3apariek.

$$
\lim _{n \rightarrow \infty} \underbrace{\left.\frac{n}{1^{2}+n^{2}}+\frac{n}{2^{2}+n^{2}}+\frac{n}{3^{2}+n^{2}}+\cdots+\frac{n}{n^{2}+n^{2}}\right)}_{a_{n}}
$$

Hetur f us $[a, b]$ ing. $\quad a_{n}=S_{n}(f,[a, b])$

$$
\begin{aligned}
& \Rightarrow a_{n} \xrightarrow{n \rightarrow \infty} \int_{a}^{b} f(x) d x \\
& S_{n}(f,[4, b])=\frac{b-a}{n} \sum_{i=1}^{n} f\left(\xi_{i}\right) \\
& a_{n}=\frac{n}{1^{2}+n^{2}}+\frac{n}{2^{2}+n^{2}}+\cdots+\frac{n}{n^{2}+n^{2}}=\frac{1}{n}\left(\frac{n^{2}}{1^{2}+n^{2}}+\cdots+\frac{n^{2}}{n^{2}+n^{2}}\right)= \\
& \text { nhodam } \left.\begin{array}{rl}
a & =0 \\
b & =1,
\end{array},\right\}_{i}=\frac{i}{n} \\
& a_{n}=\frac{1}{n}\left(\frac{1}{\left(\frac{1}{n}\right)^{2}+1}+\frac{1}{\left(\frac{2}{n}\right)^{2}+1}+\cdots+\frac{1}{\left(\frac{n}{n}\right)^{2}+1}\right)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\left(\frac{i}{n}\right)^{2}+1} \\
& \| \\
& f(x):=\frac{1}{x^{2}+1} \\
& f\left(\frac{i}{n}\right) \\
& \Rightarrow \lim _{n \rightarrow \infty} a_{n}=\int_{0}^{1} \frac{d x}{x^{2}+1}=\left.\operatorname{arctg} x\right|_{0} ^{1}=\operatorname{arctg} 1-\operatorname{arctg} 0=\frac{\pi}{4}
\end{aligned}
$$

T ce nperax. Lece: $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$ (ochobHAT.)

$$
\left(\frac{d}{d x} F(x):=F^{\prime}(x)\right)
$$

Tunoube: $\frac{d}{d x} \int_{x}^{6} f(t) d t=$?
Ogiobop: $-f(x)$ Jep $\bar{\gamma} \int_{x}^{b} f(t) d t=-\int_{b}^{x} f(t) d t / \frac{d}{d x}$

Tocreyunge: $\frac{d}{d x} \int_{\alpha(x)}^{3(x)} f(t) d t=f(3(x)) \cdot 3^{\prime}(x)-f(\alpha(x)) \cdot \alpha^{\prime}(x)$
$\Delta:$

$$
\begin{aligned}
& F(x):=\int_{a}^{x} f(t) d t \Rightarrow F^{\prime}(x)=f(x) \\
& \frac{d}{d x} \underbrace{\int_{a}^{3(x)} f(t) d t}=\frac{d}{d x} F(z(x))=F^{\prime}(3(x)) \cdot 3^{\prime}(x) \\
&=f(3(x)) \cdot 3^{\prime}(x)
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x} \int_{\alpha(x)}^{a} f(t) d t=\frac{d}{d x}(F(\alpha(x)) & =-F^{\prime}(\alpha(x)) \cdot \alpha^{\prime}(x) \\
& =-f(\alpha(x)) \cdot \alpha^{\prime}(x)
\end{aligned}
$$

$$
\Rightarrow \int_{\alpha(x)}^{3(x)} f(t) d t=\int_{\alpha(x)}^{a} f(t) d t+\int_{a}^{3(x)} f(t) d t
$$

BPKA3 H. - I. Ha gpyín Hewh.

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

фuke. α gid. $F(x)=\int_{\alpha}^{x} f^{\prime}(t) d t$
3HAMS, h3 ocit. $T \Rightarrow F^{\prime}(x)=f^{\prime}(x)$
Mappes itebi in. $\Rightarrow F(x)=f(x)+c$

$$
\begin{aligned}
\int_{a}^{l} f^{\prime}(t) d t & =\int_{\alpha}^{b} f^{\prime}(t) d t-\int_{\alpha}^{a} f^{\prime}(t) d t \\
& =F(b)-F(a)
\end{aligned}=f(b)+c-(f(a)+c) .
$$

Tapognj anse wathe ipacynja a cmeste apomerts no koy ogrefertor ultane ipame
(T) $U, V \in C^{1}$ the $[9, b]$ (u^{\prime} a v^{\prime} cy thereiong te) Touga je

$$
\int_{a}^{b} u(x) v^{\prime}(x) d x=u(b) v(b)-u(a) v(a)-\int_{a}^{b} u^{\prime}(x) v(x) d x
$$

15

$$
\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u y
$$

Δ :

$$
\begin{aligned}
& f(x):=u(x) v(x) \\
& H .-ก \quad f(b)-f(a)=\int_{a}^{b} f^{\prime}(x) d x \\
& u(b) v(b)-u(a) v(a)=\int_{a}^{b} u^{\prime}(x) v(x) d x+\int_{a}^{b} u(x) v^{\prime}(x) d x
\end{aligned}
$$

Bygauton: $\quad \int_{0}^{2} x e^{x} d x=\left\{\begin{array}{ll}x=u & d u=d x \\ e^{x}=d v & v=e^{x}\end{array}\right\}=$

$$
\begin{aligned}
&=x e^{x} b^{2}-\int_{0}^{2} e^{x} d x=2 e^{2}-0 \cdot e^{0}-\left.e^{x}\right|_{0} ^{2} \\
&=2 e^{2}-e^{2}+1=e^{2}+1
\end{aligned}
$$

T) $f:[a, b] \rightarrow \mathbb{R}$ thip. n $\zeta:[\alpha, 3] \rightarrow[a, b]$ knece $C^{1}:\left(\zeta^{\prime}\right.$ thip.) $\varphi(\alpha)=a, \quad \varphi(3)=b$. Itaga bauth popnugne

$$
\left.\int_{a}^{b} f(x) d x=\int_{\alpha}^{3} f(\varphi(t)) \varphi^{\prime} / t\right) d t
$$

Δ : F upurmuirlatse $3 a f$ (tip. $\int_{a}^{x} f(t) d t=: F(x)$)

$$
\int_{a}^{b} f(x) d x \stackrel{b-\Omega}{=} F(b)-F(a)=F(\varphi(3))-F(\varphi(a))
$$

$$
\begin{aligned}
(=G(3)-\{(\alpha) & \left.=\int_{\alpha}^{3} G^{\prime}(t) d t\right) \\
=\int_{\alpha}^{3}(F \cdot \varphi \cdot \varphi)^{\prime}(t) d t & =\int_{\infty}^{3} P^{\prime}(\varphi(t)) \cdot \varphi^{\prime}(t) d t= \\
& =\int_{\alpha}^{3} f(\varphi(t)) \cdot \varphi^{\prime}(t) d t
\end{aligned}
$$

Trumepu: f Herp. the $[-a, a]$. Domesain
(1) f йapue $\Rightarrow \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$
(2.) f Híappse $\Rightarrow \int_{-a}^{a} f(x) d x=0$
$\Delta .11$

$$
\begin{aligned}
f(x)=f(-x) \quad \int_{-a}^{a} f(x) d x & =\underbrace{\int_{-a}^{0} f(x) d x}_{\text {crueste } t=-x}+\int_{0}^{a} f(x) d x \\
\int_{-a}^{0} f(x) d x & =\int_{a}^{0} f(-t) d t
\end{aligned}=\int_{0}^{a} f(-t) d t
$$

$$
\Rightarrow \int_{-a}^{a}=\int_{-a}^{0}+\int_{0}^{a}=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
$$

(2.) $f(-x)=-f(x)$ иaro $\int_{-a}^{a}=\int_{-a}^{0}+\int_{0}^{a}$

$$
\begin{aligned}
& \int_{-a}^{0} f(x) d x=\left\{\begin{array}{l}
-x=t \\
d x=-d t
\end{array}\right\}=-\int_{a}^{0} f(-t) d t=\int_{0}^{a} f(-t) d t=-\int_{0}^{a} f(t) d t \\
& \Rightarrow \int_{-a}^{a} f(x) d x=-\int_{0}^{a} f(x) d x+\int_{0}^{a} f(x) d x=0
\end{aligned}
$$

Baganvere.

$$
\begin{aligned}
& \int_{-1}^{1} \sqrt{1-x^{2}} d x \\
& 2 \int_{0}^{1} \sqrt{1-x^{2}} d x
\end{aligned}
$$

creste $\quad x=\sin t=\varphi(t)$

$$
\begin{aligned}
& \varphi(0)=0 \\
& \varphi(\pi / 2)=1
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1} \sqrt{1-x^{2}} d x=\left\{\begin{array}{c}
x=\sin t \\
\frac{t}{x}|0| 1|2|
\end{array} \quad d x=\left.\cos t d t\right|_{0} ^{\pi / 2}=\int_{0}^{\pi / 2} \sqrt{\cos ^{2} t} \cos t d t\right. \\
& \quad \cos t \geqslant 0 \quad \int_{0}^{\pi / 2} \cos ^{2} t d t=\int_{0}^{\pi / 2} \frac{1+\cos 2 t}{2} d t=\frac{1}{2} \int_{0}^{\pi / 2} d t+\int_{0}^{\pi / 2} \cos 2 t d t \\
& =\frac{\pi}{4}+\left.\frac{\sin 2 t}{2}\right|_{0} ^{\pi / 2}=\frac{\pi}{4}+\frac{1}{2}(\sin \pi-\sin 0)=\frac{\pi}{4} \\
& \Rightarrow \quad \int_{-1}^{1} \sqrt{1-x^{2}} d x=2 \cdot \frac{\pi}{4}=\frac{\pi}{2}
\end{aligned}
$$

Tpumese ogp utheipare y coomenipuiza

I Tolopuruite paburo mike

$$
\underbrace{c}_{a}
$$

2°

$$
P=\int_{a}^{b}(f(x)+c) d x-\int_{\|_{1}}^{b}\left(\frac{1}{l}(x)+c\right) d x=\int_{a}^{b}[f(x)-g(x)] d x
$$

3°

Pusmufy fug $\quad \int_{a}^{a_{1}}(g(x)-f(x)) d x+\int_{a_{1}}^{a_{2}}(f(x)-g(x)) d x+\ldots+\int_{a_{5}^{-}}^{b}(f(x)-g(x)) d x$

$$
=\int_{a}^{b}|f(x)-g(x)| d x
$$

Зagaйak. Hatun P uзriefy kpulence $y=x^{2}-1 \quad y=x+1$

$$
\begin{aligned}
& x^{2}-1=x+1 \\
& x^{2}-x-2=0 \\
& x^{2}-1-x-1=0 \\
& (x-1)(x+1)-(x+1)=0 \\
& (x+1)(x-2)=0
\end{aligned}
$$

$$
x_{1}=-1 \quad x_{2}=2
$$

$$
\begin{aligned}
P=\int_{a}^{b}(f(x)-g(x)) d x & =\int_{-1}^{2}\left(x+1-x^{2}+1\right) d x=\int_{-1}^{2}\left(-x^{2}+x+2\right) d x \\
x+1 & =-\left.\frac{x^{3}}{3}\right|_{-1} ^{2}+\left.\frac{x^{2}}{2}\right|_{-1} ^{2}+\left.2 \cdot x\right|_{-1} ^{2}=
\end{aligned}
$$

$$
=-\frac{1}{3}(8+1)+\frac{1}{2}(4-1)+2 \cdot(2+1)=-3+\frac{3}{2}+6=\frac{9}{2} .
$$

II 2 yjieute nylce ipmble
$1^{\circ} \quad y=f(x) \quad x f[9, b]$, f \dot{f} knace c^{1}

$$
\begin{aligned}
& x_{0}=a \\
& x_{1}=a+\frac{b-a}{n} \\
& x_{i}=a+\frac{i}{n}(b-a) \\
& x_{n}=b=a+\frac{n}{n}(b-a)
\end{aligned}
$$

$=\sum$ gyusulte in gylitu
gyithute gyitu Ai-1 A_{i} Ai $\left(x_{i}, f\left(x_{i}\right)\right.$)

$$
\begin{aligned}
& =\sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)^{2}} \\
& =\left(x_{i}-x_{i-1}\right) \sqrt{\left.1+\left[\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}}\right)\right]^{2}}
\end{aligned}
$$

Nap. ut. o cp. lop.

$$
\begin{gathered}
\frac{l^{b-a}}{n}
\end{gathered}
$$

$$
\begin{align*}
& \ln =\frac{b-a}{n} \sum_{i=1}^{n} \underbrace{\sqrt{1+f^{\prime}\left(\xi_{i}\right)^{2}}}_{g\left(\xi_{i}\right)}=\underbrace{\operatorname{Sn}^{2}}(\underbrace{\sqrt{1+f^{\prime}(x)^{2}}}_{g(x)}) \rightarrow \int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x \\
& \Rightarrow l=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x \quad(1) \tag{1}
\end{align*}
$$

Baganlare. Hatin ochm cpyjía cooaynueutunde r.

$0=2$ gyitu te Elony cypyce

$$
y=\sqrt{r^{2}-x^{2}}=f(x), f^{\prime}=\frac{-2 x}{2 \sqrt{r^{2}-x^{2}}}
$$

$$
\Rightarrow \text { osum }=2 \int_{-r}^{r} \sqrt{1+f^{\prime}(x)^{2}} d x=2 \int_{-r}^{r} \sqrt{1+\left(\frac{x}{\sqrt{r^{2}-x^{2}}}\right)^{2}} d x
$$

$=2 \int_{-r}^{r} \sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}} d x=4 \int_{0}^{r} \sqrt{\frac{r^{2}-x^{2}+x^{2}}{r^{2}-x^{2}}} d x=4 r \int_{0}^{r} \frac{d x}{\sqrt{r^{2}-x^{2}}}$
$=h r / \int_{0}^{r} \frac{d x}{\not x \sqrt{1-\left(\frac{x}{r}\right)^{2}}}=\left\{\begin{array}{l}\frac{x}{r}=t \\ d x=r d t\end{array}=4 r \int_{0}^{1} \frac{d t}{\sqrt{1-t^{2}}}=\right.$

$$
=\left.4 r a n c \sin t\right|_{0} ^{1}=4 r\left(\frac{\pi}{2}-0\right)=2 r \pi
$$

2. иареметыарии geйce ípuba $\begin{aligned} & x=x(t) \\ & y=y(t)\end{aligned} \quad t \in[a, b]$
(Hap. lipyi $\begin{aligned} & x=r \cos t \\ & y=r \sin t\end{aligned} \quad t \in[0,2 \pi]$)
paghma newno

Togenums $[a, b]$ the n pigtteicux genoba

$$
\begin{aligned}
& t_{0}=a \quad t i=a+i \frac{e-a}{n} \quad t_{n}=b \\
& l_{u}=\text { gyitute n̄омutoke }=\sum\left|A_{i-1} A_{i}\right| \\
& \text { Ai }\left(x\left(t_{i}\right), y\left(t_{i}\right)\right) \\
& \Rightarrow\left|A_{i-1}, A_{i}\right|=\sqrt{\left[x\left(t_{i}\right)-x\left(t_{i-1}\right)\right]^{2}+\left[y\left(t_{i}\right)-y\left(t_{i-1}\right)\right]^{2}} \\
& =\Delta_{t_{i-}}^{t_{i-1}} \sqrt{\left(\frac{x\left(t_{i}\right)-x\left(t_{i-1}\right)}{t_{i}-t_{i-1}}\right)^{2}+\left(\frac{y\left(t_{i}\right)-y\left(t_{i-1}\right)}{t_{i}-t_{i-1}}\right)^{2}} \\
& \text { Ncipurtylt } \\
& =\frac{b-a}{n} \sqrt{x^{\prime}\left(\xi_{i}\right)^{2}+y^{\prime}\left(\eta_{i}\right)^{2}} \quad \xi_{i}, \eta_{i} \in\left(x_{i-1}, x_{i}\right) \\
& \Rightarrow l_{n}=\frac{b-a}{n} \sum_{i=1}^{n} \sqrt{x^{\prime}\left(\xi_{i}\right)^{2}+y^{\prime}\left(\eta_{i}\right)^{2}} \xrightarrow{n \rightarrow \infty} \int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}\left(t^{2}\right)} d t
\end{aligned}
$$

$$
\begin{align*}
l & =\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \quad(2) \tag{2}\\
& =\int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t \quad \vec{r}=(x, y)
\end{align*}
$$

ξ : u η_{i} ite moporg suive $=$ ams y unmery ve gosija pesymanate luas ge gicy = (Hucms gourzamu)

3eganarek ce ommom lupyia $O=\int_{0}^{2 \pi} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t$

$$
\begin{aligned}
\begin{array}{l}
x=r \cos t \\
y=r \sin t
\end{array} \quad t \in[0, \pi \pi] & =\int_{0}^{2 \pi} \sqrt{r^{2} \sin ^{4} t+r^{2} \cos ^{2} t} d t \\
& =\int_{0}^{2 \pi} r d t=2 \pi r
\end{aligned}
$$

$(2) \Rightarrow$ (1) jip ans curobumo

$$
\begin{aligned}
& x=t \\
& y=f(x)=f(t)
\end{aligned}
$$

$$
\Rightarrow x^{\prime}=1, \quad y^{\prime}=f^{\prime}(t) \quad \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}=\sqrt{1+f^{\prime}(t)^{2}}
$$

III Barpernita ofpartax arere
$1{ }^{\circ}$ ono x-oce
$f \geqslant 0$ thip. He $[a, b]$, pendpuk poutupa ono x-oce

$$
V(\text { ulese })=?
$$

$a=x$.
$x_{1}=a+\frac{b-a}{n}$
$x_{i}=a+i \frac{b-a}{n}$

3aifymullty wheqe loga f the $\left[x_{i-1}, x_{i}\right\rangle$ pournpue
aip olecurerprers 3 atiperuesom banke logen ce gromija luega gyit buchite $f\left(x_{i}\right)$ politu po

$$
\begin{aligned}
V_{n}=\text { cyme saípermite } n \text { basane } & =\sum_{i=1}^{n} \Delta x_{i} f\left(x_{i}\right)^{2} \pi \\
& =\frac{b-a}{n} \sum_{i=1}^{n} f\left(x_{i}\right)^{2} \pi \quad\left(\xi_{i}=x_{i}\right) \\
& \left.=S_{n}\left(f^{2} \mid x\right) \pi\right) \\
n \rightarrow \infty: \quad V_{n} \rightarrow \int_{a}^{b} f^{2}(x) \pi d x_{c} & =\pi \int_{a}^{b} f^{2}(x) d x=V
\end{aligned}
$$

2° ono y-oce

$$
\begin{aligned}
V=V_{1}-V_{2} & \left.=x_{i}^{2} f\left(\xi_{i}\right) \pi-x_{i-1}^{2} f(\}_{i}\right) \pi \\
& =f\left(\xi_{i}\right) \pi\left(x_{i}^{2}-x_{i-1}^{2}\right)=f\left(\xi_{i}\right) \pi\left(x_{i}+x_{i-1}\right) \underbrace{\left(x_{i}-x_{i-1}\right)}_{\Delta x_{i}}
\end{aligned}
$$

$$
\begin{aligned}
V_{n}=\text { cyme zaipsounse clon } & V=\sum f\left(\xi_{i}\right) \pi\left(x_{i}+x_{i-1}\right) \Delta x_{i} \\
& =\frac{b-a}{n} \pi \sum f\left(\beta_{i}\right) \frac{\left(x_{i}+x_{i-1}\right.}{2} \cdot 2
\end{aligned}
$$

Tpuk:

$$
\begin{aligned}
& \delta \text { upar } \xi_{i}:=\frac{x_{i}+x_{i}-1}{2} \in\left[x_{i-1}, x_{i}\right] \\
= & \frac{b-a}{n} \pi \cdot 2 \sum f\left(\xi_{i}\right) \cdot \xi_{i} \\
= & S_{n}(2 \cdot \pi \cdot x \cdot f(x)) \xrightarrow{n \rightarrow \infty} 2 \pi \int_{\alpha}^{b} x f(x) d x
\end{aligned}
$$

