinov i Kločkova (Galazutdinov & Klochkova, 1995) su iz spektroskopske analize, i iz prethodne fotometrijske analize Arelano Feroa (Arellano Ferro, 1984), došli do rezultata da V351 Cep nije klasična cefeida, ali da nije ni cefeida tipa II, tako da su zaključili da je V351 Cep najverovatnije anomalna cefeida. Međutim, u radu Ačarove i saradnika (Acharova et al., 2012) date su izračunate vrednosti mase, starosti i metaličnosti, redom: 5,1 M_{\odot} , 82 × 10⁶ godina i 0,02 dex. Ova masa je prevelika da bi zvezda bila anomalna cefeida. Balog i saradnici (Balog et al., 1997) su pretpostavili da je V351 Cep s-cefeida (to su klasične cefeide koje imaju amplitude ispod 0,5 mag i pulsiraju u prvoj nadmodi), jer ima krivu sjaja male amplitude i poluprečnik od oko 50 do 60 R_{\odot} .

Podaci u V filteru za našu Furijeovu analizu prikupljeni su iz rada Hendena (Henden, 1980) (19 podataka) i Sabadoša (Szabados, 1977) (32 podataka). Klasifikacija za ovu zvezdu nije jasna. Na osnovu Furijeovih parametara V351 Cep može biti zvezde tipa *BL Herculis* ili klasična cefeida, ali ako su svi ostali gore navedeni podaci tačni, onda V351 Cep ne može biti zvezde tipa *BL Herculis*. Pitanje prave prirode V351 Cep još uvek je otvoreno.

DQ And. Sabadoš (Szabados, 1977) je analizirao krivu sjaja zvezde DQ And (P = 3, 201 dana) u V filteru i na osnovu prisustva ispupčenja na silaznoj grani i pozicije zvezde u Galaksiji, na visokoj Galaktičkoj latitudi, zaključio da DQ And ne može biti klasična cefeida. U članku Šmita i saradnika (Schmidt et al., 2005) objavljena je nova kriva sjaja u V filteru, ali na njoj se ne vidi ispupčenje na silaznoj grani, tako da zaključak iz rada Sabadoša (Szabados, 1977) ne stoji. U radu Jurković (Jurkovic et al., 2016) smo pokazali da je u poslednjih 12×10^9 godina DQ And imala eliptičnu orbitu ispod Galaktičke ravni (vidi poglavlje 8 za detalje). U ovom trenutku je vidimo kao zvezdu haloa, ali to za DQ And ne znači da se radi o starom objektu. Koristeći poluprečnik izračunat u radu Baloga i saradnika (Balog et al., 1997) od $R = 35 \pm 6R_{\odot}$ i stavljajući ga na relaciju *PR* na slici 4.9 u poglavlju 4 (Groenewegen & Jurkovic, 2017a) vidimo da je locirana visoko iznad relacije za zvezde tipa *BL*

Herculis. Furijeovi parametri, koji su bili izračunati na osnovu podataka iz rada Šmita i saradnika (Schmidt et al., 2005), pokazuju da je DQ And klasična cefeida.

BD Cas. Andrijevski i saradnici (Andrievsky et al., 2013) su na osnovu spektra procenili efektivnu temperaturu zvezde BD Cas (P = 3,651 dana) na $T_{\text{eff}} = 6200$ i 6075 K. Ačarova i saradnici (Acharova et al., 2012) su izmerili sledeće zastupljenosti elemenata iz spektroskopskih merenja: [O/H] = -0,09 i [Fe/H] = -0,07 [dex], a iz modeliranja su izračunali da je starost BD Cas $4,9 \times 10^6$ godina, dok je masa 4,9 M_{\odot} . Osim toga, Šmit i saradnici (Schmidt et al., 2005) su zaključili, nakon detaljnog razmatranja, da je BD Cas zvezda koja pulsira u nadmodi. U našoj analizi podataka sa svemirskog teleskopa *INTEGRAL OMC* videli smo da se Furijeovi parametri BD Cas poklapaju sa klasičnim cefeidama.

TX Del. Mi predlažemo da se TX Del (P = 6, 166 dana) klasifikuje kao klasična cefeida, ali ne možemo u potpunosti isključiti mogućnost da je TX Del ipak cefeida tipa II, koja ima interesantne karakteristike zbog prisustva pratioca (TX Del je poznati dvojni sistem). Leni i Štobi (Laney & Stobie, 1995), Balog i Vinko (Balog & Vinko, 1995) i Balog i saradnici (Balog et al., 1997) su zaključili iz Bade-Veselinkove analize da je poluprečnik previše velik da TX Del bude cefeida tipa II, ali činjenica da se TX Del nalazi u dvojnom sistemu može uticati na rezultat analize. Galazutdinov i Kločkova (Galazutdinov & Klochkova, 1995) su predstavili obimnu spektroskopsku analizu i zaključili da TX Del pokazuje znake tipične za klasične cefeide, ali prisustvo druge komponente i interakcija između dve zvezde može uticati na detektovani hemijski sastav. Automatizovana klasifikacija promenljivih zvezda iz kataloga svemirskog teleskopa *Hipparcos*, koju su sproveli Dubat i saradnici (Dubath et al., 2011) je TX Del dodelila tip "DCEP" tj. klasična cefeida. Ačarova i saradnici (Acharova et al., 2012) su procenili masu od $M = 6, 4M_{\odot}$ i starost od 60×10^6 godina, što znači da TX Del ne može biti cefeida tipa II. Mas i saradnici (Maas et al., 2007) su izmerili da je TX Del ima hemijski sastav tipičan za klasičnu cefeidu koja pulsira u prvoj nadmodi, i da se iz hemijskog sastava, takođe, vidi da je sistem prošao kroz razmenu mase tokom svoje evolucije, ali ipak na kraju ostaju kod zaključka da je TX Del cefeida tipa II.

7.2 Nepulsirajuće zvezde

Tokom pregleda 59 zvezda koje su bile klasifikovane u Opštem katalogu promenljivih zvezda kao cefeide tipa II našli smo 7 zvezda koje uopšte nisu pulsirajuće zvezde. Ovde navodimo korektnu klasu, ukoliko je to moguće, ili razlog zbog čega tvrdimo da data zvezda ne pulsira.

NY Her. NY Her (P = 0,076 dana) je patuljasta nova podtipa *SU Ursae Majoris* opisana kao takva po prvi put u radu Katoa i saradnika (Kato et al., 2013). Mi smo potvrdili njihove rezultate koristeći podatke iz baze podataka AAVSO (slika 7.12 (a)).

V4110 Sgr. Slika 7.12 (b) prikazuje našu analizu podataka iz kataloga OGLE za I filtar za zvezdu V4110 Sgr (P = 1, 125 dana). Našli smo period od P = 1, 1254 dana. Kriva sjaja ima skok u amplitudi, koji je bio privremen i amplituda se vratila na prethodni nivo tokom posmatranja. Kod pulsirajućih zvezda navedenog perioda se ne očekuje ovakvo ponašanje (tačnije, ovako nešto još nije viđeno u posmatranjima, niti predviđeno teorijom). Objašnjenje za ovaj skok se verovatno može tražiti u posmatračkim greškama, ali to bi zahtevalo detaljniju analizu. U ovom momentu nismo sigurni šta se vidi na ovoj krivi sjaja. V4110 Sgr je označena u katalogu OGLE kao zvezda u gusto naseljenom polju, tako da se može desiti da je neka susedna zvezda doživela nagli porast magnitude, a da je taj efekat bio pripisan V4110 Sgr. Zvezda koja je bliski sused V4110 Sgr se u OGLE-II katalogu označava kao OGLEII DIA BUL-SC01 V3246 (RA: 270,757455, DEC: -29,766070, srednja magnitude u I filteru je $15,899 \pm 0.047$ mag) i poznata je kao promenljiva zvezda tipa BY Draconis (rotirajuća zvezda sa pegama, koja ima aktivnu hromosferu). Blanko (Blanco, 1984) je posmatrao V4110 Sgr od 1977. do 1981. godine i primetio je promenu u periodu promenljivosti. Godine 1977. period je bio P = 1, 1247, godine 1979. P = 1, 1345, a 1980. godine P = 1,108 dana.

CT Sge. Za CT Sge ($P_{\text{GCVS}} = 1,7179 \text{ dana}$) postoje podaci u V filteru u katalogu ASAS-3, ali period koji je dat u Opštem katalogu promenljivih zvezda, P = 1,7179
dana, kao ni period iz Furijeove analize ne daju faznu krivu sjaja.

DI And. DI And ($P_{\text{GCVS}} = 3,3856$ dana) je prvo bila klasifikovana u GCVS kao "IS" zvezda, što se promenilo na "CWB:" posle objavljivanja članka Kruslova (Khruslov, 2005). Navedeni autor je napomenuo da "izgled silazne grane nije tipičan" za zvezde tipa *BL Herculis*. Katalog SuperWASP sadrži dugačak set podataka za ovaj objekat (slika 7.12 (c)). Na osnovu oblika krive sjaja možemo reći da nam nije poznata nijedna cefeida tipa II, niti klasična cefeida sa ovim periodom, koja bi imala sličnu krivu sjaja. Iz rada Morisona i saradnika (Morrison et al., 2001) znamo da se ne radi o dvojnom sistemu. Moguće objašnjenje ovakve krive sjaja je da se radi o rotirajućoj zvezdi sa pegama, koja ima aktivnu hromosferu.

UW For. UW For ($P_{ASAS} = 4,2779$ dana) je eklipsno dvojni sistem, kao što je to opisano u katalogu ASAS. Fazna kriva sjaja prikazana na slici 7.12 (d), jasno pokazuje dva pomračenja. Ne isključujemo mogućnost da bi nakon što se iz podataka uklone orbitalne promene bilo moguće detektovati još neku dodatnu promenljivost.

KT Com. KT Com ($P_{ASAS} = 8,1405$ dana) je u katalogu ASAS navedena kao poluodvojeni ili odvojeni tesno dvojni sistem. Koristeći ovu klasifikaciju Ščigiel i saradnici (Szczygieł et al., 2008) su izračunali bolometrijsku luminoznost L = 33,418ergs/s i rendgensku luminoznost $L_X = 29,765$ ergs/s, pri udaljenosti d = 39,1256pc. Soubiran i saradnici (Soubiran et al., 2016) daju efektivnu temperaturu za ovaj objekat $T_{\text{eff}} = 5924$ K. U Međunarodnom indeksu promenljivih zvezda se tvrdi da se radi o dvojnom sistemu tipa *RS Canum Venaticorum* sa periodom od P = 4,07dana, ali u referenci koja je navedena (Kiraga, 2012) se tvrdi da je ovo rotirajuća promenljiva zvezda. Naš zaključak je da KT Com nije zvezda tipa *BL Herculis*, već da se najverovatnije radi o dvojnom sistemu.

V403 Cyg. Koh (Koch, 1974) navodi da je V403 Cyg tesno dvojni sistem, ali ne daje krivu sjaja koja bi potkrepila ovu tvrdnju. U GCVS se pozivaju na članak Suzukija i Huruhate (Suzuki & Huruhata, 1938) gde je V403 Cyg klasifikovana kao zvezde tipa *BL Herculis*, ali ni tu nema dostupnih podataka. U radu Koglina i

saradnika (Coughlin et al., 2014) govori se o V403 Cyg kao o dvojnom sistemu, ali opet nisu dati nikakvi podaci. Katalog SuperWASP ima veliki broj posmatranja za ovu zvezdu, ali ona ne pokazuju nikakve znake dvojnosti ili pulsacije. Podaci ne mogu da se svedu na faze sa periodom datim u GCVS, $P_{GCVS} = 0,80477$ dana. Ovo je previše mali period da bi zvezda bila tipa *BL Herculis*, ali je u domenu anomalnih cefeida. U radu Hansona i saradnika (Hanson et al., 2004) V403 Cyg je klasifikovana kao zvezda tipa *RR Lyrae*. Mi nismo uspeli ustanoviti o kakvoj promenljivoj se radi. Dalja posmatranja bi bila vrlo poželjna.

7.3 Diskusija o metaličnosti

Sakupljeni spektroskopski podaci iz literature, $T_{\rm eff}$, log g, [Fe/H], potvrđuju rezultate iz rada Dithelma (Diethelm, 1990). Dithelm (Diethelm, 1990) je dao procene metaličnosti iz fotometrijskih merenja za poznate kratkoperiodične cefeide tipa II i primetio da među 45 ispitanih zvezda, 30 ima [Fe/H]_{VBLU} > -0, 3 dex, a 8 ima [Fe/H]_{VBLU} < -1, 0 dex. Nakon upoređivanja ovih 8 zvezda sa uzorkom anomalnih cefeida koje smo klasifikovali pomoću ranije opisane metode, našli smo poklapanje za 7 zvezda. Metaličnosti koje su navedene u tabelama 7.1 i 7.2 su direktno merene iz spektara. U slučaju anomalnih cefeida imamo merenja za samo njih 4, ali sve imaju nisku metaličnost. Srednja vrednost metaličnosti iz svih 8 merenja je za 4 zvezde <[Fe/H]>= -1, 12 dex, ali ako izostavimo merenja Šmita i saradnika (Schmidt et al., 2011) za UY Eri, onda srednja metaličnost postaje <[Fe/H]>= -1, 88 dex. Metaličnosti iz rada Šmita i saradnika (Schmidt et al., 2011) se značajno razlikuju od metaličnosti koju su dali Soubiran i saradnici (Soubiran et al., 2016) i Mas i saradnici (Maas et al., 2007), tako da je bilo opravdano pogledati kako se menja srednja metaličnost ako se ova merenja izostave.

Iako je broj merenja mali, ipak zaključujemo da je niska metaličnost jedna od glavnih odlika ovih zvezda. Ovo je već bilo poznato za anomalne cefeide koje su bile posmatrane u patuljastim sferoidnim i patuljastim nepravilnim galaksijama (na primer, *Sculptor, Sextans, Leo II, Ursa Minor, Draco, Fornax, Leo I*) i za mali broj anomalnih cefeida u globularnim jatima, kao što je BL Boo u NGC 5466. Me-

Slika 7.12: Zvezde u uzorku koje nisu pulsirajuće zvezde.

POGLAVLJE 7. ANOMALNE CEFEIDE I DRUGI TIPOVI ZVEZDA U UZORKU GALAKTIČKIH KRATKOPERIODIČNIH CEFEIDA TIPA II

taličnost anomalnih cefeida u Velikom Magelanovom oblaku se diskutuje u radu Fiorentino i Monelija (Fiorentino & Monelli, 2012). Bono i saradnici (Bono et al., 1997b) i Fiorentino i Moneli (Fiorentino & Monelli, 2012) su, kao i drugi, koristili malopre navedena posmatranja individualnih anomalnih cefeida u patuljastim sferoidnim i patuljastim nepravilnim galaksijama i Velikom Magelanovom oblaku za uspostavljanje graničnih vrednosti za modele, i dali su i teorijsku potvrdu da su anomalne cefeide zvezde niske metaličnosti sa srednjim masama od 1,2 do 1,5 M_{\odot} .

Za zvezde tipa *BL Herculis* se, sa druge strane, ispostavilo da imaju metaličnosti bliske Suncu $\langle [Fe/H] \rangle = 0,00$ dex (u proseku). Ovaj rezulat smo dobili usrednjavanjem 21 merene spektroskopske metaličnosti za 10 zvezda. Zvezde tipa *BL Herculis* nisu zvezde niske metaličnosti, iako je se radi o starim objektima (po starosti pripadaju populaciji II).

Da bismo mogli videti kako se ovi rezultati odražavaju na HRD izračunali smo luminoznosti za zvezde tipa BL Herculis u Mlečnom putu koristeći relaciju PLiz rada Gronevegena i Jurković (Groenewegen & Jurkovic, 2017a). Bolometrijske magnitude smo računali po formuli $M_{\rm bol} = 0, 12 - 1, 78 \times \log P$, a zatim smo ih pretvorili u luminoznosti. Temperature T_{eff} su date u tabeli 7.2, gde su sve vrednosti dobijene iz spektroskopije. U slučajevima kada je jedna zvezda imala više merenja za $T_{\rm eff}$ koristili smo srednju vrednost. U tabeli su takođe navedeni pulsacioni periodi u danima, dobijeni iz Furijeove analize. Broj zvezde tipa *BL Herculis* je ograničen na 10, jer su samo one imale pogodne podatke, koji su predstavljeni u tabeli 7.4. Ove zvezde su prikazane na slici 7.13 sa izračunatim L i $T_{\rm eff}$ i modelima za horizontalnu granu (HG) preuzetim iz baze podataka evolucionih modela BaSTI. Modeli su bili računati za metaličnost Sunca, [M/H] = 0,058 dex, da bi se slagali sa našim nalazima, kao i za prethodno pretpostavljene niske metaličnosti od [M/H] = -1,488 dex. Mase modela su bile $M = 0,500,0,520,0,530,0,550 M_{\odot}$. Ove mase su u saglasnosti sa procenama srednjih masa za zvezde tipa *BL Herculis* iz radova Bonoa i saradnika (Bono et al., 1997a) od oko $0,52-0,53 M_{\odot}$ i Gronevegena i Jurković (Groenewegen & Jurkovic, 2017b) od 0,49 M_{\odot} . Sve zvezde padaju u oblast modela sa metaličnošću Sunca, između linija modela od $M = 0,500 M_{\odot}$ i $M = 0,520 M_{\odot}$. Model niske metaličnosti mase $M = 0,550 M_{\odot}$ je veoma blizu modelu Sunčeve metaličnosti mase

POGLAVLJE 7. ANOMALNE CEFEIDE I DRUGI TIPOVI ZVEZDA U UZORKU GALAKTIČKIH KRATKOPERIODIČNIH CEFEIDA TIPA II

Tabela 7.4: Izračunate luminoznosti za zvezde tipa *BL Herculis* iz Mlečnog puta. Tabela sadrži srednju vrednost efektivne temperature $\langle T_{\rm eff} \rangle$ dobijenu iz spektroskopskih merenja iz tabele 7.2, pulsacioni period promenljive zvezde (*P*), bolometrijsku magnitudu računatu pomoću $M_{bol} = 0, 12 - 1, 78 \times \log P$ (Groenewegen & Jurkovic, 2017a) i izračunate luminoznosti (*L*).

Ime	$< T_{\rm eff} > ({\rm K})$	$\log < T_{\rm eff} > ({\rm K})$	P (dana)	$\log P$ (dana)	$M_{bol} \ (mag)$	$L(L_{\odot})$	$\log L/L_{\odot}$
BX Del	6250	3,796	1,092	0,038	0,052	75,03	1,87
VY Pyx	5750	3,760	1,240	0,093	-0,046	82, 13	1,91
$V527 \ Sgr$	5816	3,765	1,255	0,099	-0,056	82,84	1,92
KZ Cen	6141	3,788	1,520	0,182	-0,204	94, 94	1,98
SW Tau	6772,5	3,831	1,584	0,200	-0,236	97,77	1,99
V439 Oph	5547	3,744	1,893	0,277	-0,373	111,00	2,05
V1287 Sco	5428	3,735	2,036	0,309	-0,430	116, 91	2,08
V553 Cen	5629,7	3,750	2,061	0,314	-0,440	117,93	2,07
RT TrA	6092,8	3,785	1,946	0,289	-0,395	113, 21	2,05
BL Her	6364,7	3,804	1,307	0,116	-0,087	85,27	1,931

 $M = 0,500 M_{\odot}$. Nezavisno izmerene spektroskopske metaličnosti i novije procene masa (Bono et al., 1997a; Groenewegen & Jurkovic, 2017b) učvršćuju naš rezultat da zvezde tipa *BL Herculis* imaju metaličnosti bliske Suncu.

Slika 7.13: Zvezde tipa *BL Herculis* iz Mlečnog puta sa modelima za zvezde niske metaličnosti i zvezde sa metaličnostima bliskim Sunčevoj. Modeli su iz baze podataka BaSTI (Pietrinferni et al., 2004b). Crni popunjeni krugovi predstavljaju zvezde tipa *BL Herculis* čiji su podaci dati u tabeli 7.4. U slučaju modela sa niskom metaličnošću ([M/H] = -1, 488) različite mase su prikazane sledećim bojama i simbolima: crveni plusevi: $M = 0,500M_{\odot}$, zeleni krstići: $M = 0,520M_{\odot}$, plave zvezdice: $M = 0,530M_{\odot}$ i roza kvadrati sa tačkom: $M = 0,550M_{\odot}$. Za modele sa metaličnošću bliskoj Sunčevoj ([M/H] = -0,058) mase su prikazane sledećim bojama i simbolima: jarko plavi kvadrati: $M = 0,500M_{\odot}$, žuti krugovi sa tačkom: $M = 0,520M_{\odot}$, sivi popunjeni trouglovi: $M = 0,530M_{\odot}$, narandžasti trouglovi sa tačkom: $M = 0,550M_{\odot}$.

Poglavlje 8

Pripadnost sedam cefeida tipa II Galaktičkim podsistemima

Proučili smo kinematičke osobine sedam kratkoperiodičnih cefeida tipa II iz Mlečnog puta (BL Her, SW Tau, V553 Cen, DQ And, BD Cas, V383 Cyg i KT Com) da bismo utvrdili njihovu pripadnost Galaktičkim podsistemima. Svemirski teleskop *Gaia* će nam u budućnosti dati nove podatke koji su potrebni da bi se ovakvo istraživanje sprovelo na većem broju zvezda.

Primenom kinematičkog pristupa, koji smo opisali u odeljku 3.5, rekonstruisali smo kretanje pojedinačnih zvezda u Galaksiji, koje može da nam da odgovor na pitanje porekla cefeida tipa II koje imaju metaličnosti bliske Sunčevoj. Ispitana lista cefeida tipa II je preuzeta iz Opšteg kataloga promenljivih zvezda, ali kao što smo naglasili u poglavlju 7, tu listu je potrebno obnoviti. Ipak, zvezde u Opštem katalogu promenljivih zvezda su relativno sjajni objekti što nam daje veću šansu da nađemo sve podatke koji su potrebni za analizu (daljinu iz paralakse, sopstveno kretanje i radijalnu brzinu).

Zvezde koje su imale sve potrebne podatke su prikazane u tabeli 8.1. Slike 8.1 i 8.2 prikazuju poprečni presek putanje svake zvezde za period od 12×10^9 godina dobijene kao rezultat modelovanja. Sve zvezde na slici 8.1 su članovi tankog diska. DQ And (slika 8.2) je zvezda koja pripada halou Galaksije, ali sa srednjom metaličnošću od [Fe/H] = -0,17 (Schmidt et al., 2011). Možemo pretpostaviti da daljine do zvezda u ovom uzorku nisu precizne (greška merenja paralaksi sa svemirskim teleskopom *Hipparcos* je često velika koliko i sama vrednost paralakse), pa se ovde prikazani rezultati mogu promeniti sa novim merenjima svemirskog teleskopa *Gaia*.

Name	$\begin{array}{l} {\rm RA} \ ({\rm J2000}) \\ {\rm [h:\ m:\ s]} \end{array}$	$\begin{array}{c} {\rm Dec}\;({\rm J2000})\\[^\circ:':'']\end{array}$	${f Sopstveno}\ [mas/yr]$	${ m kretanje} \ [{ m mas}/{ m yr}]$	Radijalna brzina $[{ m km/s}]$	Paralaksa [mas]
BL Her	18:01:09,22	+19:14:56,68	-2,94	-12,94	18,0	1,27
SW Tau	04:24:32,97	+04:07:24,05	4,05	$-11,\!17$	10,9	2,8
V553 Cen	14:46:33,63	-32:10:15,25	5,01	-0,71	-6,00	1,84
DQ And	00:59:34,47	+45:24:24,22	5,16	1,92	-230,91	0,67
BD Cas	00:09:51,39	$+61:\!30:\!50,\!54$	-1,1	-0,9	-49,30	2,13
V383 Cyg	20:28:58,15	+34:08:06,36	-1,99	$-2,\!64$	-24,4	4,44
KT Com	$13:\!33:\!50,\!22$	$+17:\!25:\!30,\!37$	-15,93	-24,76	-13,0	5,50

Tabela 8.1: Zvezde za koje smo odredili pripadnost Galaktičkim podsistemima.

Beleška: Svi podaci su sakupljeni iz baze *Simbad* i iz referenci iz članka u kojima su objavljeni podaci prikupljeni svemirskim teleskopom *Hipparcos* (van Leeuwen, 2007).

Slika 8.1: Orbite zvezda predstavljene u meridijanskoj ravni za: BL Her, SW Tau, V553 Cen, BD Cas, V383 Cyg i KT Com, poređane po rastućim periodima. R je rastojanje od Galaktičke ose rotacije, a z je rastojanje od Galaktičke ravni.

Tumreov dijagram na slici 8.3 prikazuje raspodelu analiziranih zvezda u računatoj oblasti brzina. Linije pokazuju aprkosimativne granice između podsistema u Galaksiji: u samoj sredini je centralni oval, zatim sledi region tankog diska, onda debelog diska i na kraju region haloa.

Prema kinematičkim osobinama, BL Her, SW Tau, V553 Cen, BD Cas, V383 Cyg i KT Com bi mogle biti zvezde tankog diska, ali nakon ispitivanja krivih sjaja

Slika 8.2: Orbita zvezde DQ And predstavljena u meridijanskoj ravni. R i z su definisani isto kao na slici 8.1.

pojedinih zvezda ispostavilo se da neke od njih možda nisu cefeide tipa II. To znači da ne možemo dati pouzdan zaključak o pripadnosti galaktičkim podsistemima ovog malog uzorka cefeida tipa II.

DQ And je jedina zvezda za koju vidimo dokaz da pripada halou Mlečnog puta, ali asimetrija njene izračunate putanje je vrlo specifična. Ako uzmemo u obzir da je Mlečni put u toku svog postojanja prošao kroz više galaktičkih sudara sa susedima, onda asimetrija može da se objasni pretpostavkom da je ova zvezda bila gravitaciono uhvaćena u Mlečni put ili je bila deo naše Galaksije, samo joj se putanja perturbovala tokom sudara.

Slika 8.3: Tumreov dijagram za sve zvezde iz uzorka.

Poglavlje 9

Zaključak

Cilj ove doktorske disertacije je određivanje fizičkih parametara cefeida tipa II. Do ostvarenja cilja se došlo na jedinstven način, koji do sada niko ranije nije sproveo. U kolaboraciji sa dr Martinom Gronevegenom, ekspertom za modeliranje SER za zvezde na asimptotskoj grani džinova i posle asimptotske grane džinova, primenjen je taj poznati metod na cefeide tipa II. Između ostalog, izračunati su fizički parametri i za anomlane cefeide. Na ovaj način smo mogli direktno uporediti rezultate sa teorijskim modelima.

U članku Gronevegen i Jurković (Groenewegen & Jurkovic, 2017b) objavili smo luminoznosti i efektivne temperature za 335 cefeida tipa II i anomalnih cefeida iz Velikog Magelanovog oblaka i Malog Magelanovog oblaka, na osnovu modeliranja SER. Videli smo da zvezde tipa *BL Herculis*, anomalne cefeide i većina zvezda tipa *W Virginis* nemaju detektovani infracrveni višak. Ovaj višak ima samo oko 10% od ukupnog broja neobičnih zvezda tipa *W Virginis*. U slučaju zvezda tipa *RV Tauri*, njih oko 60% ima infracrveni višak. Ovo su iznenađujući rezultati s obzirom da bi cefeide tipa II trebalo da gube masu prilikom prelaska preko trake nestabilnosti na HRD. Oblik SER u infracrvenom delu spektra nam daje uvid u strukturu raspodele prašine i vidimo da se ona uglavnom raspoređuje u obliku diska.

Uporedili smo poziciju naših objekata na HRD sa evolucionim modelima. Parametri zvezda tipa *BL Herculis* su u dobroj saglasnosti sa modelima zvezda od oko $0.5 - 0.6 M_{\odot}$ koje napuštaju horizontalnu granu nulte starosti. Evolucija anomalnih cefeida se može objasniti modelima od oko 1,1 do 2,3 M_{\odot} . Evolucioni status zvezda tipa W Virginis nije sasvim jasan. Ovi rezultati su otvorili novo pitanje vezano za razumevanju pulsacionog mehanizma odgovornog za promenljivost zvezda tipa W Virginis.

Nakon što smo dobili luminoznosti i efektivne temperature, odlučili smo da izračunamo mase i poluprečnike zvezda u uzorku, koristeći prethodno objavljene rezultate pulsacionih modela za klasične cefeide i zvezde tipa RR Lyrae (nemamo modele za cefeide tipa II, niti za anomalne cefeide). Srednja masa zvezda tipa BLHerculis je oko 0,5 M_{\odot} , dok je za anomalne cefeide oko 1,3 M_{\odot} . Ove vrednosti su u saglasnosti sa literaturom. U slučaju zvezde tipa RV Tauri procenjene mase su ili previsoke (oko 1 M_{\odot}) ili preniske (oko 0,5 M_{\odot}), ukazujući na problem procene mase. Navedeni rezultati su objavljeni u članku Gronevegena i Jurković (Groenewegen & Jurkovic, 2017a). Uz pomoć dobijenih podataka konstruisali smo, prema našim saznanjima po prvi put, relaciju period-bolometrijska magnituda (relaciju PM_{bol}) i relaciju period-poluprečnik (relaciju PR) za cefeide tipa II i anomalne cefeide, koje su takođe objavljene u članku Gronevegena i Jurković (Groenewegen & Jurkovic, 2017a).

Tokom proučavanja uzorka cefeida tipa II u Magelanovim oblacima, otkrili smo da zvezde tipa *W Virginis* sa periodima oko 12 dana (od 7 do 20 dana) prolaze kroz značajnu i brzu promenu koju smo nazvali "pojava menjanja oblika" (promene su se desile tokom 6,5 godina dok je trajao projekat OGLE-III). Ovaj fenomen, kao i njegovo poreklo, je za sad nepoznat. Zvezde koje pokazuju "menjanje oblika" su: OGLE-LMC-T2CEP-026, OGLE-LMC-T2CEP-034, OGLE-LMC-T2CEP-044, OGLE-LMC-T2CEP-072, OGLE-LMC-T2CEP-100, OGLE-LMC-T2CEP-127 i OGLE-SMC-T2CEP-14, OGLE-SMC-T2CEP-32, OGLE-SMC-T2CEP-34.

Dok su se ovi članci bavili objektima u Velikom Magelanovom oblaku i Malom Magelanovom oblaku, bilo je bitno istražiti i šta se dešava sa cefeidama tipa II u Mlečnom putu. Koncentrisali smo se na kratkoperiodične cefeide tipa II, zvezde tipa BL Herculis, nabrojane u Opštem katalogu promenljivih zvezda. Dok smo analizirali krive sjaja kratkoperiodičnih cefeida tipa II videli smo da neke od njih zapravo nisu cefeide tipa II. Da bismo ovo potvrdili, izračunali smo Furijeove parametare u V filteru za 59 zvezda iz Mlečnog puta, kao i za zvezde tipa BL Herculis i anomalne cefeide iz Velikog Magelanovog oblaka u katalogu OGLE-III. Pregledani su svi objavljeni članci za svaku zvezdu, kao i baze podataka, radi pribavljanja podataka. U uzorku iz Mlečnog puta smo našli 19 anomalnih cefeida koje pulsiraju u osnovnoj frekvenciji (FY Vir, V563 Cen, V716 Oph, BF Ser, BI Tel, VX Cap, XX Vir i V1149 Her, koje su već bile poznate u katalogu CSS, i FY Aqr, PP Tel, DF Hyi, BQ CrA, BH Cet, V2733 Oph, CE Her, MQ Aql, V745 Oph, UY Eri, UX Nor, koje su dodate na listu anomalnih cefeida u Mlečnom putu), jednu anomalnu cefeidu koja pulsira u prvoj nadmodi (V742 Cyg), 26 zvezda tipa *BL Herculis*, za 2 zvezde nova klasifikacija nije jasna, jer mogu biti neobične zvezde tipa *W Virginis* ili klasične cefeide, 11 klasičnih cefeida i 7 drugih tipova promenljivih zvezda. Najinteresantniji rezultat ovog istraživanja je to što se nakon reklasifikacije zvezda ispostavilo da zvezde tipa *BL Herculis* imaju metaličnost sličnu Sunčevoj, dok smo za anomalne cefeide potvrdili prethodno poznatu činjenicu, da imaju nisku metaličnost.

Pre nego što su se pojavili dugo očekivani rezultati posmatranja svemirskim teleskopom *Gaia* ispitivali smo da li je moguće odrediti pripadnost cefeida tipa II Galaktičkim podsistemima kinematičkom metodom. Ispostavilo se da je samo jako mali broj zvezda imao sve potrebne podatke dobijene svemirskim teleskopom *Hipparcos*. Zvezde BL Her, SW Tau, V553 Cen, BD Cas, V383 Cyg, i KT Com su najverovatnije članovi tankog diska Galaksije. Zvezda DQ And je jedina zvezda koja pokazuje znake pripadnosti halou Mlečnog puta, s tim što je asimetrija njene putanje vrlo specifična. Ovo istraživanje je rađeno 2016. godine i kasnije se ispostavilo da nisu sve zvezde u uzorku cefeide tipa II (Jurkovic, 2018), tako da bi ove zaključke trebalo preispitati u budućem radu, kada budu dostupni bolji podaci.

U doba kada podatke dobijamo sa svemirskih teleskopa, precizna fotometrijska merenja su obuhvatila i cefeide tipa II i anomalne cefeide omogućavajući da razumemo dinamiku njihove pulsacije i da detektujemo fenomen "udvostručavanja perioda", kao i druge, do sada neobjašnjene promene u krivama sjaja. Plahi i saradnici (uključujući autora ove disertacije) su objavili prvu detekciju "udvostručenog perioda" kod zvezda tipa W Virginis iz podataka sa produžene misije Kepler, K2, (Plachy et al., 2017) i u planu za buduće istraživanje je nastavak rada na novim podacima iz misije K2 (Jurkovic et al., u pripremi). Budući veliki posmatrački projekti, kao što su LSST i svemirske misije, na primer *TESS*, će nam pružiti uvid u do sada neproučene, daleke objekte slabog sjaja, otvarajući mogućnost da pronađemo cefeide tipa II u drugim, susednim galaksijama i bolje razumemo galaktičku evoluciju. Na sličan način, anomalne cefeide mogu da doprinesu razumevanju formiranja populacije zvezda srednje starosti. Potrebno je još mnogo istraživanja ovih zvezda, a njihova važnost će biti sve veća sa budućim merenjima.

Zahvalnice

Volela bih izraziti najdublju zahvalnost dr Martinu Gronevegenu (*dr Martin Groenewegen*) za njegovu pomoć i saradnju. Bez njegove pomoći ova teza ne bi postojala.

Ne postoje reči kojima bih adekvatno mogla opisati koliku neizmernu zahvalnost osećam prema mojim roditeljima, Ilonki i Vinku, čija podrška me nikada nije napustila - naročito kada smo prolazili kroz teške periode.

Volela bih se zahvaliti mojim prijateljima i kolegama koji su mu u svemu pomagali i držali me prizemljenom. To su: dr Milan Stojanović, dr Branislav Vukotić, dr Emese Plachy, dr László Molnár, dr Ana Vudragović i dr Róbert Szabó. Bez podrške Ministarstva prosvete, nauke i tehnološkog razvoja preko projekta 176004 ne bih imala mogućnost da krenem ovim putem istraživačkog rada, tako da moram da se zahvalim rukovidiocima projekta, dr Gojku Đuraševiću i dr Atili Čekiju. Dr Ištvan Vince se, takođe, mora pomenuti, pošto je njegova zasluga da sam na ovom putu.

Svim kolegama, koji ovde nisu poimenice navedeni, a uložili su svoje vreme i napor da bih stigla do kraja svoje teze, želim najiskrenije da izrazim svoju zahvalnost.

Dodatak A

Dodaci

A.1 Bade-Veselinkova metoda

Bade-Veselinkova metoda se može koristiti za određivanje poluprečnika pulsirajućih zvezda, kao i za procenu daljine u slučaju eksplozija supernovih (metod se zasniva na određivanju veličine fotosfere koja se širi nakon eksplozije). Osnovni princip ove metode je bio postavljen od strane Valtera Badea u 1920-im godinama, a kasnije ga je razradio Adrian Veselink.

Pre nego što su Groenevegen i Jurković (Groenewegen & Jurkovic, 2017a) objavili poluprečnike svih cefeida tipa II i anomalnih cefeida u Magelanovim oblacima, bili su poznati jedino poluprečnici na osnovu Bade-Veselink metode za cefeide tipa II. U odeljku 4.3 smo koristili rezultate Baloga i saradnika (Balog et al., 1997). Prateći njihovo izvođenje videćemo kako se ova metoda koristi za određivanje poluprečnika pulsirajućih zvezda.

Fluks, F', koji stiže sa zvezde je:

$$F' = \frac{R^2 F}{D^2} = \frac{R^2 \sigma T_{\text{eff}}^4}{D^2},$$
 (A.1)

gde je F fotometrijski fluks, R poluprečnik zvezde, σ je Štefan-Boltzmanova konstanta (σ =5.6704 × 10⁻⁸Wm⁻²K⁻⁴), T_{eff} je efektivna temperatura, a D je daljina. Magnituda, m, je data jednačinom:

$$m = -2.5 \log(4\pi R^2 F) + C, \tag{A.2}$$

150

Slika A.1: U članku Baloga i saradnika (Balog et al., 1997) (slika 1.) se pomoću ove slike objašnjavaju osnovne pretpostavke, koje su kasnije korišćene u izvođenju formule za Bade-Veselikovu metodu. Φ_1 i Φ_2 su faze pulsacije izabrane tako da su im kolor indeksi isti. U ovim fazama krive sjaja dostižu magnitude m_1 i m_2 (srednji panel). U donjem panelu je prikazana kriva radijalne brzine. Naznačeni prostor ispod krive je integral između faza Φ_1 i Φ_2 .

gde je C konstanta (Balog et al., 1997; Carroll & Ostlie, 2006).

Slika A.1, koja je preuzeta slika 1 iz rada Baloga i saradnika (Balog et al., 1997), prikazuje odabrane faze Φ_1 i Φ_2 , gde je $F_1/F_2 = 1$, jer je tada sjaj zvezde isti. Ako izrazimo poluprečnik u dve različite faze dobijamo:

$$\frac{R_2}{R_1} = \sqrt{\frac{F_1}{F_2}} 10^{0,2(m_1 - m_2)} \tag{A.3}$$

i ako iskoristimo

$$\Delta R = R_2 - R_1 = p \times 0,124 \times P \int_{\Phi_1}^{\Phi_2} (v - v_\gamma) d\Phi,$$
 (A.4)

gde je R dat u Sunčevim poluprečnicima, v je radijalna brzina (u km/s), v_{γ} je sistematska brzina (što znači da reč o srednjoj vrednosti radijalne brzine koju zvezda ima

tokom čitavog perioda pulsacije, vidi sliku A.1), P je pulsacioni period (u danima), a p je projekcioni faktor, možemo da odredimo R_1 i R_2 . Projekcioni faktor se koristi da bismo pretvorili merenu radijalnu brzinu u pulsacionu brzinu zvezde.

Pošto razmatramo momenate kada je $F_1/F_2 = 1$, a $R_2 = R_1 + \Delta R$, onda se iz jednačina A.3 i A.4 dobija:

$$R_1 = \frac{\Delta R}{10^{0,2(m_1 - m_2)} - 1}.$$
(A.5)

Kako je promena poluprečnika sa fazom:

$$\Delta R(\Phi) = p \times 0, 124 \times P \int_{0}^{\Phi} (v - v_{\gamma}) d\Phi.$$
 (A.6)

Kao rezultat integracije možemo da dobijemo promenu poluprečnika tokom čitavog perioda pulsacije $\Delta R(\Phi)$, pa i $R_1 - R_0$, odnosno R_0 . Kada nađemo maksimum i minimum, $\Delta R(\Phi)$, srednji poluprečnik može da se dobije kao artimetička sredina maksimalnog i minimalnog poluprečnika.

A.2 Modelirane SER

Slika A.2 prikazuje fotometrijske podatke i SER za cefeide tipa II (označene na slikama kao T2CEP) i anomalne cefeide (označene kao ACEP) iz Velikog i Malog Magelanovog oblaka u katalogu OGLE-III. Opis podataka je dat u poglavlju 2, odeljak 2.1, a postupak modelovanja je opisan u pogavlju 3, odeljak 3.1.

Slika A.2: Fitovane SER za cefeide tipa II i anomalne cefeide iz Velikog i Malog Magelanovog oblaka iz kataloga OGLE-III.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

Slika A.2: nastavak.

A.3 Luminoznosti i efektivne temperature izračunate iz SER

Tabela A.3 prikazuje procenjene luminoznosti i efektivne temperature za cefeide tipa II i anomalne cefeide iz Velikog i Malog Magelanovog oblaka iz kataloga OGLE-III. Opis podataka dat je u poglavlju 2, a postupak u poglavlju 3.

Tabela A.3: Luminoznosti (L) i efektivne temperature (T_{eff}) koje su pokazale najbolje slaganje između merenih podataka i modela SER. Ime, tip, podtip i period (kolone 1, 2, 3 i 4) su preuzeti iz kataloga OGLE-III. Kolona 5 daje luminoznost, kolona 6 efektivnu temperaturu, kolona 7 optičku dubinu (τ) izračunatu iz najboljeg fita modela SER. Kolona 8 (T_c) je temperatura modela pri unutrašnjoj granici prašine (ako je prisutna) oko zvezde. Kolona 9 označava da li je prašina bila modelirana ili ne: 0 - NE, 1 - DA.

Ime	Tip	Podtip	Period	Luminoznost	$T_{\rm eff}$	au	$T_{\rm c}$	Prašina
			(d)	(L_{\odot})	(K)		(K)	
OGLE-LMC-ANCEP-001	ANCEP	F	0,850	78 ± 3	6125 ± 188	0,000	1000	0
OGLE-LMC-ANCEP-002	ANCEP	F	0,977	119 ± 5	6250 ± 188	0,000	1000	0
OGLE-LMC-ANCEP-003	ANCEP	10	0,382	66 ± 2	6750 ± 250	0,000	1000	0
OGLE-LMC-ANCEP-004	ANCEP	F	1,862	200 ± 17	6000 ± 812	0,000	1000	0
OGLE-LMC-ANCEP-005	ANCEP	F	0,932	92 ± 1	6125 ± 188	0,000	1000	0
OGLE-LMC-ANCEP-006	ANCEP	10	0,850	200 ± 5	6250 ± 188	0,000	1000	0
OGLE-LMC-ANCEP-007	ANCEP	F	0,896	114 ± 4	6375 ± 250	0,000	1000	0
OGLE-LMC-ANCEP-008	ANCEP	10	0,749	168 ± 5	6375 ± 125	0,000	1000	0
OGLE-LMC-ANCEP-009	ANCEP	10	0,800	153 ± 3	6250 ± 125	0,000	1000	0
OGLE-LMC-ANCEP-010	ANCEP	F	0,834	81 ± 3	6250 ± 312	0,000	1000	0
OGLE-LMC-ANCEP-011	ANCEP	F	0,999	118 ± 7	5625 ± 250	0,000	1000	0
OGLE-LMC-ANCEP-012	ANCEP	F	0,829	107 ± 12	5875 ± 1062	0,000	1000	0
OGLE-LMC-ANCEP-013	ANCEP	10	0,501	77 ± 3	6250 ± 500	0,000	1000	0
OGLE-LMC-ANCEP-014	ANCEP	F	2,291	299 ± 7	6125 ± 125	0,000	1000	0
OGLE-LMC-ANCEP-015	ANCEP	10	1,181	218 ± 4	6375 ± 188	0,000	1000	0
OGLE-LMC-ANCEP-016	ANCEP	F	1,546	214 ± 9	6250 ± 188	0,000	1000	0
OGLE-LMC-ANCEP-017	ANCEP	F	0,930	127 ± 3	6250 ± 125	0,000	1000	0
OGLE-LMC-ANCEP-018	ANCEP	F	1,019	124 ± 4	6500 ± 312	0,000	1000	0
OGLE-LMC-ANCEP-019	ANCEP	F	0,909	159 ± 3	6750 ± 188	0,000	1000	0
OGLE-LMC-ANCEP-020	ANCEP	10	0,382	100 ± 4	7375 ± 312	0,000	1000	0

Ime	Tip	Podtip	Period	Luminoznost	Tag	τ	T_{\circ}	Prašina
	±.P	roump	(d)	(L_{\odot})	(K)		(K)	1 Idomia
OGLE-LMC-ANCEP-021	ANCEP	F	1,296	159 ± 7	6125 ± 562	0,000	1000	0
OGLE-LMC-ANCEP-022	ANCEP	F	0,641	96 ± 3	6625 ± 312	0,000	1000	0
OGLE-LMC-ANCEP-023	ANCEP	10	0,723	190 ± 9	6375 ± 188	0,000	1000	0
OGLE-LMC-ANCEP-024	ANCEP	F	0,794	139 ± 3	7500 ± 125	0,000	1000	0
OGLE-LMC-ANCEP-025	ANCEP	10	0,474	100 ± 6	7000 ± 500	0,000	1000	0
OGLE-LMC-ANCEP-026	ANCEP	F	1,739	228 ± 3	5875 ± 125	0,000	1000	0
OGLE-LMC-ANCEP-027	ANCEP	F	1,267	222 ± 10	6500 ± 312	0,000	1000	0
OGLE-LMC-ANCEP-028	ANCEP	10	0,599	111 ± 5	5375 ± 312	0,000	1000	0
OGLE-LMC-ANCEP-029	ANCEP	F	0,802	77 ± 2	6625 ± 250	0,000	1000	0
OGLE-LMC-ANCEP-030	ANCEP	10	0,667	173 ± 6	6500 ± 250	0,000	1000	0
OGLE-LMC-ANCEP-031	ANCEP	10	0,840	167 ± 7	6375 ± 438	0,000	1000	0
OGLE-LMC-ANCEP-032	ANCEP	F	1,316	174 ± 4	6000 ± 125	0,000	1000	0
OGLE-LMC-ANCEP-033	ANCEP	F	2,347	294 ± 5	6000 ± 125	0,000	1000	0
OGLE-LMC-ANCEP-034	ANCEP	F	0,734	96 ± 8	6375 ± 812	0,000	1000	0
OGLE-LMC-ANCEP-035	ANCEP	10	0,446	76 ± 1	6625 ± 125	0,000	1000	0
OGLE-LMC-ANCEP-036	ANCEP	F	1,258	170 ± 3	6000 ± 125	0,000	1000	0
OGLE-LMC-ANCEP-037	ANCEP	F	1,258	258 ± 17	5125 ± 375	0,000	1000	0
OGLE-LMC-ANCEP-038	ANCEP	F	1,335	164 ± 4	6375 ± 188	0,000	1000	0
OGLE-LMC-ANCEP-039	ANCEP	F	0,992	115 ± 1	6375 ± 62	0,000	1000	0
OGLE-LMC-ANCEP-040	ANCEP	F	0,961	136 ± 5	6000 ± 375	0,000	1000	0
OGLE-LMC-ANCEP-041	ANCEP	F	0,878	101 ± 7	6250 ± 688	0,000	1000	0
OGLE-LMC-ANCEP-042	ANCEP	F	1,079	82 ± 3	5000 ± 125	0,000	1000	0
OGLE-LMC-ANCEP-043	ANCEP	10	0,506	85 ± 1	6000 ± 125	0,000	1000	0
OGLE-LMC-ANCEP-044	ANCEP	F	1,309	229 ± 11	6750 ± 312	0,000	1000	0
OGLE-LMC-ANCEP-045	ANCEP	F	$0,\!678$	59 ± 1	6125 ± 250	0,000	1000	0
OGLE-LMC-ANCEP-046	ANCEP	F	1,264	179 ± 11	6375 ± 500	0,000	1000	0
OGLE-LMC-ANCEP-047	ANCEP	F	$2,\!178$	237 ± 8	6375 ± 188	0,000	1000	0
OGLE-LMC-ANCEP-048	ANCEP	F	1,546	230 ± 12	6000 ± 438	0,000	1000	0
OGLE-LMC-ANCEP-049	ANCEP	F	$0,\!645$	89 ± 6	6875 ± 562	0,000	1000	0
OGLE-LMC-ANCEP-050	ANCEP	10	1,045	335 ± 9	6750 ± 125	0,000	1000	0
OGLE-LMC-ANCEP-051	ANCEP	F	0,709	68 ± 1	6125 ± 62	0,000	1000	0
OGLE-LMC-ANCEP-052	ANCEP	F	1,263	191 ± 9	6125 ± 312	0,000	1000	0
OGLE-LMC-ANCEP-053	ANCEP	F	1,888	267 ± 12	5750 ± 375	0,000	1000	0
OGLE-LMC-ANCEP-054	ANCEP	F	0,980	82 ± 2	5375 ± 188	0,000	1000	0
OGLE-LMC-ANCEP-055	ANCEP	F	$1,\!607$	188 ± 10	5875 ± 375	0,000	1000	0
OGLE-LMC-ANCEP-056	ANCEP	F	1,124	144 ± 7	6125 ± 500	0,000	1000	0
OGLE-LMC-ANCEP-057	ANCEP	F	1,710	250 ± 6	6000 ± 188	0,000	1000	0
OGLE-LMC-ANCEP-058	ANCEP	10	0,485	142 ± 9	7875 ± 812	0,000	1000	0
OGLE-LMC-ANCEP-059	ANCEP	F	0,835	42 ± 2	4500 ± 188	0,000	1000	0
OGLE-LMC-ANCEP-060	ANCEP	F	1,276	221 ± 4	6375 ± 250	0,000	1000	0

Tabela A.3: nastavak.

Ime	Tip	Podtip	Period	Luminoznost	$T_{\rm eff}$	au	$T_{\rm c}$	Prašina
	-	-	(d)	(L_{\odot})	(\mathbf{K})		(\mathbf{K})	
OGLE-LMC-ANCEP-061	ANCEP	F	0.848	99 ± 2	6125 ± 188	0.000	1000	0
OGLE-LMC-ANCEP-062	ANCEP	F	1.059	216 ± 14	7000 ± 500	0,000	1000	Ő
OGLE-LMC-ANCEP-063	ANCEP	F	0.893	$\frac{210}{70} \pm 210$	5625 ± 250	0,000	1000	Û
OCLE I MC ANCEP 064	ANCEP	г F	1 357	10 ± 2 203 ± 4	6250 ± 250 6250 ± 250	0,000	1000	0
OGLE-LMC-ANCEL-004	ANCED	r F	1,007	200 ± 4	6500 ± 420	0,000	1000	0
OGLE-LMC-ANCEP-005	ANCEP	r T	1,322	195 ± 10	0500 ± 458	0,000	1000	0
OGLE-LMC-ANCEP-066	ANCEP	F	1,040	124 ± 3	6250 ± 250	0,000	1000	0
OGLE-LMC-ANCEP-067	ANCEP	F,	0,821	101 ± 11	5750 ± 1125	0,000	1000	0
OGLE-LMC-ANCEP-068	ANCEP	F	$0,\!626$	65 ± 5	6875 ± 562	0,000	1000	0
OGLE-LMC-ANCEP-069	ANCEP	\mathbf{F}	1,538	254 ± 7	5875 ± 250	0,000	1000	0
OGLE-LMC-ANCEP-070	ANCEP	10	$0,\!629$	98 ± 3	6500 ± 312	0,000	1000	0
OGLE-LMC-ANCEP-071	ANCEP	10	0,676	171 ± 10	7125 ± 375	0,000	1000	0
OGLE-LMC-ANCEP-072	ANCEP	F	1.048	201 ± 8	6500 ± 375	0.000	1000	0
OGLE-LMC-ANCEP-073	ANCEP	F	1465	255 ± 11	6375 ± 438	0,000	1000	0
OGLE I MC ANCEP 074	ANCEP	F	1 533	200 ± 11 221 ± 4	6250 ± 188	0,000	1000	ů Ú
OCLE IMC ANCER 075	ANCED	г Г	0,600	221 ± 4 99 ± 9	6500 ± 210	0,000	1000	0
OGLE-LMC-ANCEL-075	ANCED	r F	1 5 9 9 2	102 ± 5	60500 ± 012	0,000	1000	0
OGLE-LMC-ANCEP-070	ANCEP	Г	1,002	195 ± 5	0230 ± 312	0,000	1000	0
OGLE-LMC-ANCEP-077	ANCEP	F	1,122	129 ± 5	3875 ± 125	0,000	1000	0
OGLE-LMC-ANCEP-078	ANCEP	10	0,857	236 ± 5	6875 ± 188	0,000	1000	0
OGLE-LMC-ANCEP-079	ANCEP	F	1,155	202 ± 10	6625 ± 250	0,000	1000	0
OGLE-LMC-ANCEP-080	ANCEP	\mathbf{F}	$1,\!057$	143 ± 3	6375 ± 250	0,000	1000	0
OGLE-LMC-ANCEP-081	ANCEP	F	0,801	89 ± 3	6375 ± 188	0,000	1000	0
OGLE-LMC-ANCEP-082	ANCEP	10	0,775	154 ± 3	5625 ± 125	0,000	1000	0
OGLE-LMC-ANCEP-083	ANCEP	10	0.537	116 ± 2	6500 ± 125	0.000	1000	0
OGLE-LMC-T2CEP-001	T2CEP	BLHer	1 814	101 ± 1	6000 ± 62	0,000	1000	0
OGLE I MC T2CEP 001	T2CEP	WVir	18 394	620 ± 20	5250 ± 312	0,000	1000	0
OCLE I MC T2CEP 002	TACED	DVTon	71 410	025 ± 25	6000 ± 312	1 3 8 9	1300	0
OGLE-LMC-T2CEF-003	TACED	DI II	1 0 1 6	4420 ± 191 142 \ 19	6000 ± 438	1,362	1000	0
OGLE-LMC-T2CEP-004	12CEP	BLHer	1,910	143 ± 12	3023 ± 438	0,000	1000	0
OGLE-LMC-T2CEP-005	T2CEP	RV Tau	33,185	1277 ± 136	4875 ± 312	0,000	1000	0
OGLE-LMC-T2CEP-006	T2CEP	BLHer	1,088	84 ± 3	7000 ± 312	0,000	1000	0
OGLE-LMC-T2CEP-007	T2CEP	BLHer	1,243	87 ± 3	6750 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-008	T2CEP	BLHer	1,746	90 ± 2	5875 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-009	T2CEP	BLHer	1,761	104 ± 2	6250 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-010	T2CEP	BLHer	1,503	87 ± 2	6500 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-011	T2CEP	RV Tau	39.257	2893 ± 61	5875 ± 125	0.045	906	1
OGLE-LMC-T2CEP-012	T2CEP	WVir	11 581	419 ± 13	5250 ± 250	0,000	1000	0
OGLE I MC T2CEP 013	T2CEP	WVir	11,001 11.545	388 ± 8	5250 ± 125 5250 ± 125	0,000	1000	ů Ú
OCLE I MC T2CEP 014	TACED	DVTon	11,040 102,704	3300 ± 0	5250 ± 125 5750 ± 125	0,000	1100	0
OGLE-LMC-12CEF-014	TACED	DVT	120,194	2323 ± 32	5750 ± 125	0,078	1200	0
OGLE-LMC-12CEP-015	12CEP	RV Tau	113,080	2910 ± 53	5000 ± 125	0,201	1200	0
OGLE-LMC-T2CEP-016	T2CEP	RV Tau	20,296	1025 ± 54	6750 ± 312	0,122	600	0
OGLE-LMC-T2CEP-017	T2CEP	W V Ir	14,455	476 ± 19	4875 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-018	T2CEP	BLHer	1,380	88 ± 1	6375 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-019	T2CEP	pWVir	8,675	436 ± 35	5000 ± 750	0,000	1000	0
OGLE-LMC-T2CEP-020	T2CEP	BLHer	1,108	93 ± 4	6500 ± 312	0,000	1000	0
OGLE-LMC-T2CEP-021	T2CEP	pWVir	9,760	552 ± 14	5750 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-022	T2CEP	WVir	10,717	383 ± 8	5250 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-023	T2CEP	pWVir	5.235	837 ± 26	6250 ± 250	0.000	1000	0
OGLE-LMC-T2CEP-024	T2CEP	BLHer	1247	75 ± 3	6500 ± 375	0,000	1000	0
OGLE-LMC-T2CEP-025	T2CEP	BUTau	135,837	2911 + 179	4875 ± 312	0,000	1000	Û
OCLE IMC T2CED 020	TOCED	WWin	12 579	2511 ± 119 442 ± 10	4010 ± 012 5000 ± 125	0,000	1000	0
OGLE-LMC-T2CEI-020	TACED	W VII WW:	17 194	440 ± 10	5000 ± 125	0,000	1000	0
OGLE-LMC-12UEP-027	TROPP	VV V If	11,134	019 ± 20	3300 ± 373	0,000	1000	U
OGLE-LMC-T2CEP-028	TZCEP	pwvr	8,785	833 ± 36	0375 ± 375	0,000	1000	0
OGLE-LMC-T2CEP-029	T2CEP	RV Tau	$62,\!595$	2851 ± 79	5750 ± 188	1,347	746	1
OGLE-LMC-T2CEP-030	T2CEP	BLHer	3,935	202 ± 5	5750 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-031	T2CEP	WVir	6,706	253 ± 4	5375 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-032	T2CEP	RVTau	89,073	3821 ± 590	4625 ± 1000	1,763	800	0
OGLE-LMC-T2CEP-033	T2CEP	pWVir	9,395	605 ± 14	5875 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-034	T2CEP	WVir	14.911	411 ± 14	4750 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-035	T2CEP	WVir	9,866	384 ± 16	5000 ± 250	0,000	1000	0

Tabela A.3: nastavak.

Tabela A.3: nastavak.

Ime	Tip	Podtip	Period	Luminoznost	$T_{\rm eff}$	au	$T_{\rm c}$	Prašina
	-	-	(d)	(L_{\odot})	(K)		(\mathbf{K})	
OGLE-LMC-T2CEP-036	T2CEP	WVir	14.881	501 ± 17	5625 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-037	T2CEP	WVir	6.897	266 ± 4	5625 ± 125	0.000	1000	0
OGLE-LMC-T2CEP-038	T2CEP	WVir	4.014	537 ± 28	7250 ± 375	0.000	1000	0
OGLE-LMC-T2CEP-039	T2CEP	WVir	8.716	367 ± 13	5625 ± 250	0.000	1000	Ő
OGLE-LMC-T2CEP-040	T2CEP	nWVir	9 626	639 ± 31	5000 ± 375	0,000	1000	0
OGLE-LMC-T2CEP-041	T2CEP	BLHer	2,020 2,476	$\frac{000 \pm 01}{290 \pm 16}$	7250 ± 562	0,000	1000	0
OGLE-LMC-T2CEP-042	T2CEP	pWVir	4 923	$\frac{250}{384} \pm \frac{10}{23}$	6750 ± 562	0,000	1000	0
OGLE LMC T2CEP 042	T2CEP	WVir	6 550	211 ± 5	5375 ± 188	0,000	1000	0
OGLE LMC T2CEP 044	T2CEP	WVir	13.970	430 ± 0	5070 ± 100 5250 ± 188	0,000	1000	0
OGLE LMC T2CEP 044	T2CEP	RVTau	63 386	3470 ± 130	5125 ± 125	0,000	1000	0
OGLE LMC T2CEP 046	T2CEP	WVir	14.744	870 ± 21	5120 ± 120 5250 ± 125	0,000	800	1
OGLE LMC T2CEP 040	T2CEP	WVir	7 986	285 ± 7	5500 ± 250 5500 ± 250	0,110	1000	0
OGLE IMC T2CEP 048	T2CEP	RI Hor	1 445	200 ± 7 02 ± 8	6375 ± 812	0,000	1000	0
OCLE IMC T2CEP 040	TOCED	BL Hor	2 9 2 5	$\frac{32 \pm 0}{231 \pm 10}$	6375 ± 812 6375 ± 812	0,000	1000	0
OCLE IMC T2CEP 050	TOCED	DLIICI BV Tau	60 501	231 ± 13 1427 ± 34	5875 ± 012	0,000 0.117	1200	0
OCLE IMC T2CEP 051	TACED	DV Tau	40 606	1427 ± 34 1850 ± 40	5570 ± 120 5500 ± 188	0,117	1000	0
OGLE-LMC-T2CEF-051	T2CEF T2CEP	nv tau pWVir	40,000	1630 ± 49 448 ± 20	5500 ± 100 7000 ± 500	0,000	1000	0
OGLE-LMC-T2CEF-052	TACED	DILLon	4,000	440 ± 29	6605 ± 100	0,000	1000	0
OGLE-LMC-I2CEP-055	TACEP	DL ner	1,045	01 ± 4	0020 ± 100	0,000	1000	0
OGLE-LMC-T2CEP-054	TACEP	W V II DVTen	9,920	338 ± 4	3123 ± 02	0,000	1000	0
OGLE-LMC-IZCEP-055	TACEP	NV Tau	01,990	2040 ± 11	5750 ± 100	0,080	1000	0
OGLE-LMC-T2CEP-050	TACEP	W V If	1,290	240 ± 3	0120 ± 02	0,000	1000	0
OGLE-LMC-I2CEP-057	TACEP	W VII DV/T	10,032	309 ± 19	5125 ± 512	0,000	1000	0
OGLE-LMC-T2CEP-058	TZCEP	RV Tau	42,904	715 ± 24	5125 ± 312	0,000	1000	0
OGLE-LMC-T2CEP-059	T2CEP	W V Ir	10,730	720 ± 26	5125 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-060	T2CEP	BLHer	1,237	73 ± 4	6250 ± 688	0,000	1000	0
OGLE-LMC-T2CEP-061	T2CEP	BLHer	1,182	82 ± 5	7125 ± 562	0,000	1000	0
OGLE-LMC-T2CEP-062	T2CEP	W V Ir	6,047	190 ± 19	4750 ± 438	0,000	1000	0
OGLE-LMC-T2CEP-063	T2CEP	W V Ir	6,925	278 ± 8	5625 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-064	T2CEP	BLHer	2,128	121 ± 8	6125 ± 750	0,000	1000	0
OGLE-LMC-T2CEP-065	T2CEP	RV Tau	70,109	1563 ± 20	5375 ± 125	0,100	120	0
OGLE-LMC-T2CEP-066	T2CEP	WVir	13,109	412 ± 6	5125 ± 62	0,000	500	0
OGLE-LMC-T2CEP-067	T2CEP	RV Tau	96,431	6429 ± 305	6125 ± 500	1,743	1200	0
OGLE-LMC-T2CEP-068	T2CEP	BLHer	$1,\!609$	106 ± 2	6500 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-069	T2CEP	BLHer	1,021	93 ± 14	6625 ± 1062	0,000	1000	0
OGLE-LMC-T2CEP-070	T2CEP	WVir	$15,\!438$	675 ± 36	5875 ± 312	0,000	1000	0
OGLE-LMC-T2CEP-071	T2CEP	BLHer	1,152	76 ± 9	6375 ± 875	0,000	1000	0
OGLE-LMC-T2CEP-072	T2CEP	WVir	14,514	534 ± 11	5375 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-073	T2CEP	BLHer	3,088	169 ± 5	5875 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-074	T2CEP	WVir	8,988	456 ± 9	5625 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-075	T2CEP	RVTau	100,343	1868 ± 68	5125 ± 125	0,087	646	1
OGLE-LMC-T2CEP-076	T2CEP	BLHer	2,104	89 ± 3	5500 ± 312	0,000	1000	0
OGLE-LMC-T2CEP-077	T2CEP	BLHer	1,214	132 ± 5	7500 ± 375	0,000	1000	0
OGLE-LMC-T2CEP-078	T2CEP	pWVir	6,716	404 ± 14	4875 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-079	T2CEP	WVir	$14,\!845$	344 ± 19	4875 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-080	T2CEP	RVTau	$81,\!843$	2395 ± 104	5625 ± 250	0,113	331	1
OGLE-LMC-T2CEP-081	T2CEP	WVir	9,480	369 ± 7	5375 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-082	T2CEP	RV Tau	70,251	$1127~\pm~75$	5125 ± 312	0,000	1000	0
OGLE-LMC-T2CEP-083	T2CEP	pWVir	5,968	284 ± 6	5625 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-084	T2CEP	BLHer	1,771	260 ± 40	7750 ± 1562	0,000	1000	0
OGLE-LMC-T2CEP-085	T2CEP	BLHer	3,405	177 ± 6	6250 ± 375	0,000	1000	0
OGLE-LMC-T2CEP-086	T2CEP	WVir	15,845	665 ± 15	5500 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-087	T2CEP	WVir	5.185	213 ± 9	5500 ± 438	0,000	1000	0
OGLE-LMC-T2CEP-088	T2CEP	BLHer	1.951	223 ± 11	8000 ± 375	0,000	1000	0
OGLE-LMC-T2CEP-089	T2CEP	BLHer	1.167	88 ± 2	6750 ± 188	0.000	1000	Ō
OGLE-LMC-T2CEP-090	T2CEP	BLHer	1,479	96 ± 2	6250 ± 250	0,000	1000	0

Tabela A.3: nastavak.

Ime	Tip	Podtip	Period	Luminoznost	$T_{\rm eff}$	au	$T_{\rm c}$	Prašina
			(d)	(L_{\odot})	(\mathbf{K})		(K)	
OGLE-LMC-T2CEP-091	T2CEP	RVTau	71,477	3880 ± 319	6625 ± 625	1,259	1100	0
OGLE-LMC-T2CEP-092	T2CEP	BLHer	$2,\!617$	133 ± 7	6000 ± 625	0,000	1000	0
OGLE-LMC-T2CEP-093	T2CEP	WVir	17,593	1211 ± 46	5875 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-094	T2CEP	WVir	8,468	285 ± 8	5000 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-095	T2CEP	WVir	5,000	187 ± 3	5375 ± 62	0,000	1000	0
OGLE-LMC-T2CEP-096	T2CEP	WVir	13,926	498 ± 15	5375 ± 312	0,000	1000	0
OGLE-LMC-T2CEP-097	T2CEP	WVir	10,510	423 ± 10	5500 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-098	T2CEP	pWVir	4,974	2857 ± 169	7375 ± 312	0,000	1000	0
OGLE-LMC-T2CEP-099	T2CEP	WVir	15,487	516 ± 17	4625 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-100	T2CEP	WVir	7,431	265 ± 5	5875 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-101	T2CEP	WVir	11,419	499 ± 17	5875 ± 375	0,000	1000	0
OGLE-LMC-T2CEP-102	T2CEP	BLHer	1,266	115 ± 5	6875 ± 438	0,000	1000	0
OGLE-LMC-T2CEP-103	T2CEP	WVir	12,908	454 ± 12	5375 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-104	T2CEP	RVTau	24,880	1889 ± 54	5500 ± 438	1,168	1100	0
OGLE-LMC-T2CEP-105	T2CEP	BLHer	1,489	117 ± 6	6500 ± 625	0,000	1000	0
OGLE-LMC-T2CEP-106	T2CEP	WVir	6,707	272 ± 6	5500 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-107	T2CEP	BLHer	1,209	105 ± 5	5875 ± 562	0,000	1000	0
OGLE-LMC-T2CEP-108	T2CEP	RV Tau	30,011	1654 ± 37	5750 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-109	T2CEP	BLHer	1,415	18 ± 1	4125 ± 112	0,000	1000	0
OGLE-LMC-T2CEP-110	T2CEP	WVir	7,078	242 ± 7	5250 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-111	T2CEP	WVir	7,496	289 ± 5	5500 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-112	T2CEP	RV Tau	78,766	3186 ± 137	6000 ± 188	0,091	1200	0
OGLE-LMC-T2CEP-113	T2CEP	BLHer	3,085	267 ± 26	6625 ± 688	0,000	1000	0
OGLE-LMC-T2CEP-114	T2CEP	BLHer	1,091	68 ± 1	5250 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-115	T2CEP	RV Tau	49,922	768 ± 29	5000 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-116	T2CEP	BLHer	1,967	79 ± 3	5500 ± 312	0,000	1000	0
OGLE-LMC-T2CEP-II7	T2CEP	W V Ir	6,629	258 ± 6	5500 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-I18	T2CEP	W V Ir	12,699	428 ± 12	5125 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-119	T2CEP	RVTau	67,629	3325 ± 290	6250 ± 625	1,440	1200	0
OGLE-LMC-T2CEP-120	T2CEP	WVIr	4,559	185 ± 4	5500 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-121	TZCEP	BLHer	2,001	104 ± 5	5875 ± 502	0,000	1000	0
OGLE-LMC-T2CEP-122	TACEP	BLHer	1,009	03 ± 2	5750 ± 312	0,000	1000	0
OGLE-LMC-T2CEP-123	TACEP	BLHer	1,003 1.725	84 ± 8	5000 ± 438	0,000	1000	0
OGLE-LMC-T2CEP-124	T2CEP	BLHer DVTau	1,130	83 ± 4	0000 ± 438	0,000	1000	0
OGLE-LMC-T2CEP-125	T2CEP	KV Tau WW:»	33,034 16 297	1208 ± 33	3123 ± 230 4750 ± 125	0,000	219	0
OGLE-LMC-T2CEP-120	T2CEP	WV V II WVV in	10,327	407 ± 20	4730 ± 123	0,901	213	1
OCLE IMC T2CEP 127	T2CEF T2CEP	WV II WVVir	12,009	330 ± 02 824 ± 28	5300 ± 300 5125 ± 250	0,303	1000	1
OCLE IMC T2CEP 120	T2CEF T2CEP	DUTon	69 500	0.04 ± 0.00	5125 ± 250 6000 ± 125	0,000	700	0
OCLE IMC T2CEP 120	T2CEF T2CEP	DI Hor	1.045	3132 ± 60 123 ± 9	6275 ± 688	0,091	1000	0
OCLE I MC T2CEP 131	T2CEI T2CEP	BLHer	1,940 1 412	125 ± 3 65 ± 1	6000 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-132	T2CEP	nWVir	10.018	540 ± 17	5625 ± 312	0,000	1000	0
OGLE-LMC-T2CEP-133	T2CEP	WVir	6.282	269 ± 7	5750 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-134	T2CEP	pWVir	4.076	406 ± 8	6125 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-135	T2CEP	BVTau	26522	1047 ± 24	5000 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-136	T2CEP	BLHer	1.323	163 ± 21	5625 ± 1188	0.000	1000	Ő
OGLE-LMC-T2CEP-137	T2CEP	WVir	6.362	265 + 9	5625 ± 375	0.000	1000	Ő
OGLE-LMC-T2CEP-138	T2CEP	BLHer	1.394	79 ± 12	5375 ± 1312	0.000	1000	Ő
OGLE-LMC-T2CEP-139	T2CEP	WVir	14.780	484 ± 13	5000 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-140	T2CEP	BLHer	1.841	103 ± 3	6000 ± 312	0.000	1000	0
OGLE-LMC-T2CEP-141	T2CEP	BLHer	1.823	73 ± 3	5875 ± 438	0,000	1000	0
OGLE-LMC-T2CEP-142	T2CEP	BLHer	1.761	108 ± 2	5500 ± 62	0.000	1000	0
OGLE-LMC-T2CEP-143	T2CEP	WVir	14.570	548 ± 18	5750 ± 312	0.000	1000	0
OGLE-LMC-T2CEP-144	T2CEP	BLHer	1,937	103 ± 26	5375 ± 1312	0,000	1000	0
OGLE-LMC-T2CEP-145	T2CEP	BLHer	3,337	267 ± 21	6500 ± 688	0,000	1000	0
OGLE-LMC-T2CEP-146	T2CEP	WVir	10,080	298 ± 11	5000 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-147	T2CEP	RVTau	93,305	7160 ± 259	6375 ± 312	1,528	621	1
OGLE-LMC-T2CEP-148	T2CEP	BLHer	$2,\!672$	135 ± 4	6250 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-149	T2CEP	RVTau	42,481	2741 ± 117	5750 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-150	T2CEP	WVir	5,493	496 ± 9	6500 ± 125	0,152	1100	0

Tabela A.3: nastavak.

Ime	Tip	Podtip	Period	Luminoznost	Toff	τ	T_{c}	Prašina
	1	1	(d)	(L_{\odot})	(K)		(K)	
OGLE-LMC-T2CEP-151	T2CEP	WVir	7.887	311 ± 7	5500 ± 250	0.000	1000	0
OGLE-LMC-T2CEP-152	T2CEP	WVir	9.315	356 ± 12	5250 ± 312	0.000	1000	0
OGLE-LMC-T2CEP-153	T2CEP	BLHer	1,175	465 ± 19	8000 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-154	T2CEP	pWVir	7,578	1071 ± 28	6750 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-155	T2CEP	WVir	6,898	282 ± 13	5000 ± 438	0,000	1000	0
OGLE-LMC-T2CEP-156	T2CEP	WVir	15.387	581 ± 79	4875 ± 188	0.530	151	1
OGLE-LMC-T2CEP-157	T2CEP	WVir	14,335	431 ± 10	5000 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-158	T2CEP	WVir	7.139	270 ± 9	5500 ± 188	0.150	300	0
OGLE-LMC-T2CEP-159	T2CEP	WVir	6,626	221 ± 3	5125 ± 62	0,000	1000	0
OGLE-LMC-T2CEP-160	T2CEP	BLHer	1,757	90 ± 3	5875 ± 375	0,000	1000	0
OGLE-LMC-T2CEP-161	T2CEP	WVir	8,532	548 ± 26	5125 ± 312	0,000	1000	0
OGLE-LMC-T2CEP-162	T2CEP	RVTau	60.711	1109 ± 44	5000 ± 188	0.183	1000	0
OGLE-LMC-T2CEP-163	T2CEP	BLHer	1.694	140 ± 16	6250 ± 875	0.000	1000	0
OGLE-LMC-T2CEP-164	T2CEP	pWVir	8,495	550 ± 14	5500 ± 250	0,483	1300	0
OGLE-LMC-T2CEP-165	T2CEP	BLHer	1.241	35 ± 1	4875 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-166	T2CEP	BLHer	2.111	211 ± 7	5625 ± 312	0.000	1000	0
OGLE-LMC-T2CEP-167	T2CEP	BLHer	2.312	99 ± 4	5375 ± 438	0,000	1000	0
OGLE-LMC-T2CEP-168	T2CEP	WVir	15.698	554 ± 15	5250 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-169	T2CEP	RVTau	61.927	1893 ± 379	6250 ± 625	0.442	477	1
OGLE-LMC-T2CEP-170	T2CEP	WVir	7,683	239 ± 3	5125 ± 62	0,000	1000	0
OGLE-LMC-T2CEP-171	T2CEP	BLHer	1.555	109 ± 6	6375 ± 562	0.000	1000	0
OGLE-LMC-T2CEP-172	T2CEP	WVir	11.221	334 ± 21	4875 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-173	T2CEP	WVir	4.148	55 ± 3	3900 ± 112	0,000	1000	0
OGLE-LMC-T2CEP-174	T2CEP	RVTau	93.629	6549 ± 342	6000 ± 438	1,333	1100	0
OGLE-LMC-T2CEP-175	T2CEP	WVir	9.326	331 ± 6	5250 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-176	T2CEP	WVir	7.990	315 ± 4	5375 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-177	T2CEP	WVir	15.036	440 ± 14	5000 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-178	T2CEP	WVir	12,212	319 ± 11	5000 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-179	T2CEP	WVir	8.050	230 ± 4	5000 ± 62	0.000	1000	0
OGLE-LMC-T2CEP-180	T2CEP	RVTau	62.009	3139 ± 182	5500 ± 500	1.467	700	0
OGLE-LMC-T2CEP-181	T2CEP	pWVir	7,213	427 ± 24	5375 ± 312	0,000	1000	0
OGLE-LMC-T2CEP-182	T2CEP	WVir	8,226	372 ± 9	5250 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-183	T2CEP	WVir	6,510	145 ± 8	4625 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-184	T2CEP	WVir	14.840	309 ± 16	4625 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-185	T2CEP	WVir	12.688	1842 ± 33	4625 ± 62	0.000	1000	0
OGLE-LMC-T2CEP-186	T2CEP	WVir	16.362	519 ± 16	4875 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-187	T2CEP	BLHer	2.404	96 ± 4	5500 ± 375	0.000	1000	0
OGLE-LMC-T2CEP-188	T2CEP	BLHer	1,049	87 ± 4	6125 ± 375	0,000	1000	0
OGLE-LMC-T2CEP-189	T2CEP	BLHer	1,308	79 ± 2	6250 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-190	T2CEP	RVTau	76,766	2450 ± 56	5625 ± 188	0,019	700	0
OGLE-LMC-T2CEP-191	T2CEP	RVTau	68,653	3969 ± 127	5750 ± 250	1,251	700	0
OGLE-LMC-T2CEP-192	T2CEP	RVTau	52,395	916 ± 32	5375 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-193	T2CEP	WVir	7,005	273 ± 4	5250 ± 62	0,000	1000	0
OGLE-LMC-T2CEP-194	T2CEP	BLHer	1,314	101 ± 5	6375 ± 250	0,000	1000	0
OGLE-LMC-T2CEP-195	T2CEP	BLHer	2.753	141 ± 5	5875 ± 312	0.000	1000	0
OGLE-LMC-T2CEP-196	T2CEP	WVir	14,958	668 ± 20	5125 ± 188	0,000	1000	0
OGLE-LMC-T2CEP-197	T2CEP	BLHer	1,224	96 ± 7	6375 ± 438	0,000	1000	0
OGLE-LMC-T2CEP-198	T2CEP	RVTau	76,523	908 ± 32	4500 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-199	T2CEP	RVTau	74,431	7090 ± 338	8600 ± 300	0.024	1000	0
OGLE-LMC-T2CEP-200	T2CEP	RVTau	69,806	1695 ± 114	4875 ± 375	1,158	700	0
OGLE-LMC-T2CEP-201	T2CEP	pWVir	11,007	2172 ± 84	6500 ± 250	0,150	180	0
OGLE-LMC-T2CEP-202	T2CEP	RV Tau	76,261	1028 ± 24	4625 ± 125	0,000	1000	0
OGLE-LMC-T2CEP-203	T2CEP	<u>RV</u> Tau	74,286	887 ± 36	4625 ± 188	$0,\!000$	1000	0

Tabela A.3: nastavak.

Imo	Tin	Podtin	Doriod	Luminognost	T		T	Dročino
Ime	тp	routip		(I)	I_{eff} (K)	7	(\mathbf{K})	1 Iasina
OCLE SMC ANCEP 001	ANCEP	10	0.621	$\frac{(L_{\odot})}{118 \pm 3}$	$\frac{(11)}{7250 \pm 188}$	0.000	1000	0
OGLE-SMC-ANCEP-001	ANCEP	F	0,021 0.828	110 ± 3 78 + 1	6125 ± 62	0,000	1000	0
OGLE-SMC-ANCEP-002	ANCEP	10	0,520	10 ± 1 103 ± 3	7125 ± 250 7125 + 250	0,000	1000	0
OGLE SMC ANCEP 004	ANCEP	F	0,570	100 ± 3 100 ± 1	6375 ± 125	0,000	1000	0
OGLE SMC ANCEP 005	ANCEP	10	0,000 0.521	100 ± 1 00 ± 2	7000 ± 125	0,000	1000	0
OGLE-SMC-ANCEP-006	ANCEP	F	1,021	167 ± 10	6875 ± 250	0,000	1000	0
OGLE-SMC-T2CEP-001	T2CEP	nWVir	11 869	101 ± 10 2570 ± 102	6250 ± 125	0,000	1000	0
OGLE-SMC-T2CEP-002	T2CEP	BLHer	13,005 1 372	109 ± 4	6750 ± 312	0,000	1000	0
OGLE-SMC-T2CEP-002	T2CEP	WVir	4 360	103 ± 4 173 ± 7	5875 ± 312	0,000	1000	0
OGLE-SMC-T2CEP-004	T2CEP	WVir	6 533	200 ± 14	5375 ± 375	0,000	1000	0
OGLE-SMC-T2CEP-004	T2CEP	WVir	8 206	$\frac{200 \pm 14}{282 \pm 3}$	5375 ± 62	0,000	1000	0
OGLE-SMC-T2CEP-006	T2CEP	BLHer	1,200	$\frac{202 \pm 0}{80 \pm 1}$	6375 ± 62	0,000	1000	0
OGLE-SMC-T2CEP-007	T2CEP	RVTau	30.961	7560 ± 1970	6125 ± 750	0,000	1000	0
OGLE-SMC-T2CEP-008	T2CEP	RLHer	1 /00	1000 ± 1010 117 ± 2	5875 ± 125	0,000	1000	0
OGLE-SMC-T2CEP-009	T2CEP	BLHer	2,450 2,971	111 ± 2 151 ± 3	5675 ± 125 5625 ± 125	0,000	1000	0
OGLE-SMC-T2CEP-009	T2CEP	nWVir	17.481	4964 + 319	5020 ± 120 6000 ± 312	0,000	1000	0
OGLE-SMC-T2CEP-010	T2CEP	pWVir	9 925	4204 ± 515 3758 ± 136	7250 ± 250	0,000	1000	0
OGLE-SMC-T2CEP-012	T2CEP	BVTau	29,219	1301 ± 41	5375 ± 62	0,020	1000	0 0
OGLE-SMC-T2CEP-012	T2CEP	WVir	13,210	478 ± 13	5375 ± 62	0,000	1000	0 0
OGLE-SMC-T2CEP-014	T2CEP	WVir	13,878	426 ± 8	5375 ± 62	0,000	1000	0 0
OGLE-SMC-T2CEP-015	T2CEP	BLHer	2570	458 ± 21	7500 ± 312	0,000	1000	0 0
OGLE-SMC-T2CEP-016	T2CEP	BLHer	2,010 2 113	100 ± 21 122 ± 3	6000 ± 012	0,000	1000	0 0
OGLE-SMC-T2CEP-017	T2CEP	BLHer	$\frac{2,110}{1,200}$	122 ± 0 115 ± 5	6375 ± 375	0,000	1000	0 0
OGLE-SMC-T2CEP-018	T2CEP	BVTau	39,519	3539 ± 166	5875 ± 375	1 616	1200	0 0
OGLE-SMC-T2CEP-019	T2CEP	RV Tau BVTau	40 912	3481 ± 101	6250 ± 125	0.037	598	1
OGLE-SMC-T2CEP-020	T2CEP	RV Tau BVTau	10,012 101 157	1885 ± 84	5200 ± 120 5375 ± 188	0,000	1000	0
OGLE-SMC-T2CEP-021	T2CEP	BLHer	2313	94 + 1	6000 ± 125	0,000	1000	0
OGLE-SMC-T2CEP-022	T2CEP	BLHer	1,313	61 ± 1 61 ± 2	6000 ± 250	0,000	1000	0
OGLE-SMC-T2CEP-023	T2CEP	pWVir	17, 675	1508 ± 28	5750 ± 125	0,000	1000	0
OGLE-SMC-T2CEP-024	T2CEP	BVTau	43 961	3075 ± 126	6000 ± 120	0.077	700	0
OGLE-SMC-T2CEP-025	T2CEP	pWVir	14,171	941 ± 34	5750 ± 125	0.000	1000	0
OGLE-SMC-T2CEP-026	T2CEP	BLHer	1.705	153 ± 2	6375 ± 125	0.000	1000	Ő
OGLE-SMC-T2CEP-027	T2CEP	BLHer	1.542	81 ± 2	6250 ± 125	0.000	1000	Ő
OGLE-SMC-T2CEP-028	T2CEP	pWVir	15.264	1854 ± 53	5375 ± 62	0.000	1000	Ő
OGLE-SMC-T2CEP-029	T2CEP	RVTau	33.676	6273 ± 157	5375 ± 62	0.000	1000	0
OGLE-SMC-T2CEP-030	T2CEP	BLHer	3.389	418 ± 9	6750 ± 188	0.000	1000	0
OGLE-SMC-T2CEP-031	T2CEP	WVir	7.895	323 ± 21	5375 ± 312	0.000	1000	0
OGLE-SMC-T2CEP-032	T2CEP	WVir	14.247	693 ± 30	5750 ± 188	0.086	600	0
OGLE-SMC-T2CEP-033	T2CEP	BLHer	1.878	198 ± 6	6375 ± 188	0,000	1000	0
OGLE-SMC-T2CEP-034	T2CEP	WVir	20.121	994 ± 39	5375 ± 62	0.000	1000	0
OGLE-SMC-T2CEP-035	T2CEP	WVir	17.181	730 ± 31	5500 ± 312	0.025	1100	0
OGLE-SMC-T2CEP-036	T2CEP	BLHer	1.092	141 ± 2	6500 ± 125	0,000	1000	0
OGLE-SMC-T2CEP-037	T2CEP	BLHer	1,559	127 ± 3	6125 ± 125	0,000	1000	0
OGLE-SMC-T2CEP-038	T2CEP	pWVir	4,444	734 ± 32	6500 ± 250	0,000	1000	0
OGLE-SMC-T2CEP-039	T2CEP	- BLHer	1,888	142 ± 1	5875 ± 62	0,000	1000	0
OGLE-SMC-T2CEP-040	T2CEP	WVir	16,111	662 ± 64	5375 ± 312	0,000	1000	0
OGLE-SMC-T2CEP-041	T2CEP	RVTau	29,118	1393 ± 49	5750 ± 125	0,000	1000	0
OGLE-SMC-T2CEP-042	T2CEP	BLHer	1,487	100 ± 2	6250 ± 62	0,000	1000	0
OGLE-SMC-T2CEP-043	T2CEP	RVTau	47,445	1285 ± 57	5375 ± 125	0,000	1000	0

A.4 Procenjeni poluprečnici i mase za cefeide tipa II i anomalne cefeide u Velikom i Malom Magelanovom oblaku koristeći modele za zvezde tipa *RR Lyrae* i klasične cefeide

Tabela A.4 prikazuje procenjene poluprečnike i mase za cefeide tipa II i anomalne cefeide iz Velikog i Malog Magelanovog oblaka iz kataloga OGLE-III. Opis podataka dat je u poglavlju 2, a postupak u poglavlju 3.

Tabela A.4: Procenjeni poluprečnici (R) i mase (M) za cefeide tipa II i anomalne cefeide iz Velikog i Malog Magelanovog oblaka iz kataloga OGLE-III. Ime, tip i period (kolone 1, 2 i 3) su preuzeti iz kataloga OGLE-III. Procenjeni poluprečnici su dati u koloni 4, mase iz modela za klasične cefeide (Cep) u koloni 5, a mase iz modela za zvezde tipa *RR Lyrae* (RRL) u koloni 6. Kolona 7 daje informaciju o tome da li je kod date zvezde detektovana prašina tj. infra crveni višak: 0 - nema prašine, 1 - ima prašine. Kolona 8 nam govori da li je zvezda u poznatom dvojnom sistemu: 0 - nije, 1 - jeste. Kolona 9 označava u kojoj meri se procene masa iz kolona 5 i 6 slažu jedna sa drugom: OK - slažu se unutar greške od tri standardne devijacije, ok - slažu se unutar 15%.

Ime	Tip	Period	Poluprečnik	Masa _{Cep}	M asa _{RRL}	Prašina?	Dvojni sistem?	Slaganje?
		(d)	(R_{\odot})	(M_{\odot})	(M_{\odot})			
OGLE-LMC-ACEP-001	F	$0,\!85$	$7,86 \pm 0,48$	$0,\!891\pm 0,\!016$	$1,023 \pm 0,029$	0	0	ok
OGLE-LMC-ACEP-002	F	0,98	$9,32 \pm 0,56$	$1,\!127\pm0,\!022$	$1,\!314 \pm 0,\!045$	0	0	ok
OGLE-LMC-ACEP-003	10	0,51	$5,94 \pm 0,43$	$0,\!925\pm 0,\!020$	$1,063 \pm 0,041$	0	0	ok
OGLE-LMC-ACEP-004	F	1,86	$13,\!12 \pm 2,\!99$	$1,\!091 \pm 0,\!202$	$1,202 \pm 0,383$	0	0	OK
OGLE-LMC-ACEP-005	F	$0,\!93$	$8,53 \pm 0,50$	$0,\!960\pm 0,\!017$	$1,106 \pm 0,032$	0	0	ok
OGLE-LMC-ACEP-006	10	$1,\!14$	$12,\!07 \pm 0,\!71$	$1,703 \pm 0,042$	$2,115 \pm 0,110$	0	0	
OGLE-LMC-ACEP-007	F	$0,\!90$	$8,75 \pm 0,66$	$1,096 \pm 0,029$	$1,267 \pm 0,064$	0	0	OK
OGLE-LMC-ACEP-008	10	$1,\!00$	$10,\!64 \pm 0,\!44$	$1,500 \pm 0,020$	$1,820 \pm 0,043$	0	0	
OGLE-LMC-ACEP-009	10	$1,\!07$	$10,\!56 \pm 0,\!42$	$1,\!344 \pm 0,\!016$	$1,\!605 \pm 0,\!032$	0	0	
OGLE-LMC-ACEP-010	F	0,83	$7,\!69 \pm 0,\!73$	$0,\!878 \pm 0,\!029$	$0,993 \pm 0,059$	0	0	OK
OGLE-LMC-ACEP-011	F	$1,\!00$	$11,44 \pm 1,01$	$1,\!667\pm 0,\!085$	$2,253 \pm 0,260$	0	0	OK
OGLE-LMC-ACEP-012	F	0,83	$9,\!99 \pm 2,\!88$	$1,571 \pm 0,619$	$2,083 \pm 1,623$	0	0	OK
OGLE-LMC-ACEP-013	10	0,67	$7,51 \pm 1,08$	$1,\!090\pm 0,\!090$	$1,321 \pm 0,218$	0	0	OK
OGLE-LMC-ACEP-014	F	2,29	$15,\!37 \pm 0,\!63$	$1,233 \pm 0,015$	$1,339 \pm 0,025$	0	0	ok
OGLE-LMC-ACEP-015	10	1,58	$12,\!12 \pm 0,\!69$	$1,\!150\pm 0,\!020$	$1,252 \pm 0,038$	0	0	OK
OGLE-LMC-ACEP-016	F	$1,\!55$	$12,51 \pm 0,76$	$1,261 \pm 0,026$	$1,422 \pm 0,053$	0	0	OK
OGLE-LMC-ACEP-017	F	0,93	$9,\!64 \pm 0,\!39$	$1,298 \pm 0,016$	$1,565 \pm 0,031$	0	0	
OGLE-LMC-ACEP-018	F	1,02	$8,\!80\pm0,\!80$	$0,957 \pm 0,031$	$1,046 \pm 0,061$	0	0	OK
OGLE-LMC-ACEP-019	F	0,91	$9,\!23 \pm 0,\!50$	$1,\!259 \pm 0,\!022$	$1,\!435\pm0,\!045$	0	0	ok
OGLE-LMC-ACEP-020	10	0,51	$6{,}14\pm0{,}50$	$1,\!047 \pm 0,\!031$	$1,\!161\pm0,\!062$	0	0	OK

Tabela A.4: nastavak.

Ime	Tip	Period	Poluprečnik	Masa _{Cep}	Masa _{BBL}	Prašina?	Dvojni sistem?	Slaganje?
	-	(d)	(R_{\odot})	(M_{\odot})	(M_{\odot})		-	
OGLE-LMC-ACEP-021	F	1,30	$11,22 \pm 1,83$	$1,206 \pm 0,136$	$1,396 \pm 0,299$	0	0	OK
OGLE-LMC-ACEP-023	10	0,97	$11,32 \pm 0,69$	$1,811 \pm 0,052$	$2,291 \pm 0,137$	0	0	
OGLE-LMC-ACEP-024	F	0,79	$6,98 \pm 0,24$	$0,825 \pm 0,011$	$0,817 \pm 0,012$	0	0	OK
OGLE-LMC-ACEP-025	10	$0,\!64$	$6,82 \pm 0,90$	$0,991 \pm 0,064$	$1,097 \pm 0,129$	0	0	OK
OGLE-LMC-ACEP-026	F	1,74	$14,\!61 \pm 0,\!61$	$1,509 \pm 0,020$	$1,815 \pm 0,044$	0	0	
OGLE-LMC-ACEP-027	F	1,27	$11,76 \pm 1,09$	$1,\!430\pm 0,\!069$	$1,\!649 \pm 0,\!154$	0	0	OK
OGLE-LMC-ACEP-028	10	$0,\!80$	$12,\!17 \pm 1,\!33$	$2,467 \pm 0,276$	$3,821 \pm 1,117$	0	0	OK
OGLE-LMC-ACEP-029	F	$0,\!80$	$6,\!69 \pm 0,\!48$	$0,\!688 \pm 0,\!014$	$0,715 \pm 0,021$	0	0	OK
OGLE-LMC-ACEP-030	10	0, 89	$10,40 \pm 0,78$	$1,\!662\pm 0,\!063$	$2,060 \pm 0,163$	0	0	OK
OGLE-LMC-ACEP-031	10	1,12	$10,\!61 \pm 1,\!34$	$1,\!293\pm 0,\!099$	$1,502 \pm 0,223$	0	0	OK
OGLE-LMC-ACEP-032	F	1,32	$12,\!24 \pm 0,\!52$	$1,\!432\pm0,\!019$	$1,737 \pm 0,041$	0	0	
OGLE-LMC-ACEP-033	F	2,35	$15,\!90 \pm 0,\!66$	$1,\!278\pm 0,\!016$	$1,414 \pm 0,027$	0	0	ok
OGLE-LMC-ACEP-034	F	0,73	$8,05 \pm 1,75$	$1,\!156\pm 0,\!209$	$1,383 \pm 0,469$	0	0	OK
OGLE-LMC-ACEP-035	10	$0,\!60$	$6,\!64 \pm 0,\!25$	$0,977 \pm 0,012$	$1,\!129 \pm 0,\!017$	0	0	ok
OGLE-LMC-ACEP-036	F	1,26	$12,09 \pm 0,50$	$1,473 \pm 0,019$	$1,807 \pm 0,042$	0	0	
OGLE-LMC-ACEP-037	F	1,26	$20,42 \pm 2,77$	$4,\!582 \pm 1,\!417$	$7,854 \pm 6,898$	0	0	OK
OGLE-LMC-ACEP-038	F	$1,\!34$	$10,51 \pm 0,61$	$1,019 \pm 0,017$	$1,107 \pm 0,031$	0	0	OK
OGLE-LMC-ACEP-039	F	0,99	$8{,}81\pm0{,}18$	$0,\!981 \pm 0,\!010$	$1,095 \pm 0,011$	0	0	ok
OGLE-LMC-ACEP-040	F	0,96	$10,\!81 \pm 1,\!25$	$1,\!589 \pm 0,\!128$	$2,044 \pm 0,356$	0	0	OK
OGLE-LMC-ACEP-041	F	0,88	$8,\!57 \pm 1,\!64$	$1,058 \pm 0,141$	$1,235 \pm 0,306$	0	0	OK
OGLE-LMC-ACEP-042	F	1,08	$12,10 \pm 0,63$	$1,\!613\pm 0,\!032$	$2,329 \pm 0,105$	0	0	
OGLE-LMC-ACEP-043	10	$0,\!68$	$8,53 \pm 0,35$	$1,414 \pm 0,018$	$1,854 \pm 0,044$	0	0	
OGLE-LMC-ACEP-044	F	1,31	$11,09 \pm 0,99$	$1,\!224 \pm 0,\!048$	$1,327 \pm 0,094$	0	0	OK
OGLE-LMC-ACEP-045	F	$0,\!68$	$6,83 \pm 0,53$	$0,851 \pm 0,020$	$0,994 \pm 0,042$	0	0	ok
OGLE-LMC-ACEP-046	F	1,26	$11,00 \pm 1,58$	$1,214 \pm 0,110$	$1,\!374 \pm 0,\!233$	0	0	OK
OGLE-LMC-ACEP-047	F	2,18	$12,\!63 \pm 0,\!74$	$0,\!849 \pm 0,\!014$	$0,838 \pm 0,020$	0	0	OK
OGLE-LMC-ACEP-048	F	$1,\!55$	$14,07 \pm 1,88$	$1,\!622\pm 0,\!173$	$1,978 \pm 0,428$	0	0	OK
OGLE-LMC-ACEP-049	F	0,64	$6,\!67 \pm 0,\!99$	$0,915 \pm 0,068$	$1,008 \pm 0,134$	0	0	OK
OGLE-LMC-ACEP-050	10	1,40	$13,40 \pm 0,51$	$1,750 \pm 0,023$	$2,022 \pm 0,046$	0	0	ok
OGLE-LMC-ACEP-051	F	0,71	$7,32 \pm 0,15$	$0,\!949 \pm 0,\!010$	$1,128 \pm 0,011$	0	0	
OGLE-LMC-ACEP-052	F	1,26	$12,30 \pm 1,20$	$1,\!544 \pm 0,\!088$	$1,885 \pm 0,222$	0	0	OK
OGLE-LMC-ACEP-053	F	$1,\!89$	$16,49 \pm 1,99$	$1,785 \pm 0,174$	$2,231 \pm 0,456$	0	0	OK
OGLE-LMC-ACEP-054	F	0,98	$10,\!45 \pm 0,\!70$	$1,346 \pm 0,035$	$1,804 \pm 0,103$	0	0	
OGLE-LMC-ACEP-055	F	$1,\!61$	$13,\!24 \pm 1,\!58$	$1,\!326\pm0,\!094$	$1,569 \pm 0,220$	0	0	OK
OGLE-LMC-ACEP-056	F	1,12	$10,\!68 \pm 1,\!57$	$1,\!284 \pm 0,\!129$	$1,532 \pm 0,304$	0	0	OK
OGLE-LMC-ACEP-057	F	1,71	$14,\!65 \pm 0,\!89$	$1,\!572\pm0,\!039$	$1,882 \pm 0,094$	0	0	
OGLE-LMC-ACEP-058	10	0,65	$6,40 \pm 1,16$	$0,\!889 \pm 0,\!090$	$0,885 \pm 0,143$	0	0	OK
OGLE-LMC-ACEP-059	F	$0,\!83$	$10,\!67 \pm 0,\!86$	$1,564 \pm 0,064$	$2,490 \pm 0,274$	0	0	
OGLE-LMC-ACEP-060	F	1,28	$12,\!21 \pm 0,\!91$	$1,532 \pm 0,053$	$1,814 \pm 0,127$	0	0	OK

Tabela A.4: nastavak.

Ime	Tip	Period	Poluprečnik	Masa _{Cep}	Masa _{RRL}	Prašina?	Dvojni sistem?	Slaganje?
		(d)	(R_{\odot})	(M_{\odot})	(M_{\odot})			
OGLE-LMC-ACEP-061	F	0,85	$8,84 \pm 0,52$	$1,175 \pm 0,022$	$1,425 \pm 0,052$	0	0	
OGLE-LMC-ACEP-062	F	1,06	$10,02 \pm 1,33$	$1,\!284 \pm 0,\!107$	$1,407 \pm 0,213$	0	0	OK
OGLE-LMC-ACEP-063	F	0,89	$8,86 \pm 0,75$	$1,055 \pm 0,033$	$1,320 \pm 0,085$	0	0	OK
OGLE-LMC-ACEP-064	F	1,36	$12,\!17 \pm 0,\!93$	$1,392 \pm 0,046$	$1,\!627\pm0,\!106$	0	0	OK
OGLE-LMC-ACEP-065	F	1,32	$11,03 \pm 1,38$	$1,169 \pm 0,080$	$1,\!289 \pm 0,\!161$	0	0	OK
OGLE-LMC-ACEP-066	F	1,04	$9,50 \pm 0,72$	$1,089 \pm 0,029$	$1,252 \pm 0,063$	0	0	OK
OGLE-LMC-ACEP-067	F	0,82	$10,16 \pm 3,10$	$1,635 \pm 0,735$	$2,221 \pm 2,000$	0	0	OK
OGLE-LMC-ACEP-068	F	0,63	$5{,}68\pm0{,}85$	$0,\!652\pm0,\!036$	$0,\!674\pm 0,\!061$	0	0	OK
OGLE-LMC-ACEP-069	F	$1,\!54$	$15,40 \pm 1,25$	$1,991 \pm 0,104$	$2,567 \pm 0,295$	0	0	OK
OGLE-LMC-ACEP-070	10	$0,\!84$	$7{,}82\pm0{,}71$	$0{,}918\pm0{,}029$	$1,019 \pm 0,058$	0	0	OK
OGLE-LMC-ACEP-071	10	0,91	$8,59 \pm 0,88$	$1,102 \pm 0,049$	$1,\!180\pm0,\!094$	0	0	OK
OGLE-LMC-ACEP-072	F	1,05	$11,21 \pm 1,21$	$1,\!622 \pm 0,\!117$	$1,961 \pm 0,289$	0	0	OK
OGLE-LMC-ACEP-073	F	1,47	$13,\!12 \pm 1,\!65$	$1,523 \pm 0,137$	$1,770 \pm 0,310$	0	0	OK
OGLE-LMC-ACEP-074	F	1,53	$12{,}69\pm0{,}74$	$1,317 \pm 0,026$	$1,500 \pm 0,055$	0	0	ok
OGLE-LMC-ACEP-075	F	$0,\!69$	$7,40 \pm 0,67$	$1,034 \pm 0,036$	$1,203 \pm 0,080$	0	0	OK
OGLE-LMC-ACEP-076	F	1,58	$11,\!87 \pm 1,\!11$	$1,083 \pm 0,041$	$1,182 \pm 0,082$	0	0	OK
OGLE-LMC-ACEP-077	F	1,12	$10,\!98 \pm 0,\!50$	$1,342 \pm 0,019$	$1,662 \pm 0,043$	0	0	
OGLE-LMC-ACEP-078	10	$1,\!15$	$10,\!84 \pm 0,\!58$	$1,\!383 \pm 0,\!025$	$1,542 \pm 0,050$	0	0	OK
OGLE-LMC-ACEP-079	F	1,16	$10,\!80 \pm 0,\!82$	$1,\!330 \pm 0,\!042$	$1,509 \pm 0,089$	0	0	OK
OGLE-LMC-ACEP-080	F	1,06	$9{,}83\pm0{,}74$	$1,169 \pm 0,032$	$1,342 \pm 0,070$	0	0	OK
OGLE-LMC-ACEP-081	F	0,80	$7,75 \pm 0,45$	$0,949 \pm 0,016$	$1{,}081 \pm 0{,}030$	0	0	ok
OGLE-LMC-ACEP-082	10	$1,\!04$	$13,\!07 \pm 0,\!58$	$2,166 \pm 0,041$	$3,070 \pm 0,137$	0	0	
OGLE-LMC-T2CEP-001	BLHer	1,81	$9,31\pm0,20$	$0,507 \pm 0,010$	$0,\!481\pm0,\!010$	0	0	OK
OGLE-LMC-T2CEP-002	WVir	18,32	$30,\!37 \pm 3,\!39$	$0,411 \pm 0,013$	$0,310 \pm 0,013$	0	0	
OGLE-LMC-T2CEP-003	RVTau	$35,\!66$	$60,\!28 \pm 8,\!03$	$0,953 \pm 0,060$	$0,714 \pm 0,056$	1	0	OK
OGLE-LMC-T2CEP-004	BLHer	1,92	$12,\!62 \pm 1,\!84$	$0,928 \pm 0,066$	$1,032 \pm 0,134$	0	0	OK
OGLE-LMC-T2CEP-005	RVTau	$33,\!19$	$50,18 \pm 6,41$	$0,\!605\pm 0,\!024$	$0,483 \pm 0,025$	0	0	
OGLE-LMC-T2CEP-006	BLHer	1,09	$6{,}26\pm0{,}54$	$0,414 \pm 0,011$	$0,\!361\pm0,\!012$	0	0	ok
OGLE-LMC-T2CEP-007	BLHer	$1,\!24$	$6{,}82\pm0{,}49$	$0,421 \pm 0,011$	$0,\!372\pm0,\!011$	0	0	ok
OGLE-LMC-T2CEP-008	BLHer	1,75	$9,19 \pm 0,39$	$0,509 \pm 0,010$	$0,493 \pm 0,011$	0	0	OK
OGLE-LMC-T2CEP-009	BLHer	1,76	$8,71 \pm 0,35$	$0,460 \pm 0,010$	$0,418 \pm 0,010$	0	0	OK
OGLE-LMC-T2CEP-010	BLHer	1,50	$7,\!35 \pm 0,\!54$	$0,\!386\pm0,\!011$	$0,336 \pm 0,011$	0	0	ok
OGLE-LMC-T2CEP-011	RVTau	$39,\!26$	$52,01 \pm 2,21$	$0,\!592\pm0,\!010$	$0,405 \pm 0,010$	1	0	
OGLE-LMC-T2CEP-012	WVir	$11,\!58$	$24,\!80 \pm 2,\!23$	$0,\!454 \pm 0,\!012$	$0,\!370\pm0,\!012$	0	0	
OGLE-LMC-T2CEP-013	WVir	$11,\!54$	$23,\!84 \pm 1,\!12$	$0,416 \pm 0,010$	$0,333 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-014	RVTau	$61,\!88$	$48,\!67 \pm 2,\!12$	$0,\!283 \pm 0,\!010$	$0,161 \pm 0,010$	1	0	
OGLE-LMC-T2CEP-015	RVTau	$56,\!52$	$72,\!01 \pm 3,\!53$	$0,732 \pm 0,011$	$0,559 \pm 0,011$	1	0	
OGLE-LMC-T2CEP-016	RVTau	$20,\!30$	$23,\!45 \pm 2,\!12$	$0,\!228\pm0,\!010$	$0,\!127\pm0,\!010$	1	0	
OGLE-LMC-T2CEP-017	WVir	$14,\!45$	$30,\!64 \pm 2,\!31$	$0,541 \pm 0,012$	$0,467 \pm 0,013$	0	0	
OGLE-LMC-T2CEP-018	BLHer	1,38	$7,70 \pm 0,30$	$0,474 \pm 0,010$	$0,440 \pm 0,010$	0	0	OK
OGLE-LMC-T2CEP-019	pWVir	8,67	$27,\!86 \pm 6,\!88$	$0,833 \pm 0,135$	$0,819 \pm 0,201$	0	0	OK
OGLE-LMC-T2CEP-020	BLHer	1,11	$7,\!60 \pm 0,\!70$	$0,\!611\pm 0,\!016$	$0,605 \pm 0,023$	0	0	OK
OGLE-LMC-T2CEP-021	pWVir	9,76	$23,72 \pm 1,04$	$0,534 \pm 0,010$	$0,430 \pm 0,010$	0	1	
OGLE-LMC-T2CEP-022	WVir	10,72	$23,70 \pm 1,62$	$0,450 \pm 0,011$	$0,369 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-023	pWVir	5,23	$24,72 \pm 1,90$	$1,343 \pm 0,044$	$1,323 \pm 0,072$	0	1	OK
OGLE-LMC-T2CEP-024	BLHer	1,25	$6,85 \pm 0,74$	$0,413 \pm 0,012$	$0,373 \pm 0,014$	0	0	OK
OGLE-LMC-T2CEP-025	RVTau	$67,\!97$	$75,77 \pm 9,15$	$0,\!645 \pm 0,\!025$	$0,478 \pm 0,023$	0	0	
OGLE-LMC-T2CEP-026	WVir	$13,\!58$	$28,09 \pm 1,39$	$0,485 \pm 0,010$	$0,406 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-027	WVir	$17,\!13$	$27,46 \pm 3,44$	$0,362 \pm 0,013$	$0,260 \pm 0,012$	0	0	
OGLE-LMC-T2CEP-028	pWVir	8,78	$23,71 \pm 2,61$	$0,\!645 \pm 0,\!022$	$0,508 \pm 0,022$	0	0	
OGLE-LMC-T2CEP-029	RVTau	31,25	$53,\!89 \pm 3,\!43$	$0,845 \pm 0,015$	$0,648 \pm 0,016$	1	0	
OGLE-LMC-T2CEP-030	BLHer	3,94	$14,\!34 \pm 0,\!63$	$0,514 \pm 0,010$	$0,459 \pm 0,010$	0	0	ok
OGLE-LMC-T2CEP-031	WVir	6,71	$18{,}38\pm0{,}84$	$0,\!454 \pm 0,\!010$	$0,388 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-032	RVTau	$44,\!56$	$96,44 \pm 32,06$	$1,865 \pm 1,092$	$1,863 \pm 1,571$	1	0	OK
OGLE-LMC-T2CEP-033	pWVir	9,39	$23,79 \pm 1,92$	$0,\!571 \pm 0,\!013$	$0,\!461\pm0,\!014$	0	0	
OGLE-LMC-T2CEP-034	WVir	$14,\!91$	$29,\!99 \pm 1,\!60$	$0,\!488\pm0,\!010$	$0,\!419\pm0,\!011$	0	0	
OGLE-LMC-T2CEP-035	WVir	9,87	$26,15 \pm 2,49$	$0,\!612\pm0,\!017$	$0,557 \pm 0,021$	0	0	OK

Tabela A.4: nastavak.

Ime	Tip	Period	Poluprečnik	Masacan	Masappi	Prašina?	Dvoini sistem?	Slaganie?
		(d)	(R_{\odot})	(M_{\odot})	(M_{\odot})		j	
OGLE-LMC-T2CEP-036	WVir	14,88	$23,60 \pm 1,55$	$0,308 \pm 0,010$	$0,214 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-037	WVir	6,90	$17,\!20 \pm 0,\!75$	$0,385 \pm 0,010$	$0,308 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-038	WVir	4,01	$14,72 \pm 1,46$	$0,607 \pm 0,017$	$0,476 \pm 0,018$	0	0	
OGLE-LMC-T2CEP-039	WVir	8,72	$20,20 \pm 1,72$	$0,418 \pm 0,011$	$0,330 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-040	pWVir	9,63	$33,74 \pm 4,61$	$1,143 \pm 0,090$	$1,182 \pm 0,159$	0	0	OK
OGLE-LMC-T2CEP-041	BLHer	2,48	$10,81 \pm 1,53$	$0,541 \pm 0,023$	$0,440 \pm 0,025$	0	0	OK
OGLE-LMC-T2CEP-042	pWVir	4,92	$14,\!36 \pm 2,\!17$	$0,427 \pm 0,018$	$0,320 \pm 0,017$	0	0	
OGLE-LMC-T2CEP-043	WVir	$6,\!56$	$16,79 \pm 1,13$	$0,\!378 \pm 0,\!010$	$0,312 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-044	WVir	$13,\!27$	$25,\!38 \pm 1,\!74$	$0,405 \pm 0,010$	$0,316 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-045	RVTau	$63,\!39$	$74,\!94 \pm 3,\!79$	$0,706 \pm 0,011$	$0,519 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-046	WVir	$14,\!74$	$35,\!90 \pm 1,\!70$	$0,797 \pm 0,012$	$0,704 \pm 0,013$	1	0	ok
OGLE-LMC-T2CEP-047	WVir	7,29	$18,\!63 \pm 1,\!60$	$0,427 \pm 0,011$	$0,352 \pm 0,012$	0	0	
OGLE-LMC-T2CEP-048	BLHer	1,45	$7,\!89 \pm 1,\!71$	$0,473 \pm 0,036$	$0,436 \pm 0,048$	0	0	OK
OGLE-LMC-T2CEP-049	BLHer	3,24	$12,\!47 \pm 2,\!71$	$0,503 \pm 0,041$	$0,426 \pm 0,045$	0	0	OK
OGLE-LMC-T2CEP-050	RVTau	34,75	$36,\!52 \pm 1,\!57$	$0,302 \pm 0,010$	$0,\!184\pm 0,\!010$	1	0	
OGLE-LMC-T2CEP-051	RVTau	$40,\!61$	$47,\!45 \pm 3,\!14$	$0,441 \pm 0,011$	$0,297 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-052	pWVir	4,69	$14{,}41\pm1{,}91$	$0,466 \pm 0,017$	$0,349 \pm 0,016$	0	1	
OGLE-LMC-T2CEP-053	BLHer	1,04	$6,84 \pm 0,38$	$0,520 \pm 0,011$	$0,496 \pm 0,011$	0	0	OK
OGLE-LMC-T2CEP-054	WVir	9,93	$23,\!35 \pm 0,\!57$	$0,473 \pm 0,010$	$0,401 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-055	RVTau	41,01	$50,93 \pm 3,26$	$0,527 \pm 0,011$	$0,356 \pm 0,011$	1	0	
OGLE-LMC-T2CEP-056	WVir	7,29	$19,92 \pm 0,49$	$0,\!480\pm0,\!010$	$0,425 \pm 0,010$	0	0	ok
OGLE-LMC-T2CEP-057	WVir	$16,\!63$	$30,31 \pm 3,42$	$0,456 \pm 0,014$	$0,361 \pm 0,015$	0	0	
OGLE-LMC-T2CEP-058	RVTau	$21,\!48$	$33,\!97 \pm 3,\!83$	$0,431 \pm 0,013$	$0,328 \pm 0,013$	0	0	
OGLE-LMC-T2CEP-059	WVir	16,74	$34,\!09 \pm 3,\!16$	$0,595 \pm 0,015$	$0,496 \pm 0,017$	0	0	
OGLE-LMC-T2CEP-060	BLHer	$1,\!24$	$7,30 \pm 1,39$	$0,474 \pm 0,030$	$0,453 \pm 0,042$	0	0	OK
OGLE-LMC-T2CEP-061	BLHer	1,18	$5,96 \pm 0,86$	$0,336 \pm 0,013$	$0,\!275 \pm 0,\!014$	0	0	
OGLE-LMC-T2CEP-062	WVir	6,05	$20,36 \pm 3,43$	$0,612 \pm 0,039$	$0,612 \pm 0,061$	0	0	OK
OGLE-LMC-T2CEP-063	WVir	6,92	$17,59 \pm 1,49$	$0,403 \pm 0,011$	$0,325 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-064	BLHer	2,13	$9,80 \pm 2,05$	$0,473 \pm 0,034$	$0,429 \pm 0,044$	0	0	OK
OGLE-LMC-T2CEP-065	RVTau	$35,\!05$	$45,\!67 \pm 2,\!07$	$0,479 \pm 0,010$	$0,339 \pm 0,010$	1	0	
OGLE-LMC-T2CEP-066	WVir	13, 11	$25,\!80 \pm 0,\!64$	$0,421 \pm 0,010$	$0,338 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-067	RVTau	$48,\!23$	$71,33 \pm 10,49$	$0,978 \pm 0,075$	$0,701 \pm 0,064$	1	0	OK
OGLE-LMC-T2CEP-068	BLHer	$1,\!61$	$8,14 \pm 0,60$	$0,449 \pm 0,011$	$0,400 \pm 0,012$	0	0	ok
OGLE-LMC-T2CEP-069	BLHer	1,02	$7,34 \pm 1,96$	$0,\!630\pm0,\!088$	$0,\!626 \pm 0,\!130$	0	0	OK
OGLE-LMC-T2CEP-070	WVir	$15,\!44$	$25,12 \pm 2,56$	$0,348 \pm 0,011$	$0,240 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-071	BLHer	1,15	$7,14 \pm 1,67$	$0,497 \pm 0,045$	$0,476 \pm 0,063$	0	0	OK
OGLE-LMC-T2CEP-072	WVir	$14,\!51$	$26,70 \pm 1,23$	$0,412 \pm 0,010$	$0,315 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-073	BLHer	3,09	$12,\!58 \pm 1,\!02$	$0,519 \pm 0,012$	$0,471 \pm 0,014$	0	0	OK
OGLE-LMC-T2CEP-074	WVir	8,99	$22,53 \pm 1,45$	$0,519 \pm 0,011$	$0,426 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-075	RVTau	50, 19	$54,\!91 \pm 2,\!77$	$0,458 \pm 0,010$	$0,317 \pm 0,010$	1	0	
OGLE-LMC-T2CEP-076	BLHer	2,10	$10,40 \pm 1,10$	$0,519 \pm 0,015$	$0{,}516\pm0{,}022$	0	0	OK
OGLE-LMC-T2CEP-077	BLHer	1,21	$6,82 \pm 0,65$	$0,460 \pm 0,012$	$0,385 \pm 0,013$	0	1	
OGLE-LMC-T2CEP-078	pWVir	6,72	$28,\!22 \pm 1,\!48$	$1,165 \pm 0,019$	$1,285 \pm 0,034$	0	0	ok
OGLE-LMC-T2CEP-079	WVir	$14,\!85$	$26,06 \pm 2,02$	$0,359 \pm 0,010$	$0,\!285 \pm 0,\!011$	0	0	
OGLE-LMC-T2CEP-080	RVTau	40,92	$51,\!62 \pm 4,\!44$	$0,539 \pm 0,013$	$0,\!371\pm0,\!012$	1	0	
OGLE-LMC-T2CEP-081	WVir	9,48	$22,20 \pm 1,02$	$0,457 \pm 0,010$	$0,375 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-082	RVTau	$35,\!12$	$42,\!65 \pm 4,\!96$	$0,397 \pm 0,013$	$0,\!279 \pm 0,\!012$	0	0	
OGLE-LMC-T2CEP-083	pWVir	5,97	$17,78 \pm 0,79$	$0,498 \pm 0,010$	$0,427 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-084	BLHer	1,77	$8,\!96 \pm 2,\!84$	$0{,}551 \pm 0{,}089$	$0,\!447\pm0,\!085$	0	1	OK
OGLE-LMC-T2CEP-085	BLHer	3,41	$11,36 \pm 1,27$	$0,\!375\pm0,\!012$	$0,\!302\pm0,\!012$	0	0	
OGLE-LMC-T2CEP-086	WVir	$15,\!85$	$28,45 \pm 1,87$	$0,\!434\pm0,\!011$	$0,\!326\pm0,\!011$	0	0	
OGLE-LMC-T2CEP-087	WVir	5,18	$16{,}11\pm2{,}31$	$0,\!466\pm0,\!019$	$0,\!407\pm0,\!023$	0	0	OK
OGLE-LMC-T2CEP-088	BLHer	1,95	$7{,}79\pm0{,}71$	$0,\!358\pm0,\!011$	$0,\!258\pm0,\!011$	0	0	
OGLE-LMC-T2CEP-089	BLHer	1,17	$6{,}87 \pm 0{,}37$	$0,\!462\pm0,\!010$	$0,\!419\pm0,\!011$	0	0	OK
OGLE-LMC-T2CEP-090	BLHer	1,48	$8{,}38\pm0{,}64$	$0{,}524 \pm 0{,}012$	$0,\!499\pm0,\!014$	0	0	OK

Tabela A.4: nastavak.

Ime	Tip	Period	Poluprečnik	$M \operatorname{asa}_{\operatorname{Cep}}$	Masa _{RRL}	Prašina?	Dvojni sistem?	Slaganje?
		(d)	(R_{\odot})	(M_{\odot})	(M_{\odot})			
OGLE-LMC-T2CEP-091	RVTau	35,75	$47,36 \pm 8,04$	$0,\!572 \pm 0,\!034$	$0,362 \pm 0,024$	1	0	
OGLE-LMC-T2CEP-092	BLHer	2,62	$10,68 \pm 1,94$	$0,441 \pm 0,024$	$0,390 \pm 0,030$	0	0	OK
OGLE-LMC-T2CEP-093	WVir	$17,\!59$	$33,65 \pm 2,77$	$0,\!585 \pm 0,\!014$	$0,440 \pm 0,013$	0	1	
OGLE-LMC-T2CEP-094	WVir	8,47	$22,54 \pm 1,13$	$0,\!524 \pm 0,\!010$	$0,471 \pm 0,011$	0	0	ok
OGLE-LMC-T2CEP-095	WVir	5,00	$15,79 \pm 0,38$	$0,460 \pm 0,010$	$0,408 \pm 0,010$	0	0	ok
OGLE-LMC-T2CEP-096	WVir	$13,\!93$	$25,78 \pm 2,78$	$0,400 \pm 0,012$	$0,306\pm0,012$	0	0	
OGLE-LMC-T2CEP-097	WVir	10,51	$22,69 \pm 1,95$	$0,\!428\pm0,\!011$	$0,338 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-098	pWVir	4,97	$32,80 \pm 2,78$	$3,038 \pm 0,263$	$3,159 \pm 0,478$	0	1	OK
OGLE-LMC-T2CEP-099	WVir	15, 49	$35,43 \pm 2,77$	$0,\!677 \pm 0,\!015$	$0,628 \pm 0,019$	0	0	OK
OGLE-LMC-T2CEP-100	WVir	7,43	$15,73 \pm 0,97$	$0,\!292\pm0,\!010$	$0,212 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-101	WVir	11,42	$21,60 \pm 2,54$	$0,\!357 \pm 0,\!012$	$0,257 \pm 0,012$	0	0	
OGLE-LMC-T2CEP-102	BLHer	1,27	$7,57 \pm 0,90$	$0,\!528\pm0,\!018$	$0,481 \pm 0,023$	0	0	OK
OGLE-LMC-T2CEP-103	WVir	12,91	$24,61 \pm 2,16$	$0,\!395\pm0,\!011$	$0,304 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-104	RVTau	$24,\!88$	$47,95 \pm 6,84$	$0,835 \pm 0,052$	$0,676 \pm 0,057$	1	0	OK
OGLE-LMC-T2CEP-105	BLHer	$1,\!49$	$8,54 \pm 1,45$	$0,555 \pm 0,033$	$0,520 \pm 0,046$	0	0	OK
OGLE-LMC-T2CEP-106	WVir	6,71	$18,21 \pm 1,20$	$0,\!450\pm0,\!011$	$0,378 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-107	BLHer	1,21	$9,91 \pm 1,67$	$0,962 \pm 0,093$	$1,106 \pm 0,200$	0	0	OK
OGLE-LMC-T2CEP-108	RVTau	30,01	$41,06 \pm 1,79$	$0,\!471 \pm 0,\!010$	$0,323 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-109	BLHer	1,41	$8,23 \pm 0,50$	$0,\!420\pm0,\!010$	$0,513 \pm 0,012$	0	0	
OGLE-LMC-T2CEP-110	WVir	7,08	$18,84 \pm 1,70$	$0,443 \pm 0,012$	$0,381\pm0,013$	0	0	
OGLE-LMC-T2CEP-111	WVir	7,50	$18,76 \pm 0,84$	$0,419 \pm 0,010$	$0,343 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-112	RVTau	39,40	$52,33 \pm 3,32$	$0,605 \pm 0,012$	$0,409 \pm 0,011$	1	0	
OGLE-LMC-T2CEP-113	BLHer	3,09	$12,43 \pm 2,30$	$0,540 \pm 0,036$	$0,455 \pm 0,040$	0	0	OK
OGLE-LMC-T2CEP-114	F	1,09	$10,01 \pm 0,69$	$1,051 \pm 0,023$	$1,345 \pm 0,060$	0	0	
OGLE-LMC-T2CEP-115	RVTau	24,97	$37,00 \pm 2,71$	$0,430 \pm 0,011$	$0,326 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-116	BLHer	1,97	$9,80 \pm 1,04$	$0,491 \pm 0,014$	$0,488 \pm 0,020$	0	0	OK
OGLE-LMC-T2CEP-117	WVir	6,63	$17,74 \pm 0,80$	$0,429 \pm 0,010$	$0,358 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-118	WVir	12,70	$26,27 \pm 1,86$	$0,457 \pm 0,011$	$0,375 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-119	RVTau	33,83	$49,26 \pm 8,80$	$0,650 \pm 0,048$	$0,442 \pm 0,036$	1	0	
OGLE-LMC-T2CEP-120	WVir	4,56	$15,01 \pm 0,99$	$0,464 \pm 0,011$	$0,412 \pm 0,011$	0	0	ok
OGLE-LMC-T2CEP-121	BLHer	2,06	$9,87 \pm 1,67$	$0,489 \pm 0,026$	$0,461 \pm 0,036$	0	0	OK
OGLE-LMC-T2CEP-122	BLHer	1,54	$8,00 \pm 0,81$	$0,427 \pm 0,012$	$0,411 \pm 0,015$	0	0	OK
OGLE-LMC-T2CEP-123	BLHer	1,00	$12,26 \pm 1,97$	$1,824 \pm 0,305$	$2,722 \pm 1,103$	0	0	OK
OGLE-LMC-T2CEP-124	BLHer	1,73	$8,44 \pm 1,12$	$0,426 \pm 0,015$	$0,393 \pm 0,020$	0	0	OK
OGLE-LMC-T2CEP-125	RVTau	33,03	$44,16 \pm 4,13$	$0,464 \pm 0,012$	$0,340 \pm 0,012$	0	0	
OGLE-LMC-T2CEP-126	WVir	16,33	$31,95 \pm 1,84$	$0,505 \pm 0,011$	$0,432 \pm 0,011$	1	0	
OGLE-LMC-T2CEP-127	WVir	12,67	$25,53 \pm 4,32$	$0,446 \pm 0,022$	$0,347 \pm 0,022$	1	0	
OGLE-LMC-T2CEP-128	WVir	18,49	$36,69 \pm 3,43$	$0,623 \pm 0,017$	0.519 ± 0.018	0	0	
OGLE-LMC-T2CEP-129	RVTau	62,51	$51,88 \pm 2,20$	$0,333 \pm 0,010$	$0,189 \pm 0,010$	1	0	
OGLE-LMC-T2CEP-130	BLHer	1,94	$9,09 \pm 1,71$	$0,455 \pm 0,027$	$0,402 \pm 0,033$	0	0	OK
OGLE-LMC-T2CEP-131	BLHer	1,41	$7,49 \pm 0,31$	$0,416 \pm 0,010$	$0,391 \pm 0,010$	0	0	OK
OGLE-LMC-T2CEP-132	pWVir	10,02	$24,52 \pm 2,54$	$0,552 \pm 0,016$	$0,453 \pm 0,017$	0	0	
OGLE-LMC-T2CEP-133	WVir	6,28	$16,55 \pm 1,37$	$0,400 \pm 0,011$	$0,321 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-134	pWVir	4,08	$17,91 \pm 1,39$	$0,857 \pm 0,020$	$0,807 \pm 0,029$	0	0	OK
OGLE-LMC-T2CEP-135	RVTau	26,52	$43,20 \pm 3,11$	$0,573 \pm 0,012$	$0,457 \pm 0,012$	0	0	
OGLE-LMC-T2CEP-136	BLHer	1,32	$13,48 \pm 4,37$	$1,719 \pm 0,895$	$2,260 \pm 2,246$	0	0	OK
OGLE-LMC-T2CEP-137	WVir	6,36	$17,18 \pm 2,10$	$0,425 \pm 0,014$	$0,350 \pm 0,015$	0	0	
OGLE-LMC-T2CEP-138	BLHer	1,39	$10,25 \pm 3,71$	$0,830 \pm 0,247$	$0,968 \pm 0,475$	0	0	OK
OGLE-LMC-T2CEP-139	WVir	14,78	$29,36 \pm 1,46$	$0,483 \pm 0,010$	$0,400 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-140	BLHer	1,84	$9,43 \pm 0,92$	$0,512 \pm 0,014$	$0,486 \pm 0,018$	0	0	OK
OGLE-LMC-T2CEP-141	BLHer	1,82	$8,24 \pm 1,12$	$0,374 \pm 0,014$	$0,339 \pm 0,016$	0	0	OK
OGLE-LMC-T2CEP-142	BLHer	1,76	$11,48 \pm 0.27$	$0,817 \pm 0,010$	$0,909 \pm 0,011$	0	0	ok
OGLE-LMC-T2CEP-143	WVir	14,57	$23,64 \pm 2,40$	$0,321 \pm 0,011$	$0,223 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-144	BLHer	1,94	$11,73 \pm 4.38$	$0,752 \pm 0.209$	$0,826 \pm 0.352$	0	0	OK
OGLE-LMC-T2CEP-145	BLHer	3,34	$12,91 \pm 2,40$	$0,530 \pm 0.035$	$0,446 \pm 0.039$	0	0	OK
OGLE-LMC-T2CEP-146	WVir	10,08	$23,03 \pm 1,69$	$0,443 \pm 0,011$	0.377 ± 0.011	0	0	
OGLE-LMC-T2CEP-147	RVTau	46,80	$69,48 \pm 6,46$	$0,977 \pm 0,034$	$0,684 \pm 0,029$	1	0	
OGLE LMC T2CEP 148	BLHer	2,67	$9,92 \pm 0.76$	0.370 ± 0.011	$0,306 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-149	RVTau	42,48	$52,85 \pm 4,45$	$0,\!550\pm 0,\!013$	$0,373\pm0,012$	0	0	

Tabela A.4: nastavak.

	T:-	Daniad	Dalaanačasila	M	Maaa	Davěia v 2	Durini ristano?	<u>Cl</u>
Ime	тp	r erioù (d)	rouprechik (P)	(M_{a})	(M)	r rasma:	Dvojni sistem:	Staganje:
OGLE LMC T2CEP 150	WVir	5.49	(n_{\odot}) 17.60 ± 0.67	(M_{\odot}) 0.585 ± 0.010	(M_{\odot}) 0.473 ± 0.010	1	0	
OGLE-LMC-T2CEP-151	WVir	7.89	19.46 ± 1.67	$0,305 \pm 0,010$ 0.428 ± 0.011	0.350 ± 0.012	0	0	
OGLE-LMC-T2CEP-152	WVir	9.31	22.84 ± 2.52	0.493 ± 0.015	0.418 ± 0.012	0	0	
OGLE-LMC-T2CEP-153	BLHer	1.18	11.24 ± 0.71	1.591 ± 0.042	1.638 ± 0.075	0	0	OK
OGLE-LMC-T2CEP-154	pWVir	7.58	23.97 ± 0.92	0.822 ± 0.011	0.666 ± 0.011	0	0	0.11
OGLE-LMC-T2CEP-155	WVir	6.90	$23,31 \pm 3,52$ $22,43 \pm 3,50$	0.669 ± 0.040	0.647 ± 0.061	0	0	OK
OGLE-LMC-T2CEP-156	WVir	15,39	33.84 ± 3.31	0.631 ± 0.018	0.558 ± 0.021	1	0	OK
OGLE-LMC-T2CEP-157	WVir	14.33	27.71 ± 1.38	$0,001 \pm 0,010$ 0.439 ± 0.010	0.358 ± 0.010	0	0	011
OGLE-LMC-T2CEP-158	WVir	7.14	18.13 ± 1.22	0.412 ± 0.010	0.337 ± 0.011	1	0	
OGLE-LMC-T2CEP-159	WVir	6.63	18.90 ± 0.47	0.478 ± 0.010	0.428 ± 0.010	0	0	ok
OGLE-LMC-T2CEP-160	BLHer	1.76	9.15 ± 1.08	0.500 ± 0.016	0.482 ± 0.023	0	0	OK
OGLE-LMC-T2CEP-161	WVir	8.53	29.73 ± 3.39	1.004 ± 0.050	1.009 ± 0.085	0	0	ŌK
OGLE-LMC-T2CEP-162	RVTau	30.39	44.46 ± 3.27	0.516 ± 0.012	0.397 ± 0.012	1	0	
OGLE-LMC-T2CEP-163	BLHer	1.69	10.11 ± 2.40	0.684 ± 0.085	0.676 ± 0.128	0	0	OK
OGLE-LMC-T2CEP-164	pWVir	8,50	25.88 ± 2.23	0.759 ± 0.019	0.688 ± 0.026	1	0	ŌK
OGLE-LMC-T2CEP-165	BLHer	1.24	8.30 ± 0.43	0.554 ± 0.011	0.647 ± 0.013	0	0	ok
OGLE-LMC-T2CEP-166	BLHer	2.11	15.33 ± 1.59	1.293 ± 0.070	1.518 ± 0.162	0	0	OK
OGLE-LMC-T2CEP-167	BLHer	2.31	11.49 ± 1.68	0.574 ± 0.027	0.586 ± 0.045	0	0	ŌK
OGLE-LMC-T2CEP-168	WVir	15.70	28.51 ± 1.36	0.430 ± 0.010	0.334 ± 0.010	0	0	0.11
OGLE-LMC-T2CEP-169	RVTau	30.96	37.17 ± 7.37	0.377 ± 0.021	0.232 ± 0.015	1	0	
OGLE-LMC-T2CEP-170	WVir	7.68	19.64 ± 0.49	0.435 ± 0.010	0.375 ± 0.010	0	0	
OGLE-LMC-T2CEP-171	BLHer	1.55	8.56 ± 1.35	0.523 ± 0.026	0.488 ± 0.036	0	0	OK
OGLE-LMC-T2CEP-172	WVir	11.22	25.68 ± 2.57	0.492 ± 0.014	0.430 ± 0.016	0	0	ŌK
OGLE-LMC-T2CEP-173	WVir	4.15	16.30 ± 0.99	0.523 ± 0.011	0.608 ± 0.014	0	0	ok
OGLE-LMC-T2CEP-174	RVTau	46.82	75.02 ± 10.04	1.129 ± 0.084	0.848 ± 0.079	1	0	OK
OGLE-LMC-T2CEP-175	WVir	9.33	22.04 ± 1.03	0.453 ± 0.010	0.378 ± 0.010	0	0	
OGLE-LMC-T2CEP-176	WVir	7.99	20.49 ± 0.93	0.470 ± 0.010	0.396 ± 0.010	0	0	
OGLE-LMC-T2CEP-177	WVir	15.04	28.00 ± 2.04	0.424 ± 0.011	0.341 ± 0.011	0	0	
OGLE-LMC-T2CEP-178	WVir	12,21	23.84 ± 1.74	0.378 ± 0.010	0.304 ± 0.011	0	0	
OGLE-LMC-T2CEP-179	WVir	8,05	$20,25 \pm 0,53$	$0,434 \pm 0,010$	0.379 ± 0.010	0	0	ok
OGLE-LMC-T2CEP-180	RVTau	31.00	61.81 ± 10.03	$1,147 \pm 0,123$	0.964 ± 0.142	1	0	OK
OGLE-LMC-T2CEP-181	pWVir	7,21	23.87 ± 2.63	$0,762 \pm 0.029$	0.716 ± 0.041	0	0	OK
OGLE-LMC-T2CEP-182	WVir	8,23	$23,35 \pm 1,11$	$0,606 \pm 0,011$	0.544 ± 0.011	0	0	ok
OGLE-LMC-T2CEP-183	WVir	6,51	$18,78 \pm 1,11$	$0,455 \pm 0,010$	$0,434 \pm 0,011$	0	0	OK
OGLE-LMC-T2CEP-184	WVir	$14,\!84$	$27,43 \pm 2,21$	$0,393 \pm 0,011$	$0,329 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-185	WVir	12,69	$66,95 \pm 1,87$	$3,832 \pm 0.057$	$5,143 \pm 0,160$	0	0	
OGLE-LMC-T2CEP-186	WVir	16,36	$31,99 \pm 1,66$	$0,513 \pm 0,010$	$0,431 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-187	BLHer	2,40	$10,82 \pm 1,36$	$0,482 \pm 0,017$	$0,465 \pm 0,023$	0	0	OK
OGLE-LMC-T2CEP-188	BLHer	1,05	$8,29 \pm 0.95$	$0,775 \pm 0.031$	0.843 ± 0.060	0	0	OK
OGLE-LMC-T2CEP-189	BLHer	1,31	$7,58 \pm 0,30$	$0,483 \pm 0,010$	$0,459 \pm 0,010$	0	0	OK
OGLE-LMC-T2CEP-190	RVTau	38,36	$52,21 \pm 3,37$	$0,600 \pm 0,012$	$0,425 \pm 0,011$	1	0	
OGLE-LMC-T2CEP-191	RVTau	$34,\!34$	$63,59 \pm 5,29$	$1,105 \pm 0.035$	$0,883 \pm 0.038$	1	0	
OGLE-LMC-T2CEP-192	RVTau	26, 19	$34,96 \pm 3,10$	$0,370 \pm 0,011$	$0,257 \pm 0,011$	0	0	
OGLE-LMC-T2CEP-193	WVir	7,00	$20,00 \pm 0,49$	$0,516 \pm 0,010$	$0,458 \pm 0,010$	0	0	ok
OGLE-LMC-T2CEP-194	BLHer	1,31	$8,25 \pm 0,64$	$0,592 \pm 0,013$	$0,578 \pm 0,017$	0	0	OK
OGLE-LMC-T2CEP-195	BLHer	2,75	$11,49 \pm 1,15$	$0,485 \pm 0,013$	$0,441 \pm 0,016$	0	0	OK
OGLE-LMC-T2CEP-196	WVir	14,96	$32,\!84 \pm 2,\!33$	$0,627 \pm 0,013$	$0,536 \pm 0,014$	0	0	
OGLE-LMC-T2CEP-197	BLHer	1,22	$8,07 \pm 1,04$	$0,\!613 \pm 0,\!025$	$0,608 \pm 0,039$	0	0	OK
OGLE-LMC-T2CEP-198	RVTau	38,27	$49,65 \pm 2,79$	$0,472 \pm 0,010$	$0,373 \pm 0,010$	0	0	
OGLE-LMC-T2CEP-199	RVTau	$37,\!20$	$38,00 \pm 2,67$	$0,\!377\pm0,\!010$	$0{,}182\pm0{,}010$	1	0	
OGLE-LMC-T2CEP-200	RVTau	$34,\!92$	$57{,}81\pm8{,}19$	$0{,}790\pm0{,}047$	$0,\!661\pm 0,\!053$	1	0	OK
OGLE-LMC-T2CEP-201	pWVir	$11,\!01$	$36,\!81 \pm 2,\!77$	$1,\!372\pm0,\!044$	$1{,}207 \pm 0{,}057$	1	0	OK
OGLE-LMC-T2CEP-202	RVTau	$38,\!14$	$50,01 \pm 2,66$	$0,\!490\pm0,\!010$	$0,\!382\pm0,\!010$	0	0	
OGLE-LMC-T2CEP-203	RVTau	$37,\!13$	$46,46 \pm 3,67$	$0,\!427\pm0,\!011$	$0,\!325\pm0,\!011$	0	0	

Ime	Tip	Period	Poluprečnik	Masaa	Masa	Prošino?	Dvoini sistem?	Slaganie?
inite	пp	(b)	(B_{\circ})	(M_{\odot})	(M_{\odot})	i rasma.	Dvojin sistem.	o laganje.
OGLE-SMC-ACEP-01	10	0.83	6.88 ± 0.36	0.738 ± 0.012	0.728 ± 0.014	0	0	OK
OGLE-SMC-ACEP-02	F	0.83	7.87 ± 0.17	0.923 ± 0.010	1.070 ± 0.011	0	ů 0	ok
OGLE-SMC-ACEP-03	10	0.76	6.67 ± 0.46	0.755 ± 0.015	0.765 ± 0.022	0	0	OK
OGLE-SMC-ACEP-04	F	0.83	8.23 ± 0.32	1.046 ± 0.012	1.210 ± 0.019	0	0	ok
OGLE-SMC-ACEP-05	10	0.70	6.78 ± 0.25	0.870 ± 0.011	0.928 ± 0.013	0	0	ok
OGLE-SMC-ACEP-06	F	1,26	9.12 ± 0.68	0.824 ± 0.018	0.820 ± 0.027	0	0	OK
OGLE-SMC-T2CEP-001	pWVir	11.87	43.32 ± 1.89	$1,785 \pm 0.029$	1.685 ± 0.040	0	0	OK
OGLE-SMC-T2CEP-002	BLHer	1.37	7.64 ± 0.67	0.484 ± 0.012	0.434 ± 0.014	0	0	OK
OGLE-SMC-T2CEP-003	WVir	4.36	12.73 ± 1.28	0.347 ± 0.011	0.278 ± 0.011	0	0	
OGLE-SMC-T2CEP-004	WVir	6.53	19.98 ± 2.56	0.569 ± 0.022	0.511 ± 0.028	0	0	OK
OGLE-SMC-T2CEP-005	WVir	8.21	19.41 ± 0.45	0.400 ± 0.010	0.326 ± 0.010	0	0	
OGLE-SMC-T2CEP-006	BLHer	1,24	7.33 ± 0.15	0.485 ± 0.010	0.459 ± 0.010	0	0	OK
OGLE-SMC-T2CEP-007	RVTau	30.96	77.35 ± 18.57	2.058 ± 0.750	1.804 ± 0.865	0	1	ŌK
OGLE-SMC-T2CEP-008	BLHer	1.49	10.45 ± 0.44	0.838 ± 0.011	0.913 ± 0.015	0	0	ok
OGLE-SMC-T2CEP-009	BLHer	2.97	12.97 ± 0.58	0.572 ± 0.010	0.547 ± 0.011	0	0	OK
OGLE-SMC-T2CEP-010	pWVir	17.48	60.53 ± 6.25	2.347 ± 0.226	2.296 ± 0.360	0	1	ŌK
OGLE-SMC-T2CEP-011	pWVir	9.93	38.92 ± 2.65	1.891 ± 0.068	1.665 ± 0.089	1	0	0K
OGLE-SMC-T2CEP-012	RVTau	29.22	41.67 ± 1.15	0.486 ± 0.010	0.352 ± 0.010	0	0	0.11
OGLE-SMC-T2CEP-013	WVir	13.81	25.27 ± 0.67	0.386 ± 0.010	0.293 ± 0.010	0	0	
OGLE-SMC-T2CEP-014	WVir	13.88	23.85 ± 0.59	0.335 ± 0.010	0.247 ± 0.010	0	0	
OGLE-SMC-T2CEP-015	BLHer	2.57	12.70 ± 1.04	0.767 ± 0.018	0.649 ± 0.021	0	0	
OGLE-SMC-T2CEP-016	BLHer	2.11	10.22 ± 0.63	0.520 ± 0.011	0.487 ± 0.012	0	0	OK
OGLE-SMC-T2CEP-017	BLHer	1.30	8.79 ± 0.97	0.697 ± 0.024	0.703 ± 0.040	0	0	ŌK
OGLE-SMC-T2CEP-018	RVTau	39.52	57.52 ± 6.83	0.742 ± 0.031	0.531 ± 0.027	1	0	
OGLE-SMC-T2CEP-019	RVTau	40.91	50.40 ± 2.09	0.541 ± 0.010	0.347 ± 0.010	1	0	
OGLE-SMC-T2CEP-020	RVTau	50.62	50.15 ± 3.50	0.376 ± 0.010	0.243 ± 0.010	0	0	
OGLE-SMC-T2CEP-021	BLHer	2.31	8.99 ± 0.37	0.344 ± 0.010	0.294 ± 0.010	0	0	
OGLE-SMC-T2CEP-022	BLHer	1,47	7.22 ± 0.57	0.364 ± 0.011	0.331 ± 0.011	0	0	OK
OGLE-SMC-T2CEP-023	pWVir	17.68	39.21 ± 1.69	0.820 ± 0.011	0.670 ± 0.012	0	1	
OGLE-SMC-T2CEP-024	RVTau	43.96	51.41 ± 3.24	0.506 ± 0.011	0.326 ± 0.010	1	0	
OGLE-SMC-T2CEP-025	pWVir	$14,\!17$	$30,97 \pm 1,42$	$0,624 \pm 0,011$	$0,496 \pm 0,011$	0	1	
OGLE-SMC-T2CEP-026	BLHer	1,70	$10,17 \pm 0,39$	$0,696 \pm 0,011$	$0,680 \pm 0,011$	0	0	OK
OGLE-SMC-T2CEP-027	BLHer	1.54	7.70 ± 0.31	0.408 ± 0.010	0.368 ± 0.010	0	0	OK
OGLE-SMC-T2CEP-028	pWVir	15.26	49.73 ± 1.33	$1,653 \pm 0.014$	1.655 ± 0.018	0	1	OK
OGLE-SMC-T2CEP-029	RVTau	33.68	91.49 ± 2.38	$2,547 \pm 0.025$	2.524 ± 0.035	0	1	OK
OGLE-SMC-T2CEP-030	BLHer	3.39	14.97 ± 0.81	0.750 ± 0.012	0.658 ± 0.014	0	0	ok
OGLE-SMC-T2CEP-031	WVir	7,90	$20,76 \pm 2,32$	$0,491 \pm 0,015$	$0,419 \pm 0,017$	0	0	
OGLE-SMC-T2CEP-032	WVir	14,25	$26,57 \pm 1,75$	$0,434 \pm 0,011$	$0,320 \pm 0,010$	1	0	
OGLE-SMC-T2CEP-033	BLHer	1,88	$11,56 \pm 0,67$	$0,831 \pm 0,014$	$0,831 \pm 0,019$	0	0	OK
OGLE-SMC-T2CEP-034	WVir	20,12	$36,42 \pm 1,09$	$0,566 \pm 0,010$	$0,442 \pm 0,010$	0	0	
OGLE-SMC-T2CEP-035	WVir	17,18	29.80 ± 3.18	0.437 ± 0.013	0.326 ± 0.013	1	0	
OGLE-SMC-T2CEP-036	BLHer	1.09	9.38 ± 0.36	1.018 ± 0.012	1.117 ± 0.017	0	0	ok
OGLE-SMC-T2CEP-037	BLHer	1.56	10.03 ± 0.41	0.737 ± 0.011	0.757 ± 0.012	0	0	OK
OGLE-SMC-T2CEP-038	pWVir	4,44	$21,40 \pm 1.62$	$1,203 \pm 0.035$	$1,152 \pm 0,053$	0	0	OK
OGLE-SMC-T2CEP-039	BLHer	1,89	$11,52 \pm 0.25$	$0,783 \pm 0,010$	$0,818 \pm 0,010$	0	0	OK
OGLE-SMC-T2CEP-040	WVir	16,11	$29,73 \pm 3.47$	$0,465 \pm 0,015$	$0,360 \pm 0,015$	0	0	
OGLE-SMC-T2CEP-041	RVTau	29,12	37.67 ± 1.72	$0,400 \pm 0,010$	$0,267 \pm 0,010$	0	0	
OGLE-SMC-T2CEP-042	BLHer	1,49	$8,54 \pm 0.18$	0.544 ± 0.010	$0,521 \pm 0,010$	0	0	OK
OGLE-SMC-T2CEP-043	RVTau	23.74	41.40 ± 2.07	0.620 ± 0.011	0.484 ± 0.011	0	0	

Tabela A.4: nastavak.

A.5 Furijeovi pamarametri za cefeide tipa II i anomalne cefeide iz Velikog Magelanovog oblaka i Mlečnog puta

Tabela A.5: 1. predstavlja elemente Furijeove dekompozicije $(A_1 \pm A_{1err}, A_2 \pm A_{2err}, A_3 \pm A_{3err}, \varphi_1 \pm \varphi_{1err}, \varphi_2 \pm \varphi_{2err}$ i $\varphi_3 \pm \varphi_{3err})$ krivih sjaja kratkoperiodičnih cefeida tipa II, takozvanih zvezda tipa *BL Herculis*, kao i izračunate Furijeove parametre $(R_{21} \pm R_{21err}, R_{31} \pm R_{31err}, \varphi_{21} \pm \varphi_{21err}$ i $\varphi_{31} \pm \varphi_{31err})$ za svaku zvezdu. Lista zvezda za Mlečni put je preuzeta iz Opšteg kataloga promenljivih zvezda. Svi Furijeovi parametri su računati samo za podatke u *V* filetru. Izvor podataka za svaku zvezdu je dat u poslednjoj koloni.

Tabele A.5: 2. i A.5: 3. predstavljaju elemente Furijeove dekompozicije $(A_1 \pm A_{1err}, A_2 \pm A_{2err}, A_3 \pm A_{3err}, \varphi_1 \pm \varphi_{1err}, \varphi_2 \pm \varphi_{2err}$ i $\varphi_3 \pm \varphi_{3err})$ krivih sjaja poznatih anomalnih cefeida i cefeida tipa II, kao i njihove Furijeove parametre $(R_{21} \pm R_{21err}, R_{31} \pm R_{31err}, \varphi_{21} \pm \varphi_{21err}$ i $\varphi_{31} \pm \varphi_{31err})$. Lista poznatih anomalnih cefeida i cefeida tipa II u Velikom Magelanovom oblaku je preuzeta iz kataloga OGLE-III. Pošto je u katalogu data Furijeova dekompozicija za podatke merene u *I* filteru, mi smo ovde prikazali naše računate Furijeove parametre u *V* filteru.

Opis podataka za sve tri tabele je dat u poglavlju 2, odeljak 2.2. Metod Furijeove dekompozicije i računanja Furijeovih parametara je prikazan u poglavlju 3, odeljak 3.4.

ı putu.
Mlečnom
n
zvezda
parametri
Furijeovi
Ŀ.
ela A.5:
Tab

Izvor	Schmidt & Reiswig (1993) Doimenski (1007)	Drake et al. (2014a)	Drake et al. (2014a)	Pojmanski (1997) D- immeti (1997)	Pojmanski (1967) Pojmanski (1967)	Poimanski (1997)	Poimanski (1997)	Drake et al. (2014a)	Pojmanski (1997)	NWee & Diethelm (1984)	Pojmanski (1997)	Drake et al. (2014a) Commédié et al. (2011a)	Doszyliski el al. (2011a)	Projmanski (1997) Deska at al. (2014a)	Ermo & Diotholm (1094)	Doimenelsi (1007)	Poimanski (1007)	Kuna f. Diathalm (1094)	Poimanski (1007)	Poimanski (1997)	Schmidt et al. (2005)	Pojmanski (1997)	INTEGRAL	Soszyński et al. (2011a)	Schmidt et al. (2005)	Definition of all (2005)	Pojmanski (1997) Pojmanski (1997)	Pojmanski (1997)	Pojmanski (1997)	Pojmanski (1997)	Pojmanski (1997) Socretski at al. (2011a)	Doimanski (1007)	Pojmanski (1997)	Pojmanski (1997)	Szabados (1977) i Henden (1980) Poimenski (1007)	Schmidt et al. (2005)	Pojmanski (1997)	Pojmanski (1997)	INTEGRAL	Soszyński et al. (2011a) meroch ar	Berdnikov (2008) AAVSO	Pojmanski (1997)	INTEGRAL	Pojmanski (1997) Pojmanski (1997)	INTEGRAL	Schmidt et al. (2005)						
φ_{31err}	0,16	0000	0,008	0,0	ann Dùiù	0.17	0.08	0,005	0,006	0,008	0, 24	0,01	0,005	0,22	0,04	0,004	1000	70°0	0,000	o lo	28	300	10.0	0.020	200	0.06	0,01	0,16	0,03	0,02	05,U	0.01	0,24	0, 10	0,15	0°0	0000	0,03	0,01	0,12	0.02	0,09	0,08	0,06	0,03	500	0,22	0,02	onín 61.0	0,033	0,05	
¢31	2,74 1.605	1914	1,728	1,74	1841	138	0.46	1,854	2,233	1,947	1,98	2,26	2,608	6,16 2,15	0,40	3,223	2,3355	4,04 1999	2,215	64.0	01-00 1010	0.15	156	3 584	3.58	1.54	1,52	3,40	1,51	1,83	0,18	0.541 081.0	6,13	5,84	0,01	137	57.93	3,25	2,65	4,42	2.22	3,73	3,16	0,02	3,96	23,2	4,60	2,33	3,40 3,32	3,10	2,96	
φ_{21err}	0,02	0000	00010	0,02	0.003	0.02	20.0	0,003	0,004	0,005	0,06	0,01	0,003	0,01	znŕn	0,003	0,004	70fn	0000	1000	70'O	86	000	20f0	0.25	0.03	0,009	70,0	0,02	0,01	0,10	conto	100	0,20	0,18	0,IT	0.004	0,02	0001	0 ⁰ 0	1000	0,21	0,20	0,0	0,01	500	0,01	0,0 12.0	1000	0,03	0,01	
φ_{21}	4,97 2 806	4,043	4,076	4 1 1	3 084	3.52	30	4,019	4,186	4,066	4,28	6, 22	4,731	4,97	4,20	4,740	4,440	6.5 2.5	4,103	F 62 6	0 0 0 0 0	8.8	55	4 474	4 18	4.75	4,791	6,15	4,33	4,19	4,34	4,821	3, IO	4,50	1,21	4,31	4 404	4,45	4,426	2,85 4 65	4.228	4,76	4,45	3,98	5,25	€ 6 16 10	1,15	4,45	4.960	4,00	4,87	
φ_{3err}	0,16	0,000	700,0	0,02	0.00 100	0.17	0.08	0,005	0,006	0,008	0, 24	0,01	0,005	0,22	10°0	0,004	0000	70°0	0,000	900	200	70'0	170	4 fo	20.0	0.06	0,01	0,16	0,02	0,02	5°00	000 in	0,24	0,10	0,07	900 0	0.000	0,03	0,01	0,12	0.0	0,00	0,08	0,06	8,0	800	0,22	0,02	90'0 0 00	0,03	0,05	
ŝ	0,78	0,666	006'0	0,30	0530	0.27	0.81	0,229	0,790	0,139	0,15	0,48	0,468	0,45	0,42	0,408	0,70	9,00 9,00	0,248	1000	20'0 24'0	0.46	050	015	0.34	0,42	0,71	0,31	0,69	0,94	0,554	680fn	0,50	0,23	0,04	0,57	0.780	0,86	0.91	0,08	0.37	0,85	0,79	0,74	0,27	180	0,18	20'0	0,36 0,36	0,05	0,73	
φ_{2err}	0,02	0,006	0,006	0,02	0.000	0.02	0.06	0,003	0,004	0,005	0,06	0,01	0,003	0,01	7n'n	0,003	0,013	TO'O	0000		70,0	2010 U		10,015	0.25	0.02	0,009	0,07	0,01	0,01	0,15	annín	800	0,20	0,12	0,177	0.003	0,02	0,007	0,0 20,0	0.007	0,21	0,20	0,03	0,01	30	0,01	0,0 12,0	1000	0,08	0,01	
ŝ	0,73	0,635	0,155	0,9 9,5	8 F	0.01	0 19	0,679	0,039	0,950	0,99	0,49	0,205	0,85	0,32	0,101	1620	1, U	0,243	1000	9 F 0	000	120	0.515	0.27	80	0,827	0,91	0,41	0,18	89°0	6000	6,9	0,33	0,97	0,005	1 360	0,0	0,446	21 S	0.433	0,67	0,65	0,51	0,01	850	0,57	86	67'N	0,43	0,70	
$\varphi_{\rm lerr}$	0,005	0,003	0,003	0,000	9000 0 000	0000	0.03	0,001	0,002	0,002	0,01	0,006	0,001	0,002	annín	0,001	2000	confo	70000	2000		10,00	10000	0000	-000	0.010	0,002	0,04	0,005	0,004	0000	0,000	0.01	0,01	0,13	0,002	0000	0,01	0,002	0,008	0000	0,006	0,006	0,002	0,005	0,00 0 004	0,003	0,004	cuutu 10070	0000	0,003	
ē	0,613	0,621	0,378	0,841	0.570	0.852	0.41	0,145	0,312	0,776	0,78	0,875	0,851	0,655	6756 I	0,798	777 N	999 D	0.460 1.81 0	1000	100	1311 0 311	0.050	0.096 0.096	0.42	0.800	0,657	0,09	0,983	0,383	0,47	0.706.0	0.34	0,93	0,51	0,284	0.059	0,62	0,996	0,959	0.505	0,584	0,597	0,080	0,714	0.646	0,317	0,065	0,639 0,776	0,019	0,587	
231err	0,04	0.02	0,02	900	7000 C	8000	0.16	000	0.01	0,02	0,05	0,04	200,0	001	θήΩ	20010	100	1010	7010	1000	8.0	80	1000	200	200	0.07	0,01	0,09	0,03	80	sing of the	- 	2010	0,06	0,16 	10,0	2000	0,06	0,01	00 00	0.02	0,06	0,06	10,0	80	80	2010	0,02	900 c	0,04	0,02	
R_{31} 1	21,0	180	0,38	6 .9	0,15 1,220 1,220	120	02.0	122	0,34	0,31	0,15	0,38	,279 (1010	sonin), 241 2 2 2	16	7,0	520		8,9		51 C	900	810	10210	61,0	0,30	0,21	7,0	er in		្រា	61,0	8	8,9	0,43 143 C	18	0,12	812	0.25	17,0	0,21	0,05	61.0 8	o le	21,0	0,16	0,13 0,076 0	, 22,0	20'0	
2 lerr	28	18	- 20,	5	83	56	o lo	걸	10,0	00	- 60,0	. 10,	008	5	3	83	50	5,9			5,9	33	55	12	19	16	.010	,12	8,	89	 3.8	19	18	Е.	5	5,8	, 98 8	5	- 10,	88	28	14	, 14 ,	- 5, '	8 8	18	18	5	 3 8	38	,02	
t_{21} R	36 2 1	[4]	,43 (16 H	64 7		12	4	.51 (02,	,42 (,48 (365 0	91.6 0 0	777	353	75	ي م ب	,49 514 0.1		10,10	56		1 E		.40	,25 (,65	,38 (98 - 9 -	olt, rot		19 19	37	5 1 1	85	415 C	. 95	57	5.5 2.5	59 50	. 8	37 (ą,	۲. ۲. ۲. ۲.	58	88	8. 8 0 1	7 1 1 245 1	, 25 , 0	,33	
3err 1	00 10,50	200	200	20 20		50	1	004	000	001 0	000	101	,002	100		200					18					18	005 0	00	,01 0	53	D 0 705	120	20	02	8	200	200	10	003	900	- 000 1000	8	8, 0	003	600		102	800	р с 105 002	102	,004 0	
4_3 A	70 0 70 0		154 0	12	0 0 19 1 19 1		16	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	162 0	148 0	0	,14 0	106 0	0 200 200 20	3, '	082	 	 	25	12	50			002 0	200	88	0 20	0	8	ц 2	5			90	8	070		12	820	0 5 11 6	- 0 - 820	9	9 9 '	0 <u>2</u> 00	98 - 98 -		18	88	р с 52	14 0	016 0	
err /	5 5 0 2	50 38	07 0,	07 21 2	07 102	20 50	0	04	0 00	0 70	05 0	01	03 0	5 9 10 9		00 200	60 60 60 60	5 1 5	50	50	50	- 102 - 102	5 9 2 2	010	10 10 10	20	05 0.	05 0.	01	23	5 G 7 S	50	20 20	04	0 20	88	50 80	50	80 0	8 62 62 72	18	90	0.0	50 201	3 9 8 9	90 80	50	82	53 53	28 50	04 0)	
$I_2 = A_5$	5 2 2	00 00	174 0,0	ର୍ଚ୍ଚ ମହ	5 2 2 2	50	20	00 86	245 0,0	238 0,0	25 0,	18 O,	139 0,0	019 00	5 2 (10 e	fic zig	10 881 173 01	5 C	1 e 1 e	50 00 144 0.0		115 O.G.	s e Re	99 99	01 0.	42 0,	16 0,	ц Ц	en en Se co	10 P4	្រំ ខ្មែ	12 0,	14 0,	012 000	50 000 111 000	о Б)(1)(1)(1	17 00	50 EE	o S	18 0	016 0,0	11 11 11 11 11 11	176 O.C	114 0,0	19 19 0 0	ЦЗ 113 112 113 113 113 113 113 113 113 113	19 10	77 0,0	
lerr Z	0 10 10	5 0 20	000	00 88		88 80		0.4	0 900	0 200	04 0.	01 0.	002 0,	201 201	5	02	2 2 2	5	dia 8 A	50	50		50		50	18	02 01	0	01 0.	50	5 6 7 5		58 50	02	0 90	202 202		60	200 00	8 9 8 9	. 0 102 002	8	8	203 201	98 97 9	5 G 8 G	000	000	ы 10 10	50 10	002 00	
$A_1 = A$	88 86 80 80 80 80 80 80 80 80 80 80 80 80 80	44 63	404 0,	88 88	200 200 200	50 15	10	420	482 0,	472 0,	0.00	37 0.	380 05	118 0,0	e Si	342 342 342	4/9 0 0	10 10 10 10 10	10 282 336 01	5 9 8 8	ର ଜୁନ	2 28 0 2	5⊂ 58	88 92	5 ⊂ 3 %	9 9 0	363 0,	0.0	,41 0,	4. 0 0	≓ 8,8	50 190 190	50 88	.34 0	្រ ខ	े - ह्य १	88	8	0 187	6 <u>1</u> 5 0 0	9 10 3 10 0 10	4	47.0	99 () ()	6 8 8 8	248 0 - 248	5 7 1987	371 O.	- 18 5	53 50	232 0,	
	0 0 1967	5 0 5 0 5 0	573 0,	2 E 2	5 G	50	114	842 O,	L34 0,	.0	0.0	546 0.	91 0,	185 0, 0	5 2 1	982 982	10 CT 0	≓ 2 8 8	n o Solo	6 G		35	50 - 16 - 16	- 020 - 120	50	- 261 - 261	.0 ele	072 0	.0 0	21 E	10	5 c 5 c	19 19 10	.0	0. 83	ର୍ଚ୍ଚ ମୁନ୍ତି	j ge	181	303 0,	6 9 8 8		8	88	6	18 18 18 19		5 Ó 88	190	್ ೆ ೫ ೫	189 50	579 0,	
$\log P$	0,0285102	0.0321820	0,0342118	0,0376873	0.0476315	0.0502792	0.0521979	0,05602978	0,0664895	0,0668604	0,0687685	0,0825861	0,0927346	0,0034035	0,0085223	0,1164220	0,1246480	0,1500151	0.1400386	0.1500.000	0,1204540	0.18185376	0.1945/17	0.10063600	0 20205020	0.2044723	0,2107313	0,2264814	0,2425466	0,2759020	0,2//1499	2011687 (U	0,29445470	0,30444278	0,3086834	0,3139845	0.2450300	0,3776724	0,4017434	0,4481800	0.5052273	0,5233376	0,5233427	0,5624056	0,5493031	0.6630145	0,6655230	0,7549617	0,73000970	0,8448175	0,8662023	
f_0	1,06785011	0.928577098	0,924247177	0,916880399	0,806124740	0.890678094	0.89886751759	0,878962235	0,858045833	0,857323302	0,853554943	0,826825468	0,807728303	0,806485292	0,/9/US5422	0,764852872	0,7390002104	0,7 30490213	0,700424425	0,706495799	0,00400122	0.657870317	0,65390108	0102000000	0.626497323	0.624493109	0,615557473	0,593633762	0,572075542	0,529782964	U,52520280 0.r.15045147	0.512882082	0,507627684	0,496086274	0,491265871	0,485305739 0.45102215	0.451814735	0,419109544	0,396512214	0,356303349	0.312444362	0,299683177	0,299679663	0,273901489	0,282290865	0.216813043	0,216011549	0,175807826	0,16/854242 0.162177362	0,142949436	0,136081047	
Ime	V742 Cyg FV Acr	V563 Cen	FY Vir	PT Tel	V716.Onh	DF Hvi	BOCLA	BH Cet	BF Ser	BI Tel	V2733 Oph	CE Her	BV Cha	VY Pyx	V 32/ 58T	BL Her	VA Cap Vec14 Corr	V 2014 281	AA VII V1140 Her	IN CELLY	MO Ad	KZ Cen	V 2029 Car	V 2022 081 SW Tau	V745 Onh	NW Lvr	V971 Aql	VZ Aq	V 1437 Sgr	V714 Cyg V420 Oct	V439 Upn DT TLA	GK Cen	AT Tel	V477 Oph	V1287 Sco	V 553 Cen V 5608 Ser	IIV Bri	UX Nor	V617 Ara	V351 Cep V465 Onh	DO And	BE CrA	FM Del	BD Cas	V 5609 Sgr	V383 Cve	V675 Cen	V394 Cep	AB AFA TX Del	UY CrA	IT Cep	

ſ	D	4	V	-	V	V	V	D	Q	0	6	ļ		ļ		ļ		0,		
	1 201	Γ	A lerr	72	A2err	е. Г	Allerr	1121	1 v21err	- 181 <i>1</i>	u3lerr	- F	P lerr	- 7	f 2err		U 3err	721 7	llerr 4	
-0,4	181856873	0,379	0,015	0,128	0,031	0,052	0,018	0,338	0,082 (),136 (<u>),046 (</u>	0,705 (),005 <u>(</u>	<u>), 704</u> (<u>),151 (</u>	0,967 C	,232 3	,417 0.	151 - 2, 2	14 0,
-0,0	708052759	0,256	0,011	0,12	0,009	0,053	0,017	0,469	0,038 (),204 (),065 (),564 (0,004 0),647 (0,011 C),782 C	0,287 4	,834 0.	011 3,7	73 0,
0,0	474904849	0,44	0,03	0,165	0,026	0,099	0,033	0,376	0,063 (),224 (),076 (),183 (0,008 C),721 (0,027 0	0,462 0	,253 3	,803 0.	028 2,6	02 0,
0,	125471607	0,2	0,007	0,062	0,006	0,021	0,004	0,307	0,028 (),103 (0.021	0,04 (005	0,29 (0.064 0),887 (0,05 2	.888	064 1,6	0 82
0,3	600883762	0,348	0,01	0,149	0,038	0,063	0,01	0,426	0,109	0,18 (0,029 (0,916 (0,011 0),328 (),232 (), 751 C	0.027 4	,691 0.	232 3,1	67 0,
0,1	89133616	0,421	0,009	0,211	0,013	0,143	0,009	0,501	0,033 (),339 (),023 (),082 (),003 C),423	0,01 C),821 (0,01	3,2 0	,01 0,4	75 0,
-0,	0315215358	0,335	0,015	0,135	0,017	0,089	0,015	0,403	0,052 (),264 (),044 (),492 (0,007 (),353 (),084 C),411 0	0.026 3	,883 0.	085 2,7	29 0,
0,0	0412427448	0,449	0,007	0,192	0,007	0,125	0,006	0,427	0,016 (),279 (),014 (0,421 (0,002 (),184 (),005 C	0,973 C	,008 3	,723 0.	006 1,5	33 0,
0,4	1180467898	0,345	0,009	0,126	0,039	0,047	0,008	0,366	0,114 (),135 (),023 (),687 (),004 (),626 (),224 (),565 (0,08 3	,155 0.	224 0,0	31 0
0,1	125537919	0,381	0,004	0,181	0,004	0,15	0,003	0,474	0,011 (),393 () 600,0), 170,0	0,002 (0,727 (),005 C),807 C	,003 3	,992 0.	005 1,8	59 0,
9	193177078	0,296	0,018	0,132	0,017	0,095	0,011	0,446	0,061 (),322 (),041 (),192 (),008 (),664 (0,017 0),486 C	,064	3,33	019 2,5	6 77 0,
-0,	405999265	0,25	0,003	0,122	0,004	0,057	0,003	0,486	0,014 (),226 (0,012 (0,744 (),002 (),911 (),004 C	0,987 0	,009 4	,229 0.	004 1,6	614 0,
Ģ	0999271593	0,288	0,013	0,13	0,011	0,092	0,012	0,45	0,042 (),319 (),043 (),867 (0,007 (0,011 (0,015 C),351 C	0.022 3	,314 0.	016 1,	58 0,
0	2402365198	0,339	0,005	0,167	0,005	0,108	0,005	0,492	0,015 (),319 (),015 (), 666 (0,002 (),775 (),005 C),858 C	,007 4	,354 0.	006 2,2	64 0,
ò,	1192640116	0,248	0,005	0,112	0,027	0,069	0,005	0,451	0,111 (),278	0,02 (),549 (,005 (,479	0,15 (),472 C	,016	3,97 0	,15 2,	0, 0,
Ó	3506187301	0,339	0,007	0,128	0,034	0,038	0,007	0,376	0,099 (),112 (),019 (0,055 (),004 (),511 (),219 (),008 C	,082	4,09 0.	219 2,1	57 0,
õ	0996712674	0,178	0,013	0,061	0,012	0,031	0,014	0,341	0,07 (),173 (),075 (),438 () 200,0),271 (),023 (),146 C	,047 4	,058 0,	024 2,0	92 0,
0	1255474463	0,285	0,013	0,134	0,039	0,094	0,014	0,469	0,138 (),329 (0,052 (0,862	0,01 (),138	0,25 (),376 C	0.085 4	,173 0	,25 1,8	327 0,
Ó	0033101014	0,331	0,011	0,143	0,034	0,108	0,015	0,43	0,102 (),325 (),044 (),898 (0,007 (),221 (),229 (0,54 C	0.025 4	,248 0.	229 2,1	89 0,
0	,0174676629	0,3	0,008	0,117	0,008	0,084	0,007	0,389	0,027 (),278 (0,025 (0,206 (,004	0,8	0,01 C),421 C	,015 4	,012 0.	011 1,5	0, 0,
0	,0564357467	0,308	0,007	0,121	0,008	0,083	0,019	0,392	0,025 (),269 (0,062 (0,159 (),004 (0,705 (),008 (),243 C	,276 4	,000	009 1,	58 0,
0	,116777591	0,45	0,005	0,237	0,005	0,16	0,005	0,527	0,012 (),356 (), 110,C	0,814 (),002 (),055 (),003 C),293 C	,005 4	,249 0.	004 2,2	06 0,
Ö	1016494432	0,328	0,004	0,097	0,004	0,095	0,004	0,296	0,012 (),289 (),011 (0,054 (),002 (),284 (),004 C),045 C	,006 2	,676 0.	004 2,4	05 0,
Ö	1891806574	0,398	0,004	0,21	0,004	0,136	0,004	0,528	0,01	0,34 (000°C	0,63 (),002 (),681 (),003 (0,74 C	,004 4	,223 0.	003 2,2	11 0,
9	,1905755043	0,226	0,01	0,108	0,009	0,08	0,01	0,477	0,045 (),354 (),045 (),399 (700,0	0,2 (),015 C	1,935 C	0.021 4	,103 0.	017 1,5	04 0,
9	,1496046689	0,226	0,008	0,055	0,008	0,051	0,011	0,242	0,036 (),224 (),049 (),068 (0,007 (),289 (),041 C	0.051 0	.109	2,54 0.	042 2,1	93 0,
Ó	1012537814	0,413	0,029	0,202	0,024	0,171	0,047	0,488	0,067 (),413 (),117 (),232	0,01 0),791 (),029 C	0,479 0	0,192 3	,621 0	,03 1,	78 0,
Ö	2760282635	0,437	0,01	0,205	0,008	0,108	0,006	0,468	0,02 (),247 (),015 (0,104 (,005	0,67 (),011 C),149 (0,02 4	,475 0.	012 2,1	24 0
Ö	2330005586	0,403	0,004	0,236	0,004	0,171	0,003	0,585	0,01 (),424 () 200,0),156 (0,001 (),815 (0,002 C),457 0	,003 4	,726 0.	002 3,0	172 0,
0	,1057600098	0,475	0,006	0,245	0,006	0,159	0,006	0,516	0,013 (),335 (0,012 (0,201 (),002 (),819 (),004 C),441 0	006 4	,188 0.	004 2,1	25 0,
\circ	,0249302774	0,485	0,008	0,208	0,007	0,129	0,008	0,429	0,016 (),266 (),017 (0,414 (0,002 (),214 (0,007 C	0,016 C	,009 3	,0996	007 1,7	27 0,
Υ	0.049133645	0.331	0.016	0.115	0.014	0.055	10.0	0100	2 11 0	0010	,	0000			0 10 1	i i				
				01110	1, U, U, L	0,00	Tnn	0.348	U.U44 (001.1	0,05	1.208 () GUU.(),811 () 010 (<u>1,716</u> С	0.036 4	.051 0.	017 3.7	77 0,

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	err	35	10	275	226	378	29	87	345	125	33	81	11.	02	-07	1 63	32	82	152	248	02	35	.23	128	151	.57	139	.72
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 9	4 0,0	8 0,0	2 0,2	4 0,2	4 0,5	6 0,	6 0,1	4 0.5	2 0,0	5 0,0	7 0,2	7 0,1	8 0,	1 0,1	7 0,2	6 0,0	1 0,0	2 0,0	7 0,2	1 0,	3 0,0	5 0,1	9 0,0	8 0,0	2 0,1	1 0,0	2 0,1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P 31	3,98	1,09	4,02	4,17	0,11	3,76	2,93	3,83	3,11	6,25	3,94	2,21	3,72	2,42	2,49	4,04	2,71	0,07	3,46	2,54	0,16	2,45	2,21	5,69	3,16	3,62	1.10
$ \begin{array}{c} {\rm OCLE} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	φ_{2lerr}	0,013	0,012	0,028	0,395	0,293	0,076	0,02	0,012	0,013	0,016	0,101	0,007	0,162	0,062	0,049	0,008	0,247	0,081	0,252	0,007	0,006	0,395	0,024	0,067	0,073	0,218	0.014
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	φ_{21}	4,07	4,142	4,099	5,372	3,968	4,906	4,649	4,08	4,403	4,398	5,089	4,412	5,077	4,823	4,692	5,244	4,075	4,948	4,989	4,275	3,951	4,073	4,786	4,237	4,611	5,103	4,208
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	φ_{3err}	0,035	0,018	0,275	0,226	0,378	0,29	0,187	0,345	0,024	0,032	0,28	0,111	0,02	0,197	0,263	0,031	0,059	0,052	0,248	0,019	0,035	0,122	0,028	0,051	0,157	0,039	0,172
$ \begin{array}{cccccl} DCLE & f_0 & \log P & A_1 & A_{urr} & A_2 & A_{urr} & A_3 & A_{urr} & A_3 & A_{urr} & R_3 & R_{10rr} & \gamma_1 & \gamma_{10rr} & \gamma_2 & \gamma_{20rr} & \gamma_2 & \gamma_2 & \gamma_{20rr} & \gamma_2 & \gamma_$	ϵ_3	0,871	0,886	0,207	0.97	0,422	0,891	0,345	0,865	0,138	0,582	0,172	0,829	0,558	0,197	0,446	0,913	0,91	0,75	0,372	0,545	0,193	0,881	0,468	0,489	0,098	0,692	0,063
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P2err	0,012	0,011	0,027	0,395	0,293	0,076	0,018	0,011	0,013	0,015	0,1	0,007	0,161	0,061	0,049	0,008	0, 24	0,08	0,252	0,007	0,006	0,395	0,024	0,067	0,073	0,218	0,013
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ş	0,889	0,884	0,448	0,142	0,318	0,392	0,076	0,57	0,88	0,508	0,59	0, 77	0,535	0,059	0,863	0,097	0,051	0,03	0,425	0,858	0,157	0,392	0,922	0,146	0,214	0,306	0.012
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	φ_{1err}	0,003	0,005	0,006	0,007	0,003	0,008	0,009	0,005	0,003	0,004	0,011	0,002	0,005	0,009	0,005	0,003	0,058	0,004	0,006	0,002	0,002	0,005	0,004	0,004	0,004	0,004	0.004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathcal{E}_1	0,246	0,738	0,023	0,269	0,968	0,931	0,793	0,585	0,715	0,029	0,015	0,659	0,488	0,771	0,183	0,257	0,327	0,746	0,44	0,214	0,889	0,997	0,205	0,361	0,365	0,872	0.796
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R_{31err}	0,018	0,025	0,038	0,062	0,076	0,037	0,06	0,017	0,015	0,02	0,091	0,015	0,035	0,068	0,027	0,016	0,024	0,028	0,04	0,011	0,014	0,031	0,023	0,026	0,025	0,021	0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R_{31}	0,123	0,209	0,089	0,155	0,15	0,061	0,196	0,057	0,083	0,111	0,249	0,061	0,175	0,199	0,07	0,111	0,077	0,144	0,112	0,101	0,135	0,091	0,125	0,089	0,041	0,157	0.21
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R_{21err}	0,028	0,028	0,036	0,11	0,11	0,065	0,027	0,027	0,017	0,022	0,074	0,013	0,039	0,055	0,032	0,021	0,06	0,029	0,084	0,012	0,013	0,062	0,021	0,029	0,03	0,075	0.035
$\begin{array}{c ccccccc} J_0 & \log P & A_1 & A_{1\mathrm{err}} & A_2 & A_{2\mathrm{err}} & A_3 & A_{3\mathrm{err}} \\ LMC-\\ T & 0.804721291 & 0.0945543081 & 0.363 & 0.008 & 0.001 & 0.045 & 0.001 \\ 0.567734944 & 0.2458543742 & 0.413 & 0.011 & 0.045 & 0.011 \\ 24 & 0.527734944 & 0.2458543742 & 0.413 & 0.011 & 0.045 & 0.011 \\ 24 & 0.80212731 & 0.0995756037 & 0.37 & 0.014 & 0.096 & 0.013 & 0.033 \\ 48 & 0.691842499 & 0.1599927633 & 0.447 & 0.016 & 0.082 & 0.028 & 0.001 \\ 48 & 0.691842499 & 0.1599927633 & 0.447 & 0.016 & 0.082 & 0.023 & 0.007 \\ 53 & 0.95877363 & 0.0182839193 & 0.447 & 0.016 & 0.012 & 0.011 & 0.007 \\ 53 & 0.95877363 & 0.0122327826 & 0.433 & 0.006 & 0.012 & 0.011 & 0.007 \\ 53 & 0.95877363 & 0.022327786 & 0.3433 & 0.006 & 0.012 & 0.011 & 0.007 \\ 61 & 0.80680959 & 0.022327786 & 0.318 & 0.005 & 0.023 & 0.005 \\ 61 & 0.80680959 & 0.022327786 & 0.318 & 0.005 & 0.012 & 0.011 & 0.007 \\ 61 & 0.8067393937 & 0.0015156017 & 0.431 & 0.016 & 0.013 & 0.025 & 0.005 \\ 62 & 0.979135568 & 0.2006387732 & 0.384 & 0.019 & 0.113 & 0.014 & 0.005 \\ 60 & 0.979135568 & 0.20063877425 & 0.3231082346 & 0.427 & 0.02 & 0.013 & 0.005 \\ 61 & 0.887399397 & 0.0015156017 & 0.421 & 0.001 & 0.012 & 0.013 \\ 71 & 0.827393938 & 0.0016 & 0.013 & 0.014 & 0.016 & 0.023 & 0.005 \\ 72 & 0.233840472 & 0.3231082346 & 0.427 & 0.02 & 0.023 & 0.002 \\ 71 & 0.827393308 & 0.041449589 & 0.151 & 0.002 & 0.023 & 0.002 \\ 92 & 0.323840472 & 0.3231082346 & 0.224 & 0.012 & 0.012 & 0.023 & 0.002 \\ 92 & 0.323840472 & 0.3231082346 & 0.153 & 0.002 & 0.023 & 0.006 & 0.034 & 0.005 \\ 92 & 0.789875544 & 0.16992475305 & 0.234 & 0.006 & 0.033 & 0.006 & 0.007 & 0.006 & 0.003 & 0.014 & 0.006 & 0.004 \\ 92 & 0.789875544 & 0.129924364 & 0.214 & 0.012 & 0.028 & 0.006 & 0.004 & 0.006 & 0.001 & 0.006 & 0.001 & 0.001 & 0.006 & 0.001 & 0.001 & 0.001 & 0.001 & 0.006 & 0.001 & 0$	R_{21}	0,27	0,408	0,258	0,321	0,345	0,272	0,454	0,244	0,199	0,243	0,282	0,322	0,34	0,321	0,255	0,301	0,207	0,168	0,253	0,283	0,343	0,225	0,134	0,19	0,179	0,283	0.277
$\begin{array}{c cccccc} f_0 & \log P & A_1 & A_{1err} & A_2 & A_{2rrr} & A_3 \\ 12MC \\ T & 0.804721291 & 0.0043545081 & 0.363 & 0.008 & 0.011 & 0.087 \\ 0.567734944 & 0.2556397 & 0.37 & 0.011 & 0.066 & 0.013 & 0.087 \\ 0.567734944 & 0.2556397 & 0.37 & 0.011 & 0.066 & 0.013 & 0.083 \\ 0.567734949 & 0.1599927633 & 0.426 & 0.026 & 0.011 & 0.088 \\ 0.601842499 & 0.1599927633 & 0.426 & 0.026 & 0.014 & 0.006 & 0.023 \\ 0.00093736 & 0.254110433 & 0.599907961 & 0.176 & 0.009 & 0.048 & 0.011 \\ 0.0093736 & 0.309097761 & 0.176 & 0.009 & 0.048 & 0.012 & 0.028 \\ 0.0018680959 & 0.0152837538 & 0.186 & 0.003 & 0.001 & 0.088 \\ 0.0018680959 & 0.022377826 & 0.433 & 0.008 & 0.106 & 0.021 & 0.028 \\ 0.0018680959 & 0.02237826 & 0.433 & 0.003 & 0.011 & 0.008 \\ 0.0018680959 & 0.02237826 & 0.433 & 0.006 & 0.012 & 0.028 \\ 0.001335668 & 0.200937536 & 0.177 & 0.051 & 0.012 & 0.028 \\ 0.952135668 & 0.2009135017 & 0.431 & 0.006 & 0.033 & 0.005 \\ 0.94167566 & 0.0091380346 & 0.427 & 0.026 & 0.023 & 0.028 \\ 0.9475216778 & 0.32331082346 & 0.427 & 0.026 & 0.023 & 0.028 \\ 0.94174958 & 0.3231082346 & 0.427 & 0.026 & 0.023 & 0.028 \\ 0.94174958 & 0.3231082346 & 0.427 & 0.026 & 0.023 & 0.028 \\ 0.94177 & 0.823386378 & 0.006 & 0.038 & 0.006 & 0.023 & 0.028 \\ 0.94177 & 0.823386376 & 0.33210824267 & 0.323 & 0.006 & 0.023 & 0.028 \\ 0.941778 & 0.323840472 & 0.3231082346 & 0.123 & 0.006 & 0.023 & 0.028 \\ 0.94177819 & 0.4231336 & 0.14113336 & 0.1431 & 0.006 & 0.023 & 0.028 \\ 0.6667704 & 0.0678183726 & 0.3323 & 0.006 & 0.038 & 0.006 & 0.038 \\ 0.67615704 & 0.1629413336 & 0.133 & 0.006 & 0.038 & 0.006 & 0.038 \\ 0.67615704 & 0.1629413336 & 0.133 & 0.006 & 0.038 & 0.006 & 0.038 \\ 0.67615704 & 0.17571438 & 0.1411343561 & 0.312 & 0.006 & 0.038 & 0.006 & 0.038 \\ 0.717571438 & 0.1411343561 & 0.312 & 0.006 & 0.038 & 0.006 & 0.038 \\ 0.717571438 & 0.71771438 & 0.74413336 & 0.312 & 0.006 & 0.038 & 0.006 & 0.038 \\ 0.717571438 & 0.71771438 & 0.74413336 & 0.133 & 0.006 & 0.023 & 0.028 & 0.056 \\ 0.5084772942 & 0.5234255186 & 0.133 & 0.006 & 0.038 & 0.006 & 0.038 \\ 0.717771438 & 0.777893958 & 0.7$	A_{3err}	0,007	0,011	0,014	0,016	0,033	0,007	0,027	0,007	0,005	0,005	0,016	0,007	0,013	0,029	0,004	0,005	0,009	0,007	0,014	0,005	0,006	0,008	0,007	0,009	0,004	0,007	0.017
$\begin{array}{llllllllllllllllllllllllllllllllllll$	A_3	0,045	0,087	0,033	0,04	0,064	0,011	0,088	0,025	0,027	0,024	0,045	0,027	0,067	0,085	0,011	0,033	0,029	0,033	0,039	0,044	0,055	0,022	0,036	0,028	0,006	0,054	0.071
$\begin{array}{ccccc} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	A_{2err}	0,01	0,011	0,013	0,028	0,046	0,012	0,01	0,012	0,006	0,005	0,013	0,006	0,014	0,023	0,005	0,006	0,022	700,0	0,029	0,005	0,006	0,015	0,006	0,009	0,004	0,026	0.012
$\begin{array}{c ccccc} f_0 & \log P & A_1 & A_{1evr} \\ 12 \text{CEP} & f_0 & 804721291 & 0.0043545081 & 0.363 & 0.008 \\ \hline 7 & 0.804721291 & 0.0043545081 & 0.363 & 0.001 \\ 24 & 0.567734944 & 0.2458543742 & 0.413 & 0.011 \\ 24 & 0.80212731 & 0.095756087 & 0.37 & 0.016 \\ 48 & 0.601842499 & 0.1599927633 & 0.426 & 0.005 \\ 49 & 0.30903736 & 0.599907961 & 0.176 & 0.005 \\ 53 & 0.95877363 & 0.0182839193 & 0.447 & 0.015 \\ 60 & 0.80680959 & 0.092527826 & 0.433 & 0.005 \\ 61 & 0.80680959 & 0.092537588 & 0.216 & 0.005 \\ 63 & 0.80683756 & 0.091353001 & 0.177 & 0.0015 \\ 66 & 0.80633756 & 0.091353001 & 0.176 & 0.005 \\ 68 & 0.979185356 & 0.0091353001 & 0.179 & 0.005 \\ 68 & 0.979185356 & 0.0091353001 & 0.179 & 0.005 \\ 77 & 0.8238607704 & 0.091353001 & 0.179 & 0.002 \\ 77 & 0.8238617704 & 0.091353001 & 0.179 & 0.002 \\ 90 & 0.676157704 & 0.06115156017 & 0.431 & 0.002 \\ 90 & 0.676157704 & 0.06115156017 & 0.431 & 0.002 \\ 90 & 0.676157704 & 0.06115156017 & 0.431 & 0.002 \\ 90 & 0.676157704 & 0.06115126017 & 0.431 & 0.002 \\ 90 & 0.676157704 & 0.06115126017 & 0.431 & 0.002 \\ 90 & 0.676157704 & 0.06115126017 & 0.431 & 0.002 \\ 90 & 0.676157704 & 0.06115126017 & 0.431 & 0.002 \\ 90 & 0.676157704 & 0.007231294261 & 0.3712 & 0.006 \\ 91 & 0.729875160 & 0.1729852963 & 0.406 \\ 91 & 0.7298751204 & 0.129852963 & 0.406 \\ 91 & 0.7298751204 & 0.129852963 & 0.406 \\ 91 & 0.7298751204 & 0.129852963 & 0.406 \\ 91 & 0.939742321528 & 0.234 & 0.006 \\ 91 & 0.779832918 & 0.44113336 & 0.131 & 0.006 \\ 91 & 0.779832918 & 0.44113336 & 0.131 & 0.006 \\ 91 & 0.779832918 & 0.44113336 & 0.131 & 0.006 \\ 91 & 0.779832500 & 0.933 & 0.4076 & 0.006 \\ 91 & 0.7798325184 & 0.233 & 0.4076 & 0.006 \\ 91 & 0.7798325184 & 0.233 & 0.234 & 0.006 \\ 91 & 0.7798325184 & 0.233 & 0.234 & 0.006 \\ 91 & 0.7798325184 & 0.2339 & 0.233 & 0.0076 \\ 91 & 0.7798325184 & 0.2338 & 0.207521200 & 0.333 & 0.004 \\ 91 & 0.77183938 & 0.44413336 & 0.133 & 0.004 \\ 91 & 0.77183938 & 0.44413336 & 0.133 & 0.0076 \\ 91 & 0.77183938 & 0.44413336 & 0.133 & 0.0076 \\ 91 & 0.77183938 & 0.44413336 & 0.133 & 0.0076 \\ 91 & 0.77183938 & 0.44$	A_2	0,098	0,169	0,096	0,082	0,147	0,048	0,203	0,106	0,063	0,053	0,051	0,139	0,131	0,138	0,039	0,09	0,077	0,038	0,088	0,123	0,14	0,054	0,038	0,06	0,024	0,097	0.094
OGLE- f_0 log P A_1 LMC- T2CEP A_1 A_2 T2CEP 0.804721291 0.0943545081 0.363 2 0.567734944 0.2458543742 0.373 29 0.567734944 0.2458543742 0.373 29 0.567734944 0.2458543742 0.373 29 0.30212731 0.0925256697 0.373 29 0.30913736 0.5099097661 0.176 53 0.95877363 0.0182839193 0.447 60 0.809213761 0.0176 0.373 61 0.80921385666 0.0091355091 0.176 71 0.823840472 0.4896688762 0.316 63 0.972185766 0.0091355091 0.171 77 0.8233840472 0.4336670 0.433 77 0.8233840472 0.32588866 0.3268 77 0.8233840472 0.32588866 0.3268 77 0.8233840472 0.3231294364 0.2248	A_{lerr}	0,008	0,01	0,014	0,016	0,026	0,009	0,015	0,008	0,005	0,005	0,017	0,006	0,019	0,02	0,005	0,006	0,02	0,006	0,02	0,006	0,005	0,008	0,006	0,007	0,004	0,006	0.012
$\begin{array}{c cccc} f_0 & \log P \\ \mathrm{LMC} & f_0 & \log P \\ \mathrm{LMC} & 12 \mathrm{CEP} & 0.804721291 & 0.0943545081 \\ 7 & 0.804721291 & 0.09435456097 \\ 30 & 0.557734944 & 0.2458543742 \\ 24 & 0.80212731 & 0.0957566097 \\ 30 & 0.5990907366 & 0.3099097961 \\ 53 & 0.90903736 & 0.5099097961 \\ 53 & 0.90903736 & 0.092227839193 \\ 60 & 0.801842499 & 0.1599927633 \\ 61 & 0.8021355688 & 0.0724378428 \\ 63 & 0.6213856889 & 0.0724378428 \\ 63 & 0.921385688 & 0.00232278366 \\ 61 & 0.846373695 & 0.00232278366 \\ 61 & 0.846373695 & 0.00232278428 \\ 62 & 0.921385688 & 0.00232278428 \\ 63 & 0.921385688 & 0.00232278428 \\ 63 & 0.921385688 & 0.00232278428 \\ 63 & 0.921385688 & 0.002323278428 \\ 63 & 0.921385688 & 0.002323294364 \\ 77 & 0.82386308 & 0.00615156017 \\ 77 & 0.82386308 & 0.00615156017 \\ 77 & 0.82386308 & 0.00718228756 \\ 77 & 0.8238637425 & 0.5321294364 \\ 77 & 0.8238637425 & 0.5321294364 \\ 77 & 0.8238637425 & 0.5321294364 \\ 77 & 0.82386376 & 0.00718228756 \\ 77 & 0.82386376 & 0.00718228756 \\ 77 & 0.82386376 & 0.00718228756 \\ 77 & 0.82386376 & 0.00718228756 \\ 77 & 0.82386376 & 0.00718228756 \\ 77 & 0.82386376 & 0.00718228756 \\ 77 & 0.82386376 & 0.00718228756 \\ 77 & 0.82386376 & 0.00718228756 \\ 77 & 0.82386376 & 0.00718228756 \\ 77 & 0.82386376 & 0.00718228756 \\ 77 & 0.82386376 & 0.0071828776 \\ 78 & 0.37382133466 & 0.4177281394 \\ 9.717571438 & 0.4177881394 \\ 9.717571438 & 0.4177881336 \\ 9.342555186 & 0.417788366 \\ 9.98472942 & 0.52342555186 \\ 9.98472942 & 0.52342555186 \\ 9.946772902 & 0.23342555186 \\ 9.946772942 & 0.52342555186 \\ 9.946772942 & 0.52342555186 \\ 9.946772942 & 0.52342555186 \\ 9.946772942 & 0.52342555186 \\ 9.946772942 & 0.52342555186 \\ 9.946772942 & 0.52342555186 \\ 9.946772942 & 0.52342555186 \\ 9.946772942 & 0.52342555186 \\ 9.946772942 & 0.52342555186 \\ 9.9467729292 & 0.942782926 \\ 9.9467729292 & 0.942782926 \\ 9.9467729292 & 0.9237221528 \\ 9.947789292 & 0.9427729292 \\ 9.947789292 & 0.9237221528 \\ 9.947789292 & 0.923722158 \\ 9.947789292 & 0.923722158 \\ 9.94789292 & 0.923722158 \\ 9.947789292 & 0.923722158 \\ 9.947789292 & 0.923722158 \\ 9.947789292 & 0.$	A_1	0,363	0,413	0,37	0,256	0,426	0,176	0,447	0,433	0,316	0,218	0,179	0,431	0,384	0,427	0,151	0,298	0,373	0,224	0,347	0,436	0,408	0,239	0,284	0,312	0,13	0,343	0.338
$\begin{array}{c} \text{OGLLE-} f_0 \\ \text{LMC-} \\ \text{LMC-} \\ 7 & 0.804721201 \\ 9 & 0.567734944 \\ 24 & 0.5677349449 \\ 24 & 0.5677349449 \\ 48 & 0.691842499 \\ 49 & 0.309093756 \\ 53 & 0.95877363 \\ 60 & 0.98680959 \\ 61 & 0.80680959 \\ 61 & 0.91842499 \\ 61 & 0.9203736 \\ 61 & 0.9203736 \\ 61 & 0.9203736 \\ 71 & 0.821385688 \\ 69 & 0.97185568 \\ 71 & 0.827386308 \\ 85 & 0.97185568 \\ 77 & 0.82386308 \\ 85 & 0.93667704 \\ 90 & 0.676157704 \\ 92 & 0.82183436 \\ 105 & 0.6714557 \\ 105 & 0.67145576 \\ 107 & 0.827030392 \\ 116 & 0.508472942 \\ 138 & 0.717571438 \\ 145 & 0.29962254 \\ 145 & 0.23962254 \\ 146 & 0.508472942 \\ 128 & 0.717571438 \\ 148 & 0.73728955842 \\ 148 & 0.73728955842 \\ 148 & 0.7372895584 \\ 148 & 0.7372895584 \\ 148 & 0.7372895584 \\ 148 & 0.7372895584 \\ 148 & 0.7372895584 \\ 148 & 0.7372895584 \\ 148 & 0.7372895584 \\ 148 & 0.7372895584 \\ 148 & 0.7372895584 \\ 148 & 0.7372895584 \\ 148 & 0.7372895584 \\ 148 & 0.7372895584 \\ 148 & 0.7372895584 \\ 148 & 0.7372895584 \\ 148 & 0.7372895584 \\ 148 & 0.7372895584 \\ 148 & 0.7372885584 \\ 148 & 0.7372885584 \\ 148 & 0.7372885584 \\ 148 & 0.7372885584 \\ 148 & 0.7372885584 \\ 148 & 0.7372885584 \\ 148 & 0.7372885584 \\ 148 & 0.7372885584 \\ 148 & 0.7372885584 \\ 148 & 0.7372885584 \\ 148 & 0.7372885584 \\ 148 & 0.7372885584 \\ 148 & 0.7372885584 \\ 148 & 0.7372885864 \\ 148 & 0.73728858664 \\ 148 & 0.7374888958666666666666666666666666666666666$	$\log P$	0,0943545081	0,2458543742	0,095756697	0,5949775038	0,1599927633	0,5099097961	0,0182839193	0,0922227826	0,0724378428	0,2066387538	0,0091350901	0,0615156017	0,4896688762	0,3231082346	0,0841449589	0,5321294364	0,0671828726	0,1699524297	0,4177281394	0,1024413336	0, 1729825963	0,0824785305	0,2937321528	0,1441348561	0,5234255186	0,4267925092	0.244693639
$\begin{array}{c} 0.0 \text{GLE} \\ 12 \text{MGLE} $	f_0	0,804721291	0,567734944	0,80212731	0,254110433	0,691842499	0,309093736	0,95877363	0,808680959	0,846373695	0,621385688	0,979185356	0,867929397	0,323840472	0,475216778	0,82386308	0,293677425	0,85667704	0,676157034	0,382183436	0,789875542	0,67145576	0,827030392	0,508472942	0, 717571438	0,29962254	0,374289368	0.569254354
	OGLE LMC- T2CEF	7	6	24	30	48	49	R	09	61	88	69	71	23	26	11	85	68	6	92	102	105	107	116	138	145	148	160

Tabela A.5: 3. Furijeovi parametri cefeida tipa II u Velikom Magelanovom oblaku dobijeni koristeći podatke iz kataloga OGLE-III u V filteru.

A.6 Klasifikacija zvezda iz Mlečnog puta na osnovu podudaranja sa uzorkom iz kataloga OGLE-III

Izračunati Furijeovi parametri su dati u tabelama A.5:1, A.5:2 i A.5:3. Opis podataka je dat u poglavlju 2, odeljak 2.2. Metod Furijeove dekompozicije je opisan u poglavlju 3, odeljak 3.4. Uzorak iz kataloga OGLE-III je služio kao referentna tačka za upoređivanje, radi reklasifikacije zvezda iz Mlečnog puta. Ovaj postupak je opisan u poglavlju 7, odeljak 7.1. Klasifikacija zvezda iz Mlečnog puta je data u tabeli A.6. Zvezde su poređane po rastućim periodima, kao i u tabeli A.5: 1. Oznaka "B" označava zvezde tipa *BL Herculis*, "A" označava anomalne cefeide, "C" je oznaka za klasične cefeide, a "P" su neobične zvezde tipa *W Virginis.* "A/B", "A/B/C", "B/C", "C/P" su zvezde kod kojih klasifikacija na osnovu Furijeovih parametara nije bila jednoznačna. Znak pitanja "?" označava da je nova klasifikacija nesigurna. Zvezdicom pored imena su označene zvezde kod kojih je u poglavlju 7 bilo neophodno dati detaljan opis karakteristika iz prethodno objavljene literature. Tabela A.6: Klasifikacija zvezda iz Mlečnog puta iz proučavanog uzorka na osnovu vizuelne inspekcije krive sjaja i popudarnosti njihovih Furijeovih parametara sa Furijeovim parametrima poznatih cefeida tipa II i anomalnih cefeida iz kataloga OGLE-III. Zvezde su poređane po rastućim periodima, kao i u tabeli A.5:1. Za oznake "A", "B", "C" i "P", kao i njihove kombinacije videti prethodni tekst. Zvezdicom su označene zvezde koje su detaljno opisane u poglavlju 7.

Ime	R_{21}	R_{31}	φ_{21}	φ_{31}	A_2	A_3	Novi tip
V742 Cyg *	A	A	A	A	A	A/B	A
FY Aqr	А	А	А	А	Α	A	А
V563 C en	А	А	А	А	А	А	А
FY Vir*	А	А	А	Α	Α	А	А
PP Tel	А	А	А	Α	Α	А	А
BX Del	A/B	A/B	В	В	A/B	A/B	В
V716 Oph*	A	A	А	А	A	A	А
DF Hyi	А	А	А	A/B	Α	А	А
BQ CrA*	А	А	A/B	A/B	Α	А	А
BH Cet	Α	Α	A	A	Α	Α	А
BF Ser	А	Α	А	А	А	А	А
BI Tel [*]	Α	Α	A/B	В	Α	Α	А
V2733 Oph	Α	A/B	A/B	Α	Α	А	А
CE Her	Α	Α	В	Α	Α	Α	А
BV Cha	Α	Α	В	A/B	A/B	Α	В
VY Pyx	В	В	В	В	В	В	В
$V527 \ Sgr$	A/B	В	A/B	В	A/B	В	В
$BL Her^*$	А	А	A/B	A/B	A/B	А	В
VX Cap	А	А	В	А	А	А	А
$V5614 \ Sgr$	A/B	A/B	В	В	A/B	A/B	В
XX Vir*	А	А	A/B	А	А	А	А
V1149 Her	Α	Α	A/B	А	А	Α	А
HQ CrA	В	В	В	A/B	A/B	В	В
MQ Aql	А	А	А	Α	Α	А	А
$KZ Cen^*$	A/B	В	A/B	В	В	В	В
$V2022 \text{ Sgr}^*$	В	В	В	В	В	В	В
SW Tau	В	В	A/B	В	A/B	В	В
V745 Oph	А	А	А	Α	В	А	А
NW Lyr	В	В	A/B	В	A/B	A/B	В
V971 Aql	В	В	В	В	В	В	В
VZ Aql	A/B	A/B	В	A/B	А	А	B?
V1437 Sgr*	В	В	В	В	A/B	В	В
V714 Cyg	В	A/B	A/B	В	A/B	A	В
V439 Oph	В	В	В	В	В	В	В
RT TrA*	В	В	В	В	В	В	В
GK Cen	B	В	B	В	В	В	В
AT Tel	A/B	В	A/B	В	В	В	В
V477 Oph*	В	В	A/B	B	B	В	В
V1287 Sco	A	A	A/C	A/B/C	A/B	В	B?
V553 Cen*	В	В	A/C	В	В	В	В
V 5608 Sgr	В	B A/D	В	В	В	В	B
UY Eri	A	A/B	A	A A /D	В	В	A :
UA NOF VG17 Are	A/U D	A/U D	A A/D	A/B D	A D	A D	A: D
V017 Ara V251 Cap*	B D/C	B D/C	A/B C	B	В	В	D
V 551 Cep	- D/С - D	D/U D	D	D	- D	- D	D
DO And*	D C	D C	D C	D C	D	D	ь С
DQ Allu BE CrA	B	B	B	B	B	- B	B
EM Del	C	C	C	C	D	D	с С
BD Cas*	Ċ	Ċ	C	C	-	-	Ċ
V5609 Sar	B/C	B/C	B	B	B	B	B
OV Cyg	D/0 C?	D/0 C?	C	C	D	D -	C
-≪+ ∪yg V383 Cuσ	B/C	С.	č	Č	-	-	č
V675 Cen	D/C	c	C?	B/C	-	-	c
V394 Cen	č	č	С.	C	-	-	č
AB Ara	č	C/P	C/P	Č	_	-	č
TX Del*	B/C	C	C	C/P		,	č
UY CrA*	C/P	č	P	C/P	-	-	P?
IT Cep*	Č/P	C∕P	C/P	Č/P	-	-	P?
Bibliografija

- Acharova, I. A., Mishurov, Y. N., & Kovtyukh, V. V. 2012, MNRAS, 420, 1590
- Aerts, C., Christensen-Dalsgaard, J., & Kurtz, D. W. 2010, Asteroseismology, Springer, Dordrecht, Heidelberg, London, New York
- Alcock, C., Akerlof, C. W., Allsman, R. A., et al. 1993, Nature, 365, 621
- Alcock, C., Allsman, R. A., Alves, D. R., et al. 2002, ApJ, 573, 338
- Allende Prieto, C., Rebolo, R., García López, R. J., et al. 2000, AJ, 120, 1516
- Ammons, S. M., Robinson, S. E., Strader, J., et al. 2006, ApJ, 638, 1004
- Andrievsky, S. M., Lépine, J. R. D., Korotin, S. A., et al. 2013, MNRAS, 428, 3252
- Arellano Ferro, A. 1984, MNRAS, 209, 481
- Arellano Ferro, A., & Rosenzweig, P. 2000, MNRAS, 315, 296
- Baade, W. 1956, PASP, 68, 5
- Balog, Z., & Vinko, J. 1995, Information Bulletin on Variable Stars, 4150
- Balog, Z., Vinko, J., & Kaszas, G. 1997, AJ, 113, 1833
- Beaulieu, J. P., Grison, P., Tobin, W., et al. 1995, A&A, 303, 137
- Benedict, G. F., McArthur, B. E., Feast, M. W., et al. 2011, AJ, 142, 187
- Benkő, J. M., Kolenberg, K., Szabó, R., et al. 2010, MNRAS, 409, 1585
- Berdnikov, L. N. 2008, VizieR Online Data Catalog, 2285, 0

- Berdnikov, L. N., Kniazev, A. Y., Sefako, R., et al. 2015, Astron. Lett., 41, 23
- Berdnikov, L. N., Kniazev, A. Y., Sefako, R., Kravtsov, V. V., & Zhujko, S. V. 2014, Astron. Lett., 40, 125
- Bessell, M. S. 2005, ARA&A, 43, 293
- Bhardwaj, A., Macri, L. M., Rejkuba, M., et al. 2017, AJ, 153, 154
- Blanco, B. M. 1984, AJ, 89, 1836
- Bobylev, V. V. 2008, Astron. Lett., 34, 686
- Bono, G., Caputo, F., & Santolamazza, P. 1997a, A&A, 317, 171
- Bono, G., Caputo, F., Santolamazza, P., Cassisi, S., & Piersimoni, A. 1997b, AJ, 113, 2209
- Bono, G., Castellani, V., & Marconi, M. 2000, ApJ, 529, 293
- Boyer, M. L., Srinivasan, S., van Loon, J. T., et al. 2011, AJ, 142, 103
- Breitfelder, J., Kervella, P., Mérand, A., et al. 2015, A&A, 576, A64
- Bressan, A., Marigo, P., Girardi, L., Nanni, A., & Rubele, S. 2013, in European Physical Journal Web of Conferences, Vol. 43, European Physical Journal Web of Conferences, 03001
- Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127
- Buchler, J. R., & Kovacs, G. 1987, ApJL, 320, L57
- Buchler, J. R., & Moskalik, P. 1992, ApJ, 391, 736
- Burki, G., & Meylan, G. 1986, A&A, 159, 261
- Caldwell, C. N., & Butler, D. 1978, AJ, 83, 1190
- Carroll, B. W., & Ostlie, D. A. 2006, An introduction to modern astrophysics and cosmology, Pearson, Addison-Wesley, San Francisco

- Castor, J. I. 1968, ApJ, 154, 793
- Catelan, M. 2007, American Institute of Physics Conference Series, Vol. 930, Graduate School in Astronomy: XI Special Courses at the National Observatory of Rio de Janeiro (XI CCE), ed. F. Roig & D. Lopes, 39
- Catelan, M., & Smith, H. A. 2015, Pulsating Stars, Wiley-VCH, Weinheim
- Ciechanowska, A., Pietrzyński, G., Szewczyk, O., Gieren, W., & Soszyński, I. 2010, AcA, 60, 233
- Cioni, M.-R. L., Clementini, G., Girardi, L., et al. 2011a, A&A, 527, A116
- —. 2011b, A&A, 527, A116
- Clement, C. M. 2017, VizieR Online Data Catalog, 5150
- Clement, C. M., Muzzin, A., Dufton, Q., et al. 2001, AJ, 122, 2587
- Coughlin, J. L., Thompson, S. E., Bryson, S. T., et al. 2014, AJ, 147, 119
- Cox, J. P. 1980, Theory of stellar pulsation, Princeton University Press, Princeton
- Cutri, R. M., & et al. 2014, VizieR Online Data Catalog, 2328
- Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2012, VizieR Online Data Catalog, 2281
- de Grijs, R., & Bono, G. 2015, AJ, 149, 179
- de Grijs, R., Wicker, J. E., & Bono, G. 2014, AJ, 147, 122
- Di Criscienzo, M., Caputo, F., Marconi, M., & Cassisi, S. 2007, A&A, 471, 893
- Diethelm, R. 1983, A&A, 124, 108
- —. 1990, A&A, 239, 186
- Dinescu, D. I. 2002, Astronomical Society of the Pacific Conference Series, Vol. 265, Omega Centauri, A Unique Window into Astrophysics, F. van Leeuwen, J. D. Hughes & G. Piotto, 365

- Dotter, A., Chaboyer, B., Jevremović, D., et al. 2008, ApJS, 178, 89
- Drake, A. J., Djorgovski, S. G., Mahabal, A., et al. 2009, ApJ, 696, 870
- Drake, A. J., Graham, M. J., Djorgovski, S. G., et al. 2014a, ApJS, 213, 9

—. 2014b, VizieR Online Data Catalog, 221

- Drake, A. J., Djorgovski, S. G., Catelan, M., et al. 2017, MNRAS, 469, 3688
- Dubath, P., Rimoldini, L., Süveges, M., et al. 2011, MNRAS, 414, 2602
- Eddington, A. S. 1918a, MNRAS, 79, 2
- —. 1918b, The Observatory, 41, 379
- —. 1919, MNRAS, 79, 177
- Eyer, L., & Mowlavi, N. 2008, Journal of Physics Conference Series, Vol. 118, Journal of Physics Conference Series, 012010
- Feast, M. W., Laney, C. D., Kinman, T. D., van Leeuwen, F., & Whitelock, P. A. 2008, MNRAS, 386, 2115
- Fernie, J. D. 1968, AJ, 73, 995
- Fiorentino, G., Limongi, M., Caputo, F., & Marconi, M. 2006a, A&A, 460, 155
- —. 2006b, A&A, 460, 155
- Fiorentino, G., & Monelli, M. 2012, A&A, 540, A102
- Fokin, A. B., & Gillet, D. 1994, A&A, 290, 875
- Galazutdinov, G. A., & Klochkova, V. G. 1995, Astronomical and Astrophysical Transactions, 8, 227
- Gesicki, K., Zijlstra, A. A., Hajduk, M., & Szyszka, C. 2014, A&A, 566, A48
- Gezer, I., Van Winckel, H., Bozkurt, Z., et al. 2015, MNRAS, 454, 804
- Gielen, C., van Winckel, H., Reyniers, M., et al. 2009, A&A, 508, 1391

- Gielen, C., Bouwman, J., van Winckel, H., et al. 2011, A&A, 533, A99
- Gillet, D., Burki, G., Chatel, A., Duquennoy, A., & Lebre, A. 1994, A&A, 286, 508
- Gingold, R. A. 1976, ApJ, 204, 116
- —. 1985, Memorie Società Astronomica Italiana, 56, 169
- Gratton, R. G., Bragaglia, A., Clementini, G., et al. 2004, A&A, 421, 937
- Groenewegen, M. A. T. 2012, A&A, 543, A36
- Groenewegen, M. A. T., & Jurkovic, M. I. 2017a, A&A, 604, A29
- —. 2017b, A&A, 603, A70
- Groenewegen, M. A. T., Udalski, A., & Bono, G. 2008, A&A, 481, 441
- Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008, A&A, 486, 951
- Hanson, R. B., Klemola, A. R., Jones, B. F., & Monet, D. G. 2004, AJ, 128, 1430
- Haschke, R., Grebel, E. K., & Duffau, S. 2012a, AJ, 144, 106
- —. 2012b, AJ, 144, 107
- Hauschildt, P. H., Allard, F., & Baron, E. 1999, ApJ, 512, 377
- Henden, A. A. 1980, MNRAS, 192, 621
- Hilditch, R. W., Howarth, I. D., & Harries, T. J. 2005, MNRAS, 357, 304
- Hillen, M., de Vries, B. L., Menu, J., et al. 2015, A&A, 578, A40
- Houck, J. R., Roellig, T. L., van Cleve, J., et al. 2004, ApJS, 154, 18
- Huber, D., Bryson, S. T., Haas, M. R., et al. 2016, ApJS, 224, 2
- Inno, L., Bono, G., Matsunaga, N., et al. 2016, ApJ, 832, 176
- Ita, Y., Onaka, T., Tanabé, T., et al. 2010, PASJ, 62, 273

- Ivezić, Ż., Nenkova, M., & Elitzur, M. 1999, "DUSTY: Radiation transport in a dusty environment", Astrophysics Source Code Library
- Jeffery, C. S., Kurtz, D., Shibahashi, H., et al. 2015, MNRAS, 447, 2836
- Johnson, D. R. H., & Soderblom, D. R. 1987, AJ, 93, 864
- Jurkovic, M., Szabados, L., Vinkó, J., & Csák, B. 2007, Astronomische Nachrichten, 328, 837
- Jurkovic, M. I. 2015, European Physical Journal Web of Conferences, Vol. 101, European Physical Journal Web of Conferences, 06035
- —. 2018, SerAJ, doi:10.2298/SAJ180316002J
- Jurkovic, M. I., Stojanović, M., & Ninković, S. 2016, Communications of the Konkoly Observatory Hungary, 105, 175
- Jurkovity, M. 2006, OTDK/SZD, 1
- Kafka, S. 2018. https://www.aavso.org
- Kamath, D., Wood, P. R., & Van Winckel, H. 2014, MNRAS, 439, 2211
- -. 2015, MNRAS, 454, 1468
- Kamath, D., Wood, P. R., Van Winckel, H., & Nie, J. D. 2016, A&A, 586, L5
- Karczmarek, P., Wiktorowicz, G., Iłkiewicz, K., et al. 2017, MNRAS, 466, 2842
- Kato, D., Nagashima, C., Nagayama, T., et al. 2007, PASJ, 59, 615
- Kato, D., Ita, Y., Onaka, T., et al. 2012, AJ, 144, 179
- Kato, T., Hambsch, F.-J., Maehara, H., et al. 2013, PASJ, 65, 23
- Khruslov, A. V. 2005, Peremennye Zvezdy Prilozhenie, 5
- Kippenhahn, R., Weigert, A., & Weiss, A. 2012, Stellar Structure and Evolution, Springer-Verlag, Berlin Heidelberg

- Kiraga, M. 2012, AcA, 62, 67
- Koch, R. H. 1974, AJ, 79, 34
- Kolenberg, K., Szabó, R., Kurtz, D. W., et al. 2010, ApJL, 713, L198
- Kovacs, G., & Buchler, J. R. 1988, ApJ, 334, 971
- Kwee, K. K., & Diethelm, R. 1984, A&AS, 55, 77
- Laney, C. D., & Stobie, R. S. 1995, MNRAS, 274, 337
- Layden, A. C. 1994, AJ, 108, 1016
- Le Borgne, J.-F., & Klotz, A. 2014, arXiv:1407.4961
- Leavitt, H. S., & Pickering, E. C. 1912, Harvard College Observatory Circular, 173, 1
- Lenz, P., & Breger, M. 2004, IAU Symposium, Vol. 224, The A-Star Puzzle, ed. J. Zverko, J. Ziznovsky, S. J. Adelman & W. W. Weiss, 786
- Lloyd Evans, T. 1983, The Observatory, 103, 276
- Luck, R. E., & Bond, H. E. 1989, ApJ, 342, 476
- Luo, A.-L., Zhao, Y.-H., Zhao, G., et al. 2016, VizieR Online Data Catalog, 5149
- Maas, T., Giridhar, S., & Lambert, D. L. 2007, ApJ, 666, 378
- Macri, L. M., Ngeow, C.-C., Kanbur, S. M., Mahzooni, S., & Smitka, M. T. 2015, AJ, 149, 117
- Madore, B. F., & Fernie, J. D. 1980, PASP, 92, 315
- Manick, R., Van Winckel, H., Kamath, D., Hillen, M., & Escorza, A. 2017, A&A, 597, A129
- Marconi, M., Fiorentino, G., & Caputo, F. 2004, A&A, 417, 1101
- Marconi, M., Molinaro, R., Bono, G., et al. 2013, ApJL, 768, L6

- Marconi, M., Coppola, G., Bono, G., et al. 2015, ApJ, 808, 50
- Massey, P. 2002, ApJS, 141, 81
- Matsunaga, N., Feast, M. W., & Menzies, J. W. 2009, MNRAS, 397, 933
- Matsunaga, N., Feast, M. W., & Soszyński, I. 2011, MNRAS, 413, 223
- Matsunaga, N., Fukushi, H., Nakada, Y., et al. 2006, MNRAS, 370, 1979
- McCarthy, J. K., & Nemec, J. M. 1997, ApJ, 482, 203
- McDonald, I., Zijlstra, A. A., & Boyer, M. L. 2012, MNRAS, 427, 343
- Miller Bertolami, M. M. 2016, A&A, 588, A25
- Minniti, D., Lucas, P. W., Emerson, J. P., et al. 2010, NewA, 15, 433
- Morrison, J. E., Röser, S., McLean, B., Bucciarelli, B., & Lasker, B. 2001, AJ, 121, 1752
- Moskalik, P., & Buchler, J. R. 1990, ApJ, 355, 590
- —. 1993a, ApJ, 406, 190
- —. 1993b, ApJ, 406, 190
- Muñoz Bermejo, J., Asensio Ramos, A., & Allende Prieto, C. 2013, A&A, 553, A95
- Nemec, J., & McCarthy, J. K. 1998, Astronomical Society of the Pacific Conference Series, Vol. 135, A Half Century of Stellar Pulsation Interpretation, ed. P. A. Bradley & J. A. Guzik, 57
- Nemec, J. M., Nemec, A. F. L., & Lutz, T. E. 1994, AJ, 108, 222
- Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3
- Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4
- Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15
- Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, 234, 34

- Percy, J. R. 2007, Understanding Variable Stars, Cambridge University Press, Cambridge
- Petersen, J. O., & Diethelm, R. 1986, A&A, 156, 337
- Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2004a, ApJ, 612, 168
- —. 2004b, ApJ, 612, 168
- —. 2006, ApJ, 642, 797
- Pietrzyński, G., Graczyk, D., Gieren, W., et al. 2013, Nature, 495, 76
- Pilecki, B., Graczyk, D., Pietrzyński, G., et al. 2013, MNRAS, 436, 953
- Pilecki, B., Gieren, W., Smolec, R., et al. 2017, ApJ, 842, 110
- Plachy, E., Molnár, L., Jurkovic, M. I., et al. 2017, MNRAS, 465, 173
- Pojmanski, G. 1997, AcA, 47, 467
- —. 2002, AcA, 52, 397
- Pojmanski, G., Pilecki, B., & Szczygiel, D. 2005, AcA, 55, 275
- Pollard, K. R., & Lloyd Evans, T. 2000, AJ, 120, 3098
- Poretti, E., Le Borgne, J. F., Rainer, M., et al. 2015, MNRAS, 454, 849
- Provencal, J. 1986, Journal of the American Association of Variable Star Observers (JAAVSO), 15, 36
- Reyniers, M., Abia, C., van Winckel, H., et al. 2007, A&A, 461, 641
- Reyniers, M., & van Winckel, H. 2007, A&A, 463, L1
- Richards, J. W., Starr, D. L., Miller, A. A., et al. 2012, ApJS, 203, 32
- Riess, A. G., Macri, L. M., Hoffmann, S. L., et al. 2016, ApJ, 826, 56
- Ripepi, V., Marconi, M., Moretti, M. I., et al. 2014, MNRAS, 437, 2307
- Ripepi, V., Moretti, M. I., Marconi, M., et al. 2015, MNRAS, 446, 3034

- Romaniello, M., Primas, F., Mottini, M., et al. 2008, A&A, 488, 731
- Samus, N. N., Durlevich, O. V., & et al. 2009a, VizieR Online Data Catalog, 1
- Samus, N. N., Kazarovets, E. V., Durlevich, O. V., Kireeva, N. N., & Pastukhova, E. N. 2017, Astronomy Reports, 61, 80
- Samus, N. N., Kazarovets, E. V., Pastukhova, E. N., Tsvetkova, T. M., & Durlevich, O. V. 2009b, PASP, 121, 1378
- Sandage, A., & Tammann, G. A. 2006, ARA&A, 44, 93
- Schmidt, E. G. 1991, AJ, 102, 1766
- Schmidt, E. G., Johnston, D., Langan, S., & Lee, K. M. 2005, AJ, 130, 832
- Schmidt, E. G., Lee, K. M., Johnston, D., Newman, P. R., & Snedden, S. A. 2003, AJ, 126, 906
- Schmidt, E. G., Loomis, C. G., Groebner, A. T., & Potter, C. T. 1990, ApJ, 360, 604
- Schmidt, E. G., & Reiswig, D. E. 1993, AJ, 106, 2429
- Schmidt, E. G., Rogalla, D., & Thacker-Lynn, L. 2011, AJ, 141, 53
- Schwarz, G. 1978, Ann. Stat., 6, 461. (http://projecteuclid.org/euclid.aos/ 1176344136)
- Schwarzchild, M. 1938, Harvard College Observatory Circular, 431, 1
- Sebo, K. M., Rawson, D., Mould, J., et al. 2002, ApJS, 142, 71
- Shapley, H. 1914, ApJ, 40, 448
- Sharma, S., Bland-Hawthorn, J., Johnston, K. V., & Binney, J. 2011, ApJ, 730, 3
- Simon, N. R. 1986, ApJ, 311, 305
- Simon, N. R., & Lee, A. S. 1981, ApJ, 248, 291

- Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
- Sloan, G. C., Kraemer, K. E., Price, S. D., & Shipman, R. F. 2003, ApJS, 147, 379
- Smith, H. A., Jacques, J., Lugger, P. M., Deming, D., & Butler, D. 1978, PASP, 90, 422
- Smolec, R. 2016, MNRAS, 456, 3475
- Smolec, R., & Moskalik, P. 2012, MNRAS, 426, 108
- —. 2014, MNRAS, 441, 101
- Smolec, R., Moskalik, P., Plachy, E., Soszyński, I., & Udalski, A. 2018, arXiv:1809.02842
- Smolec, R., Soszyński, I., Moskalik, P., et al. 2012, MNRAS, 419, 2407
- Soszyński, I., Udalski, A., Szymański, M. K., et al. 2010a, AcA, 60, 91
- Soszynski, I., Udalski, A., Szymanski, M., et al. 2003, AcA, 53, 93
- Soszynski, I., Poleski, R., Udalski, A., et al. 2008, AcA, 58, 163
- Soszyński, I., Udalski, A., Szymański, M. K., et al. 2008a, AcA, 58, 293
- Soszyński, I., Poleski, R., Udalski, A., et al. 2008b, AcA, 58, 163
- —. 2010b, AcA, 60, 17
- Soszyński, I., Udalski, A., Pietrukowicz, P., et al. 2011a, AcA, 61, 285
- Soszyński, I., Dziembowski, W. A., Udalski, A., et al. 2011b, AcA, 61, 1
- Soszyński, I., Udalski, A., Pietrukowicz, P., et al. 2011c, AcA, 61, 285
- Soszyński, I., Udalski, A., Szymański, M. K., et al. 2015, AcA, 65, 233
- —. 2017a, arXiv:1712.01307
- —. 2017b, AcA, 67, 103
- Soubiran, C., Le Campion, J.-F., Brouillet, N., & Chemin, L. 2016, A&A, 591, A118

- Stellingwerf, R. F. 1972, A&A, 21, 91
- Suzuki, K., & Huruhata, M. 1938, Astronomische Nachrichten, 267, 101
- Szabados, L. 1977, Communications of the Konkoly Observatory Hungary, 70, 1
- Szabados, L., Kiss, L. L., & Derekas, A. 2007, A&A, 461, 613
- Szczygieł, D. M., Socrates, A., Paczyński, B., Pojmański, G., & Pilecki, B. 2008, AcA, 58, 405
- Templeton, M. R., & Henden, A. A. 2007, AJ, 134, 1999
- Udalski, A. 1996, VizieR Online Data Catalog
- Udalski, A., Kubiak, M., Szymanski, M., et al. 1994, AcA, 44, 317
- Udalski, A., Szymanski, M., Kaluzny, J., Kubiak, M., & Mateo, M. 1992, AcA, 42, 253
- van Aarle, E., van Winckel, H., Lloyd Evans, T., et al. 2011, A&A, 530, A90
- van Leeuwen, F. 2007, A&A, 474, 653
- Vasil'Yanovskaya, O. P. 1978, Peremennye Zvezdy, 21, 111
- Vassiliadis, E., & Wood, P. R. 1993, ApJ, 413, 641
- Vinko, J., Remage Evans, N., Kiss, L. L., & Szabados, L. 1998, MNRAS, 296, 824
- Wallerstein, G. 2002, PASP, 114, 689
- Wallerstein, G., Brown, J. A., & Bates, B. A. 1979, PASP, 91, 47
- Wallerstein, G., & Cox, A. N. 1984, PASP, 96, 677
- Wallerstein, G., & Gonzalez, G. 1996, MNRAS, 282, 1236
- Wallerstein, G., & Huang, W. 2010, Memorie Società Astronomica Italiana, 81, 952
- Wallerstein, G., Matt, S., & Gonzalez, G. 2000, MNRAS, 311, 414
- Welch, D. L., & Stetson, P. B. 1993, AJ, 105, 1813

- Woźniak, P. R., Vestrand, W. T., Akerlof, C. W., et al. 2004, AJ, 127, 2436
- Zaritsky, D., Harris, J., Thompson, I. B., & Grebel, E. K. 2004, AJ, 128, 1606
- Zaritsky, D., Harris, J., Thompson, I. B., Grebel, E. K., & Massey, P. 2002, AJ, 123, 855
- Zejda, M., Paunzen, E., Baumann, B., Mikulášek, Z., & Liška, J. 2012, A&A, 548, A97
- Zinn, R., & Dahn, C. C. 1976, AJ, 81, 527

Biografija autora

Monika V. Jurković je rođena 3. septembra 1981. godine u Subotici, gde je završila osnovnu i srednju školu. Na Univerzitetu u Segedinu završila je master studije za profesora fizike 2005. godine, a 2006. godine i master studije iz astrofizike. Tokom studija primala je stipendiju od mađarske vlade, a 2005./2006. godine je dobila najvišu mađarsku stipendiju (Državna stipendija republike Mađarske) za najbolje studente u celoj zemlji. Na takmičenju najboljih studentskih istraživačkih radova, 2002. godine je bila učesnik, a 2006. godine osvojila drugo mesto na državnom nivou. Učestvovala je u nastavi na Univerzitetu u Segedinu. Vratila se u Srbiju 2010. godine, kada se upisala na doktorske studije na Matematičkom fakultetu Univerziteta u Beogradu i 2011. godine počela da radi u Astronomskoj opservatoriji u Beogradu. Tokom svoje naučne karijere učestvovala je na više od 20 konferencija, letnjih škola i dobila veliki broj stipendija. Na Konkoj opservatoriji u Budimpešti, Mađarska, član je istraživačkog tima, koji se bavi pulsirajućim zvezdama. Posetila je Budimpeštu u više navrata na nekoliko meseci. U Potsdamu, Nemačka, je provela tri meseca 2012. godine na Institutu za astrofiziku sa stipendijom EU FP7 projekta "BELLISSIMA". Objavila je 7 naučnih radova u međunarodnim časopisima i 10 sažetaka sa konferencija.

Prilozi

Прилог 1.

Изјава о ауторству

Потписани-а Моника Јурковић

број индекса_2011/2010

Изјављујем

да је докторска дисертација под насловом

"Одређивање физичких параметара цефеида типа II"

- резултат сопственог истраживачког рада,
- да предложена дисертација у целини ни у деловима није била предложена за добијање било које дипломе према студијским програмима других високошколских установа,
- да су резултати коректно наведени и
- да нисам кршио/ла ауторска права и користио интелектуалну својину других лица.

Потпис докторанда

У Београду, _____

Прилог 2.

Изјава о истоветности штампане и електронске верзије докторског рада

Име и презиме аутора _____

Број индекса 2011/2010 Студијски програм Астрономија и астрофизика Наслов рада _,,Одређивање физичких параметара цефеида типа II" Ментор _ др. Оливера Латковић

Моника Јурковић

Изјављујем да је штампана верзија мог докторског рада истоветна електронској верзији коју сам предао/ла за објављивање на порталу **Дигиталног** репозиторијума Универзитета у Београду.

Дозвољавам да се објаве моји лични подаци везани за добијање академског звања доктора наука, као што су име и презиме, година и место рођења и датум одбране рада.

Ови лични подаци могу се објавити на мрежним страницама дигиталне библиотеке, у електронском каталогу и у публикацијама Универзитета у Београду.

Потпис докторанда

У Београду, _____

Прилог 3.

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку "Светозар Марковић" да у Дигитални репозиторијум Универзитета у Београду унесе моју докторску дисертацију под насловом:

"Одређивање физичких параметара цефеида типа II"

која је моје ауторско дело.

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном за трајно архивирање.

Моју докторску дисертацију похрањену у Дигитални репозиторијум Универзитета у Београду могу да користе сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла.

1. Ауторство

2. Ауторство - некомерцијално

(3)Ауторство – некомерцијално – без прераде

4. Ауторство – некомерцијално – делити под истим условима

5. Ауторство – без прераде

6. Ауторство - делити под истим условима

(Молимо да заокружите само једну од шест понуђених лиценци, кратак опис лиценци дат је на полеђини листа).

Потпис докторанда

У Београду, _____

1. Ауторство - Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих лиценци.

 Ауторство – некомерцијално. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела.

3. Ауторство - некомерцијално – без прераде. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела. У односу на све остале лиценце, овом лиценцом се ограничава највећи обим права коришћења дела.

4. Ауторство - некомерцијално – делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не дозвољава комерцијалну употребу дела и прерада.

5. Ауторство – без прераде. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца дозвољава комерцијалну употребу дела.

6. Ауторство - делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава комерцијалну употребу дела и прерада. Слична је софтверским лиценцама, односно лиценцама отвореног кода.