Tipureste ue regobe:

$$
\Rightarrow f(x):=\sum f_{u}(x) \text { Ahip. y } x_{0}
$$

$$
\left.m \sum \operatorname{fu}(x) \text { polets. kotb. He } A, \exists \lim _{x \rightarrow x_{0}} f_{n}(x)=a_{n} \Leftrightarrow \lim _{x \rightarrow x_{0}} S_{a}(x)=b_{w}\right)
$$

$u \exists \lim _{N \rightarrow \infty} b_{w} \Leftrightarrow \sum a_{n}$ cottheninge. Jा| ouga $f \lim _{x \rightarrow \infty} \sum_{n=1}^{\infty} f_{u}(x)=\lim _{N \rightarrow \infty} b_{w}=\sum_{n=1}^{\infty} a_{n}$

$$
\left(a_{n}=\lim _{x \rightarrow x_{0}} f_{n}(x)\right) \Rightarrow \lim _{x \rightarrow x_{0}} \sum_{n \rightarrow 1}^{\infty} \operatorname{fun}_{n}(x)=\sum_{n=1}^{\infty} \lim _{x \rightarrow x_{0}} f_{n}(x) .
$$

Kobters lim yauzu nog zarek \sum han lim n \sum mory ge samerte mecula.

ИHTETPAFUJYCT PPAHMYHE P JE ($\left.\lim \int_{a}^{e}=\int_{a}^{b} \lim \right)$

BHemo: fu Hepp. tre $[a, b], f_{n} \vec{\rightarrow} f$ lae $[a, b] \Rightarrow f$ thip. ine $[a, b]$
(1) fu motreípectimpe tre $\left[9, l_{1}\right], f_{n} \rightarrow f$ ke $[9, b] \Rightarrow$ futhiceiporvine $u \lim _{n \rightarrow \infty} \int_{a .}^{b} f_{n}(x) d x=\int_{a}^{b} \lim _{n \rightarrow \infty} f_{n}(x) d x=\int_{a}^{b} f(x) d x$

Hegegis. $^{\Delta}$ 3a uझtivipare

$$
\varepsilon>0 \text { geño }
$$

$f u \Rightarrow f$ ve $[9, b] \Rightarrow$ Fuo, $|f(x)-f(x)|<\frac{\varepsilon}{b-a}, \begin{aligned} & \forall u \geqslant n_{0} \\ & \forall x \in[a, b\end{aligned}$ $\forall x \in[a, b]$
(2) furning we $[9, b]$ u \sum fu (x) polett. koul we $[9,6]$.

Jlogna $\dot{g}^{\text {i }} f(x):=\sum \operatorname{fu}(x)$ uthreipachnto in bouts

$$
\int_{a}^{b} \sum_{n=1}^{\infty} f_{n}(x) d x=\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) d x
$$

Spy m \sum mory ga zamese mecia a

Love3. $\quad S_{N}(x):=\sum_{n=1}^{N} f_{n}(x), \quad S_{N}(x) \nRightarrow f(x)$ tee $[a, b]$

$$
\begin{aligned}
& u_{3} T_{1} \Rightarrow f(x) \text { uнniup. } n \lim _{N \rightarrow \infty} \int_{a}^{b} S_{N}(x) d x=\int_{a}^{b} \lim _{N \rightarrow \infty} S_{N}(x) d x \\
& \Omega=\lim _{N \rightarrow \infty} \int_{a}^{b} \sum_{n=1}^{N} f_{n}(x) d x=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{a}^{b} f_{n}(x) d x=\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) d x \\
& A=\int_{a}^{l} \lim _{N \rightarrow \infty} \sum_{n=1}^{N} f_{n}(x) d x=\int_{a}^{b} \sum_{n=1}^{\infty} f_{n}(x) d x
\end{aligned}
$$

Inpeperngrja sunчoun ipeth ute $\phi-j$ (उamerte mecize $\lim m$ n 3 boge)

T3) f_{n} cy gripepertignj a chate the $(9,6)$.
$x_{0} \in[9, b], \quad \exists \lim _{n \rightarrow \infty} f_{u}\left(x_{0}\right)=A$. (camo oy jegpoj ule zicu) $f_{n}^{\prime} \Rightarrow g$ the $[9,6]$. (uzbogu pobtr. kotb,)

$$
\left(\lim _{n \rightarrow 0} \operatorname{tu}(x)\right)^{\prime}=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)
$$

numec m nzloy cy

3areitum menila！
 cy for krece Ct（ f_{n}^{\prime} cy thiruingte we $[9, b]$ ）

Jep xotrems ge ipirmetumo T1

$$
\begin{aligned}
& f_{n}(x)-\underbrace{f_{n}\left(x_{0}\right)}_{k_{0}+t_{b}}=\underbrace{\int_{x_{0}}^{x} f_{n^{\prime}}(t) d t}_{k_{0} l_{l}} \lim _{n \rightarrow \infty}, f_{n}^{\prime} \Rightarrow g \\
& \forall x \text { 子 } \lim _{h \rightarrow \infty} f u n^{\prime}(x)=: f(x) \\
& f(x)-A=\lim _{n \rightarrow \infty} \int_{x_{0}}^{x} f_{n}^{\prime}(t) d t=\int_{x_{0}}^{x} \lim _{n \rightarrow \infty} f_{n}^{\prime}(t) d t=\int_{x_{0}}^{x} g(t) d t \\
& f_{n}=9 \\
& f(x)=A+\int_{x_{0}}^{x} g(t) d t, \quad A=f\left(x_{0}\right), f \bar{j} g n \phi . \text { ~ } f_{\text {octob we } T \text {. }}^{\prime}(x) \\
& \text { paryste. }
\end{aligned}
$$

Lonrzums uns $f u \rightarrow f$ ，fjign．u $g=\operatorname{lin}\left(f_{u} u^{\prime}\right)=f^{\prime}=$

$$
=\left(\lim t_{n}\right)^{\prime}
$$

Ocurono $\dot{j} \quad f_{u} \Rightarrow f$

$$
\begin{aligned}
& \left|f_{n}(x)-f(x)\right| \stackrel{b_{0}-\Omega}{=}\left|f_{n}\left(x_{0}\right)+\int_{x_{0}}^{x} f_{n}{ }^{\prime}(t) d t-f\left(x_{0}\right)-\int_{x_{0}}^{x} f^{\prime}(t) d t\right| \\
& \leqslant\left|f_{n}\left(x_{0}\right)-A\right|+\int_{x_{0}}^{x}\left|f_{n}^{\prime}(t)-g(t)\right| d t<\varepsilon / 2+\int_{x_{0}}^{x} \frac{\varepsilon}{2(l-a)} d t=\varepsilon / 2+\frac{\varepsilon}{2} \frac{\left(x-x_{0}\right)}{b-a} \\
& \leqslant \varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

子 $n, \quad \forall n \geqslant n_{1} \quad \bar{\gamma} \quad\left|f_{n}\left(x_{0}\right)-A\right|<\varepsilon / 2$
$\exists n_{2} \quad \forall n \geqslant n_{2} \quad \bar{j} \forall t \in[r, b] \quad\left|f_{n}^{\prime}(t)-g(t)\right|<\varepsilon / 2(b-a)$

$$
n_{0} \geqslant \max \left\{n_{1}, n_{2}\right\}
$$

Th) frim qup. the $[9, l]$ n $\sum f_{n}\left(x_{0}\right)$ koobl sa tuno $x_{0} \in[9, \ell]$,

He $[9,6]$ ine gudepiatigijachatoj by ticugnges a bauts $\left(\sum_{n=1}^{\infty} \operatorname{fn}(x)\right)^{\prime}=\sum_{n=1}^{\infty} f_{n}^{\prime}(x) \quad\left(\sum n\right.$ uzboy mong ge 3 amute mecurn).
2ones. Lomatin (upumenuinn T3 the $S_{N}(x)=\sum_{n=1}^{N} f_{n}(x)$)

3agaugn.

$$
\left|\frac{\sin (n x)}{n^{3}}\right| \leq \frac{1}{n^{3}}, \sum \frac{1}{n^{3}} 10046 \Rightarrow \sum \frac{\sin (n x)}{n^{3}} \text { (polent) wothe. He R }
$$

gup equaty ojarimecul: $\quad f_{n}(x)=\frac{\sin (u x)}{n^{3}}$ jicy gup. tre \mathbb{R}
$\sum f_{u}\left(x_{0}\right)$ kottl. $3 a$ tens x_{0} (bouth $\forall x_{0}$)

Iffi' $(x$) robtt wotts. (rge?)

$$
\begin{aligned}
f_{n}^{\prime}(x) & =\frac{\cos (n x) \cdot n}{n^{3}}=\frac{\cos (n x)}{n^{2}} \\
\left|\frac{\cos (n x)}{n^{2}}\right| & \leq \frac{1}{n^{2}}, \sum \frac{1}{n^{2}} \text { lorkl. } \Rightarrow \sum \operatorname{fn}^{\prime}(x) \text { pobt. kotel. He } \mathbb{R}
\end{aligned}
$$

Lonezam cans qe j$\quad f(x)$ qu $\phi, f^{\prime}(x)=\sum \frac{\cos (n x)}{h^{2}}$

Hexp. $\Rightarrow f^{\prime} j^{\prime} \quad$ naso Heigengena (Heip. p. $\phi-$ Her $^{\text {) }}$

$f(x)=\sum \operatorname{arctg} \frac{x}{n^{2}}$ tge obo kothepíupa?
$\operatorname{arctg} \frac{x}{n^{2}} \bar{\gamma}$ antantor shene, $x>0 \Rightarrow \operatorname{arctg} \frac{x}{n^{2}}>0$

$$
x<0 \Rightarrow \operatorname{arctg} \frac{x}{n^{2}}<0
$$

\Rightarrow molte Hean iopegrestn necen, $\operatorname{arctg} \frac{x}{n^{2}} \sim \frac{x}{n^{2}} \quad n \rightarrow \infty$

$$
\begin{aligned}
& \sum \frac{x}{n^{2}} \text { kotb. } \Rightarrow \sum \operatorname{arctg} \frac{x}{n^{2}} \\
& \text { koutb. } 3 \text { a } x \in \mathbb{R} \\
& \text { (arcty } t \sim t \quad t \rightarrow 0 \\
& \left.\operatorname{arcty} t=\operatorname{arctgo}+(\operatorname{arctg} t)^{\prime} \mid \cdot t=\sigma(t), t \rightarrow 0\right) \\
& \left.\prod_{0}^{11} \quad \frac{1}{1+t^{2}}\right|_{t=0}=1
\end{aligned}
$$

$$
\Rightarrow D_{f}=\mathbb{R}
$$

Guф. Whas-no-2nest:
(1) $\operatorname{arctg} \frac{x}{n^{2}}=f_{n}(x)$ cy gupepetry.
(2) $\sum \operatorname{arctg} \frac{x}{h^{2}}$ koth y x_{0} (3a suno loji x_{0})
(3) $\quad f_{n}^{\prime}(x)=\frac{1}{1+\frac{x^{2}}{n^{2}}} \cdot \frac{1}{n^{2}}$ ge m obaj pole4. notb. (Hhige?)

$$
\left|f_{n}^{\prime}(x)\right|=\frac{1}{1+\frac{x^{2}}{n^{2}}}{ }^{\prime} \cdot \frac{1}{n^{2}} \leqslant \frac{1}{n^{2}} \Rightarrow \sum_{\text {(Bojepunipac) }}^{\prime}(x) 100+\text { b. pobt. Ho } \mathbb{R}
$$

Mo he!
3. $a_{n}(x):=n^{\alpha} x e^{-n x}, \alpha \in \mathbb{R}$. Ba noji α
(a) $a_{n}(x)$ koollefímpa to $[0,1]$?
rew. $\alpha \in A$
($\delta) a_{n}(x)$ polet kottle the $[0,1]$? perm. $\alpha \in B$
(b) $\lim _{n \rightarrow \infty} \int_{0}^{1} a_{n}(x) d x=\int_{0}^{1} \lim _{n \rightarrow \infty} a_{n}(x) d x$? feem. $\alpha \in C^{n}$
(a)

$$
\begin{gathered}
n \alpha x e^{-n x} \quad x>0 \quad n^{\alpha} e^{-n x}=\frac{n^{\alpha}}{\left(e^{x}\right)^{n}}=\frac{u^{\alpha}}{a^{n}} \xrightarrow{n \rightarrow \infty} \quad \forall \alpha \in \mathbb{R} \\
a>1
\end{gathered}
$$

$$
\begin{aligned}
& x=0 \quad a_{n}(0)=0 \\
\Rightarrow & \lim _{n \rightarrow \infty} a_{n}(x)=0 \quad \forall x \in[0,1] \quad \forall \alpha=\mathbb{R} \quad(A=\mathbb{R})
\end{aligned}
$$

5) $a_{n} \rightarrow 0 \quad$ an woji α ?

$$
\begin{aligned}
& \left|a_{n}(x)-0\right|=n^{\alpha} x e^{-m x} \quad \operatorname{mox} \text { obot uspusa } x \in[0,1] \\
& a_{n}^{\prime}(x)=n^{\alpha} e^{-n x}+n^{\alpha} x e^{-n x} \cdot(-n)=n^{\alpha} e^{-n x}(1-n x) \\
& a_{n}{ }^{\prime}(x)\left\{\begin{array}{ll}
>0, & x \in[0,1 / n) \\
=0, & x=1 / n \\
<0, x \in(1 / n, 1]
\end{array} \quad a_{n} \uparrow \text { He }[0,1 / n]\right. \\
& \Rightarrow \operatorname{mox} a_{n}(x)=a_{n}\left(\frac{1}{n}\right)=n^{\alpha} \frac{1}{n} e^{-n \cdot \frac{1}{n}}=n^{\alpha-1} \cdot e^{-1} \xrightarrow{n \rightarrow \infty} 0 \\
& \Leftrightarrow \quad \alpha<1
\end{aligned}
$$

An polet. woth. $(\Rightarrow \alpha<1 \quad B=(-\infty, 1)$
b)

$$
\begin{aligned}
& \int_{0}^{1} \lim _{n \rightarrow \infty} a_{n}(x) d x=\int_{D}^{1} 0 d x=0 \\
& \lim _{n \rightarrow \infty} \int_{0}^{1} a_{n}(x) d x \stackrel{?}{=} 0 \quad 3 a \text { logi } \alpha ? \\
& \int_{0}^{1} a_{n}(x) d x=\int_{0}^{1} n^{\alpha} x e^{-n x} d x=\left\{\begin{array}{ll}
x=u & v=-\frac{1}{n} e^{-n x} \\
e^{-n x}=d v & d u=d x
\end{array}\right\} \\
& =n^{\alpha}\left\{-\frac{1}{n} x e^{-n x} \int_{x=0}^{1}+\frac{1}{n} \int_{0}^{1} e^{-n x} d x\right\}= \\
& =n^{\alpha-1}\left\{-e^{-n}+0+\left.\frac{-1}{n} e^{-n x}\right|_{x=0} ^{1}\right\}=
\end{aligned}
$$

$$
=n^{\alpha-1}\left\{-e^{-n}-\frac{1}{n}\left(e^{-n}-1\right)\right\}=\underbrace{-n^{\alpha-1} e^{-n}-n^{\alpha-2} e^{-n}+n^{\alpha-2}}_{3 a \operatorname{ugi} \alpha \text { obo } \rightarrow 0(n \rightarrow \infty) \text { ? }}
$$

$\frac{n^{\alpha-1}}{e^{n}}, \frac{n^{\alpha-2}}{e^{n}}$ neise Hyan, $n \rightarrow \infty \quad \forall \alpha$

$$
n^{\alpha-2} \rightarrow 0 \quad \alpha \quad<=2 \quad(-\infty, 2)
$$

4. Lowezain ge $\sum \frac{x^{n}}{n!}$ añcongiuts nottb. He \mathbb{R}.
-11 He notle polett. He \mathbb{R}

- II - ga $j^{-} f(x)=\sum \frac{x^{n}}{n!}$ Hexp. p-ja
- 11 2 $\frac{x^{n}}{n \mid}$ moite ge ce gn ϕ eferniguge zant- -20 - 2 nets.
- $\sum \frac{|x|^{n}}{n \mid}$ (фukcupasto x, osuza4t fyg)
$x \neq 0: \quad \frac{a_{n+1}}{a_{n}}=\frac{\frac{|x|^{n+1}}{(n+1) \mid}}{\frac{|x|^{n}}{n \mid}}=\frac{|x|}{n+1} \xrightarrow{n \rightarrow \infty} 0<1 \Rightarrow 100+b \cdot 3 a \quad \forall$ ф $u k c \cdot x$
- $\frac{x^{n}}{n!} \neq 0$ He \mathbb{R} jip $x=m$

$$
\sup _{x \in \mathbb{R}}\left|\frac{x^{n}}{n!}\right| \geqslant \frac{n^{n}}{n!}>1
$$

- BAHHO: $\sum f_{n}(x)$ polett, ketbl. He $\forall[a, b] \subseteq \mathbb{R}$
$j \operatorname{jup} \quad\left|\frac{x^{n}}{n \mid}\right| \leq \frac{M^{n}}{n!} \quad, \quad M=\operatorname{mox}\{|a|,|b|\}$
a $\sum \frac{M n}{n!} 100 H E$.
$\forall x_{0} \in \mathbb{R} \quad \exists[9,6] \quad x_{0} \in(9,6) \quad$ up. $\quad x_{0} \in\left[x_{0}-1, x_{0}+1\right]$
tho $\sum f u(x)$ pobtt. the $[9, b]$ in tur oy thip. the $[9, b]$
$\Rightarrow \sum \operatorname{fu}(x)$ thip. I $x 0$
Ano obo bamen $\forall x_{0} \Rightarrow \sum f_{n} \bar{\gamma}$ Hip. He \mathbb{R}.

$$
\begin{aligned}
& f_{n}(x)=\frac{x^{n}}{n!} \text { cy gne. } \\
& \sum f_{n}\left(x_{0}\right) \text { koHl, sa } \forall x_{0} \\
& f_{n}^{\prime}=\frac{x^{n-1}}{(n-1)!} \text { onem , } f_{n}^{\prime} \not f_{\rightarrow} 0 \quad n \rightarrow \infty \\
& f_{n}^{\prime}(n)=\frac{n^{n-1}}{(n-1)!}>1
\end{aligned}
$$

$f_{x_{1}} \in\left[x_{1}-1, x_{1}+1\right]$ n $\sum \operatorname{fnn}^{\prime}(x)$ pobt. ho th. .he $\left[x_{1}-1, x,+1\right]$ (Ha cbakom oip. utherpoary)

$$
\Rightarrow(2 \operatorname{sun}(x))^{\prime}=\sin ^{\prime}(x) \quad 3 a \quad \forall x \in\left(x,-1, x_{1}+1\right)
$$

cúengijamp u $3 a \quad x=x_{1}$
$\Rightarrow \sum f_{n}$ motare ge se gud. 2hert-no-2not

He iqumertryotro T4 the uyenom gomery, ame moltermo ge ji spururums Ha claikn oip. uнzlepbar congriter y gonery. $\forall x \in D_{f}$ Foip. utur. I 子x \Rightarrow obo bamu $\forall x \in D_{\text {f }}$
CTEMEHU PEDOBU
feep. $\quad a_{n} \in \mathbb{R}, n \in \mathbb{N}_{0} \quad \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \quad$ curentern pig. X_{0} - yestrop curuicert rypa.

「ge kothl cinuesu rep?
up. $\left\{x \in \mathbb{R} \mid \sum a_{n}\left(x-x_{0}\right)^{n}\right.$ kooth. $\}=$ ofrant nottle. wi. peyan $\left(=D_{f}\right.$

$$
\left.f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\right)
$$

$\prime_{f} \neq \phi \quad$ jip $\quad x=x_{0} \quad \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0} \quad$ kottl.
T. Ano cill rey $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$
|xothepoipe $з a \quad x=x_{1} \Rightarrow$ (*) aúcongnows kovb. $\forall x_{2}$ зa uogi bouttu $\left|x_{2}-x_{0}\right|<\left|x_{1}-x_{0}\right|$.

'sones. Topegseyte nтeuñ, $\left|x_{2}-x_{0}\right|<\left|x_{1}-x_{0}\right|$
$\sum M g^{n} 120+1 \Rightarrow \quad \sum\left|a_{n}\left(x_{2}-x_{0}\right)^{n}\right|$ korb. (no nopegd.)
$\Rightarrow \quad \sum \operatorname{an}\left(x-x_{0}\right)^{n}$ anc. unobb.

Tocmenguge. Odroum wotb. un rega ji uturepbur wisi gi verutap utezive x.

$$
b:=\operatorname{sip}\{x \mid \operatorname{pig}(x) \operatorname{coth} \cdot y x\}
$$

gub. ($x<x_{0}-R$) jip in y cyafonianam, watb. in y unarim $y>e$ a

Trumeng Muna je D_{f}
(a) $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
($\delta) f(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n}$
(b) $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$
$(i) f(x)=\sum_{n=0}^{\infty} x^{n}$
(g) $\sum_{n \rightarrow 0}^{\infty} \frac{x^{n}}{n!} \quad(f) \sum_{n=0}^{\infty} n!x^{n} \quad(0!:=1)$
f coum sugangume $\dot{j} x_{0}=0$, ouńngers ge D_{f} dyge osauke $(-R, R),[-R, R],[-R, R),(-R, R],\{0\}$ nлм \mathbb{R} (3a Heno $R>0$)
a) $3 a$ noje $x, \frac{x^{n}}{n} \xrightarrow{n+\infty} 0$? $\Leftrightarrow x \in[-1,1]$
(ano ji $|x|>1 \Rightarrow \frac{|x|^{n}}{n} \rightarrow \infty, n \rightarrow \infty$)

$$
\begin{array}{ll}
\text { Fun } \left.2\left\{n^{\alpha} 3\right\} a^{n} 2\right\} n! & \alpha>0 \\
\ln n>1
\end{array} \quad \begin{aligned}
& a>n \\
& a_{n} 33 \operatorname{lon} \quad \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0
\end{aligned}
$$

L

$$
\begin{array}{ll}
x \in(-1,1) \quad\left|\frac{x^{n}}{n}\right| \leq|x|^{n}, & \sum|x|^{n} \text { notol. } \\
(|x| \in[0,1))
\end{array}
$$

$x=1$

$$
x=-1
$$

$\sum \frac{1}{n} \quad$ guleyringe
$\sum \frac{(-1)^{n}}{n}$ kottle io Mojotuyy

$$
\Rightarrow \quad D_{f}=[-1,1)
$$

) $\sum \frac{(-1)^{n} x^{n}}{n}=\sum \frac{(-x)^{n}}{n} \quad t=-x$
$=\sum \frac{t^{n}}{n}$ kothe 3a $\quad t \in[-1,1)$

$$
\Leftrightarrow \quad x \in(-1,1]
$$

$$
D_{f}=(-1,1]
$$

6) $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}} \quad|x|>1 \Rightarrow \frac{|x|^{n}}{n!} \rightarrow \infty, n \rightarrow \infty$

$$
x \in[-1,1] \quad\left|\frac{x^{n}}{n^{2}}\right|=\frac{|x|^{n}}{n^{2}} \leq \frac{1}{n^{2}} \Rightarrow \text { kothb. }
$$

$$
D_{f}=[-1,1]
$$

5) $\sum_{n=0}^{\infty} x^{n}=\lim _{N \rightarrow \infty} \frac{1-x^{N+1}}{1-x} \quad \exists \Leftrightarrow|x|<1 \quad$ (puegngen cmo)

$$
D_{f}=(-1,1)
$$

'G) pagunu cmo (gasac) kortb. We \mathbb{R}

$$
\begin{aligned}
& D_{f}=\mathbb{R} \\
& \text { by } \sum_{n=0}^{\infty} n\left|x^{n} \quad\right| x|\geqslant 1 \quad| n\left|x^{n}\right| \geqslant n \mid \rightarrow \infty \quad n \rightarrow \infty \\
& |x|<1 \quad|n| x^{n} \left\lvert\,=\frac{n!}{a^{n}} \rightarrow \infty \quad n \rightarrow \infty \quad\right. \text { i! } C \\
& a=\frac{1}{|x|}>1 \\
& \Rightarrow D_{f}=\{0\} \\
& k+1>a>c \frac{k+1}{a} \frac{k+1}{a}-\frac{k+1}{a} \\
& \left.2:=\frac{k+1}{a}>1=c \cdot 2^{n-k} \rightarrow \infty\right)
\end{aligned}
$$

