úu. u= $\sum_{i=1}^{\infty}\left\langle u, e_{i}\right\rangle e_{i} \quad x_{0}$ tèmo: $\|u\|^{2}=\sum_{i=1}^{\infty}\left\langle u, e_{i}\right\rangle^{2}$

$$
\|u\|^{2}=\langle u, u\rangle=\left\langle\sum_{i=1}^{\infty}\left\langle u, e_{i}\right\rangle e_{i} \sum_{i=1}^{\infty}\left\langle u, e_{j}\right\rangle e_{j}\right\rangle=
$$

$$
\left\langle\lim _{N \rightarrow \infty} \sum_{i=1}^{N}\left\langle u, e_{i}\right\rangle e_{i}, \lim _{N \rightarrow \infty} \sum_{N=1}^{N}\left\langle u, e_{j}\right\rangle e_{j}\right\rangle \underset{\substack{H m_{j} \\\langle\cdots \cdot>}}{T_{N}} \lim _{N \rightarrow \infty}\left\langle\sum_{i=1}^{N}\left\langle u, e_{i}\right\rangle e_{i}, \sum_{j=1}^{N}\left\langle u, e_{j}\right\rangle e_{j}\right\rangle
$$

$$
=\lim _{N \rightarrow \infty} \sum_{i=1}^{N} \sum_{j=1}^{N}\left\langle u, e_{i}\right\rangle\left\langle u, e_{j}\right\rangle \underbrace{\left\langle e_{i}, e_{j}\right\rangle}_{\delta_{i}}=\lim _{N \rightarrow \infty} \sum_{i=1}^{N}\left\langle u, e_{i}\right\rangle\left\langle u, e_{i}\right\rangle
$$

$$
=\lim _{N \rightarrow \infty} \sum_{i=1}^{N}\left\langle u, e_{i}\right\rangle^{2}=\sum_{i=1}^{\infty}\left\langle u, e_{i}\right\rangle^{2}
$$

$(3) \Rightarrow(1)$ uni qu bausth Japcebanoba fight.

$$
u \in X \quad \varepsilon>0 \quad \text { xotamo } \quad u \in \mathbb{N}, \lambda_{i} i=1, n,\left\|u-\sum_{i=1}^{n} \lambda_{i} e_{i}\right\|<\varepsilon
$$

Lonezatiano ge oles buntru $3 u \quad \lambda_{i}=\alpha_{i}=\left\langle u, e_{i}\right\rangle$

I Jipuitrpenpujcun OHC $\frac{1}{\sqrt{2 \pi}}, \frac{\sin n x}{\sqrt{\pi}}, \frac{\cos n x}{\sqrt{\pi}} \quad u \in \mathbb{N}$ j иoutuytt

Tez qomeza.

Huna seo suem? $\quad S_{w}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left(a_{n} \cos n x+\ln \sin n x\right)$

$$
\left\|f(x)-\zeta_{N}(x)\right\| \xrightarrow{N \rightarrow \infty} 0 \quad \int_{-\pi}^{\pi}\left(f(x)-S_{N}(x)\right)^{2} d x \xrightarrow{N \rightarrow \infty} 0
$$

$$
\begin{aligned}
& \left\|u-\sum_{i=1}^{n} \alpha_{i} e_{i}\right\|^{2} \stackrel{\pi \pi \text { Corftur } 1}{=}\|u\|^{2}-\sum_{i=1}^{n} \alpha_{i}^{2}=\|u\|^{2}-\sum_{i=1}^{n}\left\langle u, e_{i}\right\rangle^{2} \xrightarrow\left[\left\langle\varepsilon^{2}, \forall u \geqslant n_{0}\right]{\substack{n \rightarrow \infty}}\right. \\
& \text { jpp }\|u\|^{2}=\sum_{i=1}^{\infty}\left\langle u, e_{i}\right\rangle^{2}
\end{aligned}
$$

3a bernio N:

Jlleprutro roinga: Obacba korbepierngug a ve sole u KoHberíesugnga Y CPEBHEM um L2 - kottepíertrynjo nam korbepíerrynja y L^{2} - Hopam

HanOMEHA: ZHemo betr upu lepuie worberiertygi ϕ-aasoi tusa (pega):

- vicince -ño -йa
- pablia meplie
- y yeg hem

Kano ineck Tapcebanoba jogneno uit? $\|f\|^{2}=\hat{a}_{0}^{2}+\sum_{h=1}^{\infty}\left(\tilde{a}_{n}^{2}+\tilde{b}_{n}^{2}\right)$

$$
\begin{gathered}
a_{0}=\sqrt{\frac{2}{\pi}} \tilde{a_{0}}, \quad a_{n}=\frac{\tilde{a_{n}}}{\sqrt{\pi}}, \quad \ln =\frac{\tilde{e_{n}}}{\sqrt{\pi}} \\
\int_{-\pi}^{\pi} f^{2}(x) d x=\frac{\pi}{2} a_{0}^{2}+\sum_{n=1}^{\infty}\left(\pi a_{n}{ }^{2}+\pi \operatorname{lon}^{2}\right)
\end{gathered}
$$

$$
\left.\begin{array}{l}
\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+\operatorname{lon}_{n}^{2}\right)=\frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) d x \quad \text { Tapcebanob } \\
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+\ln \sin n x\right) \quad f^{*} \quad \text { Pypyiob } \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \quad, n \in \mathbb{N} . \\
\ln _{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x \quad n \in \mathbb{N} \quad
\end{array}\right\} \text { Dypujeobu koeф. }
$$

Tapcebanoba jiytanoū Dypriob reg

HAПDMEHA: Ans $\bar{\gamma}$ f íapune \Rightarrow lon=0 (pazlosj ño kocurirganna)
Ano j f Herapuse $\Rightarrow a_{n}=0$ (-11 - curirgcume)

Bagange: Pazbount $f(x)=|x|$ the $[-\pi, \pi]$ y Pypajeole py u trotm

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{4}}, \sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

f wapuse $\Rightarrow h_{n}=0$

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi}|x| d x=\frac{2}{\pi} \int_{0}^{\pi} x d x=\left.\frac{k}{\pi} \frac{x^{2}}{2}\right|_{x=0} ^{\pi}=\pi \\
& n \geqslant 1: \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos n x|x| d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos (n x) d x=\left\{\begin{array}{c}
x=u \\
\cos (n x) d x=d v \\
d u=d x \\
r=\frac{1}{n} \sin n x
\end{array}\right. \\
&=\frac{2}{\pi}\left\{\left.\frac{x \sin n x}{n}\right|_{x=0} ^{\pi}-\frac{1}{n} \int_{0}^{\pi} \sin n x d x\right\}=
\end{aligned}
$$

$$
\begin{aligned}
& \ln =\frac{1}{\pi} \int_{-\pi}^{\pi} \underbrace{f(x) \sin n x}_{\begin{array}{c}
\text { Héaplts } \\
\text { ano j } f \\
\text { जaphe }
\end{array}} d x=0 \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{1+} \underbrace{f(x) \cos n x}_{\begin{array}{c}
\text { Heciap } 40 \text {, ano } \\
f \text { Hhapuse }
\end{array}} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{2}{\pi} \cdot\left(-\frac{1}{n}\right) \frac{-\cos n x}{n}\right|_{x=0} ^{\pi}=\frac{2}{n^{2} \pi}(\cos n \pi-\cos 0)=\frac{2}{n^{2} \pi}\left((-1)^{n}-1\right) \\
a_{n} & \left.=\frac{2}{n^{2} \pi}\left((-1)^{n}-1\right)\right)= \begin{cases}0, n=2 k \\
\frac{-4}{(2 k+1)^{2} \pi}, n=2 k+1\end{cases}
\end{aligned}
$$

ゆypujeob py 中je f $\dot{j} \frac{\pi}{2}+\sum_{k=0}^{\infty} \frac{-4}{(2 k+1)^{2} \pi} \cos (2 k+1) x$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{4}} \text { Tapceburoba: } \frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) d x=\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \\
& \frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) d x=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} d x=\frac{2}{\pi} \int_{0}^{\pi} x^{2} d x=\left.\frac{2}{\pi} \frac{x^{3}}{3}\right|_{x=0} ^{\pi}=\frac{2 \pi^{2}}{3} \\
& \frac{a_{\infty}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)=\frac{\pi^{2}}{2}+\sum_{n=0}^{\infty} \frac{16}{(2 n+1)^{4} \pi^{2}} \\
& \Rightarrow \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{4}}=\frac{\pi^{2}}{16}\left(\frac{2 \pi^{2}}{3}-\frac{\pi^{2}}{2}\right)=\frac{\pi^{4}}{96} \\
& 3 \text { HAM } \\
& \text { पЗPA3 } 4 \mathrm{M} \text { TPEIK } S \\
& S=\frac{\pi 4}{96}+\frac{1}{16} S \Rightarrow \frac{15}{16} S=\frac{\pi^{4}}{96} \Rightarrow S=\frac{\pi^{4}}{90}
\end{aligned}
$$

Corbeprethyij a ゆypyybot uput reya
íl a ᄀica－īo－v̌azica
（osulte kotbepiet ryng－a）
 $[a, b] \backslash\left\{x_{1}, 7 x_{4}\right\}$ ，а apeungu $y \quad x=x_{j}$ cy aphe ep aite．

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad \ln n=\frac{1}{\pi} \int_{-\pi}^{"} f(x) \sin n x d x \\
& S_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left(a_{n} \cos n x+\ln n \sin n x\right)-\text { Hhip. p-jn }
\end{aligned}
$$

Le m, u \quad u noje $x \in[-\pi, \pi], \quad S_{N}(x) \rightarrow f(x), N \rightarrow \infty$?.
 - apy. Xunsepuobum upocuraguna)
 Ha $[-\pi, \pi]$. Ano, za $x \in \mathbb{R}$ émith
(1) $\exists f\left(x^{+}\right)$is $f\left(x^{-}\right) \in \mathbb{R}$
(2) $\exists \varepsilon>0$ ú. $\quad \int_{0}^{\varepsilon} \frac{f(x+u)-f\left(x^{+}\right)}{u} d u \quad u \int_{0}^{\varepsilon} \frac{f(x-u)-f\left(x^{-}\right)}{u} d u$ kothepinpoyy,

OHfa $\operatorname{Sas}(x)$ corle. in $\lim _{N \rightarrow \infty} S_{N}(x)=\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}$.
Tees gonesa.
gep. $f:[9, \zeta] \rightarrow \mathbb{R} \dot{\gamma}$ geo-no-ges Thantua (geo-5́o-ges krace C^{1}) ano f une theigenngat nzbog the $\left[a, x_{1}\right) \cup\left(x_{1}, x_{2}\right) \cup \ldots \cup\left(x_{n}, b\right]$ a y $x_{k} \quad 子 f^{\prime}\left(x_{k}^{+}\right)=\lim _{t \rightarrow x^{+}} f^{\prime}(t)$ in $f^{\prime}\left(x_{k}^{-}\right) \in \mathbb{R}$.

$$
t \rightarrow x_{n}^{\dagger}
$$

Tpurepu: sgux, $|x|$ cy geo-50-geo trantice.

$$
\begin{array}{lll}
\|(x) & g(x) & f^{\prime}\left(0^{+}\right)=f^{\prime}\left(0^{-}\right)=0 \\
& g^{\prime}\left(0^{+}\right)=1 \quad, g^{\prime}\left(0^{-}\right)=-1
\end{array}
$$

Hañomette: f geo-ño-geo tranua $\Rightarrow f$ geo-ño-geo Heupeling 4e.

π ugn $\quad \forall x \in \mathbb{R} \quad S_{N}(x)$ woHb. ke $\frac{1}{2}\left(f\left(x^{+}\right)+f\left(x^{-}\right)\right)$.
2ove3. "3 Lustryebot cwoba: (1) bautn jip g f $^{\prime}\left(x^{+}\right) \Rightarrow \exists f\left(x^{+}\right)$
(2) baith jip $\frac{f(x+m)-f\left(x^{+}\right)}{u}$ moitte ge ce Hengenghto upoyy itu 3 a $m=0$
jep: 43 raipartite neworve

$$
\begin{gathered}
\frac{f(x+\mu)-f\left(x^{+}\right)}{u}=\frac{f^{\prime}(\xi x) \cdot \mu}{u}=f^{\prime}(\xi x) \\
\xi x \in(x, x+u)
\end{gathered}
$$

$u \rightarrow 0 \rightarrow \xi x \rightarrow x$ м $\quad \exists \lim _{\xi_{x \rightarrow x}} f^{\prime}\left(\xi_{x}\right) \Rightarrow \int$ icotlepuiupe.
प̄a, 3 a qobonets mono ε, ϕ ja $u \mapsto \frac{f(x+4)-f(x+)}{u}$ ji Hehp. He $[0, \varepsilon]$
 Heiferingle y narach x. Ano $\exists L>0, \alpha \in(0,1], \delta>0$ nigo.

$$
\begin{array}{ll}
& |f(x+u)-f(x)| \leq L|u|^{\alpha} \quad \forall u \in(-\delta, j) \\
\text { } \begin{array}{l}
\text { Xengepob } y(n) b
\end{array} \\
\text { Fúaga } \quad \operatorname{SN}(x) \longrightarrow f(x) .
\end{array}
$$

Lonez. Barte ycvolen durtrina: (1) $\mathcal{F} f\left(x^{-}\right)=f\left(x^{+}\right)=f(x)$ jip j f Heop. I x
(2) $\int_{0}^{\varepsilon} \frac{f(x+u)-f(x+)}{u} d x$ wotb.?

$$
\begin{aligned}
&\left|\frac{f(x+u)-f\left(x^{+}\right)}{u}\right|=\frac{|f(x+u)-f(x)|}{u} \leq \frac{L|u|^{\alpha}}{u}=L u^{\alpha-1} \\
& \alpha-1>-1
\end{aligned}
$$

$$
\Rightarrow \int_{0}^{\varepsilon} \frac{f(x+u)-f\left(x^{+}\right)}{u} d x \quad \text { kotb epípse }
$$

$$
\Rightarrow \quad S_{N}\left(x^{x}\right) \xrightarrow{N+\infty} \frac{1}{2}\left(f\left(x^{+}\right)+f\left(x^{-}\right)\right)=f(x) \text { jp j} \text { f Hup. y } x
$$

3organgu.
(1.) Ra blounin $f(x)=\operatorname{sgn} \cos x$ на $[-\pi, \pi]$,u Hotho cymy birega $3 a$ OHe $x \in \mathbb{R}$ 3a noje noj wothegínga. (tatm $\sum_{n \rightarrow 0}^{\infty} \frac{(-1)^{n}}{2 n+1}, \sum_{0}^{\infty} \frac{1}{(2 n+1)^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}$

$f \in C_{0}([-\pi, \pi])+$ glo-ño-ges Erautice $+a_{i n}$. ustrieip.

Topuse \Rightarrow lon $=0$

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi}\left(\int_{0}^{\pi / 2} 1 d x+\int_{\pi / 2}^{\pi}(-1) d x\right)=0 \\
& u \geqslant 1 \text { : } \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x= \\
& =\frac{2}{\pi}\left(\int_{0}^{\pi / 2} \cos (n x) d x-\int_{\pi / 2}^{\pi} \cos (n x) d x\right)= \\
& =\frac{2}{\pi}\left\{\left.\frac{\sin (n x)}{n}\right|_{x=0} ^{\pi / 2}-\left.\frac{\sin (n x)}{n}\right|_{x=\pi / 2} ^{\pi}\right\}= \\
& =\frac{2}{\pi n}\left(\sin \frac{4 \pi}{2}-\sin ^{\prime \prime} 0-\sin (n \pi)+\sin \frac{4 \pi}{2}\right) \\
& =\frac{4}{n \pi} \sin \frac{n \pi}{2} \\
& \sin \frac{n \pi}{2}=\left\{\begin{array}{l}
0, n=2 k \\
\sin \frac{2 k+1}{2} \pi, n=2 k+1
\end{array}\right. \\
& \sin \frac{2 k+1}{2} \pi=\sin \left(k \pi+\frac{\pi}{2}\right)=(-1)^{k}
\end{aligned}
$$

Џypujeob reg: $\left.\sum_{n=1}^{\infty} a_{n} \cos n x=\sum_{k=0}^{\infty} \frac{4(-1)^{k}}{(2 k+1) \pi} \cos (2 k+1) x=f^{+} / x\right)$

Obng reg y coanoj nazich nottl we octroly nocregung dusnjeld kioperye
(f añc. wtut. и geo-ño-ges chonk ha)
 kano $j \cos x$ 2 -ieprogurne, $\hat{f}(x)=\operatorname{sgn}(\cos x) \in C_{0}([-\pi, \pi])$

$$
\left(f(x)=\frac{1}{2}\left(f\left(x^{+}\right)+f(x)\right)\right)
$$

$$
\Rightarrow f^{*}(x)=\tilde{f}(x)=\operatorname{sgn}(\cos x)=\sum_{n=0}^{\infty} \frac{4(-1)^{n}}{\pi(2 n+1)} \cos (2 n+1) x
$$

उапенон $x=0$

$$
\begin{aligned}
& \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \cos 0=\operatorname{sgn}(\cos 0)=1 \\
& \Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=\frac{\pi}{4} \\
& \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}, \text { Japceban: } \quad \frac{a_{0}{ }^{2}}{2}+\sum\left(a_{n}{ }^{2}+b_{n}{ }^{2}\right)=\frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) d x \\
& \text { 100g Hec: } \sum_{n=0}^{\infty} \frac{16}{\pi^{2}(2 n+1)^{2}}=\frac{2}{\pi} \int_{0}^{\pi} 1 d x=2 \\
& \Rightarrow \quad \sum_{n=0}^{\infty} \frac{1}{(2 m+1)^{2}}=\frac{2 \pi^{2}}{16}=\frac{\pi^{2}}{8} \\
& S=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\sum_{n=0}^{\infty} \frac{1}{(2 m+1)^{2}}+\sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}}=\frac{\pi^{2}}{8}+\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{8}+\frac{S}{4} \\
& \Rightarrow \frac{3 S}{4}=\frac{\pi^{2}}{8} \Rightarrow S=\frac{4}{3} \cdot \frac{\pi^{2}}{8}=\frac{\pi^{2}}{6}
\end{aligned}
$$

(2.) Pazbuin $f(x)=x^{2}$ y culty uth pus to $[0, \pi$) is tater cymy gorujetsoi rega 3 a $\forall x$ 3 a loje whaj pug korbepiupa.

1) pazlujamo y cutyce $\Rightarrow \hat{f} \bar{f}$ Hincopusa lse $(-\pi, \pi)$
2) Aporsupuras t̄o tepuogivitocutur
3) $\tilde{f}((2 u+1) \pi):=0, \quad \tilde{f}(x)=\frac{1}{2}\left(\tilde{f}\left(x^{+}\right)+\tilde{f}\left(x^{-}\right)\right) \quad \forall x \in \mathbb{R}$
n) nocney unge 2utrjebe nerpere $\Rightarrow \tilde{f}(x)=f^{*}(x)=\sum_{n=1}^{\infty} \ln \sin (t x)$
$a_{n}=0 \quad n \in \mathbb{N}_{0}$ ip ji f Henapte

$$
\begin{aligned}
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \underbrace{f(x) \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \sin (n x) d x=\left\{\begin{array}{l}
x^{2}=4 \\
\sin (n x) d x=d v \\
2 x d x=d u \\
-\frac{\cos (n x)}{n}=v
\end{array}\right.}_{\text {uаріна }} \\
& -\frac{\cos (n x)}{n}=v \\
& =\frac{2}{\pi}\left\{-\left.\frac{x^{2} \cos (n x)}{n}\right|_{01=0} ^{\pi}+\frac{2}{n} \int_{0}^{\pi} x \cos (n x) d x\right\}=\left\{\begin{array}{l}
x=u \\
\cos (n x)=d v \\
d u=d x \\
\frac{\sin (n x)}{n}=v
\end{array}\right\} \\
& =\frac{2}{\pi}\left\{-\frac{\pi^{2} \cos (n \pi)}{n}+\frac{2}{n}\left[\left.\frac{x \sin (n x)}{n}\right|_{x=0} ^{\pi}-\frac{1}{n} \int_{0}^{\pi} \sin (n x) d x\right]\right\}= \\
& =\frac{2}{\pi}\left\{\frac{(-1)^{n+1} \pi^{2}}{n}+\left.\frac{2}{n^{2}} \frac{\cos (n x)}{n}\right|_{x=0} ^{\pi}\right\}=\frac{2}{\pi}\left[\frac{(-1)^{n+1} \pi^{2}}{n}+\frac{2}{n^{3}}\left((-1)^{n}-1\right)\right]
\end{aligned}
$$

Y sayangume: "irofims a_{n}, bn

$$
\leadsto \tilde{f}=\underline{\phi} \text {.regy }
$$

 um Tapcebaroba jighekocin.

HADOMEHA. Aho $f:[-e, e] \rightarrow \mathbb{R} a n ̃ c$. maturéroakmae, oitg a \dot{i} thert Dypujeob rey gent ca

$$
\begin{aligned}
& \frac{a_{0}}{2}+\sum_{n=1}^{\pi}\left(a_{n} \cos \frac{n \pi x}{e}+\ln _{n} \sin \frac{n \pi x}{e}\right) \quad, \quad \text { ige cy } \\
& a_{n}=\frac{1}{e} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{e} d x \quad n \in \mathbb{N}_{0} \\
& l_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{e} d x
\end{aligned}
$$

 T upcebanoba jiginkicocut: $\quad \frac{1}{l} \int_{-l}^{l} f^{z}(x) d x=\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}{ }^{2}+b_{n}^{2}\right)$

