12. 9ke

OypusEOBU PE HOBU
X - bencopume upocurop lrey \mathbb{R}
ged. $\langle, j\rangle: x_{\wedge} X \rightarrow \mathbb{R}$ jr charoptr wpoubbof ano j
(1) $\langle u, v\rangle=\langle v, u\rangle$ cumeippinito $\overline{u n}$
(2) $\left\langle 1 u_{1}+\mu u_{2}, v\right\rangle=\lambda\left\langle u_{1}, v\right\rangle+\mu\left\langle u_{2}, v\right\rangle$ dinmeropurain
(3) $\langle u, u\rangle \geqslant 0$ पо suanders un
(4) $\langle u, u\rangle=0 \quad(\Rightarrow) \quad u=\rightarrow \quad$ Hegereincest ú
T) (Kown-vyloopyoba Hejeghe 100 ci)

$$
|\langle u, v\rangle| \leq \sqrt{\langle u, u\rangle\langle v, v\rangle}
$$

Lona3. $\forall t \in \mathbb{R}$ us akcouone $(3) \Rightarrow\langle u+t v, u+t v\rangle \geqslant 0$

$$
\begin{aligned}
& f(t):=\langle u+t v, u+t v\rangle=\langle v, v\rangle t^{2}+2\langle u, v\rangle t+\langle u, u\rangle \geqslant 0 \\
& \Leftrightarrow \Delta \leqslant 0, \Delta=B^{2}-4 A c=4\langle u, v\rangle^{2}-4\langle v, v\rangle\langle u, u\rangle \leqslant 0 \\
& \Rightarrow \quad\langle u, v\rangle^{2} \leqslant\langle v, v\rangle\langle u, u\rangle / \sqrt{ }
\end{aligned}
$$

ged. x j B.ח. Hopma $\|\cdot\|: x \rightarrow \mathbb{R}^{+}$ungo.
(i) $\|\lambda u\|=|\lambda|\|u\| \quad \lambda \in R, u \in X \quad$ xomotaciñ
(ii) $\|u+v\| \leqslant\|u\|+\|v\| \quad$ Hejeg eg ine lion uppojive
(iii) $\|u\|=0 \Leftrightarrow u=\overrightarrow{0} \quad$ неgи́енерисано сй.

Ill epmutto aoing 9: b. Mp. ce $\langle i$,$\rangle sole ce apey - Xuns epriole apoculop$ b. np. ce (1.1) 3obe ce Hopruporst b. apo woop (HBN)

T Cbaku $\langle i$,$\rangle merfyngige weing ce \|u\|:=\sqrt{\langle u, u\rangle}$.

Lones. us aKc (4) \Rightarrow gorpoged; us ged $\Rightarrow\|u\| \geqslant 0$
(i) $\|\lambda u\|=\sqrt{\langle\lambda u, \lambda u\rangle} \stackrel{(2)}{=} \sqrt{\lambda\langle u, \lambda u\rangle} \stackrel{(1)}{=} \sqrt{\lambda\langle\lambda u, u\rangle} \stackrel{(2)}{=} \sqrt{\lambda^{2}\langle 4, u\rangle}=|\lambda|\|u\|$

$$
\begin{aligned}
& \text { (ii) }\|u+v\|^{2}=\underline{\underline{\langle u+v, u+v\rangle}}=\langle u, u\rangle+2\langle u, v\rangle+\langle v, v\rangle \leqslant \begin{array}{l}
k,-w . \\
\leq\langle u, u\rangle+2 \sqrt{\langle u, u\rangle} \cdot \sqrt{\langle v, v\rangle}+\langle v, v\rangle=(\sqrt{\langle u, u\rangle}+\sqrt{\langle v, v\rangle})^{2}
\end{array} .=\frac{}{\langle\langle u}
\end{aligned}
$$

Hejegrelwa $\overline{\mathrm{cm}}$ runtenolec not

$$
\Rightarrow\|u+v\|^{2} \leq(\|u\|+\|v\|)^{2} / \sqrt{ }
$$

(iii) cregn gryeurus 43 (4)

Trumep. $\mathbb{R}^{n}, \quad u=\left(x_{1}, 7 x_{n}\right)$

$$
\leadsto\|u\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

ged. X $\dot{\gamma}$ HBN. Kastermo ge ths berciñpa $M_{n} \in X$ kostleapíppe he besuropy $n \in X$ ano

$$
\begin{aligned}
& \forall \varepsilon>0 \quad \exists n_{0} \quad \forall n \geqslant n_{0} \quad\left\|u-u_{n}\right\|<\varepsilon \\
& \left(\Leftrightarrow \quad a_{n}:=\left\|u-u_{n}\right\| \xrightarrow{n \rightarrow \infty}{ }^{R_{0}}\right. \\
& \mathbb{R}^{+}
\end{aligned}
$$

Trugens $\quad U_{n} \rightharpoonup U$ arm $\lim _{n \rightarrow \infty} U_{n}=U$

11 Hopme \dot{j} Hefenenge apecrukobare, u j. $u \cdot n_{n}^{n \rightarrow \infty} u \Rightarrow\left\|u_{n}\right\|^{n \rightarrow \infty}\|u\|_{\text {. }}^{n}$.

2one3. Bartn $|\|u\|-\|v\|| \leq\|u-v\| \quad$ jip

$$
\begin{gathered}
\|u\|=\|u-v+v\| \leq\|u-v\|+\|v\| \\
\uparrow \\
\text { Hij. } \Delta
\end{gathered}
$$

(1)

$$
\|u\|-\|v\| \leqslant\|u-v\|
$$

(2)

He nuim tremu go rujamo $\quad\|v\|-\|u\| \leq\|v-u\|=\|u-v\|$

$$
-\|u-v\| \stackrel{(2)}{\leqslant}\|u\|-\|v\| \stackrel{(1)}{\leq}\|u-v\|
$$

$$
\Uparrow \quad\left(\begin{array}{ll}
-A \leq B \leq A & A \geqslant 0 \\
C \Leftrightarrow|B| \leq A &
\end{array}\right.
$$

$$
|\|u\|-\|v\|| \leq\|u-v\|
$$

Ano $u_{n}{ }_{n}^{h \rightarrow \infty} u \Leftrightarrow\left\|u_{n}-u\right\| \xrightarrow{n \rightarrow \infty} 0 \Rightarrow\left|\left\|u_{n}\right\|-\|u\|\right| \leq\left\|u_{n}-u\right\| \xrightarrow{n \rightarrow 0} 0$

$$
\rightarrow\left\|u_{n}\right\| \rightarrow\|u\|
$$

 $u v_{n} \rightarrow v \rightarrow\left\langle u_{n}, v_{n}\right\rangle \rightarrow\langle u, v\rangle(y \mathbb{R})$

2ove3. $\left|\left\langle u_{n}, v_{n}\right\rangle-\langle u, v\rangle\right|=\left|\left\langle u_{n}, v_{n}\right\rangle-\left\langle u_{n}, v\right\rangle+\left\langle u_{n}, v\right\rangle-\langle u, v\rangle\right|$

$$
\begin{aligned}
& =\left|\left\langle u_{n}, v_{n}-v\right\rangle+\left\langle u_{n}-u, v\right\rangle\right| \leq\left|\left\langle u_{n}, v_{n}-v\right\rangle\right|+\left|\left\langle u_{n}-u, v\right\rangle\right| \leq \\
& \leq \underbrace{\left\|u_{n}\right\| \cdot\left\|v_{n}-v\right\|+\left\|u_{n}-u\right\| \cdot\|v\|}_{\substack{u_{n} \rightarrow u}} \leq M \cdot \underbrace{\left\|v_{n}-v\right\|}_{\downarrow}+\|v\| \cdot \underbrace{\left\|u_{n}-u\right\|}_{\downarrow u_{n} \rightarrow 4} \\
& =\left\|u_{n}\right\| \rightarrow\|u\| \\
& \left\|u_{n}\right\| u_{n} \|
\end{aligned}
$$

$\|4 n\|>110 \mathrm{Hb} . \ln 3$ y \mathbb{R} $\Rightarrow\|M n\| r o p$.

$$
\begin{equation*}
\dot{j p} v_{n} \rightarrow v \tag{1}
\end{equation*}
$$

$$
\Rightarrow\left|\left\langle u_{n}, v_{n}\right\rangle-\langle u, v\rangle\right| \xrightarrow{n \rightarrow \infty} 0 \Rightarrow\left\langle u_{n}, v_{n}\right\rangle \rightarrow\langle u, v\rangle
$$

口

Hajbartitnys apurep (m).
(1) $[a, b] \subseteq \mathbb{R}, \quad c([a, b])=\{f:[a, b] \rightarrow \mathbb{R} \mid f$ thepeingire $\}$
$C([g, b])$ i b. apoloop: $(f+g)(x):=f(x)+g(x)$
$(\lambda f)(x):=\lambda f(x)$
obo j o quiuets. b. apocinop
geф. choterpin ap. $\langle f, g\rangle:=\int_{a}^{h} f(x) g(x) d x$ obo jicule cuapopitr ipouzleog
(1) $\left.\int_{a}^{b} f(x) g(x) d x=\int_{a}^{b} g(x) f(x) d x \quad-\right\rangle\langle f, g\rangle=\langle g, f\rangle$
(2) $\int_{a}^{b}\left(\lambda f_{1}+\mu f_{2}\right) g d x=\lambda \int_{a}^{b} f_{1}(x) g(x) d x+\mu \int_{a}^{b} f_{2}(x) g(x) d x$
(3) $\int_{a}^{b} f(x) f(x) d x=\int_{a}^{b} f^{2}(x) d x \geqslant \infty$
(4) $\int_{a}^{b} f^{2}(x) d x=0 \quad \Rightarrow \quad f(x)=0$.

NEMA. tho $\gamma \neq 0 \quad$ He子. φ-ja m $\int_{a}^{6} \varphi(x) d x=0 \Rightarrow \varphi(x) \equiv 0$

Lowe3. Ans ज̄̃̃. $\exists x_{0} \quad \varphi\left(x_{0}\right)>0$, φ thipemp the $\Rightarrow \exists \delta$ ugg. $\varphi(x) \geq \frac{\alpha}{2}$ $\|$ the $\left[x_{0}-\delta, x_{0}+\delta\right]$

$$
\int_{a}^{b} \varphi(x) d x=\int_{a}^{x_{0}-\delta} \varphi(x) d x+\int_{V_{1}}^{x_{0}+\delta} \varphi(x) d x+\int_{x_{0}+\delta}^{x_{0}} \varphi(x) d x \geqslant \int_{x_{0}-\delta}^{x_{0}+\delta} \varphi(x) d x \geqslant \int_{x_{0}-\delta}^{x_{0}+\delta} \alpha / 2 d x
$$

(cmints ce qomezyji y coybuy $x_{0} \in\{a, b\}$)

F

$$
\text { weingre, } \quad \begin{aligned}
& \quad \int_{a} \varphi(x)=0 \\
& \quad \varphi \neq 0
\end{aligned}
$$

J)
$f^{2} \geqslant 0$ u temp. ano $\dot{j}\langle f, f\rangle=\int_{a}^{b} f^{2}(x) d x=0 \stackrel{\text { лемA }}{\Rightarrow} f^{2} \equiv 0 \Rightarrow f \equiv 0$
(2) $C_{0}[9, f]:=\{f:[9,6] \rightarrow \mathbb{R}, f$ ume cans noirerus watoro tuerome peing a $c_{1}, c_{n} \in(a, b)$ woro oy naflugn I lep cie in boith

$$
\left.f\left(c_{i}\right)=\frac{1}{2}\left(f\left(c_{i}^{+}\right)+f\left(c_{i}^{-}\right)\right)\right\}
$$

$$
f\left(c^{ \pm}\right)-\lim _{x \rightarrow c \pm} f(x)
$$

barta y conuros viencen y nopor je forpeligte

Jритмр. $f(x)=\operatorname{sgn} x \in C_{0}([9, b]) \quad \forall a, l \neq 0$

$$
\begin{aligned}
\operatorname{sgn} 0=0 & =\frac{1}{2}(1+(-1)) \\
\longrightarrow & =\frac{1}{2}\left(\operatorname{sgn} 0^{+}+\operatorname{tgn} 0^{-}\right)
\end{aligned}
$$

Lomatin: $f, g \in C_{0}([9, b]) \Rightarrow f+g \in C_{0}([a, l]), \lambda f \in C_{0}([9, b])$.
Ha $C_{0}([9, b])$ gup. $\langle f, y\rangle:=\int_{a}^{b} f(x) g(x) d x$

(4) $f \in C \cdot[a, b] \quad \int_{a}^{b} f^{2}(x) d x=\langle f, f\rangle=0 \stackrel{?}{\Rightarrow} f \equiv 0$

Hene y c_{i-1}, c_{i}, c_{i+1} nupn cycegre wherve aperuga

 ing. $\left.\quad f_{1}\right|_{\left(c_{i-1}, c_{i}\right)}=f$ $f_{1}\left(c_{i-1}\right):=f\left(c_{i-1}^{+}\right)$

$$
f_{1}\left(c_{i}\right):=f\left(c_{i}^{-}\right)
$$

f_{1} jo teripeng ke whe $\left[c_{i-1}, c_{i}\right]$

$$
f_{2} \psi-\left[c_{i}, c_{i+1}\right],\left.f_{2}\right|_{\left(c_{i}, c_{i+1}\right)}=f
$$

is quogtitums thep.
f in f_{1} y nave ocum y ghe nererve $\Rightarrow \int_{c_{i-1}}^{c_{i}} f_{1}{ }^{2} d x=\int_{c_{i-1}}^{c_{i}} f^{2} d x=0$

$$
\begin{array}{rl}
f\left(c_{i}\right) & =\frac{1}{2}\left(f\left(c_{i}^{-}\right)+f\left(c_{i}^{+}\right)\right) \\
& =\frac{1}{2}\left(f_{1}\left(c_{i}\right)+f_{2}\left(c_{i}\right)\right)=0 \\
\prime 0 & 0
\end{array}
$$

 (noji y cern cogpitu jégart yeung)

$$
\langle u, v\rangle=0 \text {, üwems } u \perp v \text {. }
$$

(I) (Juñaiopute uneopeme) $u \perp v \Rightarrow\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.

Lome3. $\|u+v\|^{2}=\langle u+v, u+v\rangle=\langle u, u\rangle+\underbrace{2\langle u, v\rangle}_{0_{0}^{\prime \prime}}+\langle v, v\rangle=\|u\|^{2}+\|v\|^{2}$

$$
\left\langle e_{i}, e_{j}\right\rangle= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}
$$

Jrump. $1, \sin x, \cos x, \sin 2 x, \cos 2 x, \ldots, \sin (n x), \cos (n x), \ldots$
j opuroiournar y $([-\pi, \pi])$ (ums y $C([-\pi, \pi]))$
jip, 03 themmo ce $\tilde{e_{n}}:=\cos (n x) \quad n \in \mathbb{N}$ o

$$
\tilde{f}_{n}:=\sin (n x) \quad n \in \mathbb{N}
$$

Bayth $\quad\left\langle\tilde{e}_{n}, \tilde{e}_{m}\right\rangle=0 \quad n \neq m$

$$
\begin{array}{ll}
\left\langle\tilde{f}_{n}, \tilde{f}_{m}\right\rangle=0 & n \neq m \tag{2}\\
\left\langle\widetilde{e}_{n}, \tilde{f}_{m}\right\rangle=0 & \forall n \in \mathbb{N}_{\infty}, m \in \mathbb{N}
\end{array}
$$

(2):

$$
\begin{aligned}
& \left\langle\tilde{f}_{n}, \tilde{f}_{m}\right\rangle=\int_{-\pi}^{\pi} \sin (n x) \sin (m x) d x=\frac{1}{2} \int_{-\pi}^{\pi} \cos (n-m) x d x-\frac{1}{2} \int_{-\pi}^{\pi} \cos (n+m) x d x= \\
= & \frac{1}{2}\left\{\left.\frac{\sin (n-m) x}{n-m}\right|_{x=-\pi} ^{\pi}-\left.\frac{\sin (n+m) x}{n+m}\right|_{x=-\pi} ^{\pi}\right\}=0
\end{aligned}
$$

(1) 13): Vomater.

Xetrims opuinotropmerpart

$$
\begin{aligned}
& \left\|\tilde{f}_{0}\right\|^{2}=\int_{-\pi}^{\pi} 1^{2} d x=2 \pi \Rightarrow\left\|\tilde{f}_{0}\right\|=\sqrt{2 \pi}, \quad f_{0}:=\frac{1}{\sqrt{2 \pi}} \tilde{f_{0}} \\
& f_{0}(x)=\frac{1}{\sqrt{2 \pi}} \\
& n \geqslant 1 \\
& \left\|\tilde{f}_{n}\right\|^{2}=\int_{-\pi}^{\pi} \cos ^{2}(n x) d x=\int_{-\pi}^{\pi} \frac{1+\cos (2 n x)}{2} d_{x}=\pi+\left.\frac{1}{2} \frac{\sin (2 n x)}{2 n}\right|_{x=-\pi} ^{\pi}=\pi
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad\left\|\tilde{f_{n}}\right\|=\sqrt{\pi} \quad f_{n}:=\frac{1}{\sqrt{\pi}} \tilde{f}_{n}, \quad f_{n}(x)=\frac{\cos (n x)}{\sqrt{\pi}} \\
& \left\|\tilde{e n}_{n}\right\|^{2}=\sqrt{\pi} \quad \Rightarrow \quad e_{n}:=\frac{1}{\sqrt{\pi}} \widetilde{e_{n}} \quad e_{n}(x)=\frac{\sin (n x)}{\sqrt{\pi}} \\
& \left\{1 / \sqrt{2 \pi}, \frac{\sin x}{\sqrt{\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin 2 x}{\sqrt{\pi}}, \frac{\cos 2 x}{\sqrt{\pi}}, \ldots, \frac{\sin (n x)}{\sqrt{\pi}}, \frac{\cos (n x)}{\sqrt{\pi}}, \cdots\right\} \\
& j \text { oHc y } c([-\pi, \pi])\left(s c_{0}([-\pi, \pi])\right.
\end{aligned}
$$

 $\mu\left\{e_{1}, e_{2}, \ldots\right\} \quad O H C, u \in X$
$\alpha_{n:}=\left\langle u, e_{n}\right\rangle$ Sypujeobn koepungnjemitu bekiope M y ogtocy the OHC $\left\{e_{1}, e_{2}, \cdots\right\}$
ged. (oुhakA) $\left\{e_{2}, e_{2}, \ldots,\right\}$ johc y $x, m \in X$

$$
\Rightarrow u=\sum_{i=1}^{k}\left\langle u, e_{i}\right\rangle e_{i}
$$

Wuke ji b. pey $p j$ f y ogur oy He OHC (*)?

$$
\alpha_{0}=\frac{\langle f, 1\rangle}{\sqrt{2 \pi}}, \alpha_{n}=\frac{\langle f, \cos (n x)\rangle}{\sqrt{\pi}}, \xi_{n}=\frac{\langle f, \sin (n x)\rangle}{\sqrt{\pi}}
$$

ybogums obe o3treve: $\quad a_{0}:=\sqrt{\frac{2}{\pi}} \alpha_{0}, \quad a_{n}:=\frac{\alpha_{n}}{\sqrt{\pi}}, \quad l_{n}:=\frac{3 n}{\sqrt{\pi}}$
W. $\operatorname{pg} \phi-j \quad f \quad j \quad \frac{\alpha_{0}}{\sqrt{2 \pi}}+\sum_{n=1}^{\infty}\left(\operatorname{sn} \frac{\cos (n x)}{\sqrt{\pi}}+3 n \frac{\sin (n x)}{\sqrt{\pi}}\right)$

$$
\pi_{j} \cdot \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos (n x)+\ln _{n} \sin (n x)\right\}
$$

 Dypugeob ry

Tge j

$$
\begin{aligned}
& a_{0}=\sqrt{\frac{2}{\pi}} \alpha_{0}=\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} f(x) \cdot 1 d x=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=a_{0} \\
& a_{n}=\frac{d_{m}}{\sqrt{\pi}}=\frac{1}{\pi}\langle f, \cos n x\rangle \Rightarrow a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x \quad n \in \mathbb{N}_{0} \\
& l_{n}=\frac{3 n}{\sqrt{\pi}}=\frac{1}{\pi}\langle f, \sin n x\rangle \Rightarrow n=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x \quad n \in \mathbb{N}
\end{aligned}
$$

Hagere $\left\{e_{1}, e_{2}, \ldots\right\}$ ji \quad H \mathcal{C} y $(X,\langle\cdot, D), u \in X$.
T\|befrate 1. $\left\|u-\sum_{i=1}^{n}\left\langle u, e_{i}\right\rangle e_{i}\right\|^{2}=\|u\|^{2}-\sum_{i=1}^{n}\left\langle u, e_{i}\right\rangle^{2}$
2ome3. $\quad \alpha_{i}:=\left\langle u, e_{i}\right\rangle$

$$
\begin{aligned}
\left\|u-\sum_{i=1}^{n} \alpha_{i} e_{i}\right\|^{2} & =\left\langle u-\sum_{i=1}^{n} \alpha_{i} e_{i}, u-\sum_{i=1}^{n} \alpha_{i} e_{i}\right\rangle=\alpha_{i}{ }^{2} \\
& =\langle u, u\rangle-2 \sum_{i=1}^{n} \alpha_{i}\left\langle u, e_{i}\right\rangle+\sum_{i=1}^{n}\left(\sum _ { j = 1 } ^ { n } \alpha _ { i } \alpha _ { j } \left\langle\widetilde{\left.e_{i}, e_{j}\right\rangle}\right.\right. \\
& =\|u\|^{2}-2 \sum_{i=1}^{n} \alpha_{i}{ }^{2}+\sum_{i=1}^{n} \alpha_{i}{ }^{2} \\
& =\|u\|^{2}-\sum_{i=1}^{n} \alpha_{i}{ }^{2}
\end{aligned}
$$

T (Gecenobn Hejey Henociu) $\quad \alpha_{i}=\left\langle u, e_{i}\right\rangle, \sum_{i=1}^{\infty} \alpha_{i}^{2} \leqslant\|u\|^{2}$.
Cürlynúanso, $\sum \alpha_{i}^{2}$ worbepinge n $\alpha_{i} \rightarrow 0 i \longrightarrow \infty$.
Lome3. $\|\alpha\|^{2}-\sum_{i=1}^{n} \alpha_{i}^{2}=\left\|u-\sum_{i=1}^{n} \alpha_{i} e_{i}\right\|^{2} \geqslant 0 \quad \forall n$.

$$
\Rightarrow \sum_{i=1}^{n} \alpha_{i}^{2} \leq\|u\|^{2} \quad \mid \lim _{n \rightarrow \infty} \Rightarrow \sum_{i=1}^{\infty} \alpha_{i}{ }^{2} \leq\|u\|^{2}
$$

Tllbrfine 2. Heme oy $\lambda_{i} \in \mathbb{R} i=1,>n$ (dins mural), $\alpha_{i}=\left\langle u, e_{i}\right\rangle$
Jaga $\dot{j} \quad\left\|\mu-\sum_{i=1}^{n} \lambda_{i} e_{i}\right\| \geqslant\left\|u-\sum_{i=1}^{n} \alpha_{i} \varepsilon_{i}\right\|$

$\sum_{i=1}^{n} \lambda_{i} e_{i}-\underset{\mathcal{L}\left(e_{1,}, e_{n}\right)}{\text { hevarom }}$ y

Tpurveromimo ge $\dot{r} u-\sum_{i=1}^{n} \alpha_{i} e_{i} \perp e_{j} \quad \forall j=1, \imath^{n}$

$$
\begin{aligned}
\left(j e p\left\langle u-\sum_{i=1}^{\infty} \alpha_{i} e_{i}, e_{j}\right\rangle\right. & =\left\langle u, e_{j}\right\rangle-\alpha_{j}= \\
& =\alpha_{j}-\alpha_{j}=0
\end{aligned}
$$

$$
=\alpha_{j}-\alpha_{j}=0
$$

2oma3. $\pi=\left\|u-\sum_{i=1}^{n} \lambda_{i} e_{i}\right\| \quad B=\left\|u-\sum_{i=1}^{n} \alpha_{i} e_{i}\right\|$

$$
\begin{aligned}
& n^{2}=\left\{u-\sum_{i=1}^{n} \lambda_{i} e_{i}, \mu-\sum_{i=1}^{n} \lambda_{i} e_{i}\right\rangle=\|u\|^{2}-2 \sum_{i=1}^{n} \lambda_{i}\left\langle\mu, e_{i}\right\rangle+\sum_{i=1}^{n} \lambda_{i}{ }^{2} \\
&=\|u\|^{2}-2 \sum_{i=1}^{n} \lambda_{i} \alpha_{i}+\sum_{i=1}^{n} \lambda_{i}{ }^{2} \\
& n^{2}=\|u\|^{2}-\sum_{i=1}^{n} \alpha_{i}^{2} \\
& \pi^{2}-n^{2}=-2 \sum_{i=1}^{n} \lambda_{i} \alpha_{i}+\sum_{i=1}^{n} \lambda_{i}^{2}+\sum_{i=1}^{n} \alpha_{i}^{2}=\sum_{i=1}^{n}\left(\lambda_{i}-\alpha_{i}\right)^{2} \geqslant 0
\end{aligned}
$$

T\|brficher 3. $\quad d_{i}=\left\langle\mu, e_{i}\right\rangle,\left\|u-\sum_{i=1}^{n+1} \alpha_{i} e_{i}\right\| \leq\left\|u-\sum_{i=1}^{n} \alpha_{i} e_{i}\right\|$.
Lovare 3. $\quad\left\|u-\sum_{i=1}^{n+1} \alpha_{i} b_{i}\right\|^{2}\left\|b_{r=.1}^{=}\right\| u \|^{2}-\sum_{i=1}^{n+1} \alpha_{i}{ }^{2}$

$$
\left\|u-\sum_{i=1}^{n} \alpha_{i} e_{i}\right\|^{2 \pi b_{0}+1,}\|u\|^{2}-\sum_{i=1}^{n} \alpha_{i}^{2}=\left\|u-\sum_{i=1}^{n+1} \alpha_{i} e_{i}\right\|+\alpha_{n+1}^{2} \quad D
$$

Xotemo ge gep. sazy y s gum. cnyroyy.
gex. OHC $\left\{e_{2}, \ldots, e_{1}, \ldots\right\}$ y Gjy - Xurvepulobom b. apoculopy x ji ज्alṻy aro $\forall u \in x, \forall \varepsilon>0 \quad \exists n, \lambda_{1}, \lambda_{n}$ uरgo. $\left\|u-\sum_{i=1}^{n} \lambda_{i} e_{i}\right\|<\varepsilon$ j ja.3u ano $j \quad \sum_{i=1}^{\infty}\left\langle u, e_{i}\right\rangle e_{i}=\mu \quad, \forall \mu \in X$

$$
\sum_{i=1}^{n}\left\langle u, e_{i}\right\rangle e_{i} \quad \xrightarrow{n \rightarrow \infty} u
$$

$$
\left\|\sum_{i=1}^{n}\left\langle u, e_{i}\right\rangle e_{i}-u\right\| \xrightarrow{n+\infty} 0
$$

I x upep- xursepinob b. up, $\left\{e_{1}, e_{2}, \ldots,\right\}$ oHc. Tilapa ay cregetm yoroba evebubarestius
(1) $\left\{e_{\perp}, e_{2}, \ldots\right\} \quad j \quad$ noving H
(2l) $\left\{e_{r_{1}} e_{2}, \ldots\right\} \quad$ j́ $\begin{gathered}\delta a 3 a \\ \sim\end{gathered}$
(b) $\forall u \in X \quad\|u\|^{2}=\sum_{i=1}^{\infty}\left\langle u, e_{i}\right\rangle^{2} \quad$ Tapcebanoba jigueno cut

$$
\geqslant \text { ybek }
$$

Loke3. (1) \Rightarrow (2) $\quad x_{0}$ temo $\left.u=\sum_{i=1}^{\infty}\left\langle u, u_{i}\right\rangle e_{i}\left(\Leftrightarrow \| u-\sum_{i=1}^{n} \nless u, e_{i}\right\rangle e_{i} \|_{\rightarrow 0}^{n \rightarrow \infty}\right)$
$\varepsilon>0$ gento

$$
\begin{aligned}
& \exists n_{0} \lambda_{1,7} \lambda_{n} \quad\left\|u-\sum_{i=1}^{n_{0}} \lambda_{i} e_{i}\right\|<\varepsilon \\
& \pi_{b \text { fin }} 2 \Rightarrow\left\|u-\sum_{i=1}^{n_{0}}\left\langle u, e_{i}\right\rangle e_{i}\right\| \leq\left\|u-\sum_{i=1}^{n_{0}} \lambda_{i} e_{i}\right\|<\varepsilon \\
& \text { गा bopfitbe } 3 \Rightarrow \quad \forall n \geqslant n_{0} \quad\left\|u-\sum_{i=1}^{n}\left\langle u, e_{i}\right\rangle e_{i}\right\| \leq\left\|u-\sum_{i=1}^{n_{0}}\left\langle u, e_{i}\right\rangle e_{i}\right\|<\varepsilon \\
& \Leftrightarrow\left\|u-\sum_{i=1}^{n}\left\langle u, c_{i}\right\rangle e_{i}\right\| \xrightarrow{n \rightarrow \infty} \quad w
\end{aligned}
$$

