6. Ybe
$\begin{array}{rrr}V \text { oko } & x \text {-oce } & \pi \int_{a}^{b} f^{2}(x) d x \\ y \text {-oce } & 2 \pi \int_{a}^{b} x f(x) d x\end{array}$
3agayne.
(1.) $P(3,2)$ the $y^{2}=2(x-1)$ cottelp. \dot{r} uasurtertace t

$$
\begin{gathered}
\text { watienura: } y=\sqrt{2(x-1)} \neq P(3,2) \\
y^{\prime}=\frac{1}{\sqrt{2(x-1)}} \\
k=y^{\prime}(3)=\frac{1}{\sqrt{2 \cdot 2}}=\frac{1}{2}
\end{gathered}
$$

$t: \quad y-2=\frac{1}{2}(x-3) \quad y=\frac{1}{2} x-\frac{3}{2}+2=\frac{1}{2}(x+1)$

$$
\begin{aligned}
& \text { K } \\
& \stackrel{V}{V=v_{1}-V_{2}} \downarrow \text { porure gro coperome } \\
& \text { poukge gyxe }
\end{aligned}
$$

$V_{1}=\pi \int_{-1}^{3}\left(\frac{1}{2}(x+1)\right)^{2} d x=\frac{\pi}{4} \int_{-1}^{3}(x+1)^{2} d x=\left.\frac{\pi}{4} \frac{(x+1)^{3}}{3}\right|_{-1} ^{3}=$
$=\frac{\pi}{4} \frac{1}{3}(64-0)=\frac{16 \pi}{3}$
$V_{2}=\pi \int_{1}^{3} 2(x-1) d x=\left.2 \pi \frac{(x-1)^{2}}{2}\right|_{1} ^{3}=\frac{2 \pi}{2}(4-0)=4 \pi$
$V=\pi\left(\frac{16}{3}-4\right)=\frac{4 \pi}{3}$

$$
V=2 \pi \int_{0}^{5} x \sqrt{4+x} d x
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
y \\
x=4+x \\
d x=d t
\end{array}\right\} \\
& V=2 \pi \int_{4}^{x}(t-4) \sqrt{t} d t=2 \pi\left[\int_{4}^{9} t^{3 / 2} d t-4 \int_{4}^{9} \sqrt{t} d t\right]=\ldots
\end{aligned}
$$

IV Tobpermer ofnturo ureve

зapysvike cyña
P (omolitere 3ap. icyere) $=\pi(R+r)$ I

He $\left[x_{j-1}, x_{j}\right], \quad I=\left|A_{j-1} A_{j}\right| \quad A_{j}\left(x_{j}, f\left(x_{j}\right)\right)$

$$
\begin{aligned}
& r=f\left(x_{j-1}\right) \\
& R=f\left(x_{j}\right) \\
& P_{j}=\pi\left(f\left(x_{j-1}\right)+f\left(x_{j}\right)\right) \sqrt{\left(x_{j}-x_{j-1}\right)^{2}+\left(f\left(x_{j}\right)-f\left(x_{j-1}\right)\right)^{2}}
\end{aligned}
$$

(can24s (cao koy gytuntte aylue)

$$
\begin{aligned}
& =\pi\left(f\left(x_{j-1}\right)+f\left(x_{j}\right)\right)\left(\left(x_{j}-x_{j-1}\right) \sqrt{1+\left(\frac{f\left(x_{j}\right)-f\left(x_{j}-1\right.}{}\right)}\right)^{2} \\
& =2 \pi \underbrace{f\left(\xi_{j}-x_{j-1}\right)})\left(\frac{b-a}{n} \sqrt{1+f^{\prime}\left(\eta_{j}\right)^{2}}\right. \text { Nop. wi. o up, bp. }
\end{aligned}
$$

$\frac{1}{2}\left(f\left(x_{j-1}\right)+f\left(x_{j}\right)\right) \bar{x}$ из~ufy $f\left(x_{j-1}\right)$ и $f\left(x_{j}\right)$
\Rightarrow (Kom, Goaypen) $f_{j} \in\left[x_{j-1}, x_{j}\right]$ wigj.

$$
\begin{gathered}
f\left(\xi_{j}\right)=\frac{1}{2}\left(f\left(x_{j-1}\right)+f\left(x_{j}\right)\right) \\
\sum p_{j}=2 \pi \frac{b-a}{n} \sum_{j=1}^{n} f\left(\xi_{j}\right) \sqrt{1+f^{\prime}\left(\eta_{j}\right)^{2}} \approx 2 \pi S_{n}\left(f(x) \cdot \sqrt{1+f^{\prime}(x)^{2}}\right) \\
\xi_{j}, \eta_{j} \in\left[x_{j-1}, x_{j}\right] \quad \int_{n \rightarrow \infty}^{n} \\
\Rightarrow P=2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x
\end{gathered}
$$

 ono x-oce.

$$
\begin{aligned}
& y^{\prime}=\frac{x^{2}}{3}, P=2 \pi \int_{0}^{2} \frac{x^{3}}{9} \sqrt{1+\frac{x^{4}}{9}} d x \\
&=\frac{2 \pi}{27} \int_{0}^{2} x^{3} \sqrt{9+x^{4}} d x \\
&=\left\{\begin{array}{l}
t=9+x^{4} \\
d t=4 x^{3} d x \\
x^{3} d x=\frac{1}{4} d t
\end{array}\right\}=\frac{2 \pi}{108} \int_{9}^{25} \sqrt{t} d t=\ldots .
\end{aligned}
$$

HECBOJCTBEHU UHTERPAN
go cag $f:[9, b] \rightarrow \mathbb{R}($ trizeiste theip. $)$, ofortuverse
log $f:[a, 3) \rightarrow \mathbb{R} \quad, \quad\} \in \mathbb{R} \cup\{\infty\}$ wig. $\int_{a}^{b} f(x) d x$ urourojn $3 a \quad \forall b \in[a, 3)$
ged. Hene $\bar{\gamma} f$ ustrilip. Ire $[9, b], \forall b \in[9,3)$
 TCHAYAF!
untitipen $\phi-j$ of the $[a, 3$)
μ anuce $\int_{a}^{3} f(x) d x$.
Kourerso ga ji 3 cutiynnapumièn. Karterns ga $\int_{a}^{3} f(x) d x$ kothepiupa. ANo He $7 \lim _{b \rightarrow 3^{-}} \int_{a}^{b} f(x) d x$ katerns ga Hede. watit. gulepiupe.

Tpumep. $\quad \int_{1}^{\infty} x^{\alpha} d x$. Ba coji $\alpha \in \mathbb{R}$ woith?
Hedojcirlest ji jp jr Dastunge ∞

$$
\int_{1}^{b} x^{\alpha} d x=\ldots \text { ge mu } \quad \text { l } \lim _{b \rightarrow \infty}
$$

$\alpha \neq-1: \int_{1}^{b} x^{\alpha} d x=\left.\frac{x^{\alpha+1}}{\alpha+1}\right|_{1} ^{b}=\frac{b^{\alpha+1}}{\alpha+1}-\frac{1}{\alpha+1}=\frac{1}{\alpha+1}\left(b^{\alpha+1}-1\right)$
Kaga $\exists \lim _{b \rightarrow \infty} b^{\alpha+1} ? \quad$ ogi $\underset{c}{\Leftrightarrow} \quad \alpha+1 \leqslant 0$
$\alpha=-1: \quad \int_{1}^{b} x^{\alpha} d x=\int_{1}^{b} \frac{d x}{x}=\ln b-\ln 1=\ln b \xrightarrow{b++\infty} \infty$
gulapíupe
3AKAYYAK: $\quad \int_{1}^{\infty} x^{\alpha} d x$ notbepinpe $\Leftrightarrow \quad \alpha<-1$
geq.
Uculo ged. Hecleojcirb. untimpar $f:(\alpha, l] \rightarrow \mathbb{R}, \alpha \in \mathbb{R} \cup\{-\infty\}$
ano $7 \int_{a}^{b} f(x) d x \quad \forall a \in(\alpha, b]$, lios $\lim _{a \rightarrow \alpha^{+}} \int_{a}^{b} f(x) d x$
α j cultíyoopunteín
ano $7 \mathrm{lim} \leadsto \int_{\alpha}^{b} f(x) d x$ corts equipe ans te $\sim \int_{\alpha}^{b_{f}} f(x) d x$ gubepíupe

Thrimp. $\int_{0}^{1} x^{\alpha} d x$ Hecb. ano $j \quad \alpha<0$
ヨ?

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{\varepsilon}^{1} x^{<} d x
$$

$$
\underline{\alpha \neq-1}: \quad \int_{\varepsilon}^{1} x^{\alpha} d x=\left.\frac{x^{\alpha+1}}{\alpha+1}\right|_{\varepsilon} ^{1}=\frac{1}{\alpha+1}(1-\underbrace{\varepsilon^{\alpha+1}}_{1})
$$

$$
\operatorname{kag}_{a} \not \lim _{\varepsilon \rightarrow 0^{+}} \text {? }
$$

$\alpha+1 \geqslant 0$, liy. $\alpha \geqslant-1$ loog thec $\alpha>-1$

$$
\underline{\alpha=-1}: \int_{\varepsilon}^{1} \frac{d x}{x}=\left.\ln x\right|_{\varepsilon} ^{1}=\ln 1-\ln \varepsilon=0-\underset{\substack{\text { gnbepinpe }}}{\varepsilon \rightarrow 0^{+}}+\infty
$$

3A-k yy A K : $\quad \int_{0}^{1} x^{\alpha} d x$ 1004b $\quad \Leftrightarrow \quad \alpha>-1$

Sapangu. Usparyiterom Heob. Mtrineípare ano kortb.
(1) $\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\lim _{3 \rightarrow \infty} \int_{0}^{3} \frac{d x}{1+x^{2}}=\left.\lim _{3 \rightarrow \infty} \operatorname{arctg} x\right|_{0} ^{3}=$

$$
=\lim _{3 \rightarrow \infty}(\operatorname{arctg} s-\operatorname{arctg} 0)=\frac{\pi}{2}-0-\frac{\pi}{2}
$$

(2.) $\int_{0}^{\infty} e^{-x} d x=\lim _{3 \rightarrow \infty} \int_{0}^{3} e^{-x} d x=\lim _{3 \rightarrow \infty}\left(-e^{-x}\right)_{0}^{3}=$

$$
=\lim _{3 \rightarrow \infty}\left(-e^{-3}+1\right)=\lim _{3 \rightarrow \infty}\left(1-\frac{1}{e^{3}}\right)=1-0=1
$$

(3.) $\int_{0}^{1} \ln x d x=\lim _{\varepsilon \rightarrow 0^{+}} \int_{\varepsilon}^{1} \ln x d x$

$$
\begin{aligned}
& \int_{\varepsilon}^{1} \ln x d x=\left\{\begin{array}{ll}
\ln =\ln x & d \ln =\frac{d x}{x} \\
d v=d x & v=x
\end{array}\right\}=\left.x \ln x\right|_{\varepsilon} ^{1}-\int_{\varepsilon}^{1} d x= \\
& =1 \ln 1-\varepsilon \ln \varepsilon-(1-\varepsilon) \\
& \begin{array}{r}
\int_{0}^{1} \ln x d x=\lim _{\varepsilon \rightarrow 0^{+}}(-\underbrace{\varepsilon \ln \varepsilon-1+\varepsilon)}=-1 \\
\downarrow_{0}\left(\frac{(\ln \varepsilon)^{\prime}}{\left(\frac{1}{\varepsilon}\right)^{\prime}}=\frac{\frac{1}{\varepsilon}}{-\frac{1}{\varepsilon^{2}}}=-\varepsilon \rightarrow 0\right)
\end{array}
\end{aligned}
$$

domatis. (4) $\int_{0}^{\infty} \frac{\operatorname{arctg} x}{1+x^{2}} d x$
(5.) $\int_{0}^{1} \frac{\arcsin x}{\sqrt{1-x^{2}}} d x$
(6.) $\int_{0}^{\infty} e^{-a x} \sin b x d x \quad a>0$
(7.) $\int_{1}^{2} \frac{\perp_{x}}{x \ln x}$ cusiyropurtes. $x=1$

$$
\begin{gathered}
\alpha>1: \int_{\alpha}^{2} \frac{d x}{x \ln x}=\left\{\begin{array}{l}
t=\ln x \\
\frac{d x}{x}=d t
\end{array}\right\}=\int_{\ln \alpha}^{\ln 2} \frac{d t}{t}=\left.\ln t\right|_{\ln \alpha} ^{\ln 2}= \\
=\ln \ln 2-\ln \ln \alpha
\end{gathered}
$$

$$
\begin{gathered}
\lim _{\alpha \rightarrow 1^{+}}(\ln \ln 2-\ln \ln \alpha)=\ln \ln 2-\overbrace{\alpha \rightarrow 1^{+}}^{\lim _{\alpha 0^{+}}^{\infty} \ln \alpha}=+\infty \\
\Rightarrow \int_{1}^{2} \frac{d x}{x \ln x} \text { guleginge }
\end{gathered}
$$

ge ϕ.

$$
\begin{array}{ll}
f:(\alpha, 3) \rightarrow \mathbb{R} & \alpha \in \mathbb{R} \cup\{-\infty\} \\
& \} \in \mathbb{R} \cup\{+\infty\}
\end{array}
$$

f jir morie ipachmte the coa/wom $[a, b] \subseteq(\alpha, 3)$
Kouters ge $\int_{\alpha}^{3} f(x) d x$ kotbepinge quo korb. $\int_{\infty}^{c} f(x) d x \int_{c}^{3} f(x) d x$

Ba shno koge $c \in(\alpha, 3)$.

Hainomers: gequthnynja te 3 obuch oy c, jip $a, c, d \in(\alpha, 3)$

$$
\int_{a}^{d} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{d} f(x) d x
$$

$\lim _{a \rightarrow \alpha+} \int_{a}^{d} f(x) d x$ nociogin$\Leftrightarrow \lim _{a \rightarrow \alpha^{+}} \int_{a}^{c} f(x) d x$

$$
\varphi(a)=\psi(a)+\operatorname{con} t
$$

11

$$
\psi(a)
$$

Tpumep. $\quad \int_{0}^{\infty} x^{\alpha} d x \quad$ cutiry $\quad \begin{array}{ll}x=0\end{array} \quad(\alpha<0)$
utrizeipen $\int_{0}^{\infty} x^{\alpha} d x$ notb. $\Leftrightarrow \int_{0}^{1} x^{\alpha} d x$ kootb. u $\int_{1}^{\infty} x^{\alpha} d x$

$$
(\Rightarrow \quad \alpha>-1 \quad \mu \quad \alpha<-1
$$

4y. $\int_{0}^{\infty} x^{\alpha} d x$ gubepoupre $3 n \quad \forall \alpha$.

Boganien. $\quad \int_{-\infty}^{+\infty} \frac{d x}{1+x^{2}}$ конb. jip koнb. $\int_{-\infty}^{0} \frac{d x}{1+x^{2}}=\pi / 2$

$$
u \quad \int_{0}^{\infty} \frac{d x}{1+x^{2}}=\pi / 2
$$

ges. $f:[9,6] \backslash\{\gamma\} \rightarrow \mathbb{R}$ untureip. the clonnom $[a, b, 1] \subset[9, b] \backslash\{\gamma\}$ Keltermo ge $\int_{a}^{b} f(x) d x$ cootb. ano worb. $\int_{a}^{\gamma} f(x) d x 4$

$$
\int_{\gamma}^{b} f(x) d x
$$

$f:[9,3) \backslash\{r\} \rightarrow \pi$ moniup. 4e \forall cempestuly, $\int_{a}^{3} f(x) d x$ kонb. ano leofl $\int_{a}^{\gamma} f(x) d x \quad 4 \int_{\sigma}^{3} f(x) d x$.

(1.) $\int_{-1}^{1} \frac{d x}{x}$
(2) $\int_{-1}^{1} \frac{d x}{\sqrt{|x|}}$
 culti.

11

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0^{-}} \int_{-1}^{\varepsilon} \frac{d x}{x}=\left.\lim _{\varepsilon \rightarrow 0^{-}} \ln |x|\right|_{-1} ^{\varepsilon}= \\
& =\lim _{\varepsilon \rightarrow 0^{-}}(\ln |\varepsilon|-\ln \mid)=\lim _{\varepsilon \rightarrow 0} \ln \varepsilon=-\infty
\end{aligned}
$$

$\Rightarrow \int_{-1}^{0} \frac{d_{x}}{x}$ gulegйира $\Rightarrow \int_{-1}^{1} \frac{d x}{x}$ gиleдитрие.
2.) $\int_{-1}^{1} \frac{d x}{\sqrt{|x|}}, \int_{-1}^{0} \frac{d x}{\sqrt{|x|}}, \int_{0}^{1} \frac{d x}{\sqrt{x}}$

$$
\begin{aligned}
& \int_{-1}^{0} \frac{d x}{\sqrt{|x|}}=\lim _{\varepsilon \rightarrow 0^{-}} \int_{-1}^{\varepsilon} \frac{d x}{\sqrt{-x}}=\lim _{\varepsilon \rightarrow 0^{-}}[-2 \sqrt{-x}]_{-1}^{\varepsilon}= \\
& =\lim _{\varepsilon \rightarrow 0^{-}}(-2 \sqrt{-\varepsilon}+2 \sqrt{1})=2 \quad 100+b \\
& \int_{0}^{1} \frac{d x}{\sqrt{x}}=\left.\lim _{\varepsilon \rightarrow 0^{+}} 2 \sqrt{x}\right|_{\varepsilon} ^{1}=2 k 04 b . \Rightarrow \int_{-1}^{1} \frac{d x}{\sqrt{|x|}} 1001+b . u=4
\end{aligned}
$$

CBOJCTBA HECbOJCTEHOT \int
(1.) us $\int_{a}^{b}(\lambda f(x)+\mu y(x)) d x=\lambda \int_{a}^{b} f(x) d x+\left.\mu \int_{a}^{b} g(x) d x\right|_{b \rightarrow 3^{-}}$
ano l.0ok. $\int_{a}^{3} f d x \underline{\int_{a}} \int_{a}^{3} g(x) d x \Rightarrow k 0+b . \int_{a}^{3}(\lambda f+\mu g) d x$ u batth $\int_{a}^{3}(\lambda f+\mu g) d x=\lambda \int_{a}^{3} f d x+\mu \int_{a}^{3} g d x \quad$ ruteap Hocim

$=\int_{a}^{3} f d x$ woth $\Leftrightarrow \int_{0}^{3} f d x$ koth.
4 buns $\int_{a}^{b} f d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
aguinete cis no cungiy
3. $\int_{a}^{b} u d \sigma=\left.4 v\right|_{a} ^{b}-\int_{a}^{b} v d u$
upeñ̃. qe $\exists \lim _{b \rightarrow 3^{-}} u(b) v(b)$
Jiaga $\int_{a}^{3} u d v$ kotb. $\Leftrightarrow \int_{a}^{3} v d u$ kors. u bausu

$$
\int_{a}^{3} u d v=\left.u v\right|_{a} ^{3}-\int_{a}^{3} v d u,\left.\quad u v\right|_{a} ^{3}=\lim _{b \rightarrow 1^{-}} u(b) v(b)-u(a) v(a)
$$

$4 . \int_{a_{1}}^{b_{1}} f(x) d x=\int_{a}^{b_{b}}$
ano $\gamma \lim _{b \rightarrow 3} \varphi\left(l_{l}\right)=z_{1}$
$\Rightarrow \int_{a_{1}}^{3_{1}} f(x) d x=\int_{a}^{3} f(\varphi(t)) \varphi^{\prime}(t) d t \quad$ crette иронe troube
Bapantan. $\int_{0}^{\pi} \frac{d x}{4-3 \cos x}$ crestom $\quad t=\operatorname{tg} \frac{x}{2}$

$$
\begin{array}{ll}
\operatorname{\theta } & \cos x
\end{array}=\frac{1-t^{2}}{1+t^{2}}
$$

Tposwye

x	0	π
t	0	∞

$$
\begin{aligned}
& \int_{0}^{\pi} \frac{d x}{4-3 \cos x}=\int_{0}^{\infty} \frac{2 d t}{\left(1+t^{2}\right)\left(4-3 \frac{1-t^{2}}{1+t^{2}}\right)}=2 \int_{0}^{\infty} \frac{d t}{4+4 t^{2}-3+3 t^{2}} \\
& =2 \int_{0}^{\infty} \frac{d t}{7 t^{2}+1}=2 \int_{0}^{\infty} \frac{d t}{(\sqrt{7} t)^{2}+1}=\frac{2 \operatorname{arctg}(\sqrt{7} t)}{\sqrt{7}}
\end{aligned}
$$

(O31take $\left.\left.f(x)\right|_{a} ^{\infty}=\lim _{b \rightarrow \infty} f(b)-f(a)\right)=\frac{2}{\sqrt{7}} \frac{\pi}{2}-0=\frac{2}{\sqrt{7}} \frac{\pi}{2}$

KPUTEPUJYMU KOHBEPTEHWUSE
(T) Hene $\dot{j} \int_{a}^{3} f(x) d x$ He cbojurb. ce curtiyropunicion $x=3$.

Jllanga of kottb. ano 4 cars ano barts
$\forall \varepsilon>0 \quad \exists b_{0} \in(a, 3)$ ang. $\forall b_{1}, l_{2} \in\left[b_{0}, 3\right)$ buझts

$$
\left|\int_{b_{1}}^{b_{2}} f(x) d x\right|<\varepsilon
$$

Kolyngeb kp. etr.
$C \Longrightarrow$ mineca $\quad \forall \varepsilon>0 \quad \exists b_{0} \in(a, 3) \quad \forall b_{1}, l_{2} \in\left[b_{0}, \beta\right)$
lautu $\left|F\left(b_{1}\right)-F\left(b_{2}\right)\right|<\varepsilon$

$$
\left|\int_{b_{1}}^{b_{2}} f(t) d t\right|<\varepsilon
$$

ROPERTE KH KPUTEPUJYMU

$$
f, g:[9,3) \rightarrow \mathbb{R} \quad f(x), g(x) \geqslant 0 \quad \text { u } \quad f(x) \leqslant g(x)
$$

He $[9,3)$ (gobenots jr un tenom uthiepbany $\left[b_{0}, 3\right)$)
Jाlaga, ako $\int_{a}^{3} g(x) d x \quad$ korb $\Rightarrow \int_{a}^{3} f(x) d x \quad$ kork.
a ako $\int_{a}^{3} f(x) d x$ gub. $\Rightarrow \int_{a}^{3} g(x) d x$ gubepiupe.

Lones. Tounurs ji $f \geqslant 0 \Rightarrow F(x)=\int_{a}^{x} f(t) d t$ precuigtue

$$
\left(F^{\prime}=f \text {, unл ज̄o gid. } F(y)-F(x)=\int_{x}^{y} f(t) d t \geqslant 0, x<y\right)
$$

Kega $\exists \lim _{x \rightarrow 3^{-}} F(x) \quad 3 a \quad$ precuinthy $\phi_{y y}$?
$c=1 F(x)$ ji oip. oyo30.
Cbe uato 3 a $G(x)=\int_{a}^{x} g(t) d t$.

- Ocum noia $F(x)=\int_{a}^{x} f(t) d t \leq \int_{a}^{x} g(t) d t=G(x)$
$\int_{a}^{3} g(t) d t 100+b . \Leftrightarrow G(x)$ ji oip. 090300 $\Rightarrow F(x)$ ji $02 p$. 090310 $\int_{a}^{b} g 160+t b=\int_{a}^{b} f 1 w o t h$. $\Leftrightarrow \int_{a}^{3} f(t) d t$ koHb. $\int_{a}^{b} f$ gub. $\Rightarrow \int_{a}^{b} g$ gub.

2. Jopugdetn upuñepu gym
$f, g:[a, 3) \rightarrow \mathbb{R}, f(x), g(x) \geqslant 0 \quad\left(1+e\left[b_{0}, 3\right), b_{0}<3\right)$
u Heke $f(x) \sim g(x), x \rightarrow 3^{-} \quad\left(\lim _{x \rightarrow 3^{-}} \frac{f(x)}{g(x)}=1\right)$
\#iaga $\quad \int_{a}^{3} f(x) d x$ ko1tl. $\Leftrightarrow \int_{a}^{3} g(x) d x$ koith.

Loke 3. $\lim _{x \rightarrow 3^{-}} \frac{f(x)}{g(x)}=1 \Rightarrow \quad \frac{1}{2} \leq \frac{f(x) \mid}{g(x)} \leq 2$ tee $\left[b_{0}, 3\right)$

$$
\frac{1}{2} g(x) \stackrel{(1)}{\leq} f(x) \stackrel{(2)}{\leq} 2 g(x) \text { He }\left[e_{0}, 3\right)
$$

$$
\begin{aligned}
& (2) \Rightarrow \int_{C_{0}}^{3} g(x) d x \text { koth. } \Rightarrow \int_{b_{-}}^{3} f(x) d x \text { koth. (1. Horegdetsu) } \\
& (1) \Rightarrow \int_{f_{0}}^{3} f(x) k 0+b . \Rightarrow \int_{\rho_{0}}^{3} g(x) d x \text { koth. }(-11-)
\end{aligned}
$$

3 ji gigusth синt. $\Rightarrow \int_{a}^{3} 120+1 . \Leftrightarrow \int_{e_{0}}^{3}$

Bapaygh. Ucúmizants kothb.

1. $\int_{0}^{\infty} \frac{d x}{x^{2}+x-2}$
