$\overline{V_{I I I}}$

$$
\int R\left(x^{r_{1}}, \ldots x^{r_{k}}\right) d x
$$

R - pengrothearke, $v_{j} \in \mathbb{Q}$
(yoüumurbe suyroja VII (1))

$$
\begin{aligned}
& r_{j}=\frac{p_{j}}{2 j}, \quad 2:=43 c(21,>2 k) \leadsto \text { cherse } t^{2}=x \\
& \Rightarrow x^{r_{j}}=\left(t^{2}\right)^{\frac{p_{j}}{2 j}}=t^{n_{j}} \quad n_{j} \in \mathbb{E} \\
& d x=2 t^{\varepsilon-1} d t \quad \text { (paynous) }
\end{aligned}
$$

$$
\sim \int R_{1}(t) d t, R_{1} \text {-parynoltenta }
$$

3aparieve. $\int \frac{\sqrt{x}+1}{(\sqrt[3]{x}+1)^{2}} d x=$

$$
\begin{aligned}
& =\left\{\begin{array}{l}
x=t^{6} \quad \sqrt{x}=t^{3}, \quad \sqrt[3]{x}=t^{2} \\
d x=6 t^{5} d t
\end{array}\right\}= \\
& =\int \frac{t^{3}+1}{\left(t^{2}+1\right)^{2}} 6 \cdot t^{5} d t=\ldots
\end{aligned}
$$

OПPEFEHY पHTETPAS

ged. Togena ustippbame $[a, b]$ ji cugù $P=\left\{x_{0}, x_{1}, x_{n}\right\}$

$$
a=x_{0}<x_{1}<\ldots<x_{n}=b
$$

उaje gue ce $\}=\left\{\xi_{2},>\xi_{n}\right\}$, upu ung $j_{j} \xi_{j} \in\left[x_{j-1}, x_{j}\right]$ $a=x_{0}<x_{1}<\ldots<x_{n}=l$

$$
\begin{array}{r}
\left.\delta(\rho)=x_{4}-x_{3}\right) \\
x_{3}-x_{2} ?
\end{array}
$$

Geф. 2yјаmenop nogre P (unn ρ ce $\}$)

$$
\delta(\rho):=\max \left\{\Delta x_{i}=x_{i+1}-x_{i}, \quad i=1,>n\right\}
$$

gic. $f:[9, b] \rightarrow \mathbb{R}$ осрени ине
Uthiripente cyme b-ji f y ogrocy the lognay P ce yo restum wieniciema ξ jr

$$
\begin{aligned}
& \sigma(f,[a, b], p, \xi):=\sum_{i=1}^{n} \underbrace{f(\xi i) \Delta x_{i}} \\
& \left(\Delta x_{i}:=x_{i+1}-x_{i}\right)
\end{aligned}
$$

geф. Numec is upo unopy vo grae cyme $\sigma(f,[a, b], p, \xi)$, $\log \varepsilon \rightarrow 0$ $j \in \mathbb{R}$ ano:
$\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall$ üogny P ce youthm trazmeme ξ
batth $\delta(\rho)<\delta \quad \Rightarrow|\sigma(f,[a, b], \rho, \xi)-I|<\varepsilon$

I ano nocuogn sokems oghefetum uthinjonom bogi f He $[9,6]$ is nurnems $\int_{a}^{b} f(x) d x$
(unn Punciols wateipar)
tho I nocurojn, f ce sobe wat eipedunke (wo Punvery)

Haslomette. Aus je f untizeqpoct nse, ouga $\int_{a}^{b} f(x) d x$ moltems ge parytamo obuno

$$
\begin{aligned}
& x_{0}:=a \\
& x_{1}=a+\frac{b-a}{n} \\
& x_{j}:=a+j \frac{b-a}{n} \\
& x_{n}:=b \\
& \Rightarrow \quad \Delta x_{i}=\frac{b-a}{n} \\
& S_{n i}=\sum_{i=1}^{n} f\left(\xi_{i}\right) \frac{b-a}{n}=\frac{b-a}{n} \sum_{i=1}^{n} f\left(\xi_{i}\right), \lim _{n \rightarrow \infty} S_{n}=\int_{a}^{b} f(x) d x \\
& \bar{j} p_{p} \quad \varepsilon>0 \text { quonzb. } \exists \sigma \quad\left|\sigma(f,[9,6], \rho, \xi)-\int_{a}^{b} f(x) d x\right|<\varepsilon \\
& \forall \rho, \operatorname{diam}(\beta)<\delta \\
& \text { Y3nems } n_{0}, \frac{b-a}{n_{0}}<\delta
\end{aligned}
$$

$\Rightarrow \sigma$ an oby wognery (the u jugituanx groba) ji san Sn_{n}
gut. $\lim _{n \rightarrow \infty} S_{n}$ ce zoe u Kowniel utneípen
 1: $\int_{0}^{2} x d x, 2 . \int_{0}^{1} \sin x d x$
(1)

$$
f(x)=x
$$

$$
\begin{aligned}
& 1 \begin{array}{lll}
1 & 1 & 1 \\
0 & x_{1} & x_{2} \\
x_{j}=0+\frac{2-0}{n} & j=\frac{2}{n} j \\
\Delta x_{j}=\frac{2}{n}
\end{array}
\end{aligned}
$$

$\xi_{j}=x_{j} \quad$ (gestan upej)

$$
\begin{aligned}
& \sum_{j=1}^{n} f\left(\xi_{j}\right) \Delta x_{j}=\frac{2}{n} \sum_{j=1}^{n} f\left(\frac{2}{n} j\right)=\frac{2}{n} \sum_{j=1}^{n} \frac{2}{n} j=\frac{4}{n^{2}} \sum_{j=1}^{n} j \\
&=\frac{4}{n^{2}} \frac{n(n+1)}{2} \frac{n \rightarrow \infty}{2} 2 \\
& \Rightarrow \quad \int_{0}^{2} x d x=2
\end{aligned}
$$

(2.) $[9,6]=[0,1]$

$$
\begin{array}{lc}
x_{j}=\frac{j}{n} & \left(x_{j}=a+j \cdot \frac{b^{\prime \prime}-a^{\prime \prime}}{n}\right)^{\prime} \\
\xi_{j}=x_{j} & 0
\end{array}
$$

$$
\left.S_{n}=\frac{b-a}{n} \sum_{j=1}^{n} f\left(\xi_{j}\right)=\frac{1}{n} \sum_{j=1}^{n} \sin \frac{j}{n}\right)^{\prime \prime ?}
$$

TPYK
$\log \operatorname{Hec} j^{\gamma} \quad \alpha=1 / n$

$$
\begin{aligned}
& S_{n}=\frac{1}{n}\left[\frac{1}{2 \sin \frac{1}{2 n}}\left(\cos \frac{1}{2 n}-\cos \left(n+\frac{1}{2}\right) \frac{1}{n}\right]\right. \\
&=\underbrace{\frac{1}{2 n} \frac{1}{2 n}}\left(\cos \frac{1}{2 n}-\cos \left(1+\frac{1}{2 n}\right)\right) \xrightarrow{n \rightarrow \infty} 1-\cos 1 \\
& \int_{0}^{1} \cos \theta=1 \\
& \Rightarrow \operatorname{lin}_{n}^{1} x d x=1-\cos 1
\end{aligned}
$$

$$
\begin{aligned}
& \sin \alpha+\sin 2 \alpha+\ldots+\sin n \alpha=\frac{1}{\sin \alpha / 2}(\underbrace{\sin \frac{\alpha}{2} \sin \alpha}_{1}+\underbrace{\sin \alpha \sin 2 \alpha}_{2}+\ldots+\sin \frac{\alpha}{2} \sin n \alpha) \\
& \left(\sin \alpha \sin 3=\frac{1}{2}\left\{\begin{array}{l}
\cos (\alpha-3)-\cos (\alpha+3)\} \\
\cos \alpha \cos 3+\sin \alpha \sin 3-(\cos \alpha \cos 3-\sin \alpha \sin 3)
\end{array}\right)\right. \\
& =\frac{1}{2 \sin \frac{\alpha}{2}}\{\underbrace{\cos \frac{\alpha}{2}-\cos \frac{3 \alpha}{\alpha}}_{1}+\underbrace{\cos \frac{\beta \alpha}{2}-\cos \frac{5 \alpha}{2}}_{2}+\cos \frac{5 \alpha \alpha}{2}-\cos \frac{7 \alpha}{\alpha}+\cdots+\cos \frac{2 \mu /-1}{2} \alpha-\cos \frac{2 \mu+1}{2} \alpha\} \\
& =\frac{1}{2 \sin \frac{\alpha}{2}}\left(\cos \frac{\alpha}{2}-\cos \left(n+\frac{1}{2}\right) \alpha\right)
\end{aligned}
$$

Tinurup. . $f \equiv c(=$ ongst $) . \quad \int_{a}^{b} f(x) d x=$?

P, \} suns nogame ca yo letum ñericame $\}$

$$
\begin{aligned}
\sigma(f,[a, b], \rho, \xi) & =\sum_{i=1}^{n} f(\xi,) \Delta x_{i}
\end{aligned}=\sum_{i=1}^{n} c \cdot \Delta x_{i}=c \sum_{i=1}^{n} \Delta x_{i} .
$$

$$
\Rightarrow \int_{a}^{b} c d x=c \cdot(b-a)
$$

 ufemiga $\dot{\gamma}$ ustrecposumta.

$$
\begin{gathered}
\text { mepe }=\text { gy wute } \\
\text { (yJA) }
\end{gathered}
$$

Tpumep $\phi_{\text {ji }}$ coja Anje uturetpasumte
$[9, b]$ chro unire, tup. $[0,1]$

$$
f(x)=X_{\mathbb{Q}}(x)=\left\{\begin{array}{ll}
1, & x \in \mathbb{Q} \\
0, & x \notin \mathbb{Q}
\end{array} \quad\right. \text { (2upuxveoba pju) }
$$

une ufeming y cloanos norezu (gomatir, ano Heji
 nef110)

Hene $j \quad \delta>0$ sho ly ure u $P=\left\{x_{0}, x_{1}, x_{4}\right\}$

$$
\delta(\rho)<S
$$

ans $\xi=\{\xi 2,-, \xi n\} \quad \xi i \in\left[x_{i-1}, x_{i}\right] \cap \mathbb{Q}$ (Famuse (2)

$$
\begin{aligned}
& \Rightarrow \sigma(f,[0,1], \rho,\})=\sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i}=\sum_{i=1}^{n} \Delta x_{i}=1-0=1 \\
& \eta=\left\{\eta_{1},+\cdots, \eta_{n}\right\} \quad \eta_{i} \in\left[x_{i-1}, x_{i}\right] \backslash \mathbb{Q}(i j c i m u s e \mathbb{R} \backslash \mathbb{Q}) \\
& \Rightarrow \sigma(f,[0,1], \rho, \eta)=\sum_{i=1}^{n} f\left(\eta_{i}^{\prime \prime}\right) \Delta x_{i}=0
\end{aligned}
$$

Jomins jδ ñouzlesorts mano $\Rightarrow \int_{0}^{1} f(x) d x$ He wociogin.

CBOJCTBA OMPEFEHOT UHTETPANA

Hence cy f n g utheíperunte the $[a, b],[b, c],[a, c]$
(1.) $\int_{a}^{b}[\lambda f(x)+\mu g(x)] d x=\lambda \int_{a}^{b} f(x) d x+\mu \int_{a}^{b} g(x) d x$ 1HHEAPHOCT
$\Delta: \quad \operatorname{Sn}(f):=\frac{b-a}{n} \sum_{i=1}^{n} f\left(\xi_{i}\right), \quad \operatorname{sun}(f) \xrightarrow{n-\infty} \int_{a}^{b} f(x) d x$

$$
\begin{aligned}
S_{n}(\lambda f+\mu g) & =\frac{b-a}{n} \sum_{i=1}^{n}\left[\lambda f\left(\xi_{i}\right)+\mu g\left(\xi_{i}\right)\right]= \\
= & \frac{b-a}{n} \cdot \lambda \sum_{i=1}^{n} f\left(\xi_{i}\right)+\frac{b-a}{a} \cdot \mu \sum_{i=1}^{n} g(\xi i) \\
= & S_{n}(f)+\mu S_{n}(g) \lim _{n \rightarrow \infty}^{n} \\
\int_{a}^{b}[\lambda f(x)+\mu g(x)] d x & =\lambda \int_{a}^{b} f(x) d x+\mu \int_{a}^{b} g(x) d x
\end{aligned}
$$

(2.) $f(x) \leq g(x) \quad \forall x \in[9, b] \Rightarrow \int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$

MOHOTOH:C
$\Delta: \quad S_{\pi}(f)=\frac{b-a}{n} \sum_{i=1}^{n} f\left(\xi_{i}\right) \leq \frac{e-a}{n} \sum_{i=1}^{n} g\left(\xi_{i}\right)=\left.S_{n}(g)\right|_{\lim _{n \rightarrow \infty}}$

$$
\Rightarrow \quad \int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

(3.) $a<b<c \Rightarrow \int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{l}^{c} f(x) d x$ Апитив ност

$\Delta: \quad \varepsilon>0$ nnous bontto

$$
I_{1}:=\int_{a}^{C} f(x) d x, \quad I_{2}:=\int_{a}^{b} f(x) d x, \quad I_{3}=\int_{b}^{C} f(x) d x
$$

Sonezatumo $\quad\left(I_{1}-\left(I_{2}+I_{8}\right) \mid<\varepsilon \quad\left(\forall \varepsilon \Rightarrow I_{1}-\left(I_{2}+I_{3}\right)=0\right)\right.$
$\delta>0$ ungj. ano $\left.\dot{j} \quad \delta\left(P_{1}\right)<\delta \Rightarrow \mid I_{1}-\sigma\left(f,[9, c], J_{1},\right\}\right) \mid<\varepsilon / 3$

$$
\mathcal{\rho}\left\{\begin{array}{l}
\delta\left(\rho_{2}\right)<\delta \Rightarrow\left|I_{2}-\sigma\left(f,[9, b], \rho_{2}, \eta\right)\right|<\varepsilon / 3 \\
\delta\left(\rho_{3}\right)<\delta \Rightarrow\left|I_{3}-\sigma\left(f,[b, c], \rho_{3}, S\right)\right|<\varepsilon / 3
\end{array}\right.
$$

yamemo ρ_{2} a ρ_{3} wes iope, $\rho_{1}:=\rho_{2} \cup \rho_{3} \Rightarrow \delta\left(\rho_{1}\right)<\delta$

$$
\xi:=\eta \cup \zeta
$$

SMry I_{2}
Smusy I_{3}

$$
\sigma\left(f,[q, c], \rho_{1}, \xi\right)=\sigma\left(f,[a, b), \rho_{2}, \eta\right)+\sigma\left(f,[b, c], \rho_{3}, \zeta\right)
$$

סmuby I_{1}

$$
\sum f^{\prime \prime}\left(\eta_{i}\right) \Delta x_{i} \quad \Downarrow \quad \forall \quad{ }^{\prime \prime} \quad \sum\left(\zeta_{i}\right) \Delta x_{i}
$$

$$
\begin{aligned}
\left|I_{1}-\left(I_{2}+I_{3}\right)\right|=\mid I_{1} & \overbrace{\left.-\sigma\left(f,[9, c], P_{1},\right\}\right)+\sigma(f,[a, b], \rho}, \eta)+\sigma\left(f,[b, c], \rho_{3}, \zeta\right)- \\
& -I_{2}-I_{3} \mid
\end{aligned}
$$

$$
\left.\leqslant\left|I_{1}-\sigma\left(f,[a, c], \rho_{1}, \xi\right)\right|+\left|\sigma\left(f,[a, b], \rho_{2}, \eta\right)-I_{2}\right|+\mid \sigma\left(f,[b, c], \rho_{3}, \zeta\right)-I_{3}\right)
$$

$$
<\varepsilon / 3+\varepsilon / 3+\varepsilon / 3=\varepsilon
$$

gex. $\quad \int_{a}^{a} f(x) d x:=0$

$$
a<b \Rightarrow \int_{b}^{a} f(x) d x:=-\int_{a}^{b} f(x) d x
$$

(Jip xotins $\int_{a}^{b}+\int_{b}^{a}=\int_{a}^{a}=0$)

HAROMEHA: Hbek bartu $\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x \quad$ (*)
ses os supe te woregak $a, b, c \in \mathbb{R}$
Hup. $a<c<e$, उ Heno $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$

$$
\Rightarrow \int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x-\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x
$$

Lometru: Lonobcenin (*) $3 a: a>b>c, \quad a>c>b, a=c<b$
(4.) (Hejegtekoun \triangle ba uturipere, octobur Hejegt. 3a utrutepene)
$a<b \Rightarrow\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$. (ano y n fu $|f|$ uнnicetp.)
$\Delta:$

$$
\begin{aligned}
& \left|\int_{a}^{b} f(x) d x\right|=\left|\lim _{n \rightarrow \infty} S_{n}(f,[a, b])\right|=\left|\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(\xi_{i}\right)\right|= \\
& =\lim _{n \rightarrow \infty}\left|\frac{b-a}{n} \sum_{i=1}^{n} f\left(\xi_{i}\right)\right| \leqslant \lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n}\left|f\left(\xi_{i}\right)\right|=\int_{a}^{b}|f(x)| d x
\end{aligned}
$$

Hejeg 4. Δ 3a
lwaltenty cymy

(1) Heme j firreve c^{\perp} to $[a, b]\left(\Leftrightarrow f^{\prime} j^{\prime}\right.$ teifelungre) $\pi \log a \quad j \quad \int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$.
$\Delta: f(b)-f(a)=\sum_{j=1}^{n}\left(f\left(x_{j}\right)-f\left(x_{j-1}\right)\right)=\sum_{j=1}^{n} f^{\prime}\left(\xi_{j}\right) \Delta x_{j}=$ ¿ naip. in. o ep. Ep. $\left(f(\xi)-f(\alpha)=f^{\prime}(\xi)(\xi-\alpha)\right.$

$$
\begin{aligned}
& x_{j}=a+j \cdot \frac{b-a}{n} \\
& \operatorname{l}_{0}| || || ||\quad| \\
& x_{n}=a
\end{aligned}
$$

$$
=\frac{b-a}{n} \sum_{j=1}^{n} f^{\prime}(\xi j)=S_{n}\left(f^{\prime}\right) \underset{n \rightarrow \infty}{\longrightarrow} \int_{a}^{\zeta} f^{\prime}(x) d x
$$

HoTAchusA. $\left.f(x)\right|_{a} ^{b}:=f(b)-f(a)$

3agargu. $\int_{0}^{2} x d x, \int_{0}^{1} \sin x d x$

$$
\begin{aligned}
& \int_{0}^{2} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{2}=\frac{2^{2}}{2}-\frac{0^{2}}{2}=2 \\
& \int_{0}^{1} \sin x d x=-\left.\cos x\right|_{0} ^{1}=-\cos 1+\cos 0=1-\cos 1
\end{aligned}
$$

TEOPEMA O CPERHOJ BPEn HOCTK

Hene j if ustripechnse the $[9, b]$ и $m \leq f(x)<M$

$$
\begin{equation*}
\Rightarrow m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a) \tag{1}
\end{equation*}
$$

Criegrjamso, ano ji f Hengengese, lloga $\exists \xi \in\left[9, b_{0}\right]$ wigo.

$$
\int_{a}^{b} f(x) d x=f(\xi)(b-a)
$$

Δ :

$$
\begin{align*}
m & \leq f(x) \leq M \quad \int_{a}^{b} M o H 0 T o H O C T \\
m(b-a) & \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b} M d x=M(b-a) \tag{1}
\end{align*}
$$

3a (z), us Hhifelcugt: m=minf $=f\left(x_{1}\right)$ f Heip. (gocutuitte ce)

$$
M=\max f=f\left(x_{2}\right)
$$

$43 \quad$ (1)

$$
\begin{aligned}
& m=f\left(x_{1}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq f\left(x_{2}\right)=M \\
& \text { obo jr metybpeg to cm } \\
& \forall \text { kown-EOnMATHO } \\
& \exists \xi \in[a, b] \Rightarrow \frac{1}{b-a} \int_{a}^{b} f(x) d x=f(\xi)
\end{aligned}
$$

Hene je f Hexp. He $[9, b], F(x):=\int_{a}^{x} f(t) d t$ π uga $\dot{\text { u }} F^{\prime}(x)=f(x)$.
$\Delta:$

$$
\begin{aligned}
& \frac{F(x+h)-F(x)}{h}=\frac{\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t}{h}=\frac{\int_{x}^{x+h} f(t) d t}{h}= \\
& =\frac{h \cdot f(\xi \omega)}{h}=f(\xi l) \xrightarrow[\text { HenPEK. }]{h \rightarrow 0} f(x) \\
& \text { J. o cp. bp } \\
& \text { 3a utrietpare } \\
& \xi_{h} \in[x, x+h] \Rightarrow \xi_{h} \xrightarrow{h \rightarrow 0} x \\
& \Rightarrow \lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=F^{\prime}(x)=f(x)
\end{aligned}
$$

