9. ybe

PABHOMEPIHA KOHBEPREHKUSA

$$
\begin{aligned}
& f_{n}(x): A \\
& n_{1} \\
& \mathbb{R}
\end{aligned}
$$

Ipurnepu. (1.) $f_{n}(x)=\frac{x^{2}}{n}, x \in[0,1]$

(2.)

$$
\begin{aligned}
& f_{n}(x)=x^{n}, \text { ine }[0,1] \\
& f_{1}(x)=x \\
& f_{2}(x)=x^{2} \\
& f(x)= \begin{cases}1, & x=1 \\
0, & 0 \leq x<1\end{cases}
\end{aligned}
$$

ged. Kertemo go tus pytiongya $f n: A \rightarrow \mathbb{R}, A \subseteq \mathbb{R}$ poletsome pus (ytupopmito) kothegíupa ke ϕ-sin f the cuyning A ano $\forall \varepsilon>0$ $\exists n_{0} \forall u \geqslant n_{0} \forall x \in A \quad\left|f_{n}(x)-f(x)\right|<\varepsilon$ (3abencen corso og E, the n of x)

$$
c \Rightarrow \quad \forall \varepsilon>0 \quad \text { Fn. } \quad \forall n \geqslant n_{0} \sup _{x \in A}\left|f_{n}(x)-f(x)\right|<\varepsilon
$$

Kounteris us fu wortb ke t pobersompirs no $x \in A$. O3trane $\quad f_{n} \stackrel{n \rightarrow \infty}{\Rightarrow} f$ the A
y Tpurmep 1. $f(x)=0, \quad \forall n \geqslant n_{0} \quad\left|f_{n}(x)-0\right|<\varepsilon$

$$
\begin{aligned}
& 0-\varepsilon<f_{u}(x)<0+\varepsilon \\
& f(x)-\varepsilon<f_{u}(x)<f(x)+\varepsilon
\end{aligned}
$$

Ke pyticugnju f the cugning A ano $\forall x \in A$ sukcuparo Hu $3 \quad \underbrace{f(x)}_{\mathbb{R}} \rightarrow \underset{\mathbb{R}}{\substack{n}}$
y गритерите 1. $f(x)=\frac{x}{n} \xrightarrow{n \rightarrow \infty} 0=f(x) \quad(\forall x$ фиксираня $)$
2. $f_{n}(x)=x^{n} \longrightarrow\left\{\begin{array}{ll}1, & x=1 \\ 0, & 0 \leqslant x<1\end{array}\right\}=f(x)$

Qone3. $\forall \varepsilon$ 子no $\forall n \geqslant n_{0} \quad \forall x \in A \quad\left|f_{n}(x)-f(x)\right|<\varepsilon$
фиис. $x, \varepsilon>0, \uparrow$ no, boutsn $\left|f_{n}(x)-f(x)\right|<\varepsilon$

Tpurepu. (I. $f(x)=\frac{x^{2}}{n} \Rightarrow 0=f(x)$, the $[0,1]$
jip $\left|f_{n}(x)-f(x)\right|=\left|\frac{x^{2}}{n}\right| \leq \frac{1}{n}<\varepsilon \quad \forall n \geqslant n_{0}>\frac{1}{\varepsilon}$ jicuie polevomyute
(2.) $f_{n}(x)=x^{n} \xrightarrow{\text { T. ก.T }} f(x)= \begin{cases}1, x=1 & \text { adn oba woitb. } \\ 0,0 \leq x<1 & \text { pabitomep ve. }\end{cases}$
$\operatorname{jip} \varepsilon<1 / 2$ (1tip. $\left.\varepsilon=\frac{1}{4}\right)$, que an ji $f_{4}(x) \in\left(f(x)-\frac{1}{4}, f(x)+\frac{1}{4}\right)$

$$
\begin{aligned}
& \forall x \in[0,1] \\
& \forall n \geqslant n_{0}
\end{aligned}
$$

Ans $f_{u} \Rightarrow f \Rightarrow$ clen ipepungen $3 a n \geqslant n$ neate of Ditgivom nojacy, a an wat taji narnol
Jip oy fu thigelingtte, u y3umogy che berngup um of 0 go 1.
(3.) $f_{n}(x)=x^{n}$ the $\left[0, \frac{1}{2}\right]$

Ologe baun $f_{n} \rightarrow f$ rip

$$
\begin{array}{r}
\left|f_{n}(x)-f(x)\right|=\left|x^{n}-0\right|=x^{n} \leqslant \frac{1}{2^{n}}<\varepsilon \\
n \geqslant n_{0}
\end{array}
$$

HAPABOJYEHUSE 43 TPurneqe 1.M3. 4chln thus poja He notb.

Jow jogre culve

Haŕcometse. $f_{n} \rightarrow f$ the A auko

$$
\forall \varepsilon>0 \quad \exists n_{0} \quad \not n \geqslant n_{0}(\underbrace{\left.\sup _{x \in A}\left|f_{n}(x)-f(x)\right|\right)<\varepsilon}_{x \in A}
$$

$$
\mathbb{R} \ni a_{n}:=\sup _{x \in A}\left|f_{n}(x)-f(x)\right| \xrightarrow{n \rightarrow \infty} 0
$$

Y 3 ag aynme: (1.) Theforins $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$
(2). Hefine $a_{n}:=\operatorname{sip}_{x \in A}|\operatorname{su}(x)-f(x)|$
(3.) $a_{n} \rightarrow 0 \Leftrightarrow f u \rightarrow f$

1. $f_{n}(x)=\frac{x^{2}}{n}, A=[0,1] \quad f(x)=0$

$$
a_{n}=\operatorname{sip}_{x \in[0,1]}|\operatorname{fn}(x)-f(x)|=\sup _{x \in[0,1]}\left|\frac{x^{2}}{n}-0\right|=\operatorname{sip}_{x \in[0,1]} \frac{x^{2}}{n}=\frac{1}{n} \rightarrow 0
$$

$\Rightarrow 100$ the ji probtr.
2. $\operatorname{sn}(x)=x^{n}, \tilde{A}=[0,1), \tilde{f}(x)=0$

$$
a_{n}=\sup _{x \in[0,1)}\left|x^{n}-f(x)\right|=\operatorname{sip}_{x \in[0,1)} x^{n}=1
$$

$$
A=[0,1] \Rightarrow \sup _{x \in A}\left|x^{n}-f(x)\right| \geqslant \sup _{x \in \mathbb{A}}\left|x^{n}-0\right|=1
$$

$$
f(x)= \begin{cases}0, & 0 \leqslant x<1 \\ 1, & x=1\end{cases}
$$

He loots. pabyomepro।
(3.)

$$
\begin{aligned}
& f_{u}(x)=x^{n} \quad A=[0,1 / 2] \Rightarrow f(x)=0 \\
& a_{n}=\sup \left|x^{n}-0\right|=\frac{1}{2^{n}} \rightarrow 0 \Rightarrow f u \Rightarrow f \\
& {[0,1 / 2]}
\end{aligned}
$$

Jagary 4. Ucutuizañin poles. varb. fu (x) se A.
(1.) $f_{n}(x)=x^{n}-x^{n+1} \quad A=[0,1]$

所就. $\quad \lim _{n \rightarrow \infty}\left(x^{n}-x^{n+1}\right)= \begin{cases}0-0=0, & x \in[0,1) \\ 1-1=0 & x=1\end{cases}$

$$
\begin{aligned}
& \Rightarrow f(x)=0 \quad \forall x \\
& a_{n}=\operatorname{sinp}_{x \in[0,1]}|\ln (x)-f(x)|=\operatorname{sip}_{x \in[0,1]} x^{n}(1-x)
\end{aligned}
$$

3a фukc. n, $f_{n}(x)$ cy guфep. \Rightarrow mouteme tatin mox $f_{n}(x)$ $[0,1]$

$$
f_{n}^{\prime}(x)=n x^{n-1}-(n+1) x^{n}=x^{n-1}(n-(n+1) x)
$$

$$
\begin{aligned}
& f_{n}^{\prime}(x) \quad \begin{cases}>0 & x \in\left[0, \frac{n}{n+1}\right)\end{cases} \\
& =0 \quad x=\frac{n}{n+1} \\
& <0 \quad x>\frac{n}{n+1} \\
& \begin{aligned}
\Rightarrow a_{n} & =f_{n}\left(\frac{n}{n+1}\right) \\
\left.\left(1+\frac{x}{n}\right)^{n} \rightarrow e^{x} \frac{n}{n+1}\right)^{n}\left(1-\frac{n}{n+1}\right) & =\underbrace{\left(1-\frac{1}{n+1}\right)^{n}} \cdot \underbrace{\frac{1}{n+1}} \\
\left(1-\frac{1}{n+1}\right)^{n} & =\underbrace{}_{\left.\left.e^{\left(1-\frac{1}{n+1}\right.}\right)^{n+1}\right)^{\frac{n+1}{n}}} \underbrace{}_{1}
\end{aligned} \\
& \mathbb{I}=a_{n}^{\ln _{n}}=e^{\ln \ln a_{n}} \longrightarrow e^{b \cdot \ln a}=e^{\ln a^{b}}=a^{b}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow a_{n} \rightarrow 0 \Rightarrow f_{n} \Rightarrow f
\end{aligned}
$$

(2.) Domatu $f_{n}(x)=x^{n}-x^{2 n} \quad A=[0,1]$
(3.) $f_{n}(x)=n(1-\sqrt[4]{x}) \quad A=[a, b] \leq(0,1)$

фukc $\quad x \in(0,1) \quad \lim _{n \rightarrow \infty} n(1-\sqrt[n]{x})=\lim _{n \rightarrow \infty} \frac{1-x^{1 / n}}{\frac{1}{n}}=-\ln x$

$$
\begin{gathered}
\lim _{t \rightarrow 0} \frac{a^{t}-1}{t}=\ln a \\
f(x)=-\ln x \quad \bar{u} \cdot \bar{u} \cdot \bar{u}
\end{gathered}
$$

polevonepue? $a_{n}:=\sup _{x \in[a, b]}\left|f u n_{n}(x)-f(x)\right|=\max _{[a, b]}\left|f_{n}(x)-f(x)\right|$

$$
=\max _{[a, b]}|n(1-\sqrt[n]{x})+\ln x|
$$

$$
\begin{aligned}
& g(x)=n(1-\sqrt[n]{x})+\ln x \\
& g^{\prime}(x)=n \cdot \frac{-1}{n} x^{\frac{1}{n}-1}+\frac{1}{x}=-x^{1 / n} \cdot \frac{1}{x}+\frac{1}{x} \\
& =\frac{1}{x}\left(1-x_{\substack{1 / 4 \\
1}}^{1} \rightarrow 0\right. \\
& \Rightarrow g \Omega \Rightarrow \operatorname{mox}|g(x)|=\max \{|g(a)|,|g(b)|\} \\
& a_{n}=\operatorname{mox}_{n \rightarrow \infty}\{|g(a)|,|g(b)|\}=\max _{n \rightarrow \infty}\{\underbrace{|n(1-\sqrt[n]{a})+\ln a|}_{\downarrow_{n \rightarrow \infty}}, \underbrace{|n(1-\sqrt[n]{b})+\ln b|}_{0}\}
\end{aligned}
$$

$1=$ obge kotiphouto j g colantor stane: $g(x) \leqslant 0 \quad(=0 \quad \ln x \leqslant n(\sqrt[n]{x}-1)$

$$
\Leftrightarrow \frac{1}{n} \ln x \leq \sqrt[n]{x}-1 \Leftrightarrow \ln x^{1 / n} \leqslant x^{1 / n}-1<\ln t \leq t-1 \quad \forall t>0 \text { _ }
$$

ged. $\sum f_{n}(x)$ pabsomepus wottl. (te A ans th3 $S_{N}(x)=\sum_{n=1}^{N} f_{n}(x)$ pobsomepso worthepiupe A.
HAROMELA. $\sum f_{u}(x)$ pobit worb. He $A \Rightarrow E f_{u}(x)$ korb. $\Rightarrow a \ln \quad \forall x \in A$.

$f_{n}(x)$ poletemupso 10 Hb. the $A \subseteq \mathbb{R}$ ano a cams ano boutty
 babucu coms og ε, te u oy x

Lokes, \Rightarrow : $f_{n} \Rightarrow f$ the $A, \varepsilon>0$ gaño, no ungo

$$
\left|\operatorname{sun}_{n}(x)-f(x)\right|<\varepsilon / 2 \quad \forall x \in A, n \geqslant n_{0}
$$

$$
\begin{array}{r}
\Rightarrow m, n \geqslant n_{0}:\left|f_{n}(x)-f_{m}(x)\right|=\left|f_{n}(x)-f(x)+f(x)-f m(x)\right| \leqslant \\
\leqslant\left|f_{n}(x)-f(x)\right|+\left|f_{m}(x)-f(x)\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon \\
\forall x \in A
\end{array}
$$

\Leftrightarrow фиkc. $x, \varepsilon>0$ Fno, $\forall m, n \geqslant n_{0} \quad\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon$
$\Rightarrow f_{n}(x) j^{r}$ Kourngeb uns y \mathbb{R}
\Rightarrow fu (x) coothepinpa, 03 нelnmo numec be $f(x)$.

$\varepsilon>0 \quad(\overline{4} 0$ gepurtingigh)

He 3abuch og x \lim

$$
\begin{gathered}
\Rightarrow \forall x \in A\left|f_{u}(x)-f(x)\right| \leq \varepsilon_{1}<\varepsilon \\
\forall n \geqslant n_{0} \\
\Rightarrow f_{n} \Rightarrow f
\end{gathered}
$$

Tocrugunge1 $\sum f_{n}(x)$ prot wotle we $A \quad \Leftrightarrow$

$$
\forall \varepsilon>0 \quad \exists n_{0}, \forall n, m \geqslant n_{0}, \forall x \in A \quad\left|\sum_{k=m+1}^{n} f_{n}(x)\right|<\varepsilon
$$

2okne 3 . Jipuremums Connjeb iquin. the $\operatorname{Sn}(x)$

Tocnegnuge2. Ako $\sum f_{u}(x)$ poblt. worb. we $A \Rightarrow$

$$
f_{n}(x) \rightarrow 0 \text { he } A
$$

2oica 3. $n 3$ Tocn. $1 \Rightarrow \varepsilon>0$ 子no $\forall m, n \geqslant n_{0}\left|\sum_{k=m+1}^{n} f_{k}(x)\right|<\varepsilon$

$$
\forall x \in A
$$

$$
m:=n-1 \quad\left|\sum_{k=n}^{n} f_{k}(x)\right|=\underbrace{\left|f_{n}(x)\right|<\varepsilon \quad \text { ue A }}_{f_{n} \rightarrow 0 \quad \begin{array}{l}
\forall n \geqslant n_{0} \\
\forall x \in A
\end{array}}
$$

 tho rey $\sum a_{n}$ korbepinpre $\Rightarrow \sum f_{n}(x)$ polat. 100 trbe we A.
dokes, 43 Torngmye 1.

$$
\left|\sum_{k=m+1}^{n} a_{k}\right|<\varepsilon
$$

am $\quad \forall x \in A \quad\left|\sum_{k=m+1}^{n} f_{k}(x)\right| \leq \sum_{k=m+1}^{n}\left|f_{k}(x)\right| \leq \sum_{k=m+1}^{n} a_{k}<\varepsilon$
Tocnugniga 1
$\Rightarrow \quad \sum f_{4}(x)$ pobsomepus kortb.

(1.) $\sum_{n=1}^{\infty} \frac{1}{[(n-1) x+1](n x+1)}$ the $(0, \infty)$
ovir4a? ga, $\dot{j} \frac{1}{[(n-1) x+1](n x+1)} \sim \frac{1}{n^{2} x^{2}}, n \rightarrow \infty$

$$
\sum \frac{1}{n^{2} x^{2}} \text { kotte. } \forall x
$$

pobporeptre? $\quad f_{n}(x)=\frac{1}{[(n-1) x+1](n x+1)} \stackrel{?}{\rightrightarrows} 0 \quad(n \rightarrow \infty)$

$$
a_{n}:=\sup _{(0, \infty)}\left|f_{n}(x)\right| \quad, \quad \stackrel{?}{\rightarrow} \circ(n \rightarrow \infty)
$$

gometer

$$
\sup \left|f_{n}(x)\right| \geqslant \operatorname{fun}\left(\frac{1}{n}\right)=\frac{1}{\left(\frac{n-1}{n}+1\right)\left(n \frac{1}{n}+1\right)}=\frac{1}{\left(\frac{n-1}{n}+1\right) \cdot 2} \xrightarrow{n \rightarrow \infty} \frac{1}{4}
$$

$\Rightarrow \operatorname{tn} \nRightarrow 0 \Rightarrow$ He kothe pobtomerpho
2. $\sum_{n=1}^{\infty} \frac{n x}{1+n^{5} x^{2}} \quad x \in \mathbb{R}, \frac{n x}{1+n^{5} x^{2}} \sim \frac{1}{n^{4} x}, x \neq 0$
$\Rightarrow 1401+6$.
$x=0 \Rightarrow \sum 0$, notle.

$$
\begin{aligned}
& f_{n}(x)=\frac{n x}{1+n^{5} x^{2}}, \text { фukc.n, nppounms } \sup _{x \in \mathbb{k}}\left|f_{n}(x)\right|=\sup _{x \geq 0} f u(x) \\
& f_{n}^{\prime}(x)=\frac{n\left(1+n^{5} x^{2}\right)-n x \cdot 2 \cdot n^{5} x}{\left(1+n^{5} x^{2}\right)^{2}}=\frac{n+n^{6} x^{2}-2 n^{6} x^{2}}{\left(1+n^{5} x^{2}\right)^{2}}= \\
& =\frac{n\left(1-n^{5} x^{2}\right)}{\left(1+n^{5} x^{2}\right)} \\
& f_{n}^{\prime}>0 \quad \Leftrightarrow \quad\left(-n^{5} x^{2}>0 \quad \Leftrightarrow x^{2}<\frac{1}{n^{5}} \Leftrightarrow x \in\left[0, \frac{1}{n^{5 / 2}}\right]\right. \\
& f_{n}^{\prime}=0 \quad \Leftrightarrow \quad x=\frac{1}{n^{5 / 2}} \\
& f_{n}^{\prime}<0 \quad \Leftrightarrow x>\frac{1}{n^{5 / 2}}
\end{aligned}
$$

$$
\Rightarrow \max _{[0, \infty)} f_{n}(x)=f_{n}\left(\frac{1}{n^{5 / 2}}\right)=\frac{n \frac{1}{n^{5 / 2}}}{1+n^{5} \frac{1}{n^{5}}}=\frac{1}{2 n^{3 / 2}} \rightarrow 0
$$

$\Rightarrow f_{n} \rightarrow 0$ the \mathbb{R}

$$
\left|f_{n}(x)\right| \leq \frac{1}{2 n^{3 / 2}}, \sum \frac{1}{2 n^{3 / 2}} \text { korb. }(3 / 2>1) \Rightarrow \sum f_{n}(x) \text { pobst. kot-bipiapue }
$$

3. $\sum_{n=1}^{\infty} 2^{n} \sin \frac{1}{3^{n} x} \quad x \in(0,+\infty)$

$$
=1 \sum\left(\frac{2}{3}\right)^{n} \cdot \frac{1}{x} \text { korb. } \Rightarrow \sum 2^{n} \sin \frac{1}{3^{n} x} \text { korb. } \forall x
$$

forbumepte．$f_{n}(x) \underset{\nrightarrow 0}{\rightarrow} 0$

$$
\sup \left|f_{n}(x)\right| \geqslant\left|\operatorname{fn}\left(1 / 3^{n}\right)\right|=\left|2^{n} \sin \frac{1}{3^{n} \cdot \frac{1}{3 n}}\right|=2^{n} \sin 1+\infty
$$

\Rightarrow It KoHs ．pobverepto．
ゆyHKム YOHAJHA CBOJCTBA

ГPAHYYHE ळフHK MUJE
fn－Hene ococruse $\stackrel{?}{\Rightarrow}$ f ume why ocoolity

T（Heape kng wo at tparture ф yitingryi）．
fn theip．y $x_{0} \in A, f_{n} \Rightarrow f$ the $A \Rightarrow f$ gi wenpemugso $\Rightarrow x_{0}$ ．
2oke3．Xotuks：$\varepsilon>0$ genno？

$$
\begin{aligned}
&\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon \\
&\left|f(x)-f\left(x_{0}\right)\right|=\left|f(x)-f_{n}(x)+f_{n}(x)-f_{n}\left(x_{0}\right)+f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right| \leqslant \\
& \leqslant \underbrace{\left|f(x)-f_{n}(x)\right|}_{(1)}+\underbrace{\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|}_{(2)}+\underbrace{\left|f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right|}_{(3)}
\end{aligned}
$$

（1）$u(3) \quad \exists n_{0} \quad \forall n \geqslant n_{0} \quad\left|f(x)-f_{n}(x)\right|<\varepsilon / 3 \quad \forall x \in A \quad\left(f_{n} \rightarrow f\right)$
（2）opukcupapos $n \geqslant n_{0}\left(\right.$ mip．$\left.n=n_{0}\right)$ ，fu Heip．$\exists \delta=\delta\left(x_{0}, n\right)$

$$
\left|x-x_{0}\right|<\delta \Rightarrow\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|<\varepsilon / 2
$$

3a obaubo $x,\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{6}\right)\right|<\varepsilon / 3+\varepsilon / 3+\varepsilon / 3=\varepsilon$

गример. $\quad f_{n}(x)=x^{n}, \quad A=[0,1] \quad f_{n}$ y неípeñese

$$
\begin{aligned}
& f(x)=\lim _{n \rightarrow \infty} f n(x)=\left\{\begin{array}{ll}
0,0 \leqslant x<1 \\
1, & x=1
\end{array} \quad\right. \text { jir upling se } \\
& \Rightarrow \quad f_{n} \underset{\nrightarrow}{\neq}
\end{aligned}
$$

Her ucom Hewn ce qeme3yji cnegeti ulbpt
गllepfipe $f_{n}(x) \Rightarrow f(x)$ te A, x_{0} परerue Heroum nobause A : Hene nocinojn $a_{n}:=\lim _{x \rightarrow x_{0}} f_{n}(x) \in \mathbb{R}$ u $\lim _{u \rightarrow \infty} a_{n}=a \in \mathbb{R}$. Nongn $\exists \lim _{\partial x \rightarrow x_{0}} f(x)=a$.
Lone 3. Lomatin $\left(|f(x)-a| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-a_{n}\right|+\left|a_{n}-a\right|\right)$

YחYTGSO, 「NEnATH ROKA 3 HETNPEKLわ\&OCH

Ustra rave Jil beforbe:
 ano jigett no cuiojn a ggysú ji pablomepat.

Tpumep. $f_{n}(x)=x^{n}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \lim _{x \rightarrow 1^{-}} f(x)=\lim _{n \rightarrow \infty} \lim _{x \rightarrow 1^{-}} x^{n}=\lim _{n \rightarrow \infty} 1=1 \\
& \lim _{x \rightarrow 1^{-}-n \rightarrow \infty} \lim _{n \rightarrow \infty^{n}} f(x)=\lim _{x \rightarrow 1^{-}} \lim _{n \rightarrow \infty} x^{n}=\lim _{x \rightarrow 1^{-}} 0=0
\end{aligned}
$$

