peg $\sum a_{M}$, a_{n}-oümutu inas ryga, $S_{N}=\sum_{n=1}^{N} a_{n}$ riapyenjanse cyare
 Lome3. Ian kotle. $\Rightarrow \lim _{N \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty} S_{N-1}=S \in \mathbb{R}$

$$
\begin{aligned}
& S_{N}-S_{N-1}=a_{N} / \lim _{W \rightarrow \infty} \\
& 0=S-S=\lim _{N \rightarrow \infty} a_{N}
\end{aligned}
$$

gulepiupo, a $\lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n}\right)=\ln 1=0$

$\sum a_{n}$ korb. $\Leftrightarrow \forall \varepsilon>0 \quad \exists N_{0} \quad \forall M, N \geqslant N_{0} \quad\left|\sum_{n=M+1}^{N} a_{n}\right|<\varepsilon$.
Lome3. $\left|S_{N}-S_{M}\right|=\left|\sum_{n=M+1}^{N} a_{n}\right|$, meg kostl. gid. S_{N} nottl.
Tpumepn. 1 $\sum \frac{1}{n}$ qubepinpe, 2. $\sum \frac{1}{n^{2}}$ kortepinge

(1)

$$
\begin{aligned}
S_{2 n}-S_{n} & =1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}+\frac{1}{n+1}+\ldots+\frac{1}{2 n}-\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right) \\
& =\underbrace{\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n} \geqslant \frac{1}{2 n}+\frac{1}{2 n}+\cdots+\frac{1}{2 n}=n \cdot 2 \frac{1}{2 n}=\frac{1}{2}}_{n}
\end{aligned}
$$

He bavin lomingel ipumit jip $\varepsilon=\frac{1}{3}\left(<\frac{1}{2}\right)$, No - - mino 0 g

$$
\begin{aligned}
n, z_{n} & \geqslant N_{0} \\
\left|S_{2 n}-S_{n}\right| & \geqslant \varepsilon
\end{aligned}
$$

\Rightarrow gubepioge
Xopmortrycun py $\sum \frac{1}{n}$
(2.)

$$
\begin{aligned}
\left|S_{n}-S_{m}\right|=S_{n}-S_{m} & =1+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}-\left(1+\frac{1}{2^{2}}+\cdots+\frac{1}{m^{2}}\right)= \\
n>m & =\frac{1}{(m+1)^{2}}+\frac{1}{(m+2)^{2}}+\cdots+\frac{1}{n^{2}}< \\
k^{2}>k(k-1) & <\frac{1}{m(m+1)}+\frac{1}{(m+1)(m+2)}+\cdots+\frac{1}{n(n-1)}= \\
& =\frac{m+1-m}{m(m+1)}+\frac{m+2-(m+1)}{(m+1)(m+2)}+\cdots+\frac{n-(n-1)}{n(n-1)}= \\
& =\frac{1}{m}-\frac{1}{m+1}+\frac{1}{m+1}-\frac{1}{m+2}+\cdots 1+\frac{1}{n-1}-\frac{1}{n} \\
& =\frac{1}{m}-\frac{1}{n}<\frac{1}{m}<\varepsilon \quad \forall m, n \geqslant n_{0}
\end{aligned}
$$

$\varepsilon>0$ qeano, $u_{0}>\frac{1}{\varepsilon}, m, n \geqslant u_{0} \Rightarrow \frac{1}{m} \leqslant \frac{1}{u_{0}}<\varepsilon$
$\sum \frac{1}{n^{2}}$ xuiepxapnothajich pey

PE ROBU CA ROSUTUBHYM ONLNTUM YNAHOM
$a_{n} \geqslant d \quad C \Rightarrow S_{n}$ pacure, $S_{n-}-S_{n-1}=a_{n}$
IPETDOCTABIOAMO
habarge
$\sum a_{n}$ kotteopiope $\Leftrightarrow S_{n}$ oquerniet ogo 35°
Nlorfithe (I aoreydern neecul). Hene $\dot{j} \quad 0 \leq a_{n} \leq b_{n}$.
IIcoga

1) \sum lon kootb. $\Rightarrow \sum a_{n}$ kottl.
2) $\sum a_{n}$ gulepinpe $\Rightarrow \sum b_{n}$ gubepiupe.

Lones. 1) $\quad S_{n}=\sum_{j=1}^{n} a_{j}, \quad T_{n}:=\sum_{j=1}^{n} l_{j}, \quad S_{n} \leq T_{n}$

Tilbrftise (II nopigsean nrecul.), $a_{n n}, b_{n} \geqslant 0$ u $a_{n} \sim b_{n}, n \rightarrow \infty$

$$
\left(a_{n}=b_{n}+\sigma\left(b_{n}\right), n \rightarrow \infty \quad, \quad b_{n} \neq 0 \quad \frac{a_{n}}{b_{n}} \rightarrow 1\right)
$$

Jilcya $\sum a_{n}$ kotbepínpe $c \Rightarrow \sum$ bn kooleypinpe.
2ome3. $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1 \Rightarrow \exists n_{0}, n \geqslant n_{0} \quad \frac{1}{2} \leq \frac{a_{n}}{b_{n}} \leq 2$
nj. $\quad \frac{B_{n}}{2} \leq a_{n} \leq 2 b_{n}$
43 I vífygresó vie cula.

Jip $, \alpha \geqslant 2 \Rightarrow \frac{1}{n^{\alpha}} \leq \frac{1}{n^{2}}, \sum \frac{1}{n^{2}}$ kortb. I nopeys. necan $a, 3 a, \alpha \leq 1 \Rightarrow \frac{1}{n x} \geqslant \frac{1}{n}, \quad \sum \frac{1}{n}$ gulepp.

3oyangh. (17)

$$
\begin{aligned}
& \sum_{1}^{\infty} \frac{1}{n+\sin n} \begin{array}{l}
n \\
0
\end{array} \\
& \operatorname{jip}_{n+\sin n} \frac{\frac{1}{n+\sin n}}{\frac{1}{n}}=\frac{1}{n}=\frac{n}{n+\sin n}=\frac{1}{1+\left(\frac{\sin n}{n}\right) \rightarrow \infty}{ }_{n \rightarrow \infty}^{0} 1
\end{aligned}
$$

\Rightarrow guberripe irp $\sum \frac{1}{m}$ grleypiupe.
(21) $\sum_{n=1}^{\infty} \frac{n+4}{n^{2}+2 n}$

$$
\begin{aligned}
& \frac{n+4}{n^{2}+2 n} \sim \frac{1}{n}, n \rightarrow \infty \\
& \frac{\frac{n+4}{n^{2}+2 n}}{\frac{1}{n}}=\frac{n^{2}+4 n}{n^{2}+2 n} \xrightarrow{n \rightarrow \infty} 1
\end{aligned}
$$

\Rightarrow gubegringe
(3)

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{\sin n+2 n}{n^{3}+2 n^{2}+4}=1 \frac{\sin n+2 n}{n^{3}+2 n^{2}+4} \sim \frac{2}{n^{2}}, n \rightarrow \infty \\
& \sum_{n=1}^{\infty} \frac{2}{n^{2}} 16046 \Rightarrow 16046 . n \Rightarrow
\end{aligned}
$$

(4) Aus kotb. riy $\sum a_{n}, a_{n} \in \mathbb{R}^{+}$, qe an osabe 310 cooth a pry a) $\left.\left.\sum \sin a_{n} \delta\right) \sum\left(e^{a_{n}}\right) \quad \zeta\right) \sum a_{n}^{\alpha}, \alpha \in \mathbb{R}^{+}$?
a) qe, iрp $\dot{\gamma} \sin a_{n} \leq a_{n}, \quad \sin a_{n} \geq 0\left(n \geqslant n_{0}\right)$

$$
\begin{aligned}
& a_{n \rightarrow 0}, n \rightarrow \infty \\
& n \geqslant n_{0}, a_{n} \in[0, \pi] \\
& \Rightarrow \sin a_{n} \geqslant 0
\end{aligned}
$$

II H4444 $\sin a_{n} \sim a_{n}, a_{n} \rightarrow 0 \quad\left(a_{n \rightarrow 0} \dot{r i p}_{p} \overline{Z a n}_{n}\right.$ leottb. $)$
 man $a_{n} \leqslant b n, \quad u \geqslant n_{0}$
(He mopa On חPBOL YA AHA))

$$
S_{N}=\sum_{n=1}^{N} a_{n}=\sum_{\substack{n_{0}=1 \\ \text { He yizune }}}^{\sum_{n=n_{0}}}+\sum_{n=n_{0}}^{N} a_{n}, S_{N} \text { kot+b. } \Leftrightarrow \sum_{n}^{N} a_{n} i c_{1} b .
$$

He 7 unrece
б) $\sum_{n=1}^{\infty}\left(e^{a_{n}}-1\right) \quad a_{n} \rightarrow 0, n \rightarrow \infty \quad\left(\sum a_{n} 1101+b.\right)$

$$
e^{a_{n}}-1 \sim a_{n}, n \rightarrow 0, \operatorname{sip} \frac{e^{x}-1}{x} \xrightarrow[\rightarrow 0]{x \rightarrow 0}
$$

\Rightarrow kohbe jip $\sum a_{n}$ kohts. (II nojug rean)
b) $\sum a_{n}{ }^{\alpha}, \alpha \geqslant 0, \alpha \geqslant 1 \Rightarrow a_{n} \geqslant a_{n}{ }^{\alpha}, n \geqslant n_{0}$
$\Rightarrow \sum a_{n}{ }^{\alpha}$ cuigruso kottl. $3 a \quad \alpha \geqslant 1$

3a $\alpha<1$ He mopa qe 3herr, $\sum \frac{1}{n^{2}} 1001+b$.

$$
\begin{aligned}
& \alpha=1 / 2,\left(\frac{1}{n 2}\right)^{\alpha}=\frac{1}{n} \\
& \sum \frac{1}{n} \text { que. }
\end{aligned}
$$

(obo Hnji lyaj उugañike).
thomnjeb u Lanamsepob unecuñ

Tllbptite (Kovonje neecin). Hene je $a_{n} \geqslant 0$ n $\overline{\lim _{n \rightarrow \infty}} \sqrt[n]{a_{n}}=L$

1) Ano $j<L>1$ (um $L=\infty$) $\Rightarrow \sum$ an qulepinpa.
2) Ano $\dot{j} L<1 \Rightarrow \sum a_{n} k$ kothepiupa
3) Ano $\dot{j} L=1$ viean $\dot{\gamma}$ Herothest.

Lonas. $q \geqslant 0 \Rightarrow \sum q^{n}$ koub. $\Leftrightarrow 2<1$.
1)

$$
\begin{aligned}
& L>1 \Rightarrow \exists q \in(1, L) \\
& 12 \\
& \overline{\lim } \sqrt[n]{a_{n}}=L \Rightarrow 子 \operatorname{tog} \tan 3 \quad a_{n k}, \sqrt[n_{n}]{a_{n_{k}}} \xrightarrow{k \rightarrow \infty} L \\
& \exists k_{0} \quad \forall k \geqslant n_{0} \quad \sqrt[n_{k}]{a_{n_{k}}} \geqslant 2 \\
& \Rightarrow a_{n_{k}} \geqslant 2^{n_{k}}, \quad 2>1 \\
& \Rightarrow a_{n} \nrightarrow 0, n \rightarrow \infty \\
& \left(a_{n} \rightarrow \infty\right)
\end{aligned}
$$

$\Rightarrow \sum a_{n}$ guberinpe.
2) $\overline{\lim }_{n \rightarrow \infty} \sqrt[n]{a_{n}}=L<1$

$\Rightarrow \exists n_{0} \quad \forall n \geqslant n_{0} \quad \sqrt[n]{a_{n}} \leq \mathcal{Z}<1$
$\Rightarrow \forall n \geqslant n_{0} a_{n} \leq 2^{n}, \sum 2^{n}$ looth. $\Rightarrow \sum a_{n}$ nothe.
(I nop. vieuit.)
3) $\sum \frac{1}{n}, \sum \frac{1}{n^{2}}$
$\lim \sqrt[n]{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{n}}=\frac{1}{1}=1, \sum \frac{1}{n}$ qulepinpe $\}$ gloa ogobbop $\lim _{\sqrt[n]{ }}^{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{1}{(\sqrt[n]{n})^{2}}=\frac{1}{1^{2}}=1, \sum \frac{1}{n^{2}} 100$
infibe (2aramsepob ज̄ectu). $a_{n}>0 \quad\left(n \geqslant n_{0}\right)$

$$
l=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}, L=\overline{\lim }_{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

1) $l>1 \Rightarrow \sum a_{n}$ greupinpe
2) $L<1 \Rightarrow \sum a_{n}$ wotth.
3) $L=l=1 \Rightarrow$ wean $\bar{\gamma}$ Hemothost.

Lone3. 1) $l>1$, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=l$

$\Rightarrow \exists n_{0} \quad \forall n \geqslant n_{0} \frac{a_{n+1}}{a_{n}} \geqslant 2$
$\Rightarrow \quad n \geqslant n_{0} 4 n 3$ an pecivel. $a_{n+1} \geqslant 2 a_{n}>a_{n}>a_{n 0}>0$

$$
\Rightarrow a_{n} \nrightarrow 0, n \rightarrow \infty
$$

2) $\lim \frac{a_{n+1}}{a_{n}}=L<1$

$$
\Rightarrow \text { 子no } \quad \forall n \geqslant n_{0} \quad \frac{a_{n+1}}{a_{n}} \leqslant q<1
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\frac{a_{n_{0}+1}}{a_{n_{0}}} \leq 2 \\
\left.\begin{array}{l}
\frac{a_{n_{0}+2}}{a_{n_{0}+1}} \leq 2 \\
\vdots \\
\frac{a_{n-1}}{a_{n-2}} \leq 2 \\
\frac{a_{n}}{a_{n-1}} \leq 2
\end{array}\right\} \text { wonntitums } \\
\vdots
\end{array}\right\} \\
& \frac{a_{n,+1}}{a_{n 0}} \cdot \frac{a_{n 0+2}}{a_{n+1}} \cdot \frac{a_{n_{0}+3}}{a_{n+2}+2} \cdots \frac{a_{n-1}}{a_{n-1}} \cdot \frac{a_{n}}{a_{n-1}} \leqslant \overbrace{2 \cdot 2 \cdots 2}^{n-n_{0}} \\
& \frac{a_{n}}{a_{n_{0}}} \leq 2^{n-n_{0}} \quad \Rightarrow \quad a_{n} \leq \frac{a_{n_{0}}}{q^{n_{0}}} \cdot q^{n}=c \cdot q^{n} \\
& \sum \subset g^{n} \text { konb. } \Rightarrow \sum a_{n} \text { vorb. }
\end{aligned}
$$

3) $\sum \frac{1}{n}, \sum \frac{1}{n^{2}}$
$\lim _{n \rightarrow \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1, \sum \frac{1}{n}$ gub.

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{(n+1)^{2}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{2}=1 \quad \sum \frac{1}{n^{2}} \text { koHh. }
$$

3agangu (1.) $\sum \frac{(u))^{2}}{(2 u)!}$
(2.) $\sum\left(\frac{n-1}{n+1}\right)^{n(n+1)}$
$\left(3-2 \frac{n^{2}}{\left(2+\frac{1}{n}\right)^{n}}\right.$
(1.) Laransep

$$
\begin{aligned}
& \frac{a_{n+1}}{a_{n}}=\frac{\frac{((n+1)!)^{2}}{(2 n+2)^{2}}}{\frac{(n!)^{2}}{(2 n)!}}=\frac{((n+1)!)^{2}(2 n)!}{(n!)^{2}(2 n+2)!}= \\
& =\frac{(n+1)^{2}}{(2 n+2)(2 n+1)} \xrightarrow{n \rightarrow \infty} \frac{1}{4}<1 \Rightarrow \text { conll. }
\end{aligned}
$$

(2.) $\operatorname{kom} n$

$$
\begin{aligned}
& \sqrt[n]{\left(\frac{n-1}{n+1}\right)^{n(n+1)}}=\left(\frac{n-1}{n+1}\right)^{n+1}=\left(\frac{n+1-2}{n+1}\right)^{n+1}= \\
&=\left(1-\frac{2}{n+1}\right)^{n+1}= \\
&\left(1+\frac{-2}{n+1}\right)^{n+1} \longrightarrow e^{-2}<1 \Rightarrow k 01+b . \\
&\left(\left(1+\frac{x}{n}\right)^{n} \xrightarrow{n+\infty} e^{x}\right)
\end{aligned}
$$

(3.) $\sum \frac{n^{2}}{\left(2+\frac{1}{n}\right)^{n}}, \operatorname{lom} n \sqrt[n]{\frac{n^{2}}{\left(2+\frac{1}{n}\right)^{n}}}=\frac{\sqrt[n]{n^{2}}}{2+\frac{1}{n}} \xrightarrow{n \rightarrow \infty} \frac{1^{2}}{2}=\frac{1}{2}<1$
\Rightarrow Korberiupa

WHTETPASHM TECT

J川biftite $f:[1, \infty) \rightarrow \mathbb{R}, f(x) \geqslant 0$, thérenugre, oñagagytre.
Tlaga $\int_{1}^{\infty} f(x) d x$ kothb. $\Leftrightarrow \sum_{n=1}^{\infty} f(n)$ kothepínpe.

Tocregunge. $\alpha \in(1,2) \Rightarrow f(x)=\frac{1}{x^{\alpha}}$ Hep. in owege

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \text { koth. } \Leftrightarrow \int_{1}^{\infty} \frac{d x}{x^{\alpha}} \text { kothb, } \begin{array}{l}
\Leftrightarrow-\alpha<-1 \\
\Leftrightarrow \alpha>1
\end{array} \\
& \left(\int_{1}^{\infty} x^{-\alpha} d x=\left.\frac{x^{-\alpha+1}}{-\alpha+1}\right|_{1} ^{\infty}=0+\frac{1}{\alpha-1}\right)
\end{aligned}
$$

3AkJJYAK. $\sum \frac{1}{n^{\alpha}}$ kouls. $\Leftrightarrow K=1$

Lokes Jileffitse

Puciog ipequme j utsizipuen
\wedge
panolo yíaoltu ure $\bar{\gamma} \sum f(n)$

$$
\sum_{2}^{\infty} f(n) \leqslant \int_{1}^{\infty} f(x) d x
$$

$\int_{1}^{\infty} f(x) d x$ worb. $\Leftrightarrow F(R)=\int_{1}^{R} f(x) d x$ oquatmese ($\dot{p} p \bar{\gamma} F$ paniothe) $\Leftrightarrow F(N)=\int_{1}^{N} f(x) d x$ sopouserse $\quad N \in \mathbb{N}$

$$
\begin{aligned}
\int_{1}^{N} f(x) d x= & \sum_{n=1}^{N-1} \int_{n}^{n+1} f(x) d x
\end{aligned} \leqslant \sum_{n=1}^{N-1} \int_{n}^{n+1} f(n) d x=\sum_{n=1}^{N-1} f(n) .
$$

Trumep. $\sum_{2}^{\infty} \frac{1}{n^{p} \ln ^{2} n}, p>0,2>0$ wo +b. $\Leftrightarrow \int_{2}^{\infty} \frac{d x}{x^{p}(\ln x)^{2}} \Leftrightarrow p_{p=1,2>1}^{p}$.

PEПOBY CA RPOLSBORHUM ONLDTUM Y AAFOM AnCONYTHA KOLBEFTEHLUJA PEROBA
ged. Korserns ge ry $\sum a_{n}$ aúconjouss wotherinpe ano koobl per $\Sigma\left|a_{n}\right|$.
 (He ation yisto).

2ones. Komujals upuñepugym kottl.
$\varepsilon>0$ gounco, koteno (no, $\forall n, m \geqslant n_{0} \quad\left|\sum_{j=m+1}^{n} a_{j}\right|<\varepsilon$?
3Hamo qe $\exists n_{0}, \forall n, m \geqslant n_{0}\left|\sum_{j=m+1}^{n}\right| a_{n}| |<\varepsilon$ jip $\bar{y}\left|a_{n}\right|$ cont
Hejegh. uppoyine $\left|\sum_{j=m+1}^{n} a_{n}\right| \leq \sum_{j=m+1}^{n}\left|a_{n}\right|<\varepsilon$

$\pi \operatorname{agga}_{a} \sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ kotberinpe.
Tiepruntonorijar. $\sum(-1)^{n+1} a_{n}$ ce sole amíieptapajytun rey.

2oka3.

$$
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=a_{1}-a_{2} \\
& S_{3}=a_{1}-a_{2}+a_{3} \\
& S_{4}=a_{1}-a_{2}+a_{3}-a_{4}
\end{aligned}
$$

He Moite, "Myina \rightarrow wherku"

Lonezatumo ge tuzolen $S_{2 n}$ u $S_{2 n+1}$ cootherinpoyy, laj. ge cy motonoritn n oip.

$$
\begin{aligned}
& S_{2 n+2}-S_{2 n}=a_{1}-a_{2}+\ldots+a_{2 n-1}-a_{2 n}+a_{2 n+1}-a_{2 n+2} \\
&-\left(a_{1}-a_{2}+\ldots+a_{2 n-1}-a_{2 n}\right)=a_{2 n+1}-a_{2 n+2} \geqslant 0 \\
& \Rightarrow S_{2 n} \pi \\
& S_{2 n+1}-S_{2 n-1}=-a_{2 n}+a_{2 n+1} \leq 0 \Rightarrow S_{2 n+1} \searrow
\end{aligned}
$$

u jou jr $\quad S_{2 n} \leqslant S_{2 n+1}$

$$
\underbrace{S_{2} \leqslant S_{2 n} \leqslant S_{2 n+1} \leqslant S_{1}}_{0 \text { Tpatn } 2+10 \mathrm{~cm}}
$$

$\Rightarrow 7 \lim _{n \rightarrow \infty} S_{2 n}=S \quad n \quad \lim _{n \rightarrow \infty} S_{2 n+1}=T$

3amuno je $S=T$?

$$
T-S=\lim _{n \rightarrow \infty}\left(S_{2 n+1}-S_{2 n}\right)=\lim _{n \rightarrow \infty} a_{2 n+1}=0 \Rightarrow S=T
$$

$$
\frac{1}{n} \searrow 0
$$

(2.) 3 a noji $\alpha, \sum \frac{(-1)^{n+1}}{u^{\alpha}}$ конb, ycnob 1 , a 3 a woji añconyubto?

Tij. $3 a \quad \alpha \leq 0$, pey gabepínga is yonobito, jip an te nlestus tysu $\alpha>0 \Rightarrow \frac{1}{n^{\alpha}} \searrow 0 \Rightarrow \sum \frac{(-1)^{n+1}}{n^{\alpha}}$ koHb. no Nojotungy
añcongauta: $\left|\frac{(-1)^{n+1}}{n^{\alpha}}\right|=\frac{1}{n^{\alpha}}$ koHb. $\Leftrightarrow<>1$

Ogiobop. ycnobito $\Leftrightarrow \alpha>0$ ańcongunto $\Leftrightarrow \alpha>1$.
(3.) oshzta n ycnobete $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln n+1}$

$$
\sum(-1)^{n+1} a_{n}, \quad a_{n}=\frac{1}{\ln n+1} \searrow 0 \Rightarrow \text { kottle. no Najot+ungy }
$$

aúc•Ngirte $\left|\frac{(-1)^{n+1}}{\ln n+1}\right|=\frac{1}{\ln n+1} \geqslant \frac{1}{n}, n \geqslant n_{0}$

$$
\text { Lip } \frac{\frac{1}{\ln n+1}}{\frac{1}{n}}=\frac{n}{\ln n+1} \xrightarrow{n \rightarrow \infty} \infty
$$

$$
\Rightarrow \text { añcon. He kothb. }
$$

(II Hemit $\frac{1}{\ln n+1} \sim \frac{1}{\ln n}, \quad \sum \frac{1}{n p \ln n^{2}}$ kothe $\Leftrightarrow \begin{aligned} & p>1 \text { ann } \\ & p=1 \operatorname{nin} 2>1\end{aligned}$ |xog Hac jr $p=0 \Rightarrow$ gub.)
(4.) $\sum_{n=3}^{\infty} \frac{(-1)^{n+1}}{\ln \ln n} \quad$ cnobsto? , $a_{n}=\frac{1}{\ln \ln n} \geqslant 0$ kootl. no haj dangy

$$
\text { anconyouto? } \frac{1}{\ln \ln n} \geqslant \frac{1}{n}, n \geqslant n_{0} \Rightarrow \text { gub. }
$$

(5.) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt[n]{n}}$ gubepinge ipp onientim 21 at ke avertn lym
(6.) La mi kotheninge tn3 $x_{n}=1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}-2 \sqrt{n}$ Cbams tus y \mathbb{R} motterno ge bugumes neo pyg

$$
\begin{aligned}
& x_{k}=\left(x_{n}-x_{n-1}\right)+\left(x_{n-1}-x_{n-2}\right)+\ldots+\left(x_{2}-x_{1}\right)+\left(x_{1}-x_{0}\right) \\
& \text { gepult. } x_{0}:=0 \\
& x_{n}=\sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right)=\sum a_{k}, a_{k}:=x_{k}-x_{k-1} \\
& x_{k}-x_{k-1}=1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}}-2 \sqrt{k}-\left(1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k-1}}-2 \sqrt{k-1}\right) \\
&= \frac{1}{\sqrt{k}}-2(\sqrt{k}-\sqrt{k-1}) \cdot \frac{\sqrt{k}+\sqrt{k-1}}{\sqrt{k}+\sqrt{k-1}}=\frac{1}{\sqrt{k}}-2 \frac{k-(k-1)}{\sqrt{k}+\sqrt{k} 1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{k}}-\frac{2}{\sqrt{k}+\sqrt{k} 1}=\frac{\sqrt{k}+\sqrt{k-1}-2 \sqrt{k}}{\sqrt{k}(\sqrt{k}+\sqrt{k-1})}=\frac{\sqrt{k-1}-\sqrt{k}}{\sqrt{k}(\sqrt{k}+\sqrt{1 x-1})} \cdot \frac{\sqrt{k-1}+\sqrt{k}}{\sqrt{k-1}+\sqrt{k}} \\
& =\frac{k-1-k}{\sqrt{k}(\sqrt{k}+\sqrt{k-1})^{2}}=\frac{-1}{\sqrt{k}(\sqrt{k}+\sqrt{k-1})^{2}} \sim \frac{-1}{\sqrt{3 / 2})_{>}^{1}}, k \rightarrow 0 \\
& \quad \Rightarrow k \text { kotl } .
\end{aligned}
$$

