Bugern ans: $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$
Df jo cuyí ofruka

$$
\left.\begin{array}{l}
{\left[x_{0}-R, x_{0}+R\right]} \\
\left(x_{0}-R, x_{0}+R\right) \\
{\left[x_{0}-R, x_{0}+R\right)} \\
\left(x_{0}-R, x_{0}+R\right] \\
\left\{x_{0}\right\} \\
\mathbb{R}
\end{array}\right\} \quad R=\frac{1}{2} \text { gysuruse ustulep bare }
$$

gid. R ce sobe nongujpertuk lutbegíetrygigi curuiewor pya (Malte Sunin u u u ∞, uiy. $R \in[0,+\infty]$)

Kofleginpe ano i $\left|x-x_{0}\right|<R$ a qubegninge ano ji $\left|x-x_{0}\right|>R$.
$\pi \|_{j}$. R jr noapnjevare 1.0 otb. an. rega (*).

$$
\left(\frac{1}{0^{+}}=+\infty, \frac{1}{+\infty}=0\right)
$$

Loke 3 IIIeopure. $R \in \mathbb{R} \backslash\{0\}$

$$
\begin{aligned}
\left|x-x_{0}\right|<R \quad \lim \sqrt[n]{\left|a_{n}\right|\left|x-x_{0}\right|^{n}} & =\left|x-x_{0}\right| \overline{\lim } \sqrt[n]{\left|a_{n}\right|} \\
& =\left|x-x_{0}\right| \cdot \frac{1}{R}<1
\end{aligned}
$$

$\Rightarrow a \bar{c} \cdot 1604 b$ no 160 mnyebom uncuing

$$
\begin{aligned}
& \left|x-x_{0}\right|>R \quad \\
& \forall R_{1} \\
& \forall=\frac{1}{\overline{\lim } \sqrt[4]{\left|a_{n}\right|}} \quad \exists u_{k} \quad \lim _{k \rightarrow \infty} \sqrt[4 n]{\left|a_{n c c}\right|}=\frac{1}{R}>\frac{1}{R_{1}}, \quad \|
\end{aligned}
$$

$$
\left|x-x_{0}\right|>R_{1}>R
$$

$\exists k_{0}, \quad \forall k \geqslant k_{0}$

$$
\sqrt[n_{k}]{\left|a_{n_{k}}\right|} \geqslant \frac{1}{R_{1}}
$$

$\sum b_{n} \quad b_{n}=a_{n}\left(x-x_{0}\right)^{n}$
$k \geqslant 1 k_{0}$:
$\left|\operatorname{lon}_{n_{k}}\right|=\left|a_{n_{k}}\right|\left|x-x_{0}\right|^{n_{k}} \geqslant \frac{1}{R_{1} n_{k}} R_{1}^{n_{k}}=1 \Rightarrow$ 氖 tre wievitn tym.
$R=0 \quad$ xotano: $\quad \overline{\lim } \sqrt[n]{\left|a_{n}\right|}=\infty \quad(\Leftrightarrow \quad R=0)$
$\Rightarrow \quad \forall x \neq x_{0}$ pog (*) guleypínpe.
$x \neq x_{0} \quad \exists \operatorname{nog} \ln _{3} \quad u_{k} \quad \lim \sqrt[n_{k}]{\left|a_{n_{k}}\right|}=+\infty$
$\exists k_{0} \quad \forall k \geqslant k_{0} \quad \sqrt[u_{k}]{\left|a_{n_{k}}\right|}>\frac{1}{\left|x-x_{0}\right|}$

$$
\left|a_{n_{k}}\right| \geqslant \frac{1}{\left|x-x_{0}\right|^{n_{k}}} \Rightarrow\left|a_{n_{k}}\left(x-x_{0}\right)^{n_{k}}\right| \geqslant 1 \Rightarrow \text { oumanu west } t \rightarrow 0
$$

$R=\infty \quad x_{0}$ tims: $\forall x \quad \sum a_{n}\left(x-x_{0}\right)^{n}$ kotitl.

$$
\overline{\lim } \sqrt[n]{\left|a_{n}\right|}=0 \quad \Rightarrow \quad \lim _{n \rightarrow 0} \sqrt[n]{\left|a_{n}\right|}=0
$$

$0<g<1$ фикс. Fno $\quad \forall n \geq n_{0} \quad \sqrt[n]{\left|a_{n}\right|}<\frac{\varepsilon}{\left|x-x_{0}\right|} \quad\left(x \neq x_{0}\right)$

$$
\Rightarrow\left|a_{n}\right|\left|x-x_{0}\right|^{n}<2^{n} \quad \forall n \geqslant n_{0}
$$

T2 Hene jr $a_{n} \neq 0 \quad \forall n \geqslant n_{0}$.
Ano $7 / L:=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$ (molte ge dgge m ∞)

$$
L \in[0,+\infty]
$$

Nougn j $L=R$
Lome3. Ko x_{0} the, monse ge aposa cam, 43 hamom Sepoloot um umulupgytur golues las iucua

Tpumepи.
(1) $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad a_{n}=\frac{1}{n!} \quad\left|\frac{a_{n}}{a_{n+1}}\right|=\frac{\frac{1}{n!}}{\frac{1}{(n+1)!}}=(n+1) \xrightarrow{n \rightarrow \infty} \infty$
$D_{f=\mathbb{R}}$
(2) $f(x)=\sum_{n=0}^{\infty} \frac{(7)^{n}\left(x^{2 n+1}\right.}{(2 n+1)!}\left(=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\right)$

$$
\begin{aligned}
& x^{2 n+1}=x \cdot x^{2 n}=x \cdot\left(x^{2}\right)^{n} \quad t=x^{2} \\
& \sum \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x \sum_{n=0}^{\infty} \frac{(-1)^{n} t^{n}}{(2 n+1)!} \quad a_{n}=\frac{(-1)^{n}}{(2 n+1)!} \\
& \left|\frac{a_{n}}{a_{n+1}}\right|=\frac{(2 n+3)!}{(2 n+1)!}=2 n+3 \xrightarrow[\infty]{n \rightarrow \infty} \quad \Rightarrow \quad \mathbb{R}=D_{f}
\end{aligned}
$$

(3) Lomatin $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n) \mid}=f \quad D_{f}=\mathbb{R}$
(3) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}\left(=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots=\ln (1+x)\right)$

$$
a_{n}=\frac{(-1)^{n+1}}{n} \quad \sqrt[n]{\left|a_{n}\right|}=\frac{1}{\sqrt[n]{n}} \xrightarrow{n \rightarrow \infty} 1 \Rightarrow R=1
$$

3 therso thottb. the $(-1,1)$ un guleyínge the $(-\infty,-1) \cup(1, \infty)$

$$
\begin{array}{ll}
x=1 & x=-1 \\
\sum \frac{(-1)^{n+1}}{n} & \sum \frac{(-1)^{n+1}(-1)^{n}}{n}=-\sum \frac{1}{n}
\end{array}
$$

notb. no lajotingy
guberiup a

$$
D_{f}=(-1,1]
$$

(4) $\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}$

$$
\begin{aligned}
& \binom{\alpha}{n}:=\frac{\alpha\left(\alpha_{1}\right)(\alpha-2) \cdots(\alpha-n+1)}{n!} \quad \forall \alpha \in \mathbb{R} \\
& \binom{\alpha}{0}:=1
\end{aligned}
$$

thetm 12 , des ncruntublabse y kpojelume

$$
\begin{aligned}
& a_{n}=\binom{\alpha}{n} \quad \alpha \in \mathbb{N} 0 \Rightarrow \forall n \geqslant \alpha+1 \quad a_{n}=0 \Rightarrow \text { pug not+b. } \forall x \in \mathbb{R} \\
& \alpha \notin \mathbb{N} 0=\mathbb{N v}\{0\} \\
& \left|\frac{a_{n}}{a_{n+1}}\right|=\frac{\left.\frac{|\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-n+1)|}{n!} \right\rvert\,}{\frac{|\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-n)|}{(n+1)!}}=\frac{n+1}{|\alpha-n|}=\frac{n+1}{\downarrow} \stackrel{n \rightarrow \infty}{n-\alpha} 1 \\
& n \geqslant n_{0}>\alpha
\end{aligned}
$$

carl. ry $\sum\binom{\alpha}{\mu} x^{n}$ kothl. He $(-1,1) \quad \forall \alpha \in \mathbb{R}$
tootble He \mathbb{R} ano $\alpha \in \mathbb{N} \cup\{0\}$
gubepiupe the $(-\infty,-1) \cup(1, \infty) \propto \notin \mathbb{N} \cup\{0\}$

$$
\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3}+\cdots \quad=(1+x)^{\alpha}
$$

Bagayn: Hate cuyñ kotthepièrayngi.
(1.) $\sum \frac{3^{n}+(-2)^{n}}{n} x^{n}$

$$
\begin{gathered}
\lim \sqrt[n]{\left|a_{n}\right|}=\lim \sqrt[n]{\frac{3^{n}+(-2)^{n}}{n}}=\lim \sqrt[n]{\frac{3^{n}+(-2)^{n}}{n}}= \\
\lim _{n \rightarrow \infty} 3 \frac{\sqrt[n]{1+\left(\left(-\frac{2}{3}\right)^{n}\right)}}{\frac{\sqrt[n]{n}}{n}}=3 \cdot \frac{1}{1}=3 \\
1 \leq 1+\left(-\frac{2}{3}\right)^{n} \leq 2 / \sqrt[n]{ } \\
1 \leq \sqrt[n]{1+\left(-\frac{2}{3}\right)^{n}} \leq \sqrt[n]{2} \xrightarrow[n+\infty]{ } 1
\end{gathered}
$$

$$
\begin{array}{ll}
\Rightarrow R=1 & \\
x=-1 & x=1 \\
\sum \frac{\left(3^{n}+(-2)^{n}\right) \cdot(-1)^{n}}{n} & \sum \frac{3^{n}+(-2)^{n}}{n}
\end{array}
$$

y ofa cryroja oñertim rast te wlettin

$$
\begin{aligned}
& \left|\frac{3^{n}+(-2)^{n}}{n}(-1)^{n}\right|=\left|\frac{3^{n}+(-2)^{n}}{n}\right|=\frac{3^{n}+(-2)^{n}}{n}=\ln \\
& \overline{\lim } \ln n=\lim _{n \rightarrow \infty} \frac{3^{n}+2^{n}}{n}=+\infty
\end{aligned}
$$

(2.)

$$
\begin{aligned}
& \text { 2.) } \begin{array}{l}
\sum\left(1+\frac{1}{n}\right)^{n^{2}} x^{n} a_{n}=\left(1+\frac{1}{n}\right)^{n^{2}} \\
\sqrt[n]{a_{n}}=\left(1+\frac{1}{n}\right)^{n} \rightarrow e \quad x=-\frac{1}{e} \quad n=\frac{1}{e} \\
x=\frac{1}{e} \quad \sum(-)^{n}\left(1+\frac{1}{n}\right)^{n^{2}} \cdot \frac{1}{e^{n}} \\
\sum\left(1+\frac{1}{n}\right)^{n^{2}} \cdot \frac{1}{e^{n}}=e^{n^{2} \ln \left(1+\frac{1}{n}\right)} e^{-n}=e^{n^{2}\left(\frac{1}{n}-\frac{1}{2 n^{2}}+\sigma\left(\frac{1}{n^{2}}\right)\right)-n} \\
\left(1+\frac{1}{n}\right)^{n^{2}} \cdot \frac{1}{e^{n}}=e^{n-\frac{1}{2}+\sigma(1)-n}=e^{-\frac{1}{2}+\sigma(1)}
\end{array} \\
& \mathbb{F}=1
\end{aligned}
$$

$$
\alpha_{n}^{3 n}=e^{3 n \ln \alpha_{n}}
$$

$$
\xrightarrow{n+\infty} e^{-1 / 2} \neq 0
$$

$$
f(x)^{g(x)}=e^{g(x) \ln f(x)}
$$

ل
\Rightarrow Onfsum nout the wetch wyan $\left.\begin{array}{l}\text { Ucion in 3a } x=-1 / e\end{array}\right\} \Rightarrow D_{f}=\left(-\frac{1}{e}, \frac{1}{e}\right)$
(3.) 2omatin $\sum_{n=1}^{\infty}\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right) x^{n}$

2upefering uske u utaicharysja culeñerot rypa
T Hene je R nongnop. 10 Hb . uivenetoon piga $\sum a_{n}\left(x-x_{0}\right)^{4}$. Tllaga je f gupejerryngujunite the $\left(x_{0}-r, x_{0}+R\right)$ u barthu.

$$
\forall x \in\left(x_{0}-R_{1} x_{0}+R\right) \quad\left(\sum a_{n}\left(x-x_{0}\right)^{n}\right)^{\prime}=\sum n a_{n}\left(x-x_{0}\right)^{n-1} .
$$

 и cino R, lij. coñ̃̈eru peg ce y yotgúpaluthocion govere

JEMA. $r<R$. TIapa rug (*) polet. 100Hb. $\left[x_{0}-r, x_{0}+r\right]$. Cucogujanto, no wiluo je $a_{n}\left(x-x_{0}\right)^{n}$ Hetp. $\Rightarrow f(x)=\sum a_{n}\left(x-x_{0}\right)^{n}$ ji Help.

Lomes Jeme. $r<R \quad x \in\left[x_{0}-r, x_{0}+r\right] \quad r<r,<R$

$$
\left|a_{n}\left(x-x_{0}\right)^{n}\right|<\left|a_{n} \frac{r^{n}}{r_{1}^{n}}\right|\left|x-x_{0}\right|^{n}=\underbrace{\left|a_{n} r^{n}\right|}\left|\frac{x-x_{0}}{r_{1}}\right|)^{n}
$$

jip

$$
\begin{array}{cc}
x=x_{0}+r & \sum a_{n}\left(x_{0}+r-x_{0}\right)^{n} \quad k o+b . \\
n f &
\end{array}
$$

$$
a_{n}\left(x_{0}+r-x_{0}\right)^{n} \rightarrow 0
$$

$$
a_{n} r^{n} \rightarrow 0
$$

$$
\Rightarrow\left|a_{n}\left(x-x_{0}\right)^{n}\right| \leq M \cdot 2^{n}, \sum g^{n} k 0+H b
$$

\Rightarrow the $\left[x_{0}-r, x_{0}+r\right]$ rug (*) palat. kottle no Bayepuniugecy

2oners $T . \overline{\lim } \sqrt[4]{\left|a_{n}\right|}=\frac{1}{R} \Rightarrow \lim \sqrt[n]{n\left|a_{n}\right|}=\frac{1}{R}$
jip $\sqrt[n]{n} \rightarrow 1$
\Rightarrow Tongigenturgu kwotb. Loarebkor rugn u $\sum n a_{n}\left(x-x_{0}\right)^{n-1}$ cy jigtekn.

$$
x \in\left(x_{0}-R, x_{0}+R\right) \quad \exists \exists<R \quad x \in\left(x_{0}-r, x_{0}+r\right) \subset\left[x_{0}-r, x_{0}+r\right]
$$

Nem A
\Rightarrow the $\left[x_{0}-r, x_{0}+r\right]$ cil. ruge $\sum n a_{n}\left(x-x_{0}\right)^{n-1}$ polet 1 wotb,
\Rightarrow motte ge ce gind. hast-ño-2nast.

Tocreguyge. $f(x)=\sum a_{n}\left(x-x_{0}\right)^{n}$ и R nompip. $(R>0)$
f jr krace $c^{\infty}\left(c \Rightarrow k \in \mathbb{N} \quad \not \quad f^{(k)}(x)\right)$ noayip. cotbe. ji ncion
obaj civeritn pug.
goke3: Mrfokingjom ño k.
gep. ゆytkugiji koji cy cyme cinínetor ryga ce boly attanuminze.
(T) $R>0$ vorying. Worte (*), $[9, b] \subseteq\left(x_{0}-R, x_{0}+R\right)$

$$
\Rightarrow \int_{a}^{b} \sum_{n=0}^{\infty} a_{n} x^{n} d x=\sum_{n=0}^{\infty} a_{n} \int_{a}^{b} x^{n} d x=\sum_{n=0}^{\infty} a_{n} \frac{e^{n+1}-a^{n+1}}{n+1} .
$$

2okes. $\exists r<R,[9, b] \subseteq\left[x_{0}-r_{1} x_{0}+r\right]$ a obge cal. py polet. 100 thb.
(T) (Asenoba wooperne). Hene jr $f(x)=\sum a_{n}\left(x-x_{0}\right)^{n}$ 3a $x \in\left(x_{0}-R, x_{0}+R\right)$ ano ry $\sum_{n=0}^{\infty} a_{n} R^{n}\left(\sum a_{n}(-1)^{n} R^{n}\right)$ wotlepinpe, oifga coterefter pig $\sum a_{n}\left(x-x_{0}\right)^{n}$ polets, kottle. He $\left[x_{0}, x_{0}+R\right]$ ($\left.\left[x_{0}-R, x_{0}\right]\right)$
μf jo Hop. y $x=x_{0}+R \quad\left(x=x_{0}-R\right)$ nj. Gautn

$$
\left.\lim _{x \rightarrow\left(x_{0}+R\right)^{-}} f(x)=\operatorname{man}_{x \rightarrow\left(x_{0}-R\right)^{+}} f(x)=\sum \operatorname{an}(-1)^{n} R^{n}\right)
$$

Pazlenijase opytioynga y convition pig

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\ldots+a_{k}\left(x-x_{0}\right)^{k}+\ldots \\
& f\left(x_{0}\right)=a_{0} \\
& f^{\prime}(x) \text { y }\left(x_{0}-R, x_{0}+R\right), f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1} \\
& f^{\prime}\left(x_{0}\right)=a_{1} \\
& f^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n}\left(x-x_{0}\right)^{n-2} \\
& n=2 \\
& f^{\prime \prime}\left(x_{0}\right)=2 \cdot 1 \cdot a_{2} \quad \Rightarrow \quad a_{2}=\frac{f^{\prime \prime}\left(x_{0}\right)}{2!} \\
& f^{(k)}(x)=\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n}\left(x-x_{0}\right)^{n-k}{ }^{\prime \prime} \Leftrightarrow n=k \\
& f^{(k)}\left(x_{0}\right)=k(k-1) \cdots 1 \cdot a_{k} \Rightarrow a_{k}=\frac{f^{(k)}\left(x_{0}\right)}{k!}
\end{aligned}
$$

Baknyzak: $a_{m} j$ ǵupobo गTenjopole keed. y3 $\left(x-x_{0}\right)^{n}$
Cülentin pug j́ secno hereq JII. Һomultom.

DEMA. Hene j́r f so guфeferrynjar n⿰e $\phi-j a$

$$
R_{n}(x):=f(x)-\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

Ano $3 a h>0, \exists M>0$ ung. $|f(n)(x)| \leq M \quad \forall n \in \mathbb{N}, \forall x \in\left[x_{0}-h, x_{0}+h\right]$

Tloga $\quad \forall x \in\left[x_{0}-h, x_{0}+h\right] \quad R n(x) \rightarrow 0, n \rightarrow \infty$, uy.

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

Lokes. ocuranton y raip. ofmicy

$$
\left|R_{n}(x)\right|=\left|f^{(n+1)}(\xi) \frac{\left(x-x_{0}\right)^{n+1}}{(n+1)!}\right| \leqslant M \cdot \frac{h^{n+1}}{(n+1) \mid} \xrightarrow{n \rightarrow \infty} 0
$$

usmety x_{0} m x

BAHH. $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \quad \forall x \in \mathbb{R} \quad\left(x_{0}=0 \quad f^{(k)}=e^{x}, f^{(k)}(0)=1\right)$

$$
\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \quad \forall x \in \mathbb{R} \quad\left(x_{0}=0, f^{(n)}(x)= \begin{cases} \pm \sin x & , k=\text { uар } 4 \infty \\ \pm \cos x & , k=, \ldots \\ \text { Heñap }+0\end{cases}\right.
$$ Y 3abuctro cim of $k \bmod 4$

$$
\begin{array}{ll}
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} & \underline{ } \quad \forall \in \mathbb{R} \\
\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n} \quad \underline{x \in(-1,1]} \\
(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n} & x \in(-1,1) \quad \forall \alpha \\
(x=1: \alpha \geqslant-1) & (x=-1: \quad \alpha \geqslant 0)
\end{array}
$$

"Cúengujanko, $3 a \quad x=-t \quad \alpha=-1$

$$
\begin{aligned}
& \quad\binom{\alpha}{n}=\frac{-1 \cdot(-2) \cdot(-3) \cdots(-n)}{n!}=\frac{(-1)^{n} n!}{n!}=(-1)^{n} \\
& \frac{1}{1-t}=\sum_{n=0}^{\infty}(-1)^{n}(-t)^{n}=\sum_{n=0}^{\infty} t^{n}
\end{aligned}
$$

dorabaturio ub reme qe jo $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \forall x \in \mathbb{R}$

$$
\begin{aligned}
& f(x)=e^{x}, f^{(n)}(x)=e^{x}, x_{0}=0 \quad\left|f^{(n)}(x)\right| \leq e_{\text {M..M }}^{h} \text { opp. He }\left[x_{0}-h, x_{0}+h\right] \\
& \Rightarrow f(x)=\sum \frac{f^{(n)}(0)}{n!}(x-0)^{n}=\sum \frac{x^{n}}{n!} \quad \forall x \in[-h, h] \Rightarrow \forall x \in \pi .
\end{aligned}
$$

Lonatm. Lonesurun ge bante Hobegeth pasboju 3 a $\sin x$ u $\cos x$.

Bagangu. Pasbininn y curéeste ryobe.
(1.) $f(x)=\operatorname{arctg} x, f^{\prime}(x)=\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Teom. rey

$$
\begin{aligned}
& f^{\prime}(x)=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \Rightarrow \\
& x \in(-1,1): f(x)=f(0)+\int_{0}^{x} f^{\prime}(t) d t=0+\int_{0}^{x} \sum_{n=0}^{\infty}(-1)^{n} t^{2 n} d t= \\
& H y^{n}=n-\log \delta 1+u n y=\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{x} t^{2 n} d t= \\
&=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 m+1}
\end{aligned}
$$

Hatromeste: $x_{0}=0$, f ropuse $\Rightarrow a_{2 n+1}=0$
f teapise $\Rightarrow a_{2 n}=0 \quad\left(\begin{array}{l}g \text { Heriapue } \Rightarrow g(0)=0) \\ f \text { rapke }\end{array}\right.$

$$
\begin{array}{cc}
\Rightarrow & f^{(2 k)} \text { जapHe } \\
& f^{(2 n+1)} \text { HénapHes) }
\end{array}
$$

2. Domatur. $f(x)=\arcsin x \quad\left(f^{\prime}=\frac{1}{\sqrt{1-x^{2}}}=(1+t)^{\alpha}\right.$

$$
\begin{aligned}
& t=-x^{2} \\
& \alpha=-1 / 2)
\end{aligned}
$$

(3.)

$$
\begin{aligned}
f(x) & =\operatorname{sh} x=\frac{e^{x}-e^{-x}}{2}=\frac{1}{2}\left(\sum \frac{x^{n}}{n!}-\sum \frac{(-x)^{n}}{n!}\right) \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \frac{1-(-1)^{n}}{n!} x^{n}=\frac{1}{2} \sum_{k=0}^{\infty} \frac{2}{(2 k+1)!} x^{2 k+1} \\
& =\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}
\end{aligned}
$$

Baracys. Cyreuprevtu cregetse pegoba
(1.)

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{x^{2 n-1}}{2 n-1}=f(x)=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots \\
& f^{\prime}(x)=\sum_{n=1}^{\infty}\left(\frac{x^{2 n-1}}{2 n-1}\right)^{\prime}=\sum_{n=1}^{\infty} \frac{(2 n / 1) x^{2 n-2}}{2 n-1}=\sum_{n=1}^{\infty} x^{2 n-2}=1+x^{2}+x^{n}+\cdots \\
& =\sum_{m=0}^{\infty} x^{2 m}=\sum_{m=0}^{\infty}\left(x^{2}\right)^{m}=\frac{1}{1-x^{2}} \\
& m=n-1 \\
& 2 n-2=2 m \\
& f^{\prime}(x)=\frac{1}{1-x^{2}}, f(x)=f(0)+\int_{0}^{x} f^{\prime}(t) d t \\
& =0+\int_{0}^{x} \frac{d t}{1-t^{2}}=\int_{0}^{x} \frac{1+t+1-t}{(1+t)(1-t)} d t \cdot \frac{1}{2} \\
& =\frac{1}{2}\left\{\int_{0}^{x} \frac{d t}{1-t}+\int_{0}^{x} \frac{d t}{1+t}\right\}=\frac{1}{2}\left\{\ln |x+1|-\left.\ln |t-1|\right|_{t=0} ^{x}\right\} \\
& =\ln \sqrt{\left|\frac{x+1}{x-1}\right|}
\end{aligned}
$$

(2) 2ornatin: $\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n}}{n(2 n-1)}$
3. Lomotin: $\sum_{n=1}^{\infty} n x^{n}$

