3.46 c

Tuesday, 12 October 2021 17:11
(B) $\int \frac{x d x}{\left(x^{2}+1\right)^{n}}=\left\{\begin{array}{l}t=x^{2}+1 \\ d t=2 x d x \\ x d x=\frac{1}{2} d t\end{array}\right\}=\frac{1}{2} \int \frac{d t}{t^{n}}=$

$$
=\frac{1}{2} \frac{t-n+1}{-n+1}+c=\frac{\left(x^{2}+1\right)^{-n+1}}{2(-n+1)}+c
$$

$(r) \quad \int \frac{d x}{\left(x^{2}+a^{2}\right)^{n}}=\frac{1}{a^{2 n}} \int \frac{d x}{\left(\frac{x^{2}}{a^{2}}+1\right)^{n}}=\{x / a=t$
CKOPO h पTO KAO (5)
(n) $\int \frac{x d x}{\left(x^{2}+a^{2}\right)^{n}} \quad$ ncto $k A_{0}$ (B) $\quad t=x^{2}+a^{2}$
(7) $\int \frac{d x}{\left(a x^{2}+b x+c\right)^{n}} \quad a x^{2}+b x+c$ Heme Hyre y \mathbb{R}

$$
0>\Delta=b^{2}-4 a c
$$

IF ano उHam $f\left(x^{2}+a^{2}\right)$ a umam $g(\underbrace{a x^{2}+b x+c}_{\text {Heme ty }})$ Heme uyne
\leadsto nuнt. creste coogn $a x^{2}+b x+c \leadsto t^{2}+\alpha^{2}$ uan $t^{2}+1$

$$
a>0
$$

$$
\begin{aligned}
& a x^{2}+b x+c=a\left(x^{2}+2 \frac{b}{2 a} x+\frac{b^{2}}{4 a^{2}}\right)+c-\frac{b^{2}}{4 a} \\
& =a\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a}=\frac{6>0}{4 a}=\sqrt{\frac{4 a c-b^{2}}{4 a}}=a\left(x+\frac{b}{2 a}\right)^{2}+d^{2}= \\
& \left.=a\left(x+\frac{b}{2 a}\right)^{2}=\sqrt{\frac{4 a c-b^{2}}{4 a}}\right)
\end{aligned}
$$

creqe $\quad t=\sqrt{a}\left(x+\frac{b}{2 a}\right)$

$$
a x^{2}+b x+c=t^{2}+d^{2}
$$

（E） $\int \frac{x d x}{\left(a x^{2}+b x+d\right)^{n}}$ ，$a x^{2}+b x+d$ teme hyre y \mathbb{R}

$$
\int \frac{x d x}{\left(a x^{2}+b x+d\right)^{4}}=\underbrace{\int=a x^{2}+b x+d}_{\text {cherte } \quad \frac{(2 a x+b) d x}{\left(a x^{2}+b x+d\right)^{4}} \cdot \frac{1}{2 a}} \cdot \underbrace{\int\left(a x^{2}+b x+d\right)^{n}}_{\text {cay woj }(F)}
$$

（HC）ONUTH CNYYAJ

1．koPAK：ano $\dot{j} \quad R(x)=\frac{P_{n}(x)}{Q_{m}(x)}$ ig ji $n \geq m$ ，hogenumo

$$
\left.\leadsto R(x)=R_{n-m}(x)+\frac{S_{k}(x)}{Q_{m}(x)} \quad \right\rvert\, \quad k<m
$$

2．KOPAK：$\quad R(x)=\frac{P_{n}(x)}{Q_{m}(x)}, n<m$
T．Cbano $R(x)=\frac{P_{n}(x)}{Q_{m}(x)}$ ，$n<m$ Molus ge ce thenure
3 sup nouy．ϕ－ja osnuice（A），（立），（有）и（E）．
kono ce obo nupu？Qm $(2)=\left(x-a_{1}\right)^{k_{1}} \cdots\left(x-a_{e}\right)^{k e}\left(a_{1} x^{2}+b_{1} x+c_{1}\right)^{n_{1}} \cdots\left(a_{p} x^{2}+b_{p} x+c_{p}\right)^{n_{p}}$ Hepaculob noubn
－coniom mitnovyy $(x-a)^{k}$ upugpyitumo $k \underbrace{\text { enemequt．prery．of ji }}$

$$
(A)-(E)
$$

$$
\frac{a_{1}}{x-a}, \frac{a_{2}}{(x-a)^{2}},-7 \frac{a_{k}}{(x-a)^{k}}, a_{j}=?
$$

－boacom ru\＃nolyg $\left(a x^{2}+b x+c\right)^{k}$ upupp．k en．bija odanke

$$
\frac{a a_{1} x+b_{1}}{a x^{2}+b x+c}, \frac{a 2 x+b_{2}}{\left(a x^{2}+b x+c\right)^{2}}, \frac{a_{k} x+b k}{\left(a x^{2}+b x+c\right)^{k}} \text { ybek won. an. } 1
$$

(1.) $\int \frac{2 x^{2}+2 x+13}{(x-2)\left(x^{2}+1\right)^{2}} d x$
$\operatorname{dog}\left(2 x^{2}+2 x+13\right)=2<5=\operatorname{deg}(x-2)\left(x^{2}+1\right)^{2}$
(upecicerems 1 . kopere)

$$
\frac{2 x^{2}+2 x+13}{(x-2)\left(x^{2}+1\right)^{2}}=\frac{(a x+c}{x-2}+\frac{(x+e}{x^{2}+1}
$$

$a, b, c, d, e=7$ - usjegirerobums fogkoye the neboj u gectsoj inpern

$$
\begin{aligned}
& \text { DECHA CIPAHA }=\frac{a\left(x^{2}+1\right)^{2}+(b x+c)(x-2)\left(x^{2}+1\right)+(d x+e)(x-2)}{(x-2)\left(x^{2}+1\right)^{2}} \\
& n=a\left(x^{4}+2 x^{2}+1\right)+(b x+c)\left(x^{3}+x-2 x^{2}-2\right)+d x^{2}-2 d x+e x-2 e \\
& n=(a+b) x^{4}+(-2 b+c) x^{3}+(2 a+b-2 c+d) x^{2}+(-2 b+c-2 d+e) x \\
& \\
& +(a-2 c-2 e)
\end{aligned}
$$

$$
\Omega=2 x^{2}+2 x+13
$$

CB4 loed, Cy =
\(\left.\left.$$
\begin{array}{ll}y_{3} x^{4}: & 0=a+b \\
y_{3} x^{3} & 0=-2 b+c \\
y_{3} x^{2} & 2=2 a+b-2 c+d \\
y_{3} x & 2 \\
y_{3} 1\end{array}
$$ $$
\begin{array}{l}13=-2 b+c-2 d+e\end{array}
$$\right\} \quad \begin{array}{l}a=1 \\
b=-1 \\
e=-2 \\

\end{array}\right\}\)| $d=-3$ |
| :--- |
| $e=-4$ |

$$
\Rightarrow \int \frac{2 x^{2}+2 x+13}{(x-2)\left(x^{2}+1\right)^{2}} d x=\underbrace{\int \frac{d x}{x-2}}_{I_{1}}+\underbrace{\int \frac{-x-2}{x^{2}+1}}_{I_{2}} d x+\underbrace{\int \frac{-3 x-4}{\left(x^{2}+1\right)^{2}}}_{I_{3}} d x
$$

$$
I_{1}=\ln |x-2|+c_{1}
$$

$$
\begin{aligned}
& I_{2}=-\int \frac{x+2}{x^{2}+1} d x=-\int \frac{x d x}{x^{2}+1}-2 \int \frac{d x}{x^{2}+1}=\left\{\begin{array}{l}
y \text { apbom: } \\
x^{2}+1=t \\
x d x=\frac{1}{2} d t
\end{array}\right. \\
& =-\frac{1}{2} \int \frac{d t}{t}-2 \operatorname{arctg} x+c_{2}=-\frac{1}{2} \ln |t|-2 \operatorname{arctg} x+c_{2}
\end{aligned}
$$

$$
\begin{aligned}
& J_{3}=-\int \frac{3 x+4}{\left(x^{2}+1\right)^{2}} d x=-3 \int \frac{x d x}{\left(x^{2}+1\right)^{2}}-4 \int \frac{d x}{\left(x^{2}+1\right)^{2}} \\
& \int \frac{x d x}{\left(x^{2}+1\right)^{2}}=\left\{\begin{array}{l}
x^{2}+1=t \\
x d x=1 / 2 d t=\frac{1}{2} \int \frac{d t}{t^{2}}=-\frac{1}{2} \frac{1}{t}+c_{4}
\end{array}\right. \\
& \int \frac{d x}{\left(x^{2}+1\right)^{2}}=\left\{\begin{array}{l}
x=\operatorname{tg} t \\
d x=\frac{d t}{\cos ^{2} t}
\end{array}\right. \\
& \left.x^{2}+1=t^{2} t+1=\frac{\sin ^{2} t+\cos ^{2} t}{\cos ^{2} t}=\frac{1}{\cos ^{2} t}\right\} \\
& =\int \frac{d t}{\cos ^{2} t \cdot \frac{1}{\left(\cos ^{2} t\right)^{2}}}=\int \cos ^{2} t d t=\int \frac{1+\cos u}{2} d t=
\end{aligned}
$$

$=\frac{1}{2} t+\frac{1}{4} \sin 2 t+c_{5}$ apesa ga Gpaninomo the x
$\frac{1}{2} \operatorname{arctg} x$

$$
\begin{aligned}
\sin 2 t & =2 \sin t \cos t=2 \frac{\sin t}{\cos t} \cdot \cos ^{2} t=2(\operatorname{tg} t)^{\cos ^{2} t} \frac{11}{\cos ^{2} t+\sin 2} \\
& =2 x \frac{1}{1+\operatorname{tg}^{2} t}=\frac{2 x}{1+x^{2}}
\end{aligned}
$$

$$
\int \frac{d x}{\left(x^{2}+1\right)^{2}}=\frac{1}{2} \operatorname{arctg} x+\frac{1}{2} \frac{x}{1+x^{2}}+c_{5}
$$

$$
I_{3}=\frac{3}{2} \frac{1}{x^{2}+1}-2 \operatorname{arctg} x+2 \frac{x}{1+x^{2}}+C_{3}
$$

2. $\int \frac{x d x}{x^{3}+1}$ Herre giventa

- pacatabdoams unerturayy $x^{3}+1=(x+1)^{1} \underbrace{\left(x^{2}-x+1\right)^{1}}_{\text {Here ty ve }}$
- pecurobro ams ure en pary. b ji

$$
\frac{x}{x^{3}+1}=\frac{a}{x+1}+\frac{b x+c}{x^{2}-x+1}
$$

$$
\begin{aligned}
& -a, b, c=1 \quad \quad \eta=\frac{a\left(x^{2}-x+1\right)+(b x+c)(x+1)}{(x+1)\left(x^{2}-x+1\right)}= \\
& =\frac{a x^{2}-a x+a+b x^{2}+b x+c x+c}{x^{3}+1} \\
& =\frac{(a+b) x^{2}+(-a+b+c) x+a+c}{x^{3}+1} \\
& n=\frac{x}{x^{3}+1} \\
& \Rightarrow \quad x=(a+b) x^{2}+(-a+b+c) x+(a+c) \\
& y_{3} \quad x^{2} \quad 0=a+b \\
& \text { Y3 } x \quad 1=-a+b+c \\
& 0=a+c \\
& \left.1=-a-a-a, \begin{array}{l}
b=-a \\
c=-a
\end{array}\right\} \Rightarrow \begin{array}{l}
a=-1 / 3 \\
b=c=1 / 3
\end{array} \\
& \Rightarrow \int \frac{x}{x^{3}+1} d x=\frac{1}{3}\left\{-\int \frac{d x}{x+1}+\int \frac{x+1}{x^{2}-x+1} d x\right\}= \\
& =-\frac{1}{3} \ln |x+1|+\frac{1}{3} I_{1} \\
& \left(x^{2}-x+1\right)^{\prime}=2 x-1 \\
& I_{1}=\int \frac{x+1}{x^{2}-x+1} d x=\frac{1}{2} \int \frac{2 x-1+3}{x^{2}-x+1} d x= \\
& \begin{array}{c}
=\frac{1}{2} \int \frac{2 x-1}{x^{2}-x+1} d x+\frac{3}{2} \underbrace{\int \frac{1}{x^{2}-x+1}}_{\frac{I_{2}}{2}} d x=\frac{1 x}{2} \ln \left(x^{2}-x+1\right)
\end{array} \\
& I_{2}: \quad x^{2}-x+1=x^{2}-2 \cdot \frac{1}{2} x+\frac{1}{4}-\frac{1}{4}+1=\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4} \\
& =\frac{3}{4}\left\{\left(\frac{x-\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)^{2}+1\right\} \\
& I_{2}=\int \frac{d x}{x^{2}-x+1}=\frac{4}{3} \int \frac{d x}{\left(\frac{x-1 / 2}{\sqrt{3} / 2}\right)^{2}+1}=\left\{\begin{array}{l}
\frac{x-1 / 2}{\sqrt{3} / 2} \\
\\
d x=\frac{\sqrt{3}}{2} d t
\end{array}\right\}
\end{aligned}
$$

$$
=\frac{4}{3} \cdot \frac{\sqrt{3}}{2} \int \frac{d t}{t^{2}+1}=\frac{2 \sqrt{3}}{3} \text { anctg } t+c_{2}=\frac{2 \sqrt{3}}{3} \operatorname{arctg}\left(\frac{2 x-1}{\sqrt{3}}\right)+c_{2}
$$

$$
\Rightarrow I=-\frac{1}{3} \ln |x+1|+\frac{1}{6} \ln \left(x^{2}-x+1\right)+\frac{\sqrt{3}}{3} \text { arctg } \frac{2 x-1}{\sqrt{3}}+c
$$

3. $\int \frac{d x}{x^{4}+1}$
$x^{4}+1$ Heme tyne y $12 \Rightarrow$ iclagr. icbogp.

$$
\begin{aligned}
& x^{4}+1 \stackrel{\text { LTOC }}{=} x^{4}+2 x^{2}+1-2 x^{2}=\left(x^{2}+1\right)^{2}-(\sqrt{2} x)^{2}= \\
& =\left(x^{2}+\sqrt{2} x+1\right)\left(x^{2}-\sqrt{2} x+1\right) \\
& \frac{1}{x^{4}+1}=\frac{a x+b}{x^{2}+\sqrt{2} x+1}+\frac{c x+d}{x^{2}-\sqrt{2} x+1} \\
& =\frac{(a x+b)\left(x^{2}-\sqrt{2} x+1\right)+(c x+d)\left(x^{2}+\sqrt{2} x+1\right)}{x^{4}+1} \\
& 1=a x^{3}-\sqrt{2} a x^{2}+a x+b x^{2}-\sqrt{2} b x+b+c x^{3}+\sqrt{2} c x^{2}+c x+d x^{2}+\sqrt{2} d x+d \\
& y_{3} \quad x^{3}: \quad 0=a+c \\
& \text { I3 } x^{2}: \quad 0=-\sqrt{2} a+b+\sqrt{2} c+d \\
& \begin{array}{lll}
y_{3} & x & 0
\end{array} \quad 0=a-\sqrt{2} b+c+\sqrt{2} d \quad(s) \\
& 1=b+d \\
& c=-a \\
& d=1-\zeta \\
& \text { Y(3): } 0=-\sqrt{2} b+\sqrt{2}(1-b) /: \sqrt{2} \\
& 0=-b+1-b \Rightarrow b=1 / 2=d \\
& I=I_{1}+I_{2}
\end{aligned}
$$

$$
I_{1}=\int \frac{\frac{x}{2 \sqrt{2}}+\frac{1}{2}}{x^{2}+\sqrt{2} x+1} d x \quad I_{2}=\int \frac{-\frac{1}{2 \sqrt{2}} x+\frac{1}{2}}{x^{2}-\sqrt{2} x+1} d x
$$

ypagutims $I_{1}, I_{2} \dot{\gamma}$ an gorettu

$$
\begin{aligned}
& I_{1}=\frac{1}{2 \sqrt{2}} \int \frac{x+\sqrt{2}}{x^{2}+\sqrt{2} x+1} d x=\frac{1}{4 \sqrt{2}} \int \frac{2 x+\sqrt{2}+\sqrt{2}}{x^{2}+\sqrt{2} x+1} d x \\
& =\frac{1}{4 \sqrt{2}}\{\int \frac{2 x+\sqrt{2}}{x^{2}+\sqrt{2} x+1} d x+\underbrace{\frac{\sqrt{2} d x}{x^{2}+\sqrt{2} x+1}}\} \\
& 11 \\
& \ln \left(x^{2}+\sqrt{2} x+1\right)+c,
\end{aligned}
$$

$3 a I_{3}: \quad x^{2}+\sqrt{2} x+1=x^{2}+2 \frac{\sqrt{2}}{2} x+\frac{1}{2}+\frac{1}{2}=\left(x+\frac{\sqrt{2}}{2}\right)^{2}+\frac{1}{2}=$

$$
\begin{aligned}
& =\frac{1}{2}\left\{\left(\frac{x+\frac{\sqrt{2}}{2}}{\frac{1}{\sqrt{2}}}\right)^{2}+1\right\}=\frac{1}{2}\left\{(\sqrt{2} x+1)^{2}+1\right\} \\
& I_{3}=\sqrt{2} \int \frac{d x}{\frac{1}{2}\left[(\sqrt{2} x+1)^{2}+1\right]}=2 \sqrt{2} \int \frac{d x}{(\sqrt{2} x+1)^{2}+1}=\left\{\begin{array}{l}
t=\sqrt{2} x+1 \\
d x=\frac{1}{\sqrt{2}} d t
\end{array}\right. \\
& =\frac{2 \sqrt{2}}{\sqrt{2}} \int \frac{d t}{t^{2}+1}=2 \operatorname{arctg} t+c_{3}=2 \operatorname{arctg}(\sqrt{2} x+1)+c_{3} \\
& I_{1}=\frac{1}{4 \sqrt{2}}\left\{\ln \left(x^{2}+\sqrt{2} x+1\right)+2 \operatorname{arctg}(\sqrt{2} x+1)\right\}+c_{2}
\end{aligned}
$$

4. $\int \frac{d x}{x^{4}-1}$

$$
\begin{aligned}
& x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right)=(x-1)(x+1)\left(x 4^{2}+1\right) \\
& \frac{1}{x^{4}-1}=\frac{a}{x-1}+\frac{6}{x+1}+\frac{c x+d}{x^{2}+1}
\end{aligned}
$$

$$
=\frac{a(x+1)\left(x^{2}+1\right)+b(x-1)\left(x^{2}+1\right)+(x x+d)\left(x^{2}-1\right)}{x^{4}-1}
$$

43jigtreTobamo opojuone:

$$
1=a x^{3}+a x+a x^{2}+a+b x^{3}+b x+b x^{2} b+c x^{3}-c x+d x^{2} d
$$

$$
\begin{array}{lllll}
y_{3} & x^{3}: & 0=a+b+c & (1) & (1)+(3): a+b=0 \\
y_{3} & x^{2}: & 0=a-b+d & (2) & (2)-(4): \quad-1=2 d \quad \\
y_{3} & x: & 0=a+b-c & (3) & (1)-(3): c=0 \\
y_{3} & 1: & 1=a-b-d & (4) &
\end{array} \quad d=-\frac{1}{2}
$$

us (4): $\frac{1}{2}=a-b=2 a \Rightarrow a=\frac{1}{4}$

$$
b=-\frac{1}{4}
$$

$$
\begin{aligned}
& \Rightarrow \frac{1}{x^{4}-1}=\frac{1}{4(x-1)}-\frac{1}{4(x+1)}-\frac{1}{2} \frac{1}{x^{2}+1} \\
& \Rightarrow \int \frac{d x}{x^{4}-1}=\frac{1}{4} \ln |x-1|-\frac{1}{4} \ln |x+1|-\frac{1}{2} \operatorname{arctg} x+c
\end{aligned}
$$

Somatur:

$$
\text { 1. } \int \frac{d x}{x^{2}\left(1+x^{2}\right)^{2}}\left(\frac{1}{x^{2}\left(1+x^{2}\right)^{2}}=\frac{a}{x}+\frac{b}{x^{2}}+\frac{c x+d}{x^{2}+1}+\frac{e x+f}{\left(x^{2}+1\right)^{2}}\right)
$$

2. $\int \frac{x^{7}-2 x^{6}+4 x^{5}-5 x^{4}+4 x^{3}-5 x^{2}-x}{(x-1)^{2}\left(x^{2}+1\right)^{2}} d x$

$$
I V \quad \int R(\sin x, \cos x) d x
$$

$R(\sin x, \cos x)-\sin x, \cos x$ - cashparse, ogy 3 unabe, movise be, gevelbe
(A) $R(-\sin x, \cos x)=-R(\sin x, \cos x) \quad t=\cos x \quad$ pely, uo t
(B) $R(\sin x,-\cos x)=-R(\sin x, \cos x) \quad t=\sin x \quad$ pang. .o t (cmuzir lıs úmṻob I)

Bapangu.
(1.) $\int \frac{d x}{\sin x}$

$$
R(\sin x, \cos x)=\frac{1}{\sin x}
$$

$$
\begin{aligned}
& R(-\sin x, \cos x)=\frac{1}{-\sin x}=-R(\sin x, \cos x) \\
& \int \frac{d x}{\sin x}=\int \frac{\sin x d x}{\sin 2 x}=\left\{\begin{array}{l}
\cos x=t \\
-\sin x d x=d t \\
\sin ^{2} x+1-\cos ^{2} x=1-t^{2}
\end{array}\right\} \\
&=-\int \frac{d t}{1-t^{2}}=\int \frac{d t}{t^{2}-1}=\frac{1}{2} \int \frac{t+1-(t-1)}{(t+1)(t-1)} d t \\
&=\left.\left.\left.\frac{1}{2}\left(\int \frac{d t}{t-1}-\int \frac{d t}{t+1}\right)=\frac{1}{2}\{\ln \mid \cos x-1)-\ln \right\rvert\, \cos x+1\right)\right\}+c \\
&= \frac{1}{2}\{\ln (1-\cos x)-\ln (\cos x+1)\}+c
\end{aligned}
$$

2.

$$
\begin{aligned}
& \int \frac{\sin ^{2} x}{\cos ^{3} x} d x=\int \frac{\left.\sin ^{2} x\right)^{\prime \prime t^{2}} \cos x d x}{\cos ^{4} x}=\left\{\begin{array}{l}
\sin x=t \\
\cos x d x=d t \\
\cos ^{4} x=\left(\cos ^{2} x\right)^{2}=\left(1-\sin ^{2} x\right)^{2}
\end{array}\right. \\
& R(\sin x,-\cos x)=-R(\sin x, \cos x) \\
& =\left(1-t^{2}\right)^{2} \\
& =\int \frac{t^{2} d t}{\left(1-t^{2}\right)^{2}}=\int \frac{t^{2} d t}{(1-t)^{2}(1+t)^{2}}=\int \frac{a d t}{1-t}+\int \frac{b d t}{(1-t)^{2}}+\int \frac{c d t}{1+t}+\int \frac{d \cdot d t}{(1+t)^{2}} \\
& =\ldots \text { gomatru }
\end{aligned}
$$

(B) $\quad R(-\sin x, \cos x)=R(\sin x,-\cos x)=R(\sin x, \cos x)$
dou cineriets u ys $\sin x$ и y3 $\cos x$ cy topitn
$t=\operatorname{tg} x \sim$ nevgnoнr NAte

$$
x=\operatorname{arctg} t \Rightarrow d x=\frac{d t}{1+t^{2}} \quad \text { (pacosuottan } 1+a \text {) }
$$

$\sin ^{2} x, \cos ^{2} x$ - uns Heim chrention of oboia
Jogrtu cureititu sin u cos cy poryuotremte toji og $\operatorname{tg} x$

$$
\operatorname{jep} \quad \sin ^{2} x=\frac{\sin ^{2} x}{\sin ^{2} x+\cos ^{2} x}=\frac{\frac{\sin ^{2} x}{\cos ^{2} x}}{\frac{\sin ^{2}}{\cos ^{2} x}+1}=\frac{\operatorname{tg}^{2} x}{\operatorname{tg}^{2} x+1}=\frac{t^{2}}{t^{2}+1}
$$

$\sin ^{2} x=\frac{t^{2}}{t^{2}+1}$ ano ji $t=\operatorname{tg} x$

$$
\cos ^{2} x=1-\sin ^{2} x=1-\frac{t^{2}}{1+t^{2}}=\frac{1}{1+t^{2}}
$$

3agmutak: $\int \frac{\cos ^{2} x}{\sin ^{4} x} d x=\left\{\begin{array}{ll}\operatorname{tg} x=t & \cos ^{2} x=\frac{1}{1+t^{2}} \\ d x=\frac{d t}{1+t^{2}} & \sin ^{4} x=\frac{t^{4}}{\left(1+t^{2}\right)^{2}}\end{array}\right\}$

$$
\begin{gathered}
=\int \frac{\frac{1}{1+t^{2}}}{\frac{t^{4}}{\left(1+t^{2}\right)^{2}}} \\
=\frac{d t}{1+t^{2}}=\int \frac{d t}{t^{4}}=-\frac{1}{3} t^{-3}+c \\
=-\frac{1}{3(\operatorname{tg} x)^{3}}+c
\end{gathered}
$$

(Г) YHYBEP3AJHA CMEHA

$$
t=\operatorname{tg} \frac{x}{2}
$$

$\sin x \quad u \cos x$ cy pacywitante $p-j i$ of $\operatorname{tg} \frac{x}{2}$ (obo cro, y curbapn, bet nzlunn y Hewm supanzen)

$$
\begin{aligned}
& \sin x=2 \sin \frac{x}{2} \cos \frac{x}{2}=2 \operatorname{tg} \frac{x}{2}\left(\cos ^{2} \frac{x}{2}\right)^{\prime \prime}=2 t \cdot \frac{1}{1+t^{2}}=\frac{2 t}{1+t^{2}} \\
& \cos x=\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}=-\frac{1}{1+t^{2}}-\frac{t^{2}}{1+t^{2}}=\frac{1-t^{2}}{1+t^{2}} \\
& \text { cnyzaj |B) }
\end{aligned}
$$

