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1. Why specify probability functions on sentences of pred-
icate languages?

MOTIVATING EXAMPLE. Inductive logic is an emerging discipline
within Mathematical logic.1 In contrast, Inductive logic has long been 1 J. Paris, A. Vencovská, Pure Inductive

Logic, Cambridge University Press, 2015an important area of philosophy which emphasize the importance of
inductive reasoning in attempts to understand human cognition. In the
recent years, Artificial Intelligence is very interested in such attempts,
as it is interested in the formalization of all forms of reasoning. Mathe-
matics, especially mathematical logic, provides a natural link between
philosophical discussions and machine implementations.

Carnap was probably the first to attempt to give a mathematically
rigorous foundation for Inductive Logic. He held that important as-
pects of the scientific method are irreducibly inductive. His leading
idea was to develop systems of inductive logic based on the concept of
probability:

By ’inductive logic’ I understand a theory of logical probability provid-
ing rules for inductive thinking. (R. Carnap, R. C. Jeffrey, Studies in
Inductive Logic and Probability (I))

It is hard to say what logical probability is.2 Instead, we give a hope- 2 Carnap himself changed his intuitive
point of view several times.fully illustrative example, as simple as possible, that highlights two

faces of the concept of probability.
Let us consider the following question in two cases: What is the

probability of drawing a black ball from the box?
In the first case, We know the contents of the box. In this case,

answering the question is a simple high school task.
In the second case, we had the opportunity to see only 12 balls and

find that among them there are 6 black balls. In addition to what we
have seen, we know or believe that: in general, the colors of the balls
are uniformly distributed in the box; but exceptions are possible. It is
clear that the question in the second case could trigger an extensive
debate, and the answer could be a combination of our experimental
observation and our knowledge, i.e., a mixture of an empirical factor
and a logical factor. The question of how to combine these two factors
is at the heart of Carnap’s attempt to explicate the notion of inductive
probability.

Later we will return to this example. Now, the reader is invited to
write down his/her estimation in the second case. At the end of the
section it will be interesting to compare the filling-based answers and
the solution within Carnap’s Basic System of Inductive Logic.
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1.1. ... Sentences of Predicate languages

Although we assume that the reader is familiar with the basics of pred-
icate languages, a brief overview is given to fix notations and termi-
nology.

Predicate languages form a very important class of formal languages.
We restrict ourselves to so-called pure predicate language determined by
1) a universe of discourse and 2) predicates with which we want to
describe the universe.

The term universe (of discourse) generally refers to the
collection of objects discussed in a particular discourse.
The elements of a universe will be called individuals.

For example, let the universe consist of six
individuals (persons): Ann, Ben, Cam, Deb,
Eva, Fox

In general, a predicate is a word or phrase which can
be combined with one or more names of individuals to
yield meaningful sentences. A unary (1-place) predicate
refers to a property of single individuals; A binary (2-
place) predicate refers to relationship between pairs of in-
dividuals; etc.

E.g.

...is an artist.

...is a barber.

...is following ...(on a social networking service).

We greatly simplify the writing of sentences by introduc-
ing a vocabulary consisting of symbols used to denote:

1. individuals; lower case letters, with or without nu-
meric subscripts, from the beginning of the alphabet
will be used to denote individual names: a, b, c, d,
a1, . . . we always assume that the names exhausted the
universe;

2. predicates; upper case letters, with or without numeric
subscripts will be used to denote predicates: A, B, C,
. . . , A1, . . .

Instead of the full names of persons from our
universe (Ann, Ben, Cam, Deb, Eva, Fox) we
use the abbreviations: a, b, c, d, e, f .
We write

A(·) for ’· · · is an artist’,
B(·) for ’· · · is a barber’, and
F(·, ·) for ’· · · is following · · · ’.

The choice of vocabulary depends on the situation we want to de-
scribe. When we specify a vocabulary, each predicate symbol will be
supplied with superscript that determines the arity of the predicate
(e.g. A(1), B(1), F(2)). The basic building blocs of a predicate language
are atomic sentences.

▶ An atomic sentence is made of a k-place predicate sym-
bol followed by k individual names. The individuals to
which a predicate is applied are to the right of the predi-
cate, separated by commas, and the entire list is in paren-
theses.

Predicate ( , . . . ,︸ ︷︷ ︸
places for individual names

)

Atomic sentences are the simplest sentences
of the above vocabulary:

A(a) Ann is a artist.

A(e) Eva is a artist.

B(b) Ben is a barber.

F( f , c) Fox is following Cam.
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If the universe contains n individuals, then

• a unary predicate determines n atomic sentences;

• a binary predicate determines n2 atomic sentences;

etc.

If L is a set of predicate symbols, over a universe U, L(U)

will be the set of all atomic sentences. If L and U are finite
sets, then: #L(U) = ∑

P∈L
#Uarity(P). (#X denotes the num-

ber of elements in X.) If L and U are at most countably
infinite, then L(U) is at most countably infinite too.

Using the 1-placed predicate A over the uni-
verse with 6 individuals, we make 6 atomic
sentences:

A(a) A(b) A(c) A(d) A(e) A( f )

Using the 2-placed predicate F over the same
universe, we make 36 atomic sentences:

F(a, a) F(a, b) F(a, c) F(a, d) F(a, e) F(a, f )
F(b, a) F(b, b) F(b, c) F(b, d) F(b, e) F(b, f )
F(c, a) F(c, b) F(c, c) F(c, d) F(c, e) F(c, f )

. . .

▶ An atomic truth assignment (a valuation) is any func-
tion M : L(U) → {0, 1}. An L-model with the uni-
verse U is a pair (U, M), where M : L(U) → {0, 1}
is a truth assignment. We will sometimes call the func-
tion M : L(U) → {0, 1} itself an L-model. If L and U

are finite, there are also finitely many truth assignments:
∏P∈L 2#Uarity(R)

.
A truth assignment is often called:

• an L-interpretation over U;

• a relational L-structure over U.

Relational structures arise in many branches of mathemat-
ics. Graphs (undirected, directed), orderings, databases
are well-known examples of relational structures.
If S ⊆ U (and hence L(S) ⊆ L(U)), and M|L(S) is the
restriction of M : L(U) → {0, 1} to L(S), then (S, M|L(S))
is the substructure of (U, M).

For U = {a, b, c, d, e, f } and L =

{A(1), B(1), F(2)}, there are

26 · 26 · 236 = 248 = 281 474 976 710 656

truth assignments of atomic sentences. One
of them is:

A(a) A(b) A(c) A(d) A(e) A( f )
B(a) B(b) B(c) B(d) B(e) B( f )
F(a, a) F(a, b) F(a, c) F(a, d) F(a, e) F(a, f )
F(b, a) F(b, b) F(b, c) F(b, d) F(b, e) F(b, f )
F(c, a) F(c, b) F(c, c) F(c, d) F(c, e) F(c, f )
F(d, a) F(d, b) F(d, c) F(d, d) F(d, e) F(d, f )
F(e, a) F(e, b) F(e, c) F(e, d) F(e, e) F(e, f )
F( f , a) F( f , b) F( f , c) F( f , d) F( f , e) F( f , f )

It is convenient to present an assignment in
the form of a diagram.

Pure predicate languages get their full expressive power by extend-
ing vocabularies with so-called logical symbols:

• variables; lower case letters, with or without numeric indices, from
the end of the alphabet will be used for variables – x, y, z, x1, . . .

• connectives – not ¬, and ∧, or ∨, if ... then ⇒, iff ⇔

• quantifiers – there exists ∃, for all ∀.
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Variables are used as placeholders for arbitrary individuals. A symbol
which is either a variable or an individual name is called an individual
symbol.

▶ An atomic formula is made of a k-place predicate sym-
bol followed by k individual symbols.

Predicate( , . . . ,︸ ︷︷ ︸
places for individual symbols

)

A(a), A(x), B(x), F(x, y), F(x2, y1), F(z1, z1)

etc.

▶ Starting from atomic formulas we inductively build up
all formulas of the chosen vocabulary:

• Each atomic formula is a formula;

• If P and Q are formulas, then ¬P, P∧ Q, P∨ Q, P ⇒ Q,
P ⇔ Q are formulas too.

• If x is a variable and P is a formula, then ∀x P and ∃x P
are formulas too.

¬F(a, b)
A(x) ∧ ¬F(a, x)
∀y B(y)
∃x F(a, x) ∧ ¬∃x F(x, y)
∀x∃y F(x, y)
∀x∀y(F(x, y) ∨ F(y, x))

▶ When a quantifier and a variable are placed in front of a
formula, all occurrences of the variable in the formula be-
come bound. If the appearance of a variable is not bound
by a quantifier, we say that it is free. Thus, in a formula,
a variable may occur free or bound (or both).

We used upper case letters to denote formulas. A formula
F will be denoted by F(x1, . . . , xk) when we want to em-
phasize that all free variables of F are among x1, . . . , xk. If
F is a formula, x is a variable, and c is a symbol for an
individual, then F[x/c] denotes the formula obtained by
replacing all free occurrences of the variable x with the
symbol c. Of course, if x is not free in F, then the formula
F[x/c] is identical to the formula F.

The formula F:

A(x) ∨ B(y) ⇒ ∀z(F(x, z) ∧ F(z, y))

could be denoted F(x, y), but also F(x, y, z),
F(x, y, x1, y2) etc.

▶ A sentence is a formula with no free occurrence of a
variable. Let Lωω(U) be the set of all sentences. The set
of all quantifier free sentences Lω0(U) can be regarded
as the set of propositional formulas whose ’propositional
letters’ are the atomic formulas of L.

¬∃x (A(x) ∧ B(x))
∀x∃y (A(x) ⇒ B(y) ∧ F(x, y))

L(U) ⊂ Lω0(U) ⊂ Lωω(U)

A(ci1 , . . . , cik ) ¬, ∧, ∨, ⇒, ⇔ ∀, ∃, No free variables!
In the notation Lωω, the letter ω denotes the first infinite ordinal,

that is the standard well-ordered set of natural numbers. The first
occurrence of ω indicates that the language permits conjunctions and
disjunctions with less then ω (i.e., finitely many) constituents. The sec-
ond occurrence of ω indicates that the language permits simultaneous
quantification over fewer than then ω (i.e., finitely many) variables.
Later we will deal with the languages Lω1ω, where ω1 is the first un-
countable ordinal number.



6 uml

▶ Every atomic truth assignment M : L(U) → {0, 1} has
a unique extension to the truth assignment over all sen-
tences M : Lωω(U) → {0, 1}.

Given an atomic truth assignment M : L(U) → {0, 1}, the truth
value of any sentences could be calculated using the truth tables of
logical connectives,

¬
0 1
1 0

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

⇒ 0 1
0 1 1
1 0 1

⇔ 0 1
0 1 0
1 0 1

and the following rules for quantifiers:

• M(∃x F) = maxc∈U M(F[x/c]),

• M(∀x F) = minc∈U M(F[x/c]).

Note that after replacing all free occurrence of variables in a formula
by individuals, we obtain the sentence that can be true or false.

▶ We say that an assignment M models a sentence S, and
write M |= S, if M(S) = 1.

If M is the L-model defined by the above di-
agram, then:

M |= F(a, b) ∧ ¬F(b, a)
M |= ∀x ¬F(x, b)
M |= ∃y∀x ¬F(x, y) etc.

▶ Finally, we introduce the fundamental logical notions.
A sentence A is valid, denoted by |= A, if A is true in all
models.
If every assignment that models P also models Q, then Q
is a (semantical or logical) consequence of P, denoted by
P |= Q.
If both, Q is a consequence of P and P is a consequence of
Q, then P and Q are equivalent, denoted by by A ≡ B.

∀x(A ∧ B) ≡ ∀x A ∧ ∀x B
∃x(A ∨ B) ≡ ∃x A ∨ ∃x B
∃x(A ∧ B) |= ∃x A ∧ ∃x B
∀x A ∨ ∀x B |= ∀x(A ∨ B)
A ⇒ B ≡ ¬B ⇒ ¬A
¬(A ∧ B) ≡ ¬A ∨ ¬B
¬(A ∨ B) ≡ ¬A ∧ ¬B etc.

▶ A literal is an atomic formula (also known as a positive
literal) or its negation (a negative literal):

±Predicate( , . . . ,︸ ︷︷ ︸
places for individual and variables

)

An atoms is a conjunction of literals.

Positive literals: A(a), A(x), B(x), F(x, y),
F(x2, y1), etc.
Negative literals: ¬A(a), ¬A(x), ¬B(x),
¬F(x, y), ¬F(x2, y1), etc.

THEOREM 1. [DNF] Every quantifier free sentence F is equivalent to
a disjunction of atoms:

m∨
i=1

 n∧
j=1

± Atomic ij
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1.2. ... Specify Probability functions ...

By the standard Kolmogorov’s foundation of the theory of probability,
a probabilistic model is determined by a sample space Ω, a family of
events B ⊆ 2Ω (2Ω is the power set of Ω, i.e. the set of all subsets of Ω)
and a probability µ : B → [0, 1].6 One thinks of Ω as being the set of 6 One of the most familiar examples is

the roll of two dice. The sample space Ω
is the set of 36 pairs of numbers,

Ω = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6)}

Each possible outcome is equally likely,
µ(i, j) = 1/36, for any (i, j). If E is the
event at least one six is rolled, then µ(E) =
11/36. The probability of not rolling a
six is µ(E∁) = 25/36.

all possible outcomes (so called elementary events) of a given random
phenomenon.

DEFINITION 1. A collection B of subsets of Ω is called an algebra if
it satisfies the following properties:

• Ω ∈ B;

• if E ∈ B then E∁ = Ω \ E ∈ B;

• if E1, E2 ∈ B then E1 ∪ E2 ∈ B.

An algebra B is a σ-algebra if:

• for any sequence ⟨En : n ⩾ 1⟩ of sets in B,
∞⋃

n=1
En ∈ B.7 7 This property is called σ-additivity.

There are two trivial examples of σ-
algebras. The first is the power set
2Ω which is also called the discrete σ-
algebra. The second is the so-called triv-
ial σ-algebra consisting only of the two
sets Ω and ∅.

A pair (Ω,B) is called a measurable space.

DEFINITION 2. A function µ : B → [0, 1] is a finitely-additive prob-
ability measure on (Ω,B) if it satisfies the following properties:

• µ(Ω) = 1;

• if E1, E2 are disjoint sets (E1 ∩ E2 = ∅), then µ(E1 ∪ E2) = µ(E1) +

µ(E2)

A finitely-additive probability measure is a probability measure if:

• for any sequence ⟨En : n ⩾ 1⟩ of pairwise disjoint sets, µ(
∞⋃

i=1
Ei) =

∞
∑

i=1
µ(Ei).

We will call the triple (Ω,B, µ) a probability space.

PROPOSITION 1. (a) If ⟨En : n ⩾ 1⟩ is an increasing sequence of sets

in B, i.e. if E1 ⊆ E2 ⊆ · · · , then µ(
∞⋃

n=1
En) = lim

n→∞
µ(En).

(b) If ⟨En : n ⩾ 1⟩ is a decreasing sequence of sets in B, i.e. E1 ⊇
E2 ⊇ · · · , then µ(

∞⋂
n=1

En) = lim
n→∞

µ(En).

EXAMPLE 1. Let us consider a very simple probability space. We
are given an urn containing all L-structures over U. The random ex-
periment consists in choosing one structure from the urn. For each
sentence from Lωω(U) we could naturally define the probability of
being true in a randomly chosen structure.
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To simplify the presentation, let L = {F} consist of just one 2-placed
predicate F. There are 16 L-structures over {a, b}:

({a, b}, M1), ({a, b}, M2), · · · ({a, b}, M16).

These structure form the sample space ML(U). Assume that all struc-
tures are equally likely to be chosen.

What is the probability that we choose a structure in which ∀x∃y F(x, y)
is true? The sentence ∀x∃y F(x, y) is true in 9 of 16 structures:

P(∀x∃y F(x, y)) =
9

16
= 0.56

In the same way, we find the probability of any sentence from Lωω(U).
A sentence S ∈ Lωω(U) determines the event

[S] = {({a, b}, Mi) | Mi(S) = 1},

i.e. the set of all structures in which the sentence S is true, and

P(S) =
#[S]
16

,

where #[S] denotes the cardinality (the number of elements) of [S].

Exercise 1. Considering the urn from the preceding example, and find
the probability of:
F(a, b), ∀x F(x, a), ∃y∀x F(x, y), ∀x∀y (F(x, y) ⇒ F(y, x))

DEFINITION 3. A probability is a function P : Lωω(U) → [0, 1] that
satisfies:

P1 if |= A, P(A) = 1; any valid sentence is a certain (sure) sentence;

P2 if A |= ¬B, then P(A ∨ B) = P(A) + P(B);9 9 Equivalently,
(P2

′) if A |= B, then
P(B ⇒ A) = 1 + P(A)− P(B);

(P2
′′) if |= ¬(A ∧ B), then

P(A ∨ B) = P(A) + P(B);

P3 P(∃x A) = lim
n→∞

P(A(c1) ∨ · · · ∨ A(cn)), in case that the universe is

countable U = {c1, c2, c3, . . .}. 10

10 Condition P3 is often referred to as
Gaifman’s Condition, and it will be dis-
cussed later.

PROPOSITION 2. Let P : Lωω(U) → [0, 1] be a probability. Then for
A, B ∈ Lωω(U).

1. P(¬A) = 1 − P(A)

2. if A |= B, then P(A) ⩽ P(B)

3. if A ≡ B, then P(A) = P(B)

4. P(A ∨ B) = P(A) + P(B)− P(A ∧ B)

Exercise 2. Prove Proposition 2.

PROPOSITION 3. For P : Lωω(U) → [0, 1] satisfying P1 and P2,
condition P3 is equivalent to:

(P3′) P(∃x A) = ∑∞
n=1 P

(
A(cn) ∧ ¬∨n−1

i=1 A(ci)
)
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(P3′′) P(∀x A) = limn→∞ P (
∧n

i=1 A(ci))

Exercise 3. Prove Proposition 3. (See Preposition 1.)

A particularly simple example of a probability is any truth assign-
ment M : Lωω(U) → {0, 1} ({0, 1} ⊂ [0, 1]).

PROPOSITION 4. Convex sums of probability functions are also prob-
ability function. In other words, for a family of probabilities Pi :
Lωω(U) → [0, 1], i ∈ I, and numbers ai ⩾ 0, i ∈ I such that ∑i ai = 1,
the function S 7→ ∑i aiM(S) is a probability.

By the preceding theorem, for a family of structures Mi, i ∈ I, and
numbers ai ⩾ 0, i ∈ I such that ∑i ai = 1,

S 7→ ∑
i

aiM(S)

is a probability. It turns out that every probability is a linear combina-
tion of some classical structures.

EXAMPLE 2. As in the previous example, let L contain only one 2-
place predicate F, and U = {a, b}. Let P : {F}ωω(U) → [0, 1] be a
probability.

There is a bijection between all structures and so-called complete
atoms (L-atoms over U).

A1 ¬F(a, a) ∧ ¬F(a, b) ∧ ¬F(b, a) ∧ ¬F(b, b)
A2 ¬F(a, a) ∧ F(a, b) ∧ ¬F(b, a) ∧ ¬F(b, b)
A3 ¬F(a, a) ∧ ¬F(a, b) ∧ F(b, a) ∧ ¬F(b, b)
...
A16 F(a, a) ∧ F(a, b) ∧ F(b, a) ∧ F(b, b)

Then, for any sentence S:

Mi(S) = 1 iff Ai |= S.

Moreover, each sentence is a disjunction of atoms:

S ≡
∨

Mi(S)=1

Ai

which is just a reformulation of the earlier observation: each L-sentence Probabilities assigned to outcomes do
not hove to be uniformly distributed.could be identify with the set all structures in which it is true. If

ai = P(Ai), i = 1, . . . , 16, it is obvious that ∑16
i=1 ai = 1, and for any S:

P(S) = P

 ∨
Mi(S)=1

Ai

 = ∑
Mi(S)=1

P(Ai) = ∑
Mi(S)=1

ai =
16

∑
i=1

aiMi(S)

Exercise 4. Find a probability P : {F}ωω({a, b}) → [0, 1], if it exists,
such that:

P(∀x∃y F(x, y)) = 1
P(∀x∀y (F(x, y) ⇒ F(y, x))) = 0.9
P(∃x ¬F(x, x)) = 0.01
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If the universe is infinite, there are infinitely many possible models,
but an analogous result holds. The proof relies on the ideas of the
previous example. The next theorem precisely states a general result.
The theorem shows how a probability on the set of sentences is related
to the classical definition of a probability measures on events. In the
theorem, we use the following notations:

• ML(U) is the set of all L(U)-truth assignments;

• [S] = {M ∈ ML(U) | M(S) = 1}, S ∈ Lωω(U);

1[S] is the characteristic (indicator) function of [S], that is the func-
tion 1[S] : ML(U) → {0, 1}, such that 1[S](M) = M(S).

• AL(U) = {[S] | S ∈ Lω0(U)} is an algebra of subsets of ML(U);

• BL(U) is a σ-algebra extending AL(U).

THEOREM 2. [Representation theorem] For any probability function
P : Lωω(U) → [0, 1] there is a probability measure µP on BL(U) such
that for any S:13 13 In finite cases:

P(S) = ∑
i

Mi(S)ai ,

where µ(Mi) = ai , as in Example 2.
The representation theorem shows that

a probability on a set of formulas can
be viewed as a kind of model consist-
ing of a family of classical models (called
worlds) equipped with their ’weights’.
The semantics of many probabilistic log-
ics, which will be discussed later, is
based on this view.

P(S) =
∫
ML(U)

1[S](M)dµP(M)

The proof of the preceding theorem will be omit. It would be proved
using a logical analog of Carathéodory’s extension theorem.

THEOREM 3. [Carathéodory’s Extension Theorem] Let A be an alge-
bra of subsets of Ω and µ0 : A → [0, 1] be a finitely-additive probability
measure such that:

(∗) µ(
∞⋃

i=1
Ei) =

∞
∑

i=1
µ(Ei), for any sequence ⟨En : n ⩾ 1⟩ of pairwise

disjoint sets from A such that
∞⋃

n=1
Ei ∈ A.

Then there exists a unique measure µ : B → [0, 1], on the σ-algebra B
generated by A such that its restriction to A coincides with µ0.

THEOREM 4. [Gaifman’s Extension Theorem]14 Assume that a func- 14 H. Gaifman, Concerning measures in
first order calculi, Israel journal of mathe-
matics 2 (1), 1-18, 1964

tion P : Lω0(U) → [0, 1] satisfies (P1) and (P2). Then P has a unique
extension to a probability function satisfying (P1), (P2), (P3) for all
sentences Lωω(U).

PROOF. It is easy to check that

AL(U) = {[S] | S ∈ Lω0(U)}

is an algebra of subsets of ML(U), and µP defined by

µP([A]) = P(A)

is a finitely additive measure on this algebra.
The condition (∗) of Carathéodory’s Extension Theorem is trivially

satisfied:
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(∗) Suppose S, Ai ∈ Lω0, i = 1, 2, . . . and (⋆)
⋃∞

i=1[Ai] = [S]. Then, it
must be the case that for some finite n:

⋃
i⩽n[Ai] = [S], otherwise

{¬Ai | i = 1, 2, . . .} ∪ {S} would be finitely satisfiable and hence by
Compactness15 would be satisfiable in some M, contradicting (⋆). 15 Compactness theorem is a fundamen-

tal property of first-order logic: A set of
L-formulas has a model iff every finite subset
of it does.

By Carathéodory’s Extension Theorem there is a unique extension µ+
P

of µP defined on the σ-algebra B generating by A. Notice that since

[∃x S] = {M | M |= ∃x S} =
⋃
i⩾1

{M | M |= S[x/ci]} =
⋃
i⩾1

[S[x/ci]]

and B is closed under complements and countable unions, the algebra
B contains all sets [S], S ∈ Lωω(U). Now define P+ on Lωω(U):

P+(S) def
= µ+

P ([S]).

Since µ+
P is a measure, P+ satisfies P1, P2 and also P3 from the fact

that µ+
P is countably additive.

Finally, P+ must be the unique extension of P satisfying P1-3. For
if there was another such probability function, say Q, then it is easy to
see that µ+

Q would have to agree with µ+
P on B, and then P would have

to agree with Q
By Gaifman’s theorem, to specify a probability function on Lωω(U)

it is enough to say how it acts on the quantifier free sentences. More-
over, it is enough to define probability function on conjunctions of lit-
erals (atomic formulas and their negations), i.e., on atoms in Lω0(U).
The next example comes from a very vital area of research with large
applications.

EXAMPLE 3. Bayesian networks are closed acyclic graphs (DAG’s)
whose nodes represent assertions and edges represents some kind of
conditional dependencies. Nodes that are not connected are assertions
that are conditionally independent of each other. In many cases, the
assertions associated with the nodes are represented by atomic formu-
las; say in {F}ω0({a, b}). In addition, each node is associated with
a probability function that takes, as input, a particular set of truth-
values for the node’s parents, and gives (as output) the probability
of the sentence represented by the node. More precisely, each note
A is associated with the values P(A | ±Parents(A)) ∈ [0, 1], where
±Parents(A) is a combination of truth values of the node’s parents.



12 uml

The join probability function determines probabilities of atoms, by
so-called the chain rule:

P(F(a, a) ∧ ¬F(a, b) ∧ ¬F(b, a) ∧ F(b, b))

= P(F(a, a))× P(¬F(a, b) | F(a, a))× P(F(b, a))× P(F(b, b) | ¬F(a, b) ∧ ¬F(b, a))

= 0.15 × (1 − 0.85)× (1 − 0.25)× 0.97 ≈ 0.02

By Gaifman’s Extension theorem, the given Bayesian network uniquely
determines the probability on {F}ωω({a, b}).

Similar ideas may be applied to undirected and possibly cyclic graphs
such as Markov networks. This will be discussed later.

Any probability on the set of all sentences can be regarded as a
natural generalization of the notion of classical structure. We recall
that a truth assignment M : Lωω(U) → {0, 1} is a special case of
probability. This analogy motivates Gaifman to introduce the notion
of a probability structure.

DEFINITION 4. A probability structure is a pair (U, P), where P is a
probability on Lωω(U).

The work of Gaifman was extended by D. Scott and P. Krauss16. 16 D. Scott and P. Krauss, Assigning Proba-
bilities to Logical Formulas, In Jaakko Hin-
tikka, Patrick Suppes (eds.), Aspects of
Inductive Logic. Elsevier: Amsterdam.
pp. 219 – 264, 1966

Among other things, they have developed a model theory of proba-
bility structures. It turns out that various probability-model-theoretic
concepts can be defined by analogy with the standard concepts of or-
dinary model theory. The following examples present two important
constructions of probability structures. Details are left to the reader.

EXAMPLE 4. [Independent union] Let I be a finite index set. For
each i ∈ I, let Li be a set of predicate symbols, and Pi : Liωω(U) →
[0, 1] a probability. Let L =

⋃
i∈I Li. Any atom A from Lω0(U) can be

written as
∧

i∈I Ai, where Ai is an atom from Liω0(U). A probability
P : Lωω(U) → [0, 1] can be defined by

P(A) = ∏
i∈I

Pi(Ai)

The probability structure (U, P) is the independent union of prob-
abilistic structures (U, Pi), i ∈ I.

EXAMPLE 5. [Ultraproduct] Let I be a finite index set, and L a set
of predicate symbols. For each i ∈ I let Pi : Lωω(Ui) → [0, 1] be a
probability. Let U = ∏

i∈I
Ui be the Cartesian product of the family of

universes Ui, i ∈ I. For S ∈ Lωω(U) and i ∈ I, let S | i be the projection
of S onto the ith coordinate: replace in S every c = (ci)i∈I ∈ U by
ci ∈ Ui. Finally, let µ be a probability on the power set of I. Define for
all S ∈ Lωω(U) a function P by the equation

P(S) = ∑
i∈I

Pi(S | i) · µ({i}).
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(U, P) is the ultraproduct with respect to µ of the family of probability
structure (Ui, Pi), i ∈ I.

EXAMPLE 6. There is an interesting ’game’ that also leads us to the
concept of probability.

Imagine that a bookmaker invites you to participate in the following
game. Several sentences S1, S2, . . . , Sk are written on the ticket. You
have to guess which sentences will be true and which will be false in
a mysterious structure M?, which will be randomly chosen later. The
ticket also contains the list of betting quotients 0 ⩽ p1, . . . , pk ⩽ 1. For
each sentence Si you should choose one out of the two options:

(Opt0) You give the bookmaker pi €, and if it becomes M?(Si) = 1,
you receive 1 € from the bookmaker;

(Opt1) You receive pi € from the bookmaker, and if it becomes M?(Si) =

0, you have to give the bookmaker 1 €.

Sentence Quotient Your choice Cost Payout

S1 p1
□ (Opt0) −pi 1 if M?(S1) = 1
□ (Opt1) pi −1 if M?(S1) = 0

...

Sk pk
□ (Opt0) −pi 1 if M?(Sk) = 1
□ (Opt1) pi −1 if M?(Sk) = 0

Let us define a function:

B(S) =

{
0, you choose Opt0 for S
1, you choose Opt1 for S

When the mysterious structure is revealed, your total gain will be:

k

∑
i=1

(−1)B(Si)(M?(Si)− pi).

How to make a rational strategy? The strategy could be based on
the function Bel : Lωω(U) → [0, 1] which would determine a threshold
of your belief in sentences, in the following sense:

• if pi > Bel(Si), you choose (Opt0) for Si;

• if pi < Bel(Si), you choose (Opt1) for Si;

• ako je pi = Bel(Si), you choose either (Opt0) or (Opt1) for Si.

Of course, you will accept the game only when there is a structure for
which your gain is positive. It turns out that only in these cases you
can find a rational strategy, and moreover, such strategies are deter-
mined by probability functions.
THEOREM. Suppose that for Bel : Lωω(U) → [0, 1] there are no a
most countable set I, sentences Si, i ∈ I, and real numbers pi ∈ [0, 1],
i ∈ I, such that

∑
i∈I

(−1)bi (M(Si)− pi) < 0, for all M,
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where

bi =

{
0, Bel(Si) > pi,
1, Bel(Si) ⩽ pi.

Then Bel is probability.

1.3. Why...?

We have reason to hope that the results of probability logic may have
useful applications to deductive logic, inductive logic and to probability
theory. (D. Scott and P. Krauss)

In this subsection, we focus on the second point of the quote – Car-
nap’s inductive logic.17 Before we introduce the Carnap’s Basic System 17 Gaifman was a Carnap’s student and

his work originally started with a study
of Carnap’s inductive logic.

of Inductive logic, let us recall the notion of conditional probability.

PROPOSITION 5. Given a probability function P : Lωω(U) → [0, 1],
and C ∈ Lωω(U) with P(C) > 0, the function P(· | C) : Lωω(U) →
[0, 1] defined by

P(S | C) =
P(S ∧ C)

P(C)
, S ∈ Lωω(U)

is a probability on Lωω(U).

DEFINITION 5. 18 Given a probability function P : Lωω(U) → [0, 1], 18 There are also attempts to define the
conditional probability directly. E.g. fol-
lowing De Finetti approach, we could
define P : Lωω(U) × Lωω(U) \ {⊥} →
[0, 1] by the following axioms:
P(A | A) = 1;
P(· | A) is a probability;
P(A ∧ B | C) = P(A | C) · P(B | A ∧ C).

and C ∈ Lωω(U) with P(S) > 0, the conditional probability is a
function P(· | C) : Lωω(U) → [0, 1] (said P conditioned on C) defined
by:

P(S | C) =
P(S ∧ C)

P(C)

Sentences S1 and S2 are independent if P(S1 ∧ S2) = P(S1) · P(S2).

Carnap’s last and probably the best exposition of inductive proba-
bility was published posthumously in two parts, in 1971 and 1980, A
Basic System of Inductive Logic I/II. Here, we present just a fragment,
as simple as possible, of the Basic System. We work with:

• a vocabulary contains only a finite number of unary predicate sym-
bols L = {F1, F2, . . . , Fk}, (k > 2),

• countably many constant symbols for individuals, U = {c1, c2, . . .}.

A sample S is a finite set of individuals, S ⊆ U. A sample descrip-
tion DS is a complete atom (a maximal consistent conjunction of literals)
determined by atomic sentences from L(S). For each individual from
the sample, DS decides which properties it has, and which it doesn’t
have.19 19 We allow the empty set to be a sample.

We choose a valid sentence to be a sam-
ple description for the empty set D∅.

Carnap looked for a probability P : Lω0(U) → [0, 1] satisfying the
following additional axioms:20

20 Patrick Maher, Explication of Induc-
tive Probability, Journal of Philosophical
Logic volume 39, pages 593–616, 2010

C1 [Regularity] P(A) > 0; if A is not a contradiction
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C2 [Symmetry] P(DS) is not changed by permuting individual sym-
bols from S;

C3 [Instantial relevance] P(Fi(ck) | Fi(cℓ)) > P(Fi(ck)) roughly says
that we learn from experience;

C4 λ-condition: if S does not involve ck then P(Fi(ck) | DS) depends
only on the number of individuals from S and the number of indi-
vidual from S having the property Fi.

THEOREM 5. [λ − γ theorem] If P is a probability which satisfies C1-
4 and k > 2, then there exist λ > 0 and γ1, . . . , γk ∈ (0, 1) such that the
probability that ck has the property Fi, given the simple description DS

is given by the following equation:

P(Fi(ck) | DS) =
ni + λγi

n + λ
,

where

• ck is any individual constant not in the sample S;

• n is the number of individuals in S;

• ni is the number of individuals from S having Fi.

The meaning of γi could be regarded as the a priori probability that
something has the property Fi. The meaning of λ is interesting. From
the main equation of the previous theorem we see: the probability that
ck has the property Fi, given the sample description of S is a mixture
of the empirical factor, ni

n , and the logical factor, γi.

P(Fi(ck) | DS) =
ni + λγi

n + λ
=

(
n

n + λ

)
ni
n
+

(
λ

n + λ

)
γi

Let us find the meaning of λ in our box example from the beginning of
this section. The empirical factor is determined by our experimental
observation: we see 12 balls, and 6 black balls. The logical factor is
determined by our knowledge: Generally, four colors are uniformly
distributed in the box; but, exceptions are possible.

P(Black(ck) | DS) =

(
12

12 + λ

)
6
12

+

(
λ

12 + λ

)
1
4

It is obvious, the larger λ is, the more weight is put on the logical
factor, and the slower one learns from experience.

Exercise 5. Solve the equation(
12

12 + λ

)
6

12
+

(
λ

12 + λ

)
1
4
= a,

where a is your estimation from the beginning of the section.

The above considerations illustrate two general issues related to in-
ductive logic:22 22 We refer to J. Paris, A. Vencovská, Six

Problems in Pure Inductive Logic, Journal
of Philosophical Logic volume 48, pages
731–747, 2019
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• studying additional properties of probabilities that are related to
various principles and laws of indicative logic, and

• searching for suitable representations of such probabilities.
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2. Very large finite phenomena

MOTIVATING EXAMPLE. Interesting examples of probability mod-
els (in the sence of Definition 4, page 12) are known as random graphs.23 23 The subject of Random Graph began

with a paper Erdős, Rényi, On the Evolu-
tion of the random graph, 1958.

We consider simple random graphs determined by two parameters: a
positive integer n, and a real number p ∈ [0, 1].

Consider a vocabulary that contains only one 2-placed predicate
symbol R, over the universe of size n, Un = {1, . . . , n}. Let us define a
probability on {R}ωω(Un) by the following rules:

• the probability of each atomic sentence is p,

Pp(R(i, j)) = p, i, j ∈ Un,

• all atomic sentence are mutually independent, i.e. if I and J make a
partition of the set {1, . . . , n} × {1, . . . , n}, and |I| = k, then

Pp

 ∧
(i,j)∈I

R(i, j) ∧
∧

(m,ℓ)∈J

¬R(k, ℓ)

 = pk(1 − p)n2−k.

This setting completely determines a probability structure (Un, Pp).
In a sense, this probabilistic model represents a randomly generated
classical structure.

For example, let us generate the structure (U8, P0.5) performing the
following experiment. We start with 8 nodes. For each pair of nodes,
we flip a fair coin to decide whether these nodes should be adjacent
or not. If head shows up, we draw an arrow between the nodes (or a
loop if a single node appears in the pair); if tail shows up, we do draw
no arrow between the nodes.

Now, let us compare this probability structure with the family of
all {R}-structures over two-element universe. Our random structure
contains all, up to isomorphism, two-element structures. Considering
pairs of individuals of the randomly generated (U8, P0.5), all possible
’types’ of two-member structures can be observed; moreover, all of
them are almost equally distributed inside (U8, P0.5).

The probability that the sentence ∀x∃y R(x, y) is true in an arbitrar-
ily chosen two-member structure is approximately equal to 0.56 (see
Example 1). Determining this probability is very close to counting
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pairs (i, j) ∈ U8 × U8 for which the following open formula is true:

F(x, y) ≡ (R(x, x) ∨ R(x, y)) ∧ (R(y, x) ∨ R(y, y))

By counting, we find: the probability that a randomly chosen pair from
(U8, P0.5) satisfies F(x, y) is approximately equal to 0.57. We obtain al-
most the same result when counting two-element structures satisfying
the sentence and when counting pairs in our random structure satis-
fying the corresponding open formula. The following observation will
be of a central importance in this section: If H is much greater than n,
then randomly generated (UH , P0.5) contains (almost) all n-structures
as its substructures. Moreover, the distribution of n-structures inside
(UH , P0.5) is (almost) uniform.

2.1. Random structures

Just as in the above example, Geifman defined an infinite probability
model. We present this model in the simplest possible form. Let us
consider a vocabulary (without equality) with a binary predicate sym-
bol R over the countable universe: U = {c1, c2, . . .}. Let p ∈ (0, 1) be
a fixed real number. Let us define a measure on the set {R}ω0(U) as
follows: for each atomic sentence R(ci, cj) let P(R(ci, cj)) = p. Next,
for every conjunction

∧k
i=1 Ai ∧

∧n
i=k+1 ¬Ai, where Ai’s are different

atomic sentences,

P

(
k∧

i=1

Ai ∧
n∧

i=k+1

¬Ai

)
= pk(1 − p)n−k.

(U, P) is a probability structure symmetric in U.25 25 A probability model (U, P) is symmet-
ric in S ⊆ U, if for every sentence F in
Lωω(S),

P(F(ci1 , . . . , cik )) = P(F(π(ci1 ), . . . , π(cik ))),

whenever π is a permutation of S.

Gaifman has noted an interesting property of the probability de-
fined in this way: logical independence implies statistical independence. If
the atoms A1, A2 ∈ {R}ω0(U) are logically independent, in the sense
that no atomic sentence is a part of both A1 and A2, then P(A1 ∧ A2) =

P(A1) · P(A2). Gaifman proved an important consequence of this
property: if S1, S2 ∈ {R}ωω(U) and no individual constant occurs
both in S1 and S2, then P(S1 ∧ S2) = P(S1) · P(S2). Hence,

If S does not contain individual constants, then P(S) = P(S ∧ S) =
P(S)2, hence P(S) is either 0 or 1.

Therefore, (U, P) is a probability structure that determine a complete
theory in the usual, classical sense.26 26 A theory is any set of sentences. A the-

ory is complete if it is consistent and for
every sentence, either that sentence or its
negation is provable.

We would reach the same result if the starting vocabulary contains
more predicate symbols; if L = {R1, . . . , Rk}, we should assign a real
number pi ∈ (0, 1) to each predicate symbol Ri, 1 ⩽ i ⩽ k. The
complete theory determined by such probability structure defines a
classical L-structure R. For any sentence S: R(S) = 1 iff P(S) = 1. We
call R the countable random structure over the vocabulary L.27 27 This structure R is unique up to iso-

morphism.
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Based on the intuition of the introductory example, a random L-
structure contains in some sense all finite L-structures as its substruc-
tures. In other words, when we consider n-element subsets of the
universe of random structures, we will observe all possible types of
n-element structures. In such a situation, it is natural to describe the
types of n-element L-structures with open formulas using n variables.
We use the following notations:

• Lωω(U, Var) is the set of all formulas with predicates from L, con-
stant symbols for individuals from U, and variables from Var;

• Lk
ω0 and Lk

ωω are the abbreviations for the sets Lω0(∅, {x1, . . . , xk})
and Lωω(∅, {x1, . . . , xk}), respectively; in particular, L0

ω0 is a propo-
sitional language (which is non-trivial only if L contains 0-ary pred-
icates, i.e. propositional letters); we allow L0

ω0 to include the two
quantifier-free sentences ⊤ and ⊥, denoting the always true and
always false sentence, respectively.

• Lωω =
⋃

k⩾0
Lk

ωω is actually the set Lωω(∅, Var), where Var = {x1, x2, . . .}

EXAMPLE 7. 28 Assume that the vocabulary consists of a binary 28 P. Kolaitis, M. Vardi, Infinitary Logics
and 0-1 Laws. Information and Compu-
tation 98, pp. 258-294, 1992

predicate symbol <, and consider only the structures in which the
interpretation of < is a total order. Let An be a first-order sentence
asserting there are at least n elements. Using n distinct variables, An can
be written as

∃x1 · · · ∃xn (x1 < x2 ∧ x2 < x3 ∧ · · · ∧ xn−1 < xn).

However, on total orders, An is equivalent to a sentence in {<}2
ωω. For

example, A4 can be written as

∃x∃y (x < y ∧ ∃x (y < x ∧ ∃y (x < y))).

It follows that on total orders the sentence Bn asserting that there are
exactly n elements is also in {<}2

ωω, since it is equivalent to An ∧¬An+1.

Exercise 6. Let the vocabulary consist of a single binary predicate F.
Using n + 1 distinct variables it is easy to write the sentence asserting
that there is a path of length n from x to y:

∃x1 · · · ∃xn−1 (F(x, x1) ∧ F(x1, x2) ∧ · · · ∧ F(xn−1, y)).

Prove that this property is expressible in {F}3
ωω.

DEFINITION 6. If x = (x1, . . . , xk) is a sequence of distinct variables,
then a type T(x) in the variables x over L is the conjunction of all the
formulas in a maximally consistent set of atomic formulas and negated
atomic formulas in variables x.29 The logical constant ⊤ is the type in 29 In the presence of the equality sing, a

type contains also equalities xi = xj and
inequalities xi ̸= xj.

the empty tuple ov variables.
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Every type T(x1, . . . , xk) is a quantifier-free formula in Lk
ω0. Note

that there are only finitely many distinct types in the variables x1, . . . , xk,
if the vocabulary L is finite.

EXAMPLE 8. Complete atoms and types differ only in that the for-
mer use individual constants, and the latter use variables. Types in
the variables x1, . . . , xk over L correspond to the complete atoms of
L({x1, . . . , xk}). As in the example 2 (page 9), let L contains only one
2-place predicate R. There are 16 types in the variables x1, x2 that
corresponds to all L-structures over a two-element universe.

T1(x1, x2) ¬R(x1, x1) ∧ ¬R(x1, x2) ∧ ¬R(x2, x1) ∧ ¬R(x2, x2)

T2(x1, x2) ¬R(x1, x1) ∧ R(x1, x2) ∧ ¬R(x2, x1) ∧ ¬R(x2, x2)

T3(x1, x2) ¬R(x1, x1) ∧ ¬R(x1, x2) ∧ R(x2, x1) ∧ ¬R(x2, x2)
...
T16(x1, x2) R(x1, x1) ∧ R(x1, x2) ∧ R(x2, x1) ∧ R(x2, x2)

The random structure (i.e., the complete theory determined by the
probability from Gaifman’s simple example) is characterized by an in-
finite set of extension axioms which intuitively state that any type can be
extended to any other possible type. More precisely, for every k ⩾ 1,
the extension axiom Ek is a first-order sentence with k variables assert-
ing that any L-structure with less than k elements can be extended to
any possible L-structure with k elements. Wherever within the random
structure R we recognize a type T(x), we can find an element so that
T′(x, y) is also realized, for every extension T′ of T.

DEFINITION 7. Let xk be a new variable, different from all the vari-
ables in x = (x1, . . . , xk−1). A type T′(x, xk) extends a type T(x) if
every conjunct of T(x) is also a conjunct of T′(x, xk).31 With each pair 31 For example, T′(x1, x2, x3):

¬R(x1, x1) ∧ R(x1, x2) ∧R(x1, x3)∧
∧ ¬R(x2, x1) ∧ R(x2, x2) ∧¬R(x2, x3)∧
∧ R(x3, x1) ∧ ¬R(x3, x2) ∧ ¬R(x3, x3)

extends T(x1, x2):

¬R(x1, x1) ∧ R(x1, x2)∧
∧¬R(x2, x1) ∧ R(x2, x2)

of types that T′ extends T we associate an extension axiom ET,T′ stat-
ing that

∀x
(
T(x) ⇒ ∃xk T′(x, xk)

)
.

If k is a positive integer, we write Ek for the conjunction of all extension
axioms ET,T′ with at most k variables. Note that Ek is a sentence in Lk

ωω.

Exercise 7. Write down the sentence E2, if the vocabulary contains
single 2-placed predicate symbol R.
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In each model of the formula Ek all possible types determined by
formulas with ⩽ k variables are realized. A classical structure satisfy-
ing Ek ’includes’ all possible finite L-structures with ⩽ k elements, i.e,
realize every type T(x1, . . . , xm), m ⩽ k. Of course, a type in variables
x decides ’the truth’ of every open formula F(x).

THEOREM 6. Let k and m be two positive integers such that m ⩽
k. If T(x1, . . . , xm) is type over the vocabulary L and F(x1, . . . , xm) is
a formula in Lk

ωω, then exactly one of the following two statements
holds:

1. Ek |= ∀x(T(x) ⇒ F(x))

2. Ek |= ∀x(T(x) ⇒ ¬F(x))

COROLLARY 1. If S is a sentence of Lk
ωω, then either Ek |= S or

Ek |= ¬S.32 32 As a result, if A and B are two models
of Ek , then A ≡k

ωω B, which means A
and B satisfy the same Lk

ωω-sentences.It is interesting to emphasize that the previous theorem also holds
for formulas of a richer, infinitary language Lk

∞ω. We use the notation
L∞ω to indicate infinitary languages which allow arbitrary, possibly
infinite conjunctions (and hence disjunctions); Lω1ω refers to languages
that allow only countable conjunctions and disjunctions. The set of
formulas L∞ω(U, Var) is an extension of Lωω(U, Var), defined by the
usual formation rules, and the following additional rule:

• If Γ is a set of formulas, then
∧

Γ and
∨

Γ are also formulas.

Given an L-structure (U, M), the truth assignment M : L(U) → {0, 1}
extends to infinitary formulas by the rules:

• M(
∨

Γ) = maxγ∈Γ M(γ)

• M(
∧

Γ) = minγ∈Γ M(γ)

We use Lk
∞ω as an abbreviation for L∞ω(∅, {x1, . . . , xk}); Lω

∞ω =
⋃

k⩾1
Lk

∞ω.33 33 The infinitary languages Lk
∞ω , k ⩾

1, and Lω
∞ω were introduced by Bar-

wise (1977) as a tool for studying pos-
itive fixed-point logic on infinite struc-
tures. Since that time, however, these
languages have had numerous uses and
applications in theoretical computer sci-
ence.

EXAMPLE 9. We continue Example 8. On total orders, properties
such as there are an even number of elements, the universe is finite, etc., are
expressible in {<}2

∞ω. In general, if X is any set of positive integers,
then the property the cardinality of the total order is a member of X is
expressible in {<}2

∞ω by
∨

n∈X
Bn.

Exercise 8. If F is a binary predicate, prove that the properties:
• there is no cycle;
• x and y are connected by a path whose length is an even number (see
Exercise 6);
• there is a path between every pair of elements (connectivity);
are expressible in {F}3

∞ω.
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Fagin34 realized that the extension axioms are relevant to the study 34 R. Fagin, Probabilities on Finite Models,
The Journal of Symbolic Logic Vol. 41,
No. 1, pp. 50-58, 1976

of probabilities on finite structures. More precisely, given a finite set
L of predicate symbols, he considered the sequence of finite probability
spaces with counting probability measure35 over the sample space ML(Un)

35 A finite probability spaces with count-
ing probability measure is any space of
the form (Ω, 2Ω, µ), where Ω is a finite
set and µ(S) = #S

#Ω , S ⊆ Ω.

consisting of all L-structures over Un = {c1, . . . , cn}, n ⩾ 1. The prob-
ability Pn : Lωω(∅) → [0, 1] is defined such that Pn(S) is the fraction
of ’outcomes’ from ML(Un) for which S is true:

Pn(S) =
#[S]

#ML(Un)
=

#{M ∈ ML(Un) | M(S) = 1}
#ML(Un)

, S ∈ Lωω(∅).

The asymptotic probability P(S) is defined to be equal to the limit

P(S) = lim
n→∞

Pn(S),

provided this limit exists. It turns out that the asymptotic probabil- All the considerations in this subsection
are related to the uniform probability on
ML(Un). However, there is a well devel-
oped study of random structures under
different probability measures. . . .

ity coincides with the Gaifmain’s probability determining the random
structure.

PROPOSITION 6. The asymptotic probability of all extension axioms
is equal to 1, that is P(Ek) = 1, for every k ⩾ 1. (Ek is the conjunction
of all extension axioms ET,T′ with at most k variables.)

Exercise 9. Estimate P10(E3); Pk(E3), for k > 10, etc.

THEOREM 7. [the 0-1 low] If S is a sentence in Lωω(∅), then the
asymptotic probability P(S) exists and it is equal either 0 or 1.

PROOF. If S is a sentence, then by Corollary 1 (page 21),

Ek |= S or Ek |= ¬S.

In the first case we have that P(S) = 1 and in the second P(¬S) = 1,
since P(Ek) = 1.

In fact, Glebskii et al.37 proved the 0-1 low, several years earlier than 37 Y. Glebskii, D. Kogan, M. Liogonkh, V.
Talanov, Range and degree of realizability of
formulas in the restricted predicate calculus,
Cybernetics 5, pp. 142-154, 1969

Fagin, using a different approach – a certain quantifier elimination
method. This approach is based on a quantifier-elimination theorem
for Lk

ωω on models of Ek.

THEOREM 8. Let k be a positive integer and let F(x1, . . . , xm) be
a formula of Lk

ωω (m ⩽ k). Then there is a quantifier-free formula
B(x1, . . . , xm) of Lk

ω0 such that:

Ek |= ∀x (F(x) ⇔ B(x)).

PROOF. Let BF be the set of all types T(x) for which there is a struc-
ture D such that

D |= Ek ∧ ∃x (F(x) ∧ T(x)).

We claim that the required formula B(x1, . . . , xm) iz∨
T∈BF

T(x1, . . . , xm).
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Note that B(x1, . . . , xm) is a quantifier-free formula of Lk
ωω, because

the vocabulary L is finite, and consequently there are finitely many
distinct types in the variables x1, . . . , xm. Moreover, it follows from the
definitions that

Ek |= ∀x (F(x) ⇒ B(x)).

For the other direction, let D be a model of Ek, and let a1, . . . , am be
elements from the universe of D, such that D |= B(a1, . . . , am). Then,
there is a type T in the set BF such that D |= T(a1, . . . , am). By Theorem
6 (page 21), exactly one of the following two statements holds:

1. Ek |= ∀x(T(x) ⇒ F(x))

2. Ek |= ∀x(T(x) ⇒ ¬F(x))

Since, T is a type in the set BF, the second statement (2) is impossible
and, hence D |= F(a1, . . . , am).

Taking x to be empty, the previous theorem says that each first-
order sentence with k variables collapses to ⊤ or ⊥ almost everywhere,
leading to the 0-1 law. The 0-1 low leads to many almost everywhere
variants of important properties of logics.

When we restrict our considerations only on finite structures, Theo-
rem 8 implies that the language Lk

ωω in a sense reduces to the language
Lk

ω0 (weakly) almost everywhere38, i.e. Lk
ωω admits almost everywhere 38 in symbols Lk

ωω ≤w.a.e. L
k
ω0

quantifier elimination: every formula F in Lk
ωω is equivalent almost

everywhere to a formula F′ in Lk
ω0.39 With this observation, we touch 39 Two formulas F1(x) and F2(x) are

equivalent almost everywhere, writ-
ten F1(x) ≡a.e. F2(x) if the sentence
∀x (F1(x) ⇔ F2(x)) has asymptotic prob-
ability 1.

on an interesting direction of research in final model theory – the com-
parative study of the expressive power of different logics.

It is worth mention one very important consequence of the 0-1 low,
although we do not go into details:40 By well-known Trakhtenbrot’s 40 J. Vän̈änen, A Short Course on Finite

Model Theory, http://www.math.

helsinki.fi/logic/people/jouko.

vaananen/shortcourse.pdf

Theorem we cannot effectively decide whether a first-order sentence
is valid in all finite models. But we can deside whether a first-order
sentence is valid in almost all models.

All previous results indicate that for random structures it makes
more sense to consider the so-called counting quantifiers instead of the
classical quantifiers ∀ and ∃.41 In the next subsection we introduce 41 For a deeper study of finite model the-

ory and the corresponding logics (Log-
ics with Counting etc.), we recommend
the book: L. Libkin, Elements of Finite
Model Theory, Springer, 2012, https://

homepages.inf.ed.ac.uk/libkin/fmt/

languages with a special kind of such quantifiers – probabilistic quanti-
fiers.

2.2. Probabilistic quantifiers

The random L-structure R has the following nice properties: a sen-
tence S from Lωω is true in R iff it is true in almost all finite models.
A weaker version of this property is used to define a special class of
structures, called pseudo-finite structures, that gives an ’infinitary’ ap-
proach to finite model theory

DEFINITION 8. 42 A model is pseudo-finite if every first-order sen- 42 A. Pillay, Pseudofinite Model Theory,
2015tence true in the model is also true in a finite model.

http://www.math.helsinki.fi/logic/people/jouko.vaananen/shortcourse.pdf
http://www.math.helsinki.fi/logic/people/jouko.vaananen/shortcourse.pdf
http://www.math.helsinki.fi/logic/people/jouko.vaananen/shortcourse.pdf
https://homepages.inf.ed.ac.uk/libkin/fmt/
https://homepages.inf.ed.ac.uk/libkin/fmt/
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Any random structure is an example of a pseudo-finite structure.
Pseudo-finiteness can be defined in several equivalent ways. The propo-
sition below exhibits three ways. If L is a vocabulary, we use ΓL to
denote the first-order theory of all finite L-structures, i.e. the set of
L-sentence that are true in all finite L-structure.

PROPOSITION 7. For every L-structure M, the following conditions
are equivalent:

• M |= ΓL;

• M is a pseudo-finite structure;

• There is a set {Mi | i ∈ I} of finite L-structures and an ultrafilter43 43 A ultrafilter on I can be identified with
a finitely additive {0, 1}-valued proba-
blity measure on the power set 2I .

U on I such that M ≡ ∏
U

Mi.

The third item of the previous theorem shows that certain parts of
nonstandard analysis will become useful. We will not go into details,
but only highlight some intuitive basics. One can think of pseudo-
finite structures as structures with a huge (hyperfinite) number of el-
ements, much larger relative to the ’sizes’ that can be described by
quantifier-free formulas.

What is particularly important for our story is that pseudofinite
structures admit a useful class of probability measures that reflect
counting measures on finite structures. Roughly speaking, this class
of probability measures is determined by a probability on the set of all
formulas Lωω, including formulas with free variables. The introduc-
tory example to this section shows that:

counting models satisfying a sentence
can be reduced to

counting tuples in a ’huge’ random structure satisfying an open for-
mula.

Hence, there are good reasons to extend (without any essential
change) Definition 3 (page 8) to the set of all formulas:

A probability is a function P : Lωω(U, Var) → [0, 1] that satisfies
the properties P1, P2, P3.

The following examples illustrate a typical way of defining proba-
bility on a set of all formulas.

EXAMPLE 10. Let us back to the structure from the very beginning:

L-structure M

L = {A(1), B(1), F(2)}, U = {a, b, c, d, e, f } and M is defined by the dia-
gram on the right. Using the counting probability measure Pn on Un,
we can find the probability of all open formula with n free variables,
for all n ⩾ 1. For instance:
P1(A(x)) = 4

6 , P2(F(x, y)) = 11
36 , P1(∃x F(x, y)) = 5

6 ,
P2(F(x, y) ⇒ F(y, x)) = 4

36 , P3(B(x) ∧ B(y) ∧ B(z)) = 8
216 etc.



uml 25

Let us consider one more L-structure (U, M′), and set a non-uniform
distribution of the individual ’weights’:

L-structure M′

P′
1 =

(
a b c d e f

0.1 0.1 0.3 0.4 0.1 0

)
.

For n > 1, we assume the product distribution on n-tuples:

P′
n(i1, · · · , in) = P′

1(i1) · · · P′
1(in)

Now, we can calculate the probabilities of open formulas:
P′

1(A(x)) = 0,
P′

1(∃x F(x, y)) = P′
1({a, c, d, e, f }) = 0.1 + 0.3 + 0.4 + 0.1 + 0 = 0.9,

P′
2(B(x) ∧ B(y)) = P′

2({(b, b), (b, c), (c, b), (c, c)}) = 0.16 etc.
Finally, suppose that our ’confidence’ in these two structures is de-

termined by the following distribution:

µ :

(
M M′

75% 25%

)
We obtain a third class of probability measures which is a mixture of
the previous two classes:

Pmix
n (F) = 0.75 · Pn(F) + 0.25 · P′

n(F).

In the case when we have several classical models, each of which is as-
signed the weight, the probability of open formula could be regarded
as the ’expected’ (average) probability of that formula.

A representation theorem, similar to Theorem 2 (page 10), shows
that any probability on the set of formulas may be understood as a
result of two consecutive drawings46: 46 J. Łoś, Semantical interpretation of the

probability of formulas, Studia Logica T.
14, pp. 183-196, 1963• First a structure Mi will be chosen at random from among all struc-

tures of a given class {Mi | i ∈ I} following a given probability
measure µ on I; and then

• having the so obtained structure Mi, a sequence of elements is se-
lected from it, following probabilities Pi

n, n ⩾ 1.

Having in mind Definition 4 (page 12), any probability on the set
of formulas can also be considered as a generalization of the classical
structure. An important class of such generalized structures consists of
a special kind of multidimensional probability space with a probability
for each dimension, (U, M, Pn)n⩾1, where:

• (U, M) is a classical structure, M : L(U) → {0, 1}

• each Pn is a probability on the set of formulas with (at most) n-
free variables, Pn : Lωω(U, {x1, . . . , xn}) → [0, 1] and Pn, n ⩾ 1 are
related by some additional requirements47 which we omit. 47 Fubini’s properties, etc. We refer to

H. J. Keisler, Probability quantifiers, In
J. Barwise and S. Feferman, editors,
Model Theoretical Logics, Chapiter XIV,
Springer, 1985

Such structures are named graded probability structures, and we omit
details for the reason that will be discussed later. Languages suitable
for such structures are introduced by Keisler.48

48 J. Keisler, Hyperpinite Model Theory,
Studies in Logic and the Foundations of
Mathematics, Volume 87, pp. 5-110, 1977
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Logics LωP and Lω1P

First we introduce a probability language LωP, and its infinitary exten-
sion Lω1P, in which the classical quantifiers are replaced by probability
quantifiers of the form (Px ⩾ r) and (Px > r), where r ∈ [0, 1]. The set
of formulas is defined as usual, with the following rule for probability
quantifiers:

• if F is a formula, then (Px ⩾ r)F and (Px > r)F are formulas too.

Graded probability structures provide semantics for such set of for-
mulas. The probability formula (Px > r)F(x) is true in a graded
probability structure, denoted by (U, M, Pn)n⩾1 |= (Px > r)F(x), iff
Pn(F(x)) > r; (U, M, Pn)n⩾1 |= (Px ⩾ r)F(x) iff Pn(F(x)) ⩾ r.

EXAMPLE 11. Here is a list of several formulas which are true in any
graded structure:
• (Px ⩾ r) F(x) ⇒ (Px ⩾ s) F(x), s < r
• (Px > r) F(x) ⇒ (Px ⩾ r) F(x)
• (Px ⩾ r) F(x) ⇒ (Py ⩾ r) F(y)
• (Px ⩾ 0) F(x)
• (Px ⩾ 1)¬(A(x) ∧ B(x)) ∧ (Px ⩾ r) A(x) ∧ (Px ⩾ s) B(x) ⇒

⇒ (Px ⩾ r + s) (A(x) ∨ B(x))
• (Px ⩽ r) A(x) ∧ (Px ⩽ s) B(x) ⇒ (Px ⩽ r + s) (A(x) ∨ B(x))
Note also:
• If S ⇒ F(x) is true in a graded structure, then S ⇒ (Px ⩾ 1) F(x) is
also true in that structure.

The reason we do not detail the definition and variety of graded
probability structures is that these structures can be ’approximated’, up
to Lω1P, by almost any sequence of finite structures, i.e. by a hyperfinite
model. This result is a consequence of a model-theoretic form of the
well-known law of large numbers.

EXAMPLE 12. Assume we are given an urn containing 1000 different
balls, U = {b1, . . . , b1000}. There are 50% of red (R) balls; 30% of blue
(B) balls, and 20% of green (G) balls:

P(R(x)) = 0.5, P(B(x)) = 0.3, P(G(x)) = 0.2.

We randomly choose 100 of them, one at a time, returning each ball
to the urn before choosing the next one (the same ball could be drawn
several times). In this way, we obtain an ordered sample

b = (b1, . . . , b100),

and for each color, we find the percentage of balls in this color:

pb(R(x)) = R(b1)+R(b2)+···+R(b100)
100

pb(B(x)) = B(b1)+B(b2)+···+B(b100)
100
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pb(G(x)) = G(b1)+G(b2)+···+G(b100)
100

The lows of large numbers support the intuition that it should be
pb(R(x)) ≈ 0.5, pb(B(x)) ≈ 0.3, pb(G(x)) ≈ 0.2. In other words the
grad. structure ({b1, . . . , b1000}, · · · , P) is very ’similar’ to ({b1, . . . , b100}, · · · , pb).

To state the lows of large numbers for our logic, we need the notion
of a finite sample of a graded probability structure.

DEFINITION 9. Let G = (U, M, Pn)n⩾1 be a graded probability struc-
ture for L, and let ak = (a1, . . . , ak) ∈ Uk be a k-tuple of elements
of U. The finite sample G(ak) is the graded probability structure
whose universe is {a1, . . . , ak}, classical part is the substructure over
{a1, . . . , ak} ⊆ M, and probabilities pn are given by:

p1(F(x)) =
#{m ⩽ k | M(F(am)) = 1}

k
=

F(a1) + · · ·+ F(ak)

k

p2(F(x, y)) =
∑1⩽i,j⩽k F(ai, aj)

k2

p3(F(x, y, z)) =
∑1⩽i,j,ℓ⩽k F(ai, aj, aℓ)

k3 etc.49 49 Thus, the finite set {a1, . . . , ak} has
measure one in M(ak), and the measure
of a singleton {a} is 1

k multiplied by the
number of occurrences of a in the se-
quence ak .

Let us first illustrate the logical variant of the weak law of large
numbers in the simplest case.

PROPOSITION 8. Let G = (U, M, Pn)n⩾1 be a graded probability
structure for L that satisfies (Px > r) F(x), where F(x) is a quantifier-
free formula. Then

lim
k→∞

Pk

{
ak ∈ Uk | G(ak) |= (Px > r) F(x)

}
= 1.

In other words, for large enough k, in almost all samples G(ak), the
formula (Px > r) F(x) is true.

SKETCH OF PROOF. Let ε > 0 be arbitrary. We have to show that
there exists k0 such that for all k ⩾ k0, it holds

Pk

{
ak ∈ Uk | G(ak) |= (Px > r) F(x)

}
> 1 − ε

If P1(F(x)) = q, then q > r (since G satisfies (Px > r) F(x)). Let δ

be any number such that 0 < δ < q − r. By the weak low of large
numbers, there is k0 such that for any k ⩾ k0, and any k-tuple ak,

Pk{ak |
∣∣∣∣ F(a1) + · · ·+ F(ak)

k
− q
∣∣∣∣ < δ} > 1 − ε.

Thus,

Pk{ak | r <
F(a1) + · · ·+ F(ak)

k
} > 1 − ε,

that is
Pk{ak | G(ak) |= (Px > r) F(x)} > 1 − ε

Applying the induction on the length of formulas, we obtain a gen-
eral result.



28 uml

THEOREM 9. [Weak Law of Large numbers for Lω1P] Let G = (U, M, Pn)n⩾1

be a graded probability structure for L satisfying

(Px1 > r1) · · · (Pxn > rn)B,

where B is a finite quantifier-free formula of L. Then

lim
k→∞

Pk

{
ak ∈ Uk | G(ak) |= (Px1 > r1) · · · (Pxn > rn)B

}
= 1.

The property G(ak) |= (Px ⩾ r) F(x) is expressible by a finite
quantifier-free formula B(xk) of L. If ℓ = [kr] + 1, let B(x1, . . . , xk)

be the formula ∨
1⩽i1<···<iℓ⩽k

(F(xi1) ∧ · · · ∧ F(xiℓ)).

Of course: M |= B(a1, . . . , ak) iff G(ak) |= (Px ⩾ r) F(x). This obser-
vation, together with the weak law of large numbers for Lω1P, forms
the basis for the proof of an important theorem which has numerous
consequences.50 50 D. Hoover, A Normal Form Theorem for

Lω1P, with Applications, The Journal of
Symbolic Logic, Vol. 47, No. 3, pp. 605-
624, 1982

THEOREM 10. [Normal Form Theorem] Every formula F(x) of Lω1P

is equivalent to a countable boolean combination of formula of the
form (Px ⩾ r) B(x, y), where B(x, y) is a finite conjunction of atomic
formulas of L.

Logic LCE (LC ∫ )

Besides the language LωP Keisler has developed another language
which is much more suitable for the description of probabilistic (phys-
ical) phenomena. The great expressive power of this new language is
achieved by using real-valued expressions of the form Ex F(x), which
represent the probability of the formula F(x), i.e., ’the expected truth
value of the formula F(x)’. The logic of ’expected truth values’ can be
regarded as a multivalued logic.

The language LC E, where C is a set of continuous real functions,
has the following symbols (in addition to predicate and individual
symbols):

• individual variables: x, y, z, x1, . . .;

• equality sign: = (optional);

• connectives: an n-ary connective C for each continuous real function
C : Rn → R from C;51 51 There are uncountable many connec-

tives, and this may be problematic. To
avoid this anomaly, one often consid-
ers a countable set of connectives which
allows to construct arbitrarily good ap-
proximations of every continuous con-
nective.

• thee quantifiers: Ex, supx, infx.52

52 Keisler used
∫
· · ·dx instead of Ex

These symbols are used to build the set of terms (or real-valued formu-
las).

DEFINITION 10. The set of terms is the smallest set which satisfies
the following rules:
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• Every L-atomic formula is a term.

• If C is an n-ary connective and T1, . . . , Tn are terms, then C(T1, . . . , Tn)

is a term.

• If T is a term and x is a variable, ExT, supx T, infx T are terms.

Free and bound variables are defined as usual, with quantifiers
binding the variables. T(x1, . . . , xn) denotes a term with at most the
free variables x. A term with no free variables is called a constant
term.

EXAMPLE 13. Let us back to the graded structure G for L = {A(1), B(1), F(2)}
defined in Example 10:

• U = {a, b, c, d, e, f };

• M is defined by the diagram on the right;

• Pn is the counting probability measures on Un, for all n ⩾ 1.

Let us now find the values of several terms:
G(Ex A(x)) = A(a)+A(b)+A(c)+A(d)+A(e)+A( f )

6 = 4
6

G(supx(A(x) + B(x))) = 2

G(ExF(x, y)) = G
(

F(a,y)+F(b,y)+F(c,y)+F(d,y)+F(e,y)+F( f ,y)
6

)
;

G(ExF(x, a)) = 5
6 G(ExF(x, b)) = 0 G(ExF(x, c)) = 1

6 . . .
G(maxy ExF(x, y)) = 5

6 etc.

As illustrated in the previous example, any graded probability struc-
ture defines the values of all LC E-terms. However, the language LC E
can also be used to describe so-called real-valued structures. Let us
remind that a (classical) two-valued L-structure is of the form (U, M),
where M is a truth assignment to atomic formulas, M : L(U) → {0, 1}.
A real-valued L-structure is a pair (U, M), where M : L(U) → R, i.e.
M assigns a real number to every atomic L-sentence.

This kind of generalization also leads to a corresponding general-
ization of the notion of graded real-valued structure. The rules for
calculating the values of terms remain the same: E.g.,

M(Ex T) =
∫

U
T[x/c]dµ(c)

In discrete case: M(Ex T) = ∑
c∈U

T[x/c] · µ({c})

EXAMPLE 14. The symbols from L = {A(1), B(1), F(2)} could be in-
terpreted as real-valued properties of individuals from a universe; say:

• A(i) represents a quantitative characteristic (e.g., weight, height,
temperature, IQ etc.) of an individual i;

• B(i) represents a qualitative characteristic (a classical yes/no, i.e 1/0
property) of an individual i;
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• F(i, j) represents a degree of ’confidence’ of i in j.

Consider the following simple graded real-valued structure:

• U = {a, b, c};

• M : L(U) → R is defined by:

M(A(a)) = 1 M(A(b)) = 9 M(A(c)) = 5
M(B(a)) = 0 M(B(b)) = 1 M(B(c)) = 1
M(F(a, a)) = 0.9 M(F(a, b)) = 0 M(F(a, c)) = 0.1
M(F(b, a)) = 1 M(F(b, b)) = 0.5 M(F(b, c)) = 0.4
M(F(c, a)) = 0.2 M(F(c, b)) = 0.4 M(F(c, c)) = 0.4

which is represented by the diagram in the margin;

• Pn is the counting probability measures on Un, for all n ⩾ 1.

Let us determine the values of several terms:

Ex A(x) = A(a)+A(b)+A(c)
3 = 15

3 = 5
supx(A(x) + B(x)) = sup{A(a) + B(a), A(b) + B(b), A(c) + B(c)} = 10

ExF(x, a) = F(a,a)+F(b,a)+F(c,a)
3 = 0.9+1+0.2

3 = 0.7

ExF(x, b) = F(a,b)+F(b,b)+F(c,b)
3 = 0+0.5+0.4

3 = 0.3

ExF(x, c) = F(a,c)+F(b,c)+F(c,c)
3 = 0.1+0.4+0.7

3 ≈ 0.4

supy ExF(x, y) = 0.7

EyExF(x, y) = 0.7+0.3+0.4
3 = 1.4

3 ≈ 0.47 etc.

Now, we briefly summarize this section and announce the issues
that we will deal with in the next section.

✔ Defining probability on the set of all formulas for a vocabulary L

led us to graded probabilistic L-structures – classical L-structures
(U, M) extended by a sequence of probabilities Pn, n ⩾ 1, for each
dimension Un.

✔ There are several languages suitable for describing graded prob.
structures: LωP, Lω1P, LCE etc.

✔ Any graded structure can be well approximated by a hyperfinite
structure, so that Lω1P- properties are preserved. If (U, · · · , P) is a
grad. structure, and b = (b1, . . . , bH) an ordered sample, where H
is a ’huge’ integer, with

pb(F(x)) =
F(b1) + · · ·+ F(bH)

H
,

then (U, · · · , P) and ({b1, . . . , bH}, · · · , pb) satisfy ’almost’ the same
sentence from Lω1P.

? One of the most important tasks of Mathematical logic is to charac-
terize the set of all formulas that are true for all structures of a given
type.55 Hoover (1978) found a simple and natural set of axiom and 55 Several valid formulas from LωP are

given in the example 11 (page 26).rule schemes for Lω1P (LCE), and proved the completeness theorem
with respect to the class of graded probability structures.
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It is conventional to begin the study of new logic by proving a com-
pleteness theorem. By giving a complete set of axioms and rules
one shows that whether a given sentence is a theorem is to some degree
independent of the model of set theory one works in. Once this is
done, the model construction used to prove the completeness theo-
rem is generally of more practical value than the theorem itself. (D.
N. Hoover, Probability logic, Ann. Math Logic 14, 287-313, 1978)

In the next section, we will consider completeness problems in a
somewhat simpler context.
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3. Axiomatization issues

MOTIVATING EXAMPLE. First-order language is the most common
language for talking about relational structures. However, there are
many alternative languages suitable for describing certain, specific as-
pects of relational structures. Modal languages provide an internal,
local perspective on relational structure.56. Let us briefly present the 56 P. Blackburn, M. de Rijke, Y. Venema,

Modal logic, Cambridge University Press,
2010

basic modal language whose symbols are: a countably many proposi-
tional letters p, q, r etc., the classical connectives ¬, ∧, ∨, ⇒, ⇔, and a
unary modal operator ♢ (’diamond’; possibly). The well-defined modal
formulas are given by the following rules:
• a propositional letter is a formula;
• if A is a formula, then ¬A is a formula, too;
• if A1 and A2 are formulas, then A1 ∧ A2, A1 ∨ A2, A1 ⇒ A2, A1 ⇔ A2

are formulas;
• if A is a formula, then ♢A is a formula.57 57 We also have a dual operator □ (’box’;

necessary) for the diamond which is de-
fined by □A :≡ ¬♢¬A.

A model for this language is a triple (W, R, [·]), where
• W is a non-empty set (of words);
• R is a binary relation on W;
• [·] is a function (a valuation) assigning to each propositional letter p
a subset [p] ⊆ W.

Such an model can be viewed as a relational structure consisting of
a domain, a single binary relation, and the unary relation given by [·]:

W = (W, R, [p], [q], · · · )

The modal language is interpreted by means of the following in-
ductive definition of the notion a formula F is satisfied (or true) in W at
w ∈ W:
• W, w |= p iff w ∈ [p]
• W, w |= ¬F iff W, w ̸|= ¬F
• W, w |= F1 ∧ F2 iff W, w |= F1 and W, w |= F2 etc.
• W, w |= ♢F iff for some v ∈ W, with R(w, v), W, v |= F.58 58 W, w |= □F iff for all v ∈ W such that

R(w, v), W, v |= F.For example, consider the model W defined by the figure on the
right.

W, a |= p ⇒ q W, b |= p ⇒ q W, c ̸|= p ⇒ q
W, a |= ♢(p ⇒ q) W, b ̸|= ♢(p ⇒ q) W, c |= ♢(p ⇒ q)
W, a |= ♢♢(p ⇒ q) W, b |= ♢♢(p ⇒ q) W, c |= ♢♢(p ⇒ q) etc.
In this section we introduce a probability propositional logic and

a class of appropriate models that are quite similar to the models of
modal logic. The difference is that a binary relation is replaced by
its probabilistic generalization, a special kind of real-valued binary
relation.
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3.1. Markov process

There are a wide range of probabilistic structures that come from dif-
ferent areas such as theoretical computer science, artificial intelligence,
economics, game theory and so on.60 Although there are differences 60 Here are some influential references.

• Causal reasoning J. Pearl, Prob-
abilistic Reasoning in Intelligent Sys-
tems, Morgan Kaufmann, San Fran-
cisco, 1988.

• Learning from data R. E.
Neapolitan, Probabilistic Reasoning
in Expert Systems, Wiley, New York,
1990.

• Multi-agent systems R. Fagin,
J. Y. Halpern, Y. Moses, M. Y.
Vardi, Reasoning About Knowledge,
MIT Press, Cambridge, 2003.

• Robotics S. Thrun, W. Burgard, D.
Fox, Probabilistic Robotics, MIT Press,
Cambridge, 2005.

• Logic Programming K. Kersting,
L. D. Raedt, Bayesian logic program-
ming: Theory and tool, in Getoor,
L. and Taskar, B., editors, Introduc-
tion to Statistical Relational Learning,
MIT Press, Cambridge, 2007

•
...

among these structures, roughly speaking, in each case we deal with
a structure that is a Markov process. We begin with a very simple ex-
ample of the finite process that illustrates what kind of structures we
deal with.

EXAMPLE 15. Consider the discrete space (W, 2W) with three ele-
ments, W = {a, b, c}. The elements of W will be called worlds. As-
sume that each world has its own probability measure over W; i.e., a
probability distribution is attached to each world:

µa =

(
a b c

0.9 0.1 0

)
µb =

(
a b c

0.1 0.5 0.4

)
µc =

(
a b c

0.2 0.1 0.7

)

Each world separately measures subsets (events) of W:

µa({a, c}) = 0.9, µb({a, c}) = 0.5, µc({a, c}) = 0.9.

It is useful to imagine that this structure represents the successive exe-
cution of an experiment with possible elementary outcomes a, b, c. The
value µi(j) can be viewed as the probability that outcome j occurs after
i. For X ⊆ W, µi(X) represents the probability that the event X occurs
after the outcome i.

We can also consider so-called iterated probabilistic statements. For
example, one can ask what is the probability that after a an outcome
occurs after which c occurs with at least 40% of probability:

µa{i | µi{c} ⩾ 0.4} = µa{b, c} = 0, 1

A Markov process consists of a family of probability space (W,F , µw)w∈W

over the same measurable space (W,F ), with an additional require-
ment related to ’the measurability of probabilistic assertions’:

(∗) for all X ∈ F and r ∈ [0, 1], {w ∈ W | µw(X) ⩾ r} ∈ F .

A discrete Markov process is a triple (W, 2W, µ), where W is at
most countable, and µ : W × W → [0, 1] is a function (a real-valued
binary relation) which satisfies the property:

∑
w′∈W

µ(w, w′) = 1, for all w ∈ W.

In this case, the probabilities µw : 2W → [0, 1], w ∈ W, are defined by

µw(X)
def
= ∑

w′∈X
µ(w, w′).

In the general case, in addition to the space (W,F ) we consider
one more measurable space – the space over the set Πσ(W,F ) of all
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probability measures defined on (W,F ) which is endowed with the
σ-field generated by the sets MX,r = {m ∈ Πσ(W,F ) | m(X) ≥ r}, for
X ∈ F and r ∈ [0, 1].

DEFINITION 11. A Markov process is a triple (W,F , µ), where

• W is a nonempty set (of individuals; agents; worlds; states; atomic
events; outcomes; etc.)

• F is a σ-algebra over W.

• µ : W → Πσ(W,F ) is a measurable function62 from (W,F ) to the 62 Given two measurable spaces (W,F )
and (W ′,F ′), a function f : W → W ′

is measurable if f−1(Y) ∈ F , for every
Y ∈ F ′.

space Πσ(W,F ).

PROPOSITION 9. µ : (W,F ) → Πσ(W,F ) is measurable iff for all
X ∈ F , the function w 7→ µw(X) (from W to [0, 1]) is measurable.

For simplicity, in what follows we ignore the prefix/index ’σ’ and
consider only processes whose measures are finite-additive only.

Markov process can be regarded in a number of ways – as a prob-
abilistic machine, a transition system, a real-valued relation structure etc.
These different views approve practical importance of such systems,
and also various terminology that is in use. Our intuition could be
based on the following:

1. individuals from W can be viewed as agents (with different beliefs
and different degrees of trust in each other)

2. events from F can be considered as statements; w ∈ X means: the
agent w believes that the statement X is true.

3. µw(X) could be regarded as a degree of the w’s opinion about the
general belief in X.

In point (2), F could be a set of sentences of any predicate language
L, but we will stick to the simplest case when L contains only 0-placed
predicates, i.e. propositional letters. In this case, the set of L-sentences
is actually a set of propositional formulas. Point (3) suggests that in
addition to the L-formulas, we should also consider estimates of the
probabilities of formulas: the probability of X is at least r. Such an intu-
ition leads us naturally to a language LP that is suitable for formalizing
the agents’ beliefs.63 63 LCE could be a suitable, but more com-

plex language for Markov processes.The symbols for LP are:

• propositional letters from a countable vocabulary L = {p(0), q(0), r(0), p(0)1 , . . .};

• the logical constant ’true’ ⊤:

• the classical connectives: ¬, ∧, ∨, ⇒, ⇔

• modal-like probabilistic operators P⩾r, for every r ∈ [0, 1] ∩ Q,64 64Q is the set of rational numbers.

with the intended meaning the probability is at least r.

DEFINITION 12. The set of formulas LP is the smallest set such that:
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• all prop. letters are formulas; ⊤ is a formula;

• if F is a formula, then ¬F is a formula;

• if F1 and F2 are formulas, and ⋆ ∈ {∧,∨,⇒,⇔}, then F1 ⋆ F2 is a
formula;

• if F is a formula and r ∈ [0, 1] ∩Q, then P⩾rF is a formula.

DEFINITION 13. An LPP-structure is a quadruple W = (W,F , µ, [·]),
where (W,F , µ) is a Markov process, and [·] : L → F is a function
(valuation) which valued propositional letters by members form F .

Each valuation [·] : L → F can be extended inductively to all for-
mulas:

• [⊤] = W, [¬F] = W \ [F], [F1 ∧ F2] = [F1] ∩ [F2], etc.

• [P⩾rF] = {w ∈ W | µ(w, [F]) ⩾ r}

Thus, every LP-formula F defines the measurable set [F] ∈ F .

DEFINITION 14. A formula F is true (false) in W at w, denoted by
W, w |= F (W, w ̸|= F), if w ∈ [F] (w ̸∈ [F]).

The following properties are obvious:

• W, w |= ⊤

• W, w |= ¬F iff W, w ̸|= F

• W, w |= F1 ∧ F2 iff W, w |= F1 and W, w |= F2

• W, w |= F1 ∨ F2 iff W, w |= F1 or W, w |= F2

• W, w |= F1 ⇒ F2 iff W, w ̸|= F1 or W, w |= F2

• W, w |= P⩾rF iff µ(w, [F]) ⩾ r

EXAMPLE 16. An LP-structure W is shown in the figure on the right
margin. Note, that W consists of the process from Example 15 which
is extended with the following valuation of prop. letters:

[p] = {b}, [q] = {b, c}, [r] = {a, c}, . . .

Let us consider the truth of formulas containing the letters p, q, r:
W, a |= p ⇒ q W, b |= p ⇒ q W, c ̸|= p ⇒ q

[p ⇒ q] = {a, b}
µ(a, {a, b}) = 0.9 µ(b, {a, b}) = 0.6 µ(c, {a, b}) = 0.3

W, a |= P⩾0.8(p ⇒ q) W, b ̸|= P⩾0.8(p ⇒ q) W, c ̸|= P⩾0.8(p ⇒ q)

[P⩾0.8(p ⇒ q)] = {a}
µ(a, {a}) = 0.9 µ(b, {a}) = 0.1 µ(c, {a}) = 0.2

W, a |= P⩾0.15P⩾0.8(p ⇒ q) W, b ̸|= P⩾0.15P⩾0.8(p ⇒ q) W, c |= P⩾0.15P⩾0.8(p ⇒ q)
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[P⩾0.15P⩾0.8(p ⇒ q)] = {a, c} etc.

Exercise 10. Compare structures from the previous example and from
Example 14 (page 29).

DEFINITION 15. Let Γ be a set of LP-formulas. W, w |= Γ iff W, w |=
F, for all F ∈ Γ. An LP-structure W is a model of Γ if W, w |= Γ, for all
w ∈ W.

Exercise 11. Show that any finite subset of {¬P⩾1¬p,¬P⩾ 1
n1

p, . . . ,¬P⩾ 1
nk

p}
has the following model, where
0 < ε < 1

n1
, . . . , 1

nk
:Γ = {¬P⩾1¬p} ∪ {¬P⩾ 1

n
p : n ⩾ 1}

has a model, but Γ have no model.

From the model-theoretic point of view, the most important sets
of formulas are those which completely describe worlds of an LP-
structure W:

ΓW,w
def
= {F ∈ LP | W, w |= F}

We will call such sets complete descriptions.67 One of the main logi- 67 Note the closeness of the concepts:
Complete atoms (from section 1), types
(from section 2) and complete descrip-
tions (from section 3).

cal problems is the reverse one: to investigate which sets of formulas
could be (extended to) complete descriptions, i.e. could determine the
worlds of a model. To deal with such problems, we take the proof-
theoretic approach, and try to discover:

• valid formulas belonging to each complete description;

• closure properties of complete descriptions: if a set of formulas Γ is a
part of a complete description, which formulas must also belong to
that complete description.

DEFINITION 16. A formula F is valid, denote by |= F, if it satisfied
at every world of every model.

A formula F is a semantic consequence of Γ, denote by Γ |= F iff

W, w |= Γ implies W, w |= F,

for all worlds of every model W.68 68 |= F coincides with ∅ |= F.

Our main main objective is to axiomatize the relation |= by con-
structing a deducibility relation ⊢ and showing: Γ |= F iff Γ ⊢ F.

3.2. The Completeness problem for LP

EXAMPLE 17. We distinguish three main groups of valid formulas.
All tautologies (all LP-instances of tautologies) are valid:

p ∨ ¬p; p ∧ q ⇒ q, p ∧ (p ⇒ q) ⇒ q, etc.;

P⩾0.3 p ∨ ¬P⩾0.3 p; P⩾0.3 p ∧ P⩾0.1¬q ⇒ P⩾0.1¬q, etc.;
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the consequences of the ordering properties of the rational numbers
are valid:

P⩾0.3 p ⇒ P⩾0.2 p; P⩾0.3(p ∧ q) ⇒ P⩾0.12(p ∧ q) etc.;

the consequences of the basic properties of probability are valid:

P⩾1(p∨¬p); P⩾0(p∨ q), P⩾0.5 p ⇒ P⩾0.5(p∨ q), P⩾0.6 p ⇒ ¬P⩾0.6¬p,
etc.;

In the next proposition we emphasize some important valid formu-
las.

PROPOSITION 10. For all formulas A, B:

(A1) |= P⩾0 A

(A2) |= P⩾r⊤, for all r ∈ [0, 1]Q

(A3) |= P⩾r(A ∧ B) ∧ P⩾s(A ∧ ¬B) ⇒ P⩾r+s A, r + s ≤ 1

(A4) |= ¬P⩾r(A ∧ B) ∧ ¬P⩾s(A ∧ ¬B) ⇒ ¬P⩾r+s A, r + s ≤ 1

(A5) |= P⩾r A ⇒ ¬P⩾s¬A, r + s > 1

PROPOSITION 11. For all formulas A, B,

• A ⇔ B |= P⩾r A ⇔ P⩾rB, for all r ∈ [0, 1] ∩Q

• {P⩾t A | t < r} |= P⩾r A, for all r ∈ (0, 1] ∩Q

• P⩾t1 A, . . . ,P⩾tk A ̸|= P⩾r A, for every choice of finitely many ratio-
nals t1, . . . , tk < r.

The two preceding propositions represent the probabilistic part of a
complete axiomatization that determines the notion of deductive con-
sequence, i.e., a syntactic characterization of the concept of semantic
consequence. Of course, infinitary inference rules are unavoidable be-
cause of the lack of compactness of the semantic consequence relation.

The axiomatic system Ax(LP) contains the following axiom schemata:

(A0) every LP-instance of a tautology

(A1) P⩾0 A

(A2) P⩾r⊤, for all r ∈ [0, 1]Q

(A3) P⩾r(A ∧ B) ∧ P⩾s(A ∧ ¬B) ⇒ P⩾r+s A, r + s ≤ 1

(A4) ¬P⩾r(A ∧ B) ∧ ¬P⩾s(A ∧ ¬B) ⇒ ¬P⩾r+s A, r + s ≤ 1

(A5) P⩾r A ⇒ ¬P⩾s¬A, r + s > 1

and inference rules:

(MP) From A and A ⇒ B infer B (MP)
A A ⇒ B

B
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(EQr) From A ⇒ (B ⇔ C) infer A ⇒ (P⩾rB ⇔ P⩾rC), for all r ∈
(0, 1] ∩Q (EQr)

A ⇒ (B ⇔ C)
A ⇒ (P⩾r B ⇔ P⩾rC)

(Ar) From A ⇒ P⩾tB, for all t < r infer A ⇒ P⩾rB, for all r ∈
(0, 1] ∩Q (Ar)

A ⇒ P⩾tB t < r
A ⇒ P⩾r B

Note that the rules (Ar), r ∈ [0, 1]∩Q are infinitary in the sense that
they have an infinite number of premises. The intuition behind these
rules is the following: the infinitely long ’formula’

∧
t<r

P⩾tB must be

equivalent to P⩾rB. The language LP does not allow infinitary formu-
las, so the above equivalence may be replaced by an infinitary rule
of inference: given the set of premises {P⩾tB | t < r}, one may
infer P⩾rB. In order to be able to prove Deduction theorem (see
the proof of Theorem 11), we modify this rule by adding a prefix
’A ⇒’ to the premises and to the conclusion: given the set of premises
{A ⇒ P⩾tB | t < r} one may infer A ⇒ P⩾rB. Of course, it is usual to
omit the prefix ’⊤ ⇒’ and just write:

(EQr)
B ⇔ C

P⩾rB ⇔ P⩾rC
(Ar)

P⩾tB t < r
P⩾rB

DEFINITION 17. A formula F is a syntactical consequence of Γ,72 72 F can be deduced (derived, inferred
etc.) from Γ if there is a derivation of
the form:

F1, F2, . . . . . .︸ ︷︷ ︸
possibly infinite sequence

Fκ

such that for all i ⩽ κ, Fi is either an in-
stance of some axiom, or Fi ∈ Γ, or it
can be inferred from some of its prede-
cessors by application of some inference
rule

denoted by Γ ⊢ F iff there are a countable ordinal κ and a sequence of
formulas ⟨Fi : i ⩽ κ⟩ such that Fκ = F and for all i ⩽ κ, Fi is either an
instance of some axiom, or Fi ∈ Γ, or it can be inferred from some of
its predecessors by application of some inference rule.

EXAMPLE 18. Let us prove {¬P⩾ 1
n

p | n ⩾ 1} ⊢ P⩾1¬p. (See Exercise
11.)

First, we make derivations for all P⩾t¬p, t ∈ [0, 1). Choose t ∈ [0, 1)
and a natural number nt ⩾ 1 such that 1 − t ⩾ 1

nt
; then t′ = 1 − t −

1
nt

> 0. We give sketches of the derivations, omitting many details of
classical propositional reasoning.
1. p ⇔ p ∧⊤ [A0]

2. ¬⊤ ⇔ p ∧ ¬⊤ [A0]

3. P⩾ 1
nt

p ⇔ P⩾ 1
nt
(p ∧⊤) 1, (EQ1/nt),

4. P⩾t′¬⊤ ⇔ P⩾t′(p ∧ ¬⊤) 2, (EQt′)

5. ¬P⩾ 1
nt

p ⇔ ¬P⩾ 1
nt
(p ∧⊤) 3, (A0) (A ⇔ B) ⇒ (¬A ⇔ ¬B)

6. ¬P⩾t′¬⊤ ⇔ ¬P⩾t′(p ∧ ¬⊤) 4, (A0) (A ⇔ B) ⇒ (¬A ⇔ ¬B)

7. P⩾1⊤ (A2)

8. P⩾1⊤ ⇒ ¬P⩾t′¬⊤ 1 + t′ > 1, (A5)

9. ¬P⩾t′(p ∧ ¬⊤) 7, 8, 6, (MP)

10. ¬P⩾ 1
nt

p [the premise]

11. ¬P⩾ 1
nt
(p ∧⊤) 5, 10, (MP)
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12. ¬P⩾ 1
nt
(p ∧⊤) ∧ ¬P⩾t′(p ∧ ¬⊤) ⇒ ¬P⩾1−t p 1

nt
+ t′ = 1

nt
+ (1 − t − 1

nt
) = 1 − t, (A4)

13. ¬P⩾1−t p 11, 9, 12, (MP)

14. ¬P⩾1−t(⊤∧ p) ∧ ¬P⩾t(⊤∧ ¬p) ⇒ ¬P⩾1⊤ (A4)

15. P⩾1⊤ ⇒ P⩾1−t p ∨ P⩾t¬p [the low of contraposition and De Morgan’s lows]

16. P⩾t¬p 7, 13, 15

All these derivations of P⩾t¬p, t < 1, extended by an application of
the infinitary rule (A1), make the derivation of P⩾1¬p.

DEFINITION 18. A set of formulas Γ is consistent iff T ̸⊢ ⊥, where ⊥
is the abbreviation for ¬⊤; Γ is maximal consistent iff it is consistent
and it is not contained in any other consistent theory (i.e. it is maximal
in the sense of inclusion).

EXAMPLE 19. {¬P⩾1¬p} ∪ {¬P⩾ 1
n

p | n ⩾ 1} is not consistent set of

formulas, by the previous example shows.

THEOREM 11. [Deduction theorem] If Γ, F ⊢ G then Γ ⊢ F ⇒ G.

PROOF. We use the induction on the length of the derivation of G
from Γ, F. The cases when (1◦) G is an axiom, or (2◦) F coincides with
G, or (3◦) G ∈ Γ, or (4◦) G is derived from Γ, F by (MP) are standard.

Suppose that G = A ⇒ (P⩾rB ⇔ P⩾rC) is derived from Γ, F by
(EQr) with the premise A ⇒ (B ⇔ C):

Γ, F, . . . , A ⇒ (B ⇔ C), . . . A ⇒ (P⩾rB ⇔ P⩾rC)

Applying Induction hypothesis on the underlined subderivation, we
obtain:

Γ ⊢ F ⇒ (A ⇒ (B ⇔ C))

Now it is easy to proceed to the desired result:
Γ ⊢ (F ∧ A) ⇒ (B ⇔ C)
Γ ⊢ (F ∧ A) ⇒ (P⩾rB ⇔ P⩾rC) (EQr)
Γ ⊢ F ⇒ (A ⇒ (P⩾rB ⇔ P⩾rC))
Suppose that G = A ⇒ P⩾rB is derived from Γ, F by (Ar) with the

premises A ⇒ P⩾tB, t < r:

Γ, F, . . . , A ⇒ P⩾tB, t < r, . . . A ⇒ P⩾rB

Then:
Γ ⊢ F ⇒ (A ⇒ P⩾tB), t < r
Γ ⊢ (F ∧ A) ⇒ P⩾tB, t < r
Γ ⊢ (F ∧ A) ⇒ P⩾rB (Ar)
Γ ⊢ F ⇒ (A ⇒ P⩾rB)

THEOREM 12. [Extension theorem] Every consistent set of formulas
Γ can be extended to a maximal consistent set Γ+.
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PROOF Let ⟨Fk : k ⩾ 1⟩ be an arbitrary enumeration of all LP-formulas.
We define a sequence Γn, n ⩾ 0, inductively as follows:

• Γ0 = Γ

• n ⩾ 1

– If Γn ∪ {Fn} is consistent, then Γn+1 = Γn ∪ {Fn};

– Let Γn ∪ {Fn} is not consistent. Then we have the following cases:

* Fn = A ⇒ P⩾rB. Then, there is tn < r such that Γn ∪{¬Fn,¬(A ⇒
P⩾tn B)} is consistent. In this case we define Γn+1 by

Γn+1 = Γn ∪ {¬Fn,¬(A ⇒ P⩾tn B)}.

Note that the existence of such tn is provided by (Ar);

* Otherwise, Γn+1 = Γn ∪ {¬Fn}.

Let Γ+ =
⋃

n⩾0
Γn.

Lemma 1. Γn is consistent for each n.
Proof of Lemma 1. By induction on n.

Γ0 = Γ is consistent by the assumption of the theorem.
Assume that Γn is consistent.
If Γn ∪ {Fn} is consistent, then surely Γn+1 is consistent.
When Γn ∪ {Fn} is not consistent, then Γn ∪ {¬Fn} must be consis-

tent. If Γn ∪ {¬Fn} were inconsistent, then it would be Γn ∪ {¬Fn} ⊢ ⊥
and Γn ∪ {Fn} ⊢ ⊥, i.e., by Deduction theorem, Γn ⊢ ¬Fn ⇒ ⊥ and
Γn ⊢ Fn ⇒ ⊥, and hence Γn ⊢ ⊥, by using (A0) (Fn ⇒ ⊥) ⇒ ((¬Fn ⇒
⊥) ⇒ ⊥), which contradicts the inductive hypothesis.

If Γn ∪ {A ⇒ P⩾rB} is not consistent, then there must be t < r such
that Γn ∪ {¬(A ⇒ P⩾rB),¬(A ⇒ P⩾tB)} is consistent. Assume the
opposite:
Γn,¬(A ⇒ P⩾rB),¬(A ⇒ P⩾tB) ⊢ ⊥, for all t < r. Then,
Γn,¬(A ⇒ P⩾rB) ⊢ ¬(A ⇒ P⩾tB) ⇒ ⊥, for all t < r, [Deduction theorem]
Γn,¬(A ⇒ P⩾rB) ⊢ A ⇒ P⩾tB, for all t < r, [(A0) (¬(A ⇒ P⩾tB) ⇒ ⊥) ⇒ (A ⇒ P⩾tB)]
Γn,¬(A ⇒ P⩾rB) ⊢ A ⇒ P⩾rB, [Ar]
Γn ⊢ ¬(A ⇒ P⩾rB) ⇒ (A ⇒ P⩾tB), [Deduction theorem]
Γn ⊢ ⊥ [(A0) (¬(A ⇒ P⩾rB) ⇒ (A ⇒ P⩾rB)) ⇒ ⊥]
which contradicts the induction hypothesis.
Lemma 2. For each formula F, ¬F ∈ Γ+ iff F ̸∈ Γ+.
Proof of Lemma 2. By the construction, for each formula F, either
F ∈ Γ+ or ¬F ∈ Γ+, but not both, and thus either F ̸∈ Γ+ or ¬F ̸∈ Γ+.
Lemma 3. If Γ+ ⊢ F then F ∈ Γ+.
Proof of Lemma 3. It is obvious that Γ+ contains all instances of the
axiom schemata. We prove that Γ+ is closed for the inference rules: is
the premises of a rule belong to Γ, then the conclusion is in Γ+ too.
[MP] If A, A ⇒ B ∈ Γ+, but B ̸∈ Γ+, then there would be n such that

A, A ⇒ B,¬B ∈ Γn,
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and Γn would be inconsistent, contrary to Lemma 1.
[EQr] If A ⇒ (B ⇔ C) ∈ Γ+, but A ⇒ (P⩾rB ⇔ P⩾rC) ̸∈ Γ+, then
there would be n such that

A ⇒ (B ⇔ C),¬(A ⇒ (P⩾rB ⇔ P⩾rC)) ∈ Γn,

and Γn would be inconsistent, contrary to Lemma 1.
[Ar] If A ⇒ P⩾tB ∈ Γ+, for all t < r, but A ⇒ P⩾rB ̸∈ Γ+, then
¬(A ⇒ P⩾rB) ∈ Γ+, and by the construction, there is t′ < r such that
¬(A ⇒ P⩾t′B) ∈ Γ+, and hence, for some n

A ⇒ P⩾t′B,¬(A ⇒ P⩾t′B) ∈ Γn

which contradicts the consistency of Γn.
Lemma 4. Γ+ is a maximal consistent set.
Proof of Lemma 4. Γ+ is consistent set. Really, if Γ+ ⊢ ⊥, then ⊥ ∈ Γ+,
and hence ⊥ ∈ Γn, for some n, which contradicts Lemma 1.

If Γ+ ⫋ Γ#, then there is a formula F such that F ∈ Γ# and F ̸∈ Γ+.
By Lemma 2, ¬F ∈ Γ+, and also ¬F ∈ Γ#, which gives that Γ# is
inconsistent. Thus, Γ+ is a maximal consistent set.

THEOREM 13. [Completeness theorem] Every consistent set of for-
mulas has an LP-model.

PROOF Let Γ be a consistent set of formulas. The required model will
be constructed over the set of all maximal consistent extensions of Γ:

• W is the set of all maximal consistent extensions of Γ; according to
the previous theorem, W is not empty.

• F = {[F] | F ∈ LP}, where [F] = {∆ ∈ W | F ∈ ∆};

• for all ∆ ∈ W, µ∆[F]
def
= sup{t ∈ [0, 1] ∩Q | P⩾tF ∈ ∆}.

It should be shown:

1) F is an algebra of subsets of W;

2) µ∆ is finitely additive;

3) (W,F , µ∆) |= Γ.

1) ⊤ ∈ ∆, for every ∆; hence [⊤] = W ∈ F .
Let A be an LP-formula. For every ∆:

¬A ∈ ∆ iff A ̸∈ ∆, i.e. ∆ ∈ [¬A] iff ∆ ̸∈ [A],

which gives W \ [A] = [¬A] ∈ F .
Let A, B be LP-formulas. For every ∆:

A ∨ B ∈ ∆ iff A ∈ ∆ or B ∈ ∆, i.e. ∆ ∈ [A ∨ B] iff ∆ ∈ [A] ∪ [B],

which gives [A] ∪ [B] = [A ∨ B] ∈ F .
2) First, we prove the equivalence: µ∆[F] ⩾ r iff P⩾t F ∈ ∆.

Assume µ∆[F] ⩾ r. For each t < r, by the definition of the supre-
mum, there exists st > t such that P⩾st F ∈ ∆. The following derivation
(where we omit many details) shows that it must be P⩾tF ∈ ∆.
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1. P⩾st F [in ∆]

2. P⩾t+(st−t)F ⇒ P⩾t(F ∧⊤) ∨ P⩾st−t(F ∧ ¬⊤) the contraposition law, (A4)

3. P⩾t(F ∧⊤) ∨ P⩾st−t(F ∧ ¬⊤) 1, 2, (MP)

4. P⩾tF ⇔ P⩾t(F ∧⊤) F ⇔ F ∧⊤, (EQt)

5. P⩾st−t¬⊤ ⇔ P⩾st−t(F ∧ ¬⊤) ¬⊤ ⇔ F ∧ ¬⊤, (EQst−t)

6. P⩾1⊤ ⇒ ¬P⩾st−t¬⊤ 1 + st − t > 1

7. P⩾1⊤ (A2)

8. ¬P⩾st−t¬⊤ 7, 6, (MP)

9. ¬P⩾st−t(F ∧ ¬⊤) 8, 5

10. P⩾t(F ∧⊤) 9, 3, (A0) (A ∨ B) ∧ ¬B ⇒ A

11. P⩾tF 4, 10

Thus, P⩾tF ∈ ∆ for every t < r, and by (Ar), P⩾rF ∈ ∆. The
converse is obviously true.

Finally, we prove that µ∆ is finitely additive.
µ∆(W) = µ∆[⊤] = 1, since P⩾r⊤ ∈ ∆, for all r ∈ [0, 1] ∩Q.
Assume [A] ∩ [B] = ∅, µ∆[A] = a and µ∆[B] = b, for a, b ∈ [0, 1].

We have to prove that µ∆([A] ∪ [B]) = a + b.
If [A] ∩ [B] = ∅, then for all ∆, A ∧ B ̸∈ ∆, and ¬(A ∧ B) ∈ ∆. The

tautology ¬(A ∧ B) ⇒ (A ⇔ (A ∧ ¬B)) gives A ⇔ (A ∧ ¬B) ∈ ∆.
From P⩾a A ∈ ∆ we have P⩾a(A ∧ ¬B) ∈ ∆.

It cannot be a + b > 1. Otherwise, using Axiom (A5), we would
have

P⩾a(A ∧ ¬B) ⇒ ¬P⩾b¬(A ∧ ¬B)

i.e. ¬P⩾b(¬A ∨ B) ∈ ∆. From
(A1) P⩾0(¬A ∧ ¬B),

¬P⩾b(¬A ∨ B) ∈ ∆ and
(A3) P⩾b((¬A ∨ B) ∧ B) ∧ P⩾0((¬A ∨ B) ∧ ¬B) → P⩾b(¬A ∨ B),73 73 (¬A ∨ B) ∧ B ⇔ B

(¬A ∨ B) ∧ ¬B ⇔ ¬A ∧ ¬Bwe have
¬P⩾b((¬A ∨ B) ∧ B) ∈ ∆, i.e. ¬P⩾bB ∈ ∆, which is a contradiction.

Hence, a + b ⩽ 1
Since P⩾bB ∈ ∆, by Axiom (A3)74 74 (A ∨ B) ∧ ¬B ⇔ A ∧ ¬B

(A ∨ B) ∧ B ⇔ B

P⩾a((A ∨ B) ∧ ¬B) ∧ P⩾b((A ∨ B) ∧ B) ⇒ P⩾a+b(A ∨ B)

Thus, P⩾a+b(A ∨ B) ∈ ∆, i.e. µ∆([A] ∪ [B]) ⩾ a + b.
If there were ε > 0 such that a + b + ε ⩽ 1 and P⩾a+b+ε(A ∨ B) ∈ ∆,

then by Axiom (A4) in the ’contrapositive form’:75 75 (A ∨ B) ∧ B ⇔ B
(A ∨ B) ∧ ¬B ⇔ A ∧ ¬B

P⩾a+b+ε(A ∨ B) ⇒ P⩾b+ε/2B ∨ P⩾a+ε/2(A ∧ ¬B),

we would have P⩾a+ ε
2

A ∈ ∆ or P⩾b+ ε
2

B ∈ ∆, which is impossible.

THEOREM 14. Γ ⊢ F iff Γ |= F
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Appendix

Proof of Preposition 2
Each of (1)-(4) holds if we only assume P1 and P2.
1. We have that |= A ∨ ¬A and A |= ¬¬A, so by P1 and P2,

1 = P(A ∨ ¬A) = P(A) + P(¬A).

2. If A |= B then ¬B |= ¬A, so from P2 and 1), and the fact that P
takes values in [0, 1],

1 ≥ P(¬B ∨ A) = P(¬B) + P(A) = 1 − P(B) + P(A),

from which the required inequality follows.
3. If A ≡ B then A |= B and B |= A. By 2), P(A) ≤ P(B) and

P(B) ≤ P(A), so P(A) = P(B).
4. Since A ∨ B ≡ A ∨ (¬A ∧ B) and A |= ¬(¬A ∧ B), P2 and 3) give

(1) P(A ∨ B) = P(A ∨ (¬A ∧ B)) = P(A) + P(¬A ∧ B)

Also, B ≡ (A ∧ B) ∨ (¬A ∧ B), and A ∧ B |= ¬(¬A ∧ B), so by P2 and
3)

(2) P(B) = P((A ∧ B) ∨ (¬A ∧ B)) = P(A ∧ B) + P(¬A ∧ B))

Eliminating P(¬A ∧ B) from (1), (2) gives P(A ∨ B) = P(A) + P(B)−
P(A ∧ B).
Proof of Theorem in Example 6

For P1 suppose that |= S, but Bel(S) < 1. Then M(S) = 1, for all
M. If Bel(S) < p < 1, we have

(−1)(M(S)− p) = p − 1 < 0, for all M.

Contradiction.
Now suppose that P2 fails, and there are S1, S2 such that S1 |= ¬S2,

but
Bel(S1) + Bel(S2) < Bel(S1 ∨ S2).

Then S1 |= ¬S2 forces that at most one of S1, S2 can be true in any M
su:

M(S1 ∨ S2) = M(S1) + M(S2).

Pick p1 > Bel(S1), p2 > Bel(S2), p < Bel(S1 ∨ S2) such that p1 + p2 <

p. Then

(−1)(M(S1)− p1)+ (−1)(M(S2)− p2)+ (M(S1 ∨S2)− p) = (p1 + p2)− p < 0, for all M.

A similar argument when Bel(S1) + Bel(S2) > Bel(S1 ∨ S2) shows
that this cannot hold either se we must have equality here.

Finally suppose that Bel(∃x A) > lim
n→∞

Bel(A(c1) ∨ · · · ∨ A(cn)).

Then we could pick p and pn, n = 1, 2, . . . such that

Bel(A(c1) ∨ · · · ∨ A(cn)) < pn < p < Bel(∃x A) and ∑
n⩾1

pn < p.
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Since for M

M(∃x A) = max
i

M(A(ci)) = max
n

M(A(c1) ∨ · · · ∨ A(cn)),

• if M(∃x A) = 0, then M(A(c1) ∨ · · · ∨ A(cn)) = 0, for all n;

• if M(∃x A) = 1, then there is k such that M(A(c1) ∨ · · · ∨ A(cn)) =

1, for n ⩾ k.

Then:

(M(∃x A)− p)+ ∑
n⩾1

(−1)(M(A(c1)∨ · · · ∨ A(cn))− pn) ⩽ p− ∑
n⩾1

pn < 0, for all M.

Proof of Theorem 6.
This theorem will be proved by induction on the construction of

formula is Lk
ωω whose variables are among x1, . . . , xk and whose free

variables are among x1, . . . , xm, simultaneously for all m ⩽ k and for
all types s(x1, . . . , xm).

The base case of the induction (atomic formulas and equalities) and
the induction step for the negation ¬ are obvious.

Assume that F(x1, . . . , xm) is a conjunction F1(x1, . . . , xm)∧ F2(x1, . . . , xm).
We distinguish two cases.

1. Ek |= ∀x(s(x) ⇒ Fi(x)), for both i = 1, 2, then Ek |= ∀x(s(x) ⇒
F1(x) ∧ F2(x))

2. Ek |= ∀x(s(x) ⇒ ¬Fi(x)), for at least one i = 1, 2, then Ek |=
∀x(s(x) ⇒ ¬(F1(x) ∧ F2(x)))

A crucial use of the extension axioms will be made in the case where
the formula F(x1, . . . , xm) starts with an existential quantifier. Assume
that F is a formula ∃y G(x1, . . . , xm, y), and that induction hypotheses
holds for G(x1, . . . , xm, y).

If Ek |= ∀x(s(x) ⇒ ¬∃y G(x, y)), then 2. holds for F. Otherwise,

Ek ̸|= ∀x(s(x) ⇒ ¬∃y G(x, y)).

We show that in the latter case Ek ̸|= ∀x(s(x) ⇒ ∃y G(x, y)). By our
assumption about variables of F, we must have that the variable y is
the variable xj, for some j such that 1 ⩽ j ⩽ k. We now distinguish
two cases> the case where j > m and the case where j ⩽ m.

CASE 1. j > m, which means that the variable y is different from all
the variables x1, . . . , xm. Note that in this case m must be less than k.
Since, Ek ̸|= ∀x(s(x) ⇒ ¬∃y G(x, y)), there is a structure D such that
(D) |= Ek, and (D) |= ∃x(s(x) ∧ ∃y G(x, y)), i.e.

D |= ∃x∃y (s(x) ∧ G(x, y))

Let a1, . . . , am, b be elements of the universe D of D such that:

D |= (s(a1, . . . , am) ∧ G(a1, . . . , am, b))
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Let t(x1, . . . , xm, y) be the unique type determined by (a1, . . . , am, b) in
D. Thus,

D |= ∃x∃y (t(x, y) ∧ G(x, y))

By applying induction hypotheses to the formula G and the type t(x, y),
we infer that

Ek |= ∀x∀y(t(x, y) ⇒ G(x, y)).

Since the type t is an extension of s and Ek is the conjunction of all
extension axioms with at most k variables, it follows that

Ek |= ∀x(s(x) ⇒ ∃yt(x, y)).

We can now conclude that

Ek |= ∀x(s(x) ⇒ ∃yG(x, y)).

Note that t(x1, . . . , xm, y) extends the type s(x1, . . . , xm).
CASE 2. j ⩽ m, which means that the variable z is the variable xj

for some j ⩽ m. WLOG, assume j = 1. ...
Proof of Proposition 6.

Assume for convenience that L = {R}, where R is a binary predicate
symbol. We show that P(¬ET,T′) = 0, where T′(x, y) is a type which
extends T(x). Let x = (x1, . . . , xk), and let A(x, y) be∧

±R(xi ,y) are in T′
±R(xi, y).

Assume U = {c1, . . . , cn}, [U]k is the set of k-tuples of mutually differ-
ent individuals, and n > k. Then

Pn(¬ET,T′) = Pn(∃x(T(x) ∧ ∀y¬T′(x, y)))

⩽ ∑
c∈[U]k

Pn(T(c) ∧ ∀y¬T′(c, y))

= n(n − 1) · · · (n − k + 1)Pn(T(c1, . . . , ck) ∧ ∀y¬T′(c1, . . . , ck, y)), by symmetry

⩽ nkPn(T(c1, . . . , ck) ∧ ∀y¬T′(c1, . . . , ck, y))

⩽ nkPn(∀y¬T′(c1, . . . , ck, y))

⩽ nkPn(
n∧

i=k+1

¬T′(c1, . . . , ck, ci))

⩽ nkPn(
n∧

i=k+1

¬A(c1, . . . , ck, ci))

= nk
n

∏
i=k+1

Pn(¬A(c1, . . . , ck, ci)), by independence

= nk
n

∏
i=k+1

(
1 − 1

22k+1

)

= nk
(

1 − 1
22k+1

)n−k

→ 0 as n → ∞

Since Pn(ET,T′) + Pn(¬ET,T′) = 1, we have Pn(ET,T′) → 1, n → ∞.
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9. M. Rašković, Classical logic with some probability operators, Publication
de l’Institut Math. 53, 1-3, 1993


	Logic and Probability
	1. Why specify probability functions on sentences of predicate languages?
	2. Very large finite phenomena
	3. Axiomatization issues
	Appendix

