Sagange.
(1.) $\int_{0}^{\infty} \frac{d x}{x^{2}+x-2}$, $x^{2}+x-2=(x-1)(x+2)$
cuntiy ropuoreiz oy $x=1$ и $x=\infty$

$$
\int_{0}^{\infty} k 0+h . \Leftrightarrow \int_{0}^{1} k_{0 H b} n \int_{1}^{2}(4 n p .) k 0 H b . u \int_{2}^{\infty} 1 c_{0}+t b \text {. }
$$

II Halut - nomoty kpuñiegruggre

Lomotin: La m nool. $\int_{1}^{2} \frac{d x}{x^{2}+x-2}$ m $\int_{2}^{\infty} \frac{d x}{x^{2}+x-2}$? Ges rurabaupe.
(2.) $\int_{0}^{\infty} \frac{x^{2}}{x^{4}+x^{2}+1} d x$, jeguttr cuti $\dot{x} \quad x=\infty$

$$
\frac{x^{2}}{x^{4}+x^{2}+1} \sim x^{-2}, x \rightarrow \infty
$$

$$
a \quad \int_{1}^{\infty} x^{-2} d x \text { korb. } \quad \int_{0}^{\infty} \frac{x^{2}}{x^{4}+x^{2}+1} d x
$$

komethiop. $\int_{0}^{\infty} x^{-2} d x$ gub., $\int_{0}^{\infty} \frac{x^{2}}{x^{4}+x^{2}+1} d x$ hous. $\Leftrightarrow \int_{1}^{\infty} \frac{x^{2}}{x^{4}+x^{2}+1} d x$

$$
\begin{aligned}
& \int_{0}^{1} \frac{d x}{x^{2}+x-2}, \quad \frac{1}{x^{2}+x-2} \sim ? \quad x \rightarrow 1 \\
& \frac{1^{\prime \prime}}{(x+2)(x-1)} \sim \frac{1}{3(x-1)}, x \rightarrow 1 \\
& \int_{0}^{1} \frac{d x}{x-1} \text { gubepí. } \operatorname{jip}_{p} \int_{0}^{1-\varepsilon} \frac{d_{x}}{x-1}=\left.\ln (1-x)\right|_{x=0} ^{1-\varepsilon}=\ln \varepsilon-\ln 1 \xrightarrow[\rightarrow]{\varepsilon \rightarrow \infty} \\
& \text { (}=\int_{-1}^{0} \frac{d t}{t} \text { qua. y tyare) } \\
& \Rightarrow \int_{0}^{\infty} \frac{d x}{x^{2}+x-2} \text { qubepiupe }
\end{aligned}
$$

(3.) $\int_{1}^{\infty} \frac{d x}{\sqrt{1+x^{3}}}$ coutrysopunten $\quad x=\infty$

$$
\begin{aligned}
& \frac{1}{\sqrt{1+x^{3}}} \sim x^{-3 / 2} \quad x \rightarrow \infty \\
& \int_{1}^{\infty} x^{-3 / 2} d x \quad \text { kohb. } \quad(-3 / 2<-1) \Rightarrow \int_{1}^{\infty} \frac{d x}{\sqrt{1+x^{3}}} d x \quad \text { koht. }
\end{aligned}
$$

(4.) $\int_{0}^{1} \frac{\ln x}{1-x^{2}} d x \quad$ cuitronapuitem $x=0$ и $x=1$

$$
\int_{0}^{1 / 2} \frac{\ln x}{1-x^{2}} d x \quad \frac{\ln x}{1-x^{2}} \sim \ln x \quad, x \rightarrow 0
$$

$$
\left.\int_{0}^{1 / 2} \ln x d x \text { kottb. (raguan } \operatorname{mos}_{0}\right) \Rightarrow \int_{0}^{1 / 2} \frac{\ln x}{1-x^{2}} d x
$$

$$
\int_{1 / 2}^{1} \frac{\ln x}{1-x^{2}} d x \quad \frac{\ln x}{1-x^{2}} \sim \frac{-1}{2}, x \rightarrow 1
$$

$$
\ln x=\ln (1+(x-1))=(x-1)+\sigma(x-1), x \rightarrow 1
$$

$$
\frac{\ln x}{1-x^{2}}=\frac{x-1+\sigma(x-1)}{(1-x)(1+x)}=\frac{-1+\sigma(1)}{x+1} \xrightarrow{x+1}-\frac{1}{2}
$$

$$
\int_{1 / 2}^{1} \frac{-1}{2} d x \quad k o H 0 \Rightarrow
$$

$$
\int_{0}^{1} \frac{\ln x}{1-x^{2}} d x \quad \text { coHk }
$$

 Otga ce S sobe OTKNOHAB (IPUBU言AH) Mutryaopunteñ. Obge ce Heclogicaleern, gogeputs colterm bji f y 3 , clogn ve Pumartob,
(5.) $\int_{0}^{\infty} \frac{\operatorname{arctg} a x}{x^{p}} d x \quad, a, p \in \mathbb{R}$

$$
\begin{aligned}
& x=0 \quad \text { м } \quad x=\infty \\
& \int_{0}^{1} \frac{\operatorname{arcty}(a x)}{x p} d x \\
& \frac{\operatorname{arctg}(a x)}{x^{p}} \sim \frac{a x}{x^{p}}=a x^{1-p}, x \rightarrow 0 \\
& \text { anctgt }=t+o(t), \quad t \rightarrow 0 \\
& \text { anclyt } \sim t, t \rightarrow 0 \\
& \int_{0}^{1} a x^{1-p} d x \text { kothe. } \Leftrightarrow \quad \begin{array}{lll}
a=0 & p \in \mathbb{R} \\
& & a \neq 0 \\
& & 1-p>-1 \\
& a \neq 0 & p<2
\end{array} \\
& \int_{1}^{\infty} \frac{\operatorname{arctg}(a x)}{x^{p}} d x \quad \frac{\operatorname{arctg}(a x)}{x^{p}} \sim \frac{\operatorname{sgn} a \cdot \frac{\pi}{2}}{x^{p}}, x \rightarrow+\infty \\
& \left.\int_{1}^{\infty} x^{-p} d x \text { loyk } \begin{array}{l}
\Leftrightarrow \quad p<-1 \\
\Leftrightarrow>1
\end{array}\right\} a \neq 0 \\
& a=0 \Rightarrow \int_{1}^{\infty} \frac{\operatorname{arctg}(a x)}{x p} \text { koht. }
\end{aligned}
$$

3ans. $\int_{0}^{\infty} \frac{\operatorname{arctg}(a x)}{x^{p}} d x \quad$ koth. $\Leftrightarrow \quad \begin{aligned} & a=0 \text { um } \\ & a \neq 0 \text { u } p \in(1,2)\end{aligned}$
(6.) $\int_{0}^{2} \frac{d x}{\ln x}$
$x=0$ (onturo tрйи)
$x=1$ (getrec cmo aüp. $\ln x$ y ononuth $x=1$)
domatu.

Jipurep i $\int_{2}^{\infty} \frac{d x}{x^{p} \ln ^{2} x}$

Lokezancu.
$P>1$ kothl.
$p<1$ gub.
$p=1 \quad$ ucúluntanty

$$
\begin{aligned}
& \left.p>1 \quad \begin{array}{cc}
\alpha \\
1-1-1 \\
1-1, p
\end{array} \quad \begin{array}{c}
\\
1+\alpha=\frac{1+p}{2}
\end{array}\right) \\
& \frac{1}{x^{p} \ln ^{2} x} \leq \frac{1}{x^{\alpha}} \quad, \quad \text { 3ap. } \quad x \geqslant M
\end{aligned}
$$

$$
\begin{aligned}
& \left(\int_{2}^{\infty} \frac{d x}{x^{\alpha}}=\int_{2}^{\infty} x^{-\alpha} d x \text { конb. jip ji }-\alpha<-1\right. \\
& \frac{\frac{1}{x p \ln ^{2} x}}{\frac{1}{x^{\alpha}}}=\frac{1 v^{0}}{x^{(p-\alpha)} \ln ^{2} x} \xrightarrow[x \rightarrow \infty]{\infty} 0 \\
& p<1 \\
& p_{1}^{1-1+1} \quad \exists \alpha \in(p, 1) \\
& \frac{1}{x^{p} \ln ^{2} x} \geqslant \frac{1}{x^{\alpha}}, \quad x \geqslant M \quad \text { sip } \\
& \frac{\frac{1}{x^{p} \ln ^{2} x}}{\frac{1}{x^{\alpha}}}=\frac{x^{(\alpha-p)}}{\ln ^{2} x} \xrightarrow{x \rightarrow \infty} \infty \\
& \int_{2}^{\infty} \frac{1}{x^{\alpha}} d x \text { qub. } \overline{j p} \bar{j}-\alpha>-1 \quad(\alpha<1) \\
& \begin{aligned}
p=1 & \int_{2}^{\infty} \frac{d x}{x \ln ^{2} x}=\left\{\begin{array}{c}
t=\ln x \\
\frac{d x}{x}=d t
\end{array}\right\}=\int_{\ln 2}^{\infty} \frac{d t}{t^{2}} \\
& =\int_{\ln 2}^{\infty} t-2 d t \text { kowb } \Leftrightarrow-2<-1 \quad c \Rightarrow \mathcal{L}>1
\end{aligned}
\end{aligned}
$$

ЗАкруYAk. $\int_{2}^{\infty} \frac{d x}{x^{P} \ln ^{2} x}$ конb. $\Leftrightarrow p>1$ un $p=1, q>1$

Aúcongriqa kotherietryija usite lpera
gep. Heke i f ged. He $[9,3)$ u Heifenighe. Carums ge $\int_{a}^{3} f(x) d x$ añcongnuto koHb. quo $\int_{a}^{3}|f(x)| d x$ kotlup inge.

Tllbiferte. Ano $\int_{a}^{3} f(x) d x$ cunconguuso wottb. oufa of korthepiepra.

Lonesi: $\int_{a}^{3} f(x) d x$ wotb. $\Leftrightarrow \forall \varepsilon \not b_{0} \in[b, 3) \quad \forall b_{1}, b_{2}\left|\int_{b_{1}}^{2} f(x) d x\right|<\varepsilon$ $3 \mathrm{Htm} \int_{a}^{b}|f(x)| d x$ cootb. $\Leftrightarrow \forall \varepsilon \exists b_{0} \quad \forall b_{1}, b_{2}>b_{0}\left|\int_{b_{1}}^{b_{2}}\right| f(x)|d x|<\varepsilon$
ann $\left|\int_{b_{1}}^{b_{2}} f(x) d x\right| \leq\left|\int_{b_{1}}^{b_{2}} f_{1}(x)\right| d x \mid<\varepsilon$

Bagenare. $\int_{0}^{\infty} \frac{\sin x}{x^{3 / 2}} d x$
cuHey nopúnerin $\quad x=0$ и $x=\infty$

$$
\begin{aligned}
& \int_{0}^{1} \frac{\sin x}{x^{3 / 2}} d x, \frac{\sin x}{x^{3 / 2}} \sim \frac{x}{x^{3 / 2}}=x^{-1 / 2}, x \rightarrow 0 \\
& \int_{0}^{1} x^{-1 / 2} d x \quad \text { lowth. jip }-1 / 2>-1
\end{aligned}
$$

$\int_{1}^{\infty} \frac{\sin x}{x^{3 / 2}} d x$ áncongratus kotb. \Rightarrow kottbepinpe

$$
\left|\frac{\sin x}{x^{3 / 2}}\right| \leqslant \frac{1}{x^{3 / 2}}, \int_{1}^{\infty} \frac{d x}{x^{3 / 2}} 1001+6 . \quad(-3 / 2<-1)
$$

1. जop. kp.

$$
\Rightarrow \quad \int_{1}^{\infty}\left|\frac{\sin x}{x^{3 / 2}}\right| d x \quad \text { cottl, }
$$

OJJEPOBU पHनERPAJU

$$
\begin{aligned}
& B(\alpha, 3):=\int_{0}^{1} x^{\alpha-1}(1-x)^{3-1} d x \\
& \Gamma(\alpha) i=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x
\end{aligned}
$$

Beima pytraynga (I Ojnpob ustruprea)

Tame byturustina (II Oj^epot)

Clojarbar Γ - $\phi-j$
(1.) Lomest? Ba noji $\alpha \in \mathbb{R}$ ji $\Gamma(\alpha)$ ge ϕ. ūy. 3a uoj α

$$
\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x \text { lcottepínpe? }
$$

$$
\begin{aligned}
& x=0 \\
& x^{\alpha-1} e^{-x} \sim x^{\alpha-1}, x \rightarrow 0 \\
& \int_{0}^{1} x^{\alpha-1} d x \text { wotb. } \Leftrightarrow \alpha-1>-1 \\
& \Leftrightarrow \mid \alpha>0
\end{aligned}
$$

$$
\begin{aligned}
& x=\infty \\
& \int_{1}^{\infty} \text { koHb, } \forall \alpha \quad \text { jip } \\
& x^{\alpha-1} e^{-x} \leqslant e^{-x / 2}, x \geqslant M \\
& \operatorname{jip}_{p} \frac{x^{\alpha-1} e^{-x}}{e^{-x / 2}}=x^{\alpha-1} e^{-x / 2} \prod_{x \rightarrow \infty}^{\infty}, \forall \alpha
\end{aligned}
$$

\Downarrow

$$
\begin{aligned}
& \exists M, x \geqslant M \quad \frac{x^{\alpha-1} e^{-x}}{e^{-x / 2}} \leqslant 1 \\
& \int_{1}^{\infty} e^{-x / 2} d x=-\left.2 e^{-x / 2}\right|_{1} ^{\infty}=0+2 e^{-1 / 2}
\end{aligned}
$$

3AKNYYAK: $\quad D_{\Gamma}=(0, \infty)$
(2.) $\alpha>0 \quad \Gamma(\alpha+1)=\int_{0}^{\infty} x^{\alpha} e^{-x} d x=\left\{\begin{array}{l}x^{\alpha}=u \\ e^{-x} d x=d v \\ d \mu=\alpha x^{\alpha-1} d v \\ v=-e^{-x}\end{array}\right\}=$

$$
=-\left.x^{\alpha} e^{-x}\right|_{0} ^{\infty}+\alpha \int_{0}^{\infty} x^{\alpha-1} e^{-x} d x=0-0+\alpha \Gamma(\alpha)
$$

$\Gamma(\alpha+1)=\alpha \Gamma(\alpha) \sim($ nowe ge ve u

$$
\begin{aligned}
& \Gamma(1)=\int_{0}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{\infty}=0+1=1 \\
& \Gamma(n)=\Gamma(n-1+1)=(n-1) \Gamma(n-1)=(n-1)(n-2) \Gamma(n-2)=\ldots=(n-1))
\end{aligned}
$$

(3.) форMYתA BOחJHE: $\alpha \in(0,1) \Rightarrow \Gamma(\alpha) \Gamma(1-\alpha)=\frac{\pi}{\sin \pi \alpha}$ be3 noka-3A.

Tpurep. $\Gamma(1 / 2) \cdot \Gamma(1 / 2)=\frac{\pi}{\sin \pi / 2}=\pi \Rightarrow \Gamma(1 / 2)=\sqrt{\pi}$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{\infty} \frac{1}{\sqrt{t}} e^{-t} d t=\frac{1}{2} \int_{0}^{\infty} t^{1 / 2-1} e^{-t} d t=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2} \\
& \int_{-\infty}^{\infty} e^{-x^{2}} d x=\underbrace{\int_{-\infty}^{0} e^{-x^{2}} d x+\int_{0}^{\infty} e^{-x^{2}} d x-2 \int_{0}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}}_{-x=t} .
\end{aligned}
$$

Clesjcirba B-pji
(1.) Lomert? Ba noji $\alpha, 3 \in \mathbb{R}$ koatb. $\int_{0}^{1} x^{\alpha-1}(1-x)^{3-1} d x$?
$x=0$ ir $x=1$ of curti.

$$
\begin{aligned}
& \begin{aligned}
x \rightarrow 0 & x_{2_{1}}^{\alpha-1}(1-x)^{3-1}
\end{aligned} x^{\alpha-1}, \int_{0}^{1 / 2} x^{\alpha-1} d x \quad \text { kobb } \Leftrightarrow \alpha-1>-1 \\
& \begin{aligned}
x \rightarrow 1 & x^{2-1}(1-x)^{3-1} \sim(1-x)^{3-1}, \int_{1 / 2}^{1}(1-x)^{3-1} d x 100+b \Leftrightarrow 3-1>-1
\end{aligned} \begin{aligned}
\Leftrightarrow & \Leftrightarrow 3>0
\end{aligned} \\
& \int_{1 / 2}^{1}(1-x)^{3-1} d x=\left\{\begin{array}{l}
t=1-x \\
d t=-d x
\end{array}\right\}=-\int_{1 / 2}^{0} t^{3-1} d t=\int_{0}^{1 / 2} t^{3-1} d t
\end{aligned}
$$

$B(\alpha, \beta) \quad \gamma$ gep. $3 a \quad \alpha>0,3>0$
2.

$$
\begin{aligned}
& B(\alpha, 3)=B(3, \alpha) \\
& \begin{aligned}
\int_{0}^{11} x^{\alpha-1}(1-x)^{3-1} d x=\left\{\begin{array}{c}
t=1-x \\
d x=-d t \\
x|0| 1 \\
\left.\frac{x}{1} \right\rvert\,
\end{array}\right\} & =-\int_{0}^{0}(1-t)^{\alpha-1} t^{3-1} d t \\
& =\int_{0}^{1} t^{3-1}(1-t)^{\alpha-1} d t \\
& =B(3, \alpha)
\end{aligned}
\end{aligned}
$$

3.

$$
\begin{aligned}
& 3 B(\alpha+1,3)=\int_{0}^{1} x^{\alpha}(1-x)^{3-1} d x=\left\{\begin{array}{l}
x^{\alpha}=u \\
(1-x)^{3-1} d x=d v \\
d u=\alpha x^{\alpha-1} d x \\
\left.v=-\frac{(1-x)^{3}}{3}\right\}
\end{array}\right. \\
& =-\left.\frac{x^{\alpha}(1-x)^{3}}{3}\right|_{0} ^{1}+\frac{\alpha}{3} \int_{0}^{1} x^{\alpha-1} \underbrace{(1-x)^{3}}_{(1-x)^{3-1}(1-x)} d x \\
& =-(0-0)+\frac{\alpha}{3}\left\{\int_{0}^{1} x^{\alpha-1}(1-x)^{3-1} d x-\int_{0}^{1} x^{\alpha}(1-x)^{3-1} d x\right\}
\end{aligned}
$$

$$
B(\alpha+1,3)=\frac{\alpha}{3}(B(\alpha, 3)-B(\alpha+1,3)) \quad / 3
$$

$$
(\beta-\alpha) B(\alpha+1,3)=\alpha B(\alpha, 3)
$$

$$
B(\alpha+1,3)=\frac{\alpha}{\alpha+3} B(\alpha, 3)
$$

$$
B(\alpha, \beta+1)=B(\beta+1, \alpha)=\frac{3}{\alpha+3} \quad B(3, \alpha)=\frac{3}{\alpha+3} B(\alpha, 3)
$$

2onotin. a) Hatin $B(1,1) \quad(=1)$
8) Hoten $B(m, n)$, 3a $m, n \in \mathbb{N}$
4.) $y \int_{0}^{1} x^{\alpha-1}(1-x)^{3-1} d x$ Haípabumo cmery $x=\frac{t}{1+t}$

$$
\begin{aligned}
& d x=d\left(\frac{1+t-1}{1+t}\right)=d\left(1-\frac{1}{1+t}\right)=\frac{d t}{(1+t)^{2}} \\
& x(1+t)=t, \quad t(x-1)=-x \\
& t=\frac{x}{1-x},\left.\left.\frac{x}{t}\right|_{0} ^{0}\right|_{0} ^{\infty} \\
& \int_{0}^{1} x^{\alpha-1}(1-x)^{3-1} d x \\
& =\int_{0}^{\infty} \frac{t^{\alpha-1}(1+t-t)^{3-1}}{(1+t)^{\alpha+3}} \frac{t^{\alpha-1}}{(1+t)^{\alpha-1}}\left(1-\frac{t}{1+t}\right)^{3-1} \frac{d t}{(1+t)^{2}}= \\
& \Rightarrow \quad B(\alpha, 3)
\end{aligned}
$$

5.) Be3A 4зméty B и $\Gamma \quad \phi$-s

$$
B(\alpha, 3)=\frac{\Gamma(\alpha) \Gamma(3)}{\Gamma(\alpha+3)}
$$

Se3 gove $3 a$

3apangn.

1. $\int_{0}^{\pi / 2} \sin ^{\alpha} x \cos ^{3} x d x$, $3 a \operatorname{logi}<2$ icoth.
uspasuin ugelvo B ф j

$$
x=0 \quad \mu \quad x=\pi / 2
$$

$$
\begin{aligned}
& x \rightarrow 0 \quad \sin ^{\alpha} x \cos ^{3} x \sim x^{\alpha}, \quad \operatorname{coth} . \Leftrightarrow \alpha>-1 \\
& x \rightarrow \pi / 2 \quad \sin ^{\alpha} x \cos ^{3} x \sim 1 \cdot \sin (\pi / 2-x)^{3} \sim(\pi / 2-x)^{3} \cos +6 . \Leftrightarrow 3>-1
\end{aligned}
$$

TPUK. $\quad \sin ^{2} x=t, \cos ^{2} x=1-t$ $2 \sin x \cos x=d t$

x	0	$\pi / 2$
t	0	1

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \sin ^{2} x \cos ^{3} x d x=\frac{1}{2} \int_{0}^{\pi / 2} \sin ^{\alpha-1} x \cos ^{3-1} x 2 \sin x \cos x d x= \\
& =\frac{1}{2} \int_{0}^{1} t^{\frac{\alpha-1}{2}}(1-t)^{\frac{3-1}{2}} d t=\frac{1}{2} \int_{0}^{1} t^{\frac{\alpha+1}{2}-1}(1-t)^{\frac{3+1}{2}-1} d t \\
& =\frac{1}{2} B\left(\frac{\alpha+1}{2}, \frac{3+1}{2}\right)
\end{aligned}
$$

2omaten Hahn $\int_{0}^{\pi / 2} \sin ^{m} x \cos ^{n} x d x, m, n \in \mathbb{N}$

$$
\left(\begin{array}{l}
\left.y \cap y \Gamma C T B 0: \begin{array}{ll}
\text { clecuin } & \Gamma(n)=(n-1)! \\
& \Gamma\left(n+\frac{1}{2}\right)=\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) \cdots \frac{3}{2} \underbrace{\Gamma\left(\frac{1}{2}\right)}_{\sqrt{\pi}}
\end{array}\right)
\end{array}\right.
$$

(2.)

$$
\begin{aligned}
& \int_{0}^{\infty} \sqrt{x} e^{-\sqrt[3]{x}} d x=\left\{\begin{array}{l}
\sqrt[3]{x}=t \\
x=t^{3} \\
d x=3 t^{2} d t
\end{array}\right\}=3 \int_{0}^{\infty} t^{3 / 2} e^{-t} t^{2} d t= \\
& =3 \int_{0}^{\infty} t^{7 / 2} e^{-t} d t=3 \Gamma(9 / 2)=3 \cdot \frac{7}{2} \Gamma\left(\frac{7}{2}\right)=3 \cdot \frac{7}{2} \cdot \frac{5}{2} \Gamma\left(\frac{5}{2}\right)= \\
& =3 \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \Gamma\left(\frac{3}{2}\right)=3 \cdot \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \Gamma\left(\frac{1}{2}\right)=3 \frac{7!!}{16} \sqrt{\pi} \\
& (2 n)!!=2 n \cdot(2 n-2)(2 n-4)-2 \\
& (2 n+1)!!=(2 n+1)(2 n-1)(2 n-3) \cdots 5 \cdot 3
\end{aligned}
$$

3.

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{x^{m-1}}{1+x^{n}} d x, \quad 0<m<n \in \mathbb{N} \\
& \left(B(\alpha, \beta)=\int_{0}^{\infty} \frac{t^{\alpha-1}}{(1+t)^{\alpha+3}} d t\right)
\end{aligned}
$$

creste: $x^{n}=t \quad x=t^{1 / n} \quad d x=\frac{1}{n} t^{1 / n-1} d t$

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{x^{m-1}}{1+x^{n}} d x=\frac{1}{n} \int_{0}^{\infty} \frac{t^{\frac{m-1}{n}}}{1+t} t^{1 / n-1} d t= \\
& =\frac{1}{n} \int_{0}^{\infty} \frac{t^{\frac{m}{n}-1}}{1+t} d t \quad \begin{array}{ll}
\frac{m}{n}-1 & =\alpha-1 \\
\alpha+3 & =1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\frac{m}{n} \quad 3=1-\frac{m}{n} \\
& =\frac{1}{n} B\left(\frac{m}{n}, 1-\frac{m}{n}\right)=\frac{1}{n} \frac{\Gamma\left(\frac{m}{n}\right) \Gamma\left(1-\frac{m}{n}\right)}{\Gamma\left(\frac{m}{n}+1-\frac{m}{n}\right)}=\frac{1}{n} \frac{\frac{\pi}{\sin \frac{m \pi}{n}}}{\Gamma(1)}=\frac{\pi}{n \sin \frac{m \pi}{n}} \\
& \Gamma(\alpha) \Gamma(1-\alpha)=\frac{\pi}{\sin \pi_{\alpha}}
\end{aligned}
$$

2omotin:
(4.) $\int_{0}^{1} x^{2}\left(\ln \frac{1}{x}\right)^{3} d x$
(5.) $\int_{0}^{\pi} \sin ^{4} x \cos ^{6} x d x$ (aposanim nipko B ϕj)
(6.) $\int_{0}^{a} x^{2} \sqrt{a^{2}-x^{2}} d x, \quad a>0$
(7.) $\int_{0}^{\infty} \frac{d x}{1+x^{3}}$
PE,BOBN

$$
a_{n} \in \mathbb{R}, \quad n=0,1, \ldots, S_{N}=\sum_{n=1}^{N} a_{n}=a_{1}+a_{2}+\ldots+a_{N}
$$

Hu3 जapuyijartux cyove
ged. Ano th3 S_{N} kotberbepione y \mathbb{R} -11 - S_{N} gubepínpe - 11 gubepīnpe.

Tumeno: $\sum_{n=1}^{\infty} a_{n}=\lim _{N \rightarrow \infty} S_{N}$.

Trumep. $a_{n}=2^{n}$ 3n noje q wostb. $\sum_{n=0}^{\infty} a_{n}$

$$
S_{N}=1+z+\cdots+z^{N}=\left\{\begin{array}{ll}
\frac{1-2^{N+1}}{1-2}, & z \neq 1 \\
N+1, & z=1
\end{array} \quad \text { kag konk. y } \mathbb{R} ?\right.
$$

$2 \neq 1 \quad S_{N}$ kootl. $\Leftrightarrow 2^{N+1}$ konte. $\Leftrightarrow|2|<1$

$$
-1<2<1
$$

$Z=1 \quad S_{N}$ gubepinge.
$\sum 2^{n}$ isotheprinpe $\Leftrightarrow \mid 21<1$

3agangn. 2a.m kotheginpa rys $\overline{\mathbb{}} a_{n}$?
(1.)

$$
\begin{aligned}
a_{n} & =\ln \left(1+\frac{1}{n}\right) \\
S_{N} & =\sum_{n=1}^{N} \ln \left(1+\frac{1}{n}\right)=\sum_{n=1}^{N} \ln \frac{1+n}{n}=\sum_{n=1}^{N}[\ln (1+n)-\ln n] \\
& =(\ln 2-\ln 1)+(\ln (3-\ln 2)+(\ln (n-\ln (3)+\cdots+(\ln (N-\ln N(-1)+(\ln (N+1)-\ln N) \\
& =\ln (N+1) \xrightarrow{N-\infty} \infty \Rightarrow \text { gubepi. }
\end{aligned}
$$

2.

$$
\begin{aligned}
& a_{n}=\frac{1}{n(n+1)}=\frac{n+1-n}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1} \\
& \begin{aligned}
S_{N}=\sum_{n=1}^{N}\left(\frac{1}{n}-\frac{1}{n+1}\right) & =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{N-1}-\frac{1}{N}\right)+\left(\frac{1}{N}-\frac{1}{N+1}\right) \\
& =1-\frac{1}{N+1} \xrightarrow{N+\infty} 1
\end{aligned} \\
& \sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1
\end{aligned}
$$

