
Regionales Rechenzentrum Erlangen (RRZE)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Concepts of High Performance

Computing

Georg Hager∗ Gerhard Wellein†

March 2008

∗georg.hager@rrze.uni-erlangen.de
†gerhard.wellein@rrze.uni-erlangen.de

Contents

I Architecture and programming of HPC systems 1

1 Modern microprocessor systems 4

1.1 Microprocessor architecture . 4
1.1.1 Performance metrics and benchmarks 5
1.1.2 Transistors galore: Moore’s Law 7
1.1.3 Pipelining . 9
1.1.4 Superscalarity . 12

1.2 Memory hierarchies . 13
1.2.1 Cache . 14
1.2.2 Cache mapping . 16
1.2.3 Prefetch . 18

1.3 Multi-core processors . 20

2 Parallel computing 23

2.1 Basic principles of parallelism . 23
2.2 Parallelization strategies . 25

2.2.1 Data parallelism . 25
2.2.2 Functional parallelism . 27

2.3 Performance models for parallel scalability 28
2.3.1 Scalability limitations . 29
2.3.2 Parallel efficiency . 30
2.3.3 Refined performance models . 31

3 Distributed-memory computing 34

3.1 Message Passing . 35
3.2 A brief glance on MPI . 36
3.3 Basic performance characteristics of networks 40

4 Shared-memory computing 43

4.1 UMA . 43
4.2 ccNUMA . 44
4.3 Cache coherence . 46
4.4 Short introduction to OpenMP . 47

4.4.1 OpenMP worksharing and data scoping 48
4.4.2 Loop scheduling . 49
4.4.3 Protecting shared data . 51
4.4.4 Miscellaneous . 52

5 Conclusion and outlook 55

iii

II Optimization techniques for scientific computing 56

6 Basic scalar optimization techniques 58

6.1 Common sense . 58
6.1.1 Do less work! . 58
6.1.2 Avoid expensive operations! . 59
6.1.3 Shrink the working set! . 60

6.2 Simple measures, high impact . 60
6.2.1 Elimination of common subexpressions 60
6.2.2 Avoiding branches . 60
6.2.3 Using SIMD instruction sets . 61
6.2.4 Using compiler logs . 63

7 Data access 64

7.1 Balance and lightspeed estimates . 64
7.2 Storage order . 65
7.3 Case study: Dense matrix transpose . 66
7.4 Algorithm classification and access optimizations 70

7.4.1 O(N)/O(N) . 70
7.4.2 O(N2)/O(N2) . 71
7.4.3 O(N3)/O(N2) . 75

7.5 Case study: Sparse matrix-vector multiply 77
7.5.1 Sparse matrix storage schemes 77
7.5.2 Optimizing JDS sparse MVM 80

8 Efficient OpenMP programming 83

8.1 Performance pitfalls . 83
8.1.1 OpenMP overhead . 83
8.1.2 False sharing . 85

8.2 Case study: Parallel sparse matrix-vector multiply 86

9 ccNUMA 89

9.1 Locality of access on ccNUMA . 89
9.2 Case study: ccNUMA optimization of sparse MVM 91
9.3 Pinning . 92

10 Conclusion and outlook 94

iv

Part I

Architecture and programming of high

performance computing systems

1

Preface to part I

In the past two decades the accessible compute power for numerical simulations has in-
creased by more than three orders of magnitude. Fields like theoretical physics, theoretical
chemistry, engineering science, and materials science to name just a few, have largely ben-
efited from this development because the complex interactions often exceed the capabili-
ties of analytical approaches and require sophisticated numerical simulations. The signifi-
cance of these simulations, which may require large amounts of data and compute cycles,
is frequently determined both by the choice of an appropriate numerical method or solver
and the efficient use of modern computers. In particular, the latter point is widely under-
estimated and requires an understanding of the basic concepts of current (super)computer
systems.

In this first part we present a comprehensive introduction to the architectural concepts
and performance characteristics of state-of-the art high performance computers, ranging
from desktop PCs over “poor man’s” Linux clusters to leading edge supercomputers with
thousands of processors. In Chapter 1 we discuss basic features of modern “commodity”
microprocessors with a slight focus on Intel and AMD products. Vector systems (NEC
SX8) are briefly touched. The main emphasis is on the various approaches used for on-
chip parallelism and data access, including cache design, and the resulting performance
characteristics.

In Chapter 2 we turn to the fundamentals of parallel computing. First we explain the
basics and limitations of parallelism without specialization to a concrete method or com-
puter system. Simple performance models are established which help to understand the
most severe bottlenecks that will show up with parallel programming.

In terms of concrete manifestations of parallelism we then cover the principles of distri-
buted-memory parallel computers, of which clusters are a variant. These systems are pro-
grammed using the widely accepted message passing paradigm where processes running
on the compute nodes communicate via a library that sends and receives messages be-
tween them and thus serves as an abstraction layer to the hardware interconnect. Whether
the program is run on an inexpensive cluster with bare Gigabit Ethernet or on a special-
purpose vector system featuring a high-performance switch like the NEC IXS does not
matter as far as the parallel programming paradigm is concerned. The Message Passing
Interface (MPI) has emerged as the quasi-standard for message passing libraries. We in-
troduce the most important MPI functionality using some simple examples in Chapter 3.
As the network is often a performance-limiting aspect with MPI programming, some com-
ments are made about basic performance characteristics of networks and the influence of
bandwidth and latency on overall data transfer efficiency.

Price/performance considerations usually drive distributed-memory parallel systems in-
to a particular direction of design. Compute nodes comprise multiple processors which
share the same address space (“shared memory”). Two types of shared memory nodes
are in wide use and will be discussed in Chapter 4: The uniform memory architecture
(UMA) provides the same view/performance of physical memory for all processors and is
used, e.g., in most current Intel-based systems. With the success of AMD Opteron CPUs

2

Contents 3

in combination with HyperTransport technology the cache-coherent non-uniform memory
architecture (ccNUMA) has gained increasing attention. The concept of having a single
address space on a physically distributed memory (each processor can access local and
remote memory) allows for scaling available memory bandwith but requires special care
in programming and usage.

Common to all shared-memory systems are mechanisms for establishing cache coher-
ence, i.e. ensuring consistency of the different views to data on different processors in
presence of caches. One possible implementation of a cache coherence protocol is cho-
sen to illustrate the potential bottlenecks that coherence traffic may impose. Finally, an
introduction to the current standard for shared-memory scientific programming, OpenMP,
is given.

1 Architecture and performance

characteristics of modern microprocessor

systems

1.1 Microprocessor architecture

In the “old days” of scientific supercomputing roughly between 1975 and 1995, leading-
edge high performance systems were specially designed for the HPC market by companies
like Cray, NEC, Thinking Machines, or Meiko. Those systems were way ahead of stan-
dard “commodity” computers in terms of performance and price. Microprocessors, which
had been invented in the early 1970s, were only mature enough to hit the HPC market by
the end of the 1980s, and it was not until the end of the 1990s that clusters of standard
workstation or even PC-based hardware had become competitive at least in terms of peak
performance. Today the situation has changed considerably. The HPC world is dominated
by cost-effective, off-the-shelf systems with microprocessors that were not primarily de-
signed for scientific computing. A few traditional supercomputer vendors act in a niche
market. They offer systems that are designed for high application performance on the sin-
gle CPU level as well as for highly parallel workloads. Consequently, the scientist is likely
to encounter commodity clusters first and only advance to more specialized hardware as
requirements grow. For this reason we will mostly be focused on microprocessor-based
systems in this paper. Vector computers show a different programming paradigm which is
in many cases close to the requirements of scientific computation, but they have become
rare animals.

Microprocessors are probably the most complicated machinery that man has ever cre-
ated. Understanding all inner workings of a CPU is out of the question for the scientist
and also not required. It is helpful, though, to get a grasp of the high-level features in order
to understand potential bottlenecks. Fig. 1.1 shows a very simplified block diagram of a
modern microprocessor. The components that actually do “work” for a running applica-
tion are the arithmetic units for floating-point (FP) and integer (INT) operations and make
up for only a very small fraction of chip area. The rest consists of administrative logic that
helps to feed those units with operands. All operands must reside in CPU registers which
are generally divided into floating-point and integer (or “general purpose”) varieties. Typ-
ical CPUs nowadays have between 16 and 128 registers of both kinds. Load (LD) and
store (ST) units handle instructions that transfer data to and from registers. Instructions
are sorted into several queues, waiting to be executed, probably not in the order they were
issued (see below). Finally, caches hold data and instructions to be (re-)used soon. A lot of
additional logic, i.e. branch prediction, reorder buffers, data shortcuts, transaction queues
etc. that we cannot touch upon here is built into modern processors. Vendors provide
extensive documentation about those details [1, 2].

4

1.1 Microprocessor architecture 5

IN
T

/F
P

 q
u

e
u

e
M

e
m

o
ry

 q
u

e
u

e

M
e

m
o

ry
in

te
rf

a
c

e

F
P

 r
e

g
.

fi
le

IN
T

 r
e

g
.

fi
le

FP
add

mult
FP

shift
mask

INT
op

LD

ST

L1D
cache

cache
L1I

L
2

 u
n

if
ie

d
 c

a
c

h
e

Figure 1.1: Simplified
block diagram of a
typical microproces-
sor.

1.1.1 Performance metrics and benchmarks

All those components can operate at some maximum speed called peak performance.
Whether this limit can be reached with a specific application code depends on many fac-
tors and is one of the key topics of Section 6. Here we would like to introduce some
basic performance metrics that can quantify the “speed” of a CPU. Scientific computing
tends to be quite centric to floating-point data, usually with “double precision” (DP). The
performance at which the FP units generate DP results for multiply and add operations
is measured in floating-point operations per second (Flops/sec). The reason why more
complicated arithmetic (divide, square root, trigonometric functions) is not counted here
is that those are executed so slowly compared to add and multiply as to not contribute
significantly to overall performance in most cases (see also Section 6). High performance
software should thus try to avoid such operations as far as possible. At the time of writing,
standard microprocessors feature a peak performance between 4 and 12 GFlops/sec.

As mentioned above, feeding arithmetic units with operands is a complicated task. The
most important data paths from the programmer’s point of view are those to and from
the caches and main memory. The speed, or bandwidth of those paths is quantified in
GBytes/sec. The GFlops/sec and GBytes/sec metrics usually suffice for explaining most
relevant performance features of microprocessors.1

Fathoming the chief performance characteristics of a processor is one of the purposes
of low-level benchmarking. A low-level benchmark is a program that tries to test some
specific feature of the architecture like, e.g., peak performance or memory bandwidth. One
of the most prominent examples is the vector triad. It comprises a nested loop, the inner
level executing a combined vector multiply-add operation (see Listing 1.1). The purpose
of this benchmark is to measure the performance of data transfers between memory and
arithmetic units of a microprocessor. On the inner level, three load streams for arrays B, C
and D and one store stream for A are active. Depending on N, this loop might execute in a
very small time, which would be hard to measure. The outer loop thus repeats the triad R

times so that execution time becomes large enough to be accurately measurable. In a real

1Please note that the “giga-” and “mega-” prefixes refer to a factor of 109 and 106, respectively, when used
in conjunction with ratios like bandwidth or performance. Since recently, the prefixes “mebi-”, “gibi-”
etc. are frequently used to express quantities in powers of two, i.e. 1 MiB=220 bytes.

6 1 Modern microprocessor systems

Listing 1.1: Basic code fragment for the vector triad benchmark, including performance
measurement.

double precision A(N),B(N),C(N),D(N),S,E,MFLOPS

S = get_walltime()

do j=1,R

do i=1,N

A(i) = B(i) + C(i) * D(i) ! 3 loads, 1 store

enddo

call dummy(A,B,C,D) ! prevent loop interchange

enddo

E = get_walltime()

MFLOPS = R*N*2.d0/((E-S)*1.d6) ! compute MFlop/sec rate

benchmarking situation one would choose R according to N so that the overall execution
time stays roughly constant for different N.

Still the outer loop serves another purpose. In situations where N is small enough to fit
into some processor cache, one would like the benchmark to reflect the performance of this
cache. With R suitably chosen, startup effects become negligible and this goal is achieved.

The aim of the dummy() subroutine is to prevent the compiler from doing an obvious
optimization: Without the call, the compiler might discover that the inner loop does not
depend at all on the outer loop index j and drop the outer loop right away. The call to
dummy(), which should reside in another compilation unit, fools the compiler into believ-
ing that the arrays may change between outer loop iterations. This effectively prevents the
optimization described, and the cost for the call are negligible as long as N is not too small.
Optionally, the call can be masked by an if statement whose condition is never true (a fact
that must of course also be hidden from the compiler).

The MFLOPS variable is computed to be the MFlops/sec rate for the whole loop nest.
Please note that the most sensible time measure in benchmarking is wallclock time. Any
other “time” that the runtime system may provide, first and foremost the often-used CPU
time, is prone to misinterpretation because there might be contributions from I/O, context
switches, other processes etc. that CPU time cannot encompass. This is even more true for
parallel programs (see Section 2).

Fig. 1.2 shows performance graphs for the vector triad obtained on current microproces-
sor and vector systems. For very small loop lengths we see poor performance no matter
which type of CPU or architecture is used. On standard microprocessors, performance
grows with N until some maximum is reached, followed by several sudden breakdowns.
Finally, performance stays constant for very large loops. Those characteristics will be
analyzed and explained in the following sections.

Vector processors (dotted line in Fig. 1.2) show very contrasting features. The low-
performance region extends much farther than on microprocessors, but after saturation at
some maximum level there are no breakdowns any more. We conclude that vector systems
are somewhat complementary to standard CPUs in that they meet different domains of
applicability. It may, however, be possible to optimize real-world code in a way that
circumvents the low-performance regions. See Section 6 for details.

Low-level benchmarks are powerful tools to get information about the basic capabilities
of a processor. However, they often cannot accurately predict the behavior of “real” appli-

1.1 Microprocessor architecture 7

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N

0

1000

2000

3000

4000
M

F
lo

p
s/

se
c

Intel Xeon/Netburst (3.2 GHz)
Intel Xeon/Core (2.66 GHz)
AMD Opteron (2.0 GHz)
NEC SX8 (2.0 GHz) Figure 1.2: Serial vec-

tor triad performance
data for different ar-
chitectures. Note the
entirely different per-
formance characteris-
tics of the vector pro-
cessor (NEC SX8).

cation code. In order to decide whether some CPU or architecture is well-suited for some
application (e.g., in the run-up to a procurement), the only safe way is to prepare applica-
tion benchmarks. This means that an application code is used with input parameters that
reflect as closely as possible the real requirements of production runs but lead to a runtime
short enough for testing (no more than a few minutes). The decision for or against a cer-
tain architecture should always be heavily based on application benchmarking. Standard
benchmark collections like the SPEC suite can only be rough guidelines.

1.1.2 Transistors galore: Moore’s Law

Computer technology had been used for scientific purposes and, more specifically, for nu-
merical calculations in physics long before the dawn of the desktop PC. For more than
30 years scientists could rely on the fact that no matter which technology was imple-
mented to build computer chips, their “complexity” or general “capability” doubled about
every 24 months. In its original form, Moore’s Law stated that the number of compo-
nents (transistors) on a chip required to hit the “sweet spot” of minimal manufacturing
cost per component would increase at the indicated rate [3]. This has held true since the
early 1960s despite substantial changes in manufacturing technologies that have happened
over the decades. Amazingly, the growth in complexity has always roughly translated to
an equivalent growth in compute performance, although the meaning of “performance”
remains debatable as a processor is not the only component in a computer (see below for
more discussion regarding this point).

Increasing chip transistor counts and clock speeds have enabled processor designers to
implement many advanced techniques that lead to improved application performance. A
multitude of concepts have been developed, including the following:

1. Pipelined functional units. Of all innovations that have entered computer design,
pipelining is perhaps the most important one. By subdividing complex operations
(like, e.g., floating point addition and multiplication) into simple components that
can be executed using different functional units on the CPU, it is possible to increase
instruction throughput, i.e. the number of instructions executed per clock cycle. Op-
timally pipelined execution leads to a throughput of one instruction per cycle. At

8 1 Modern microprocessor systems

the time of writing, processor designs exist that feature pipelines with more than 30
stages. See the next section on page 9 for details.

2. Superscalar architecture. Superscalarity provides for an instruction throughput of
more than one per cycle by using multiple, identical functional units concurrently.
This is also called instruction-level parallelism (ILP). Modern microprocessors are
up to six-way superscalar.

3. Out-of-order execution. If arguments to instructions are not available “on time”, e.g.
because the memory subsystem is too slow to keep up with processor speed, out-
of-order execution can avoid pipeline bubbles by executing instructions that appear
later in the instruction stream but have their parameters available. This improves in-
struction throughput and makes it easier for compilers to arrange machine code for
optimal performance. Current out-of-order designs can keep hundreds of instruc-
tions in flight at any time, using a reorder buffer that stores instructions until they
become eligible for execution.

4. Larger caches. Small, fast, on-chip memories serve as temporary data storage for
data that is to be used again “soon” or that is close to data that has recently been
used. This is essential due to the increasing gap between processor and memory
speeds (see Section 1.2). Enlarging the cache size is always good for application
performance.

5. Advancement of instruction set design. In the 1980s, a general move from the CISC
to the RISC paradigm took place. In CISC (Complex Instruction Set Computing),
a processor executes very complex, powerful instructions, requiring a large effort
for decoding but keeping programs small and compact, lightening the burden on
compilers. RISC (Reduced Instruction Set Computing) features a very simple in-
struction set that can be executed very rapidly (few clock cycles per instruction; in
the extreme case each instruction takes only a single cycle). With RISC, the clock
rate of microprocessors could be increased in a way that would never have been
possible with CISC. Additionally, it frees up transistors for other uses. Nowadays,
most computer architectures significant for scientific computing use RISC at the low
level. Recently, Intel’s Itanium line of processors have introduced EPIC (Explicitly
Parallel Instruction Computing) which extends the RISC idea to incorporate infor-
mation about parallelism in the instruction stream, i.e. which instructions can be
executed in parallel. This reduces hardware complexity because the task of estab-
lishing instruction-level parallelism is shifted to the compiler, making out-of-order
execution obsolete.

In spite of all innovations, processor vendors have recently been facing high obstacles in
pushing performance limits to new levels. It becomes more and more difficult to exploit the
potential of ever-increasing transistor numbers with standard, monolithic RISC processors.
Consequently, there have been some attempts to simplify the designs by actually giving up
some architectural complexity in favor of more straightforward ideas like larger caches,
multi-core chips (see below) and even heterogeneous architectures on a single chip.

1.1 Microprocessor architecture 9

B(1)
C(1)

B(2)
C(2)

B(3)
C(3)

B(4)
C(4)

B(N)
C(N)

B(1)
C(1)

B(2)
C(2)

B(3)
C(3)

B(4)
C(4)

B(5)
C(5)

B(N)
C(N)

B(2)
C(2)

B(3)
C(3)

B(1)
C(1)

B(N)
C(N)

Multiply
mantissas

Add
exponents

Normalize
result

Insert
sign

Separate
mant./exp.

(N−4)
A

(N−3)
A A

(N−2)
A

(N−1)A(1) A(N)

(N−3)
A

(N−2)
A A

(N−1) A(N)A(1) A(2)

C(N−1)

B(N−1)

B(N−2)

C(N−2)

B(N−1)

C(N−1)

...

...

...

...

...

1 2 3 4 5 N N+1 N+2 N+3 N+4...

Cycle

Wind−down

Wind−up

Figure 1.3: Timeline for a simplified floating-point multiplication pipeline that executes
A(:)=B(:)*C(:). One result is generated on each cycle after a five-cycle wind-up phase.

1.1.3 Pipelining

Pipelining in microprocessors serves the same purpose as assembly lines in manufacturing:
Workers (functional units) do not have to know all details about the final product but can
be highly skilled and specialized for a single task. Each worker executes the same chore
over and over again on different objects, handing the half-finished product to the next
worker in line. If it takes m different steps to finish the product, m products are continually
worked on in different stages of completion. If all tasks are carefully tuned to take the
same amount of time (the “time step”), all workers are continuously busy. At the end, one
finished product per time step leaves the assembly line.

Complex operations like loading and storing data or performing floating-point arith-
metic cannot be executed in a single cycle without excessive hardware requirements.
Luckily, the assembly line concept is applicable here. The most simple setup is a “fetch–
decode–execute” pipeline, in which each stage can operate independently of the others.
While an instruction is being executed, another one is being decoded and a third one is
being fetched from instruction (L1I) cache. These still complex tasks are usually broken
down even further. The benefit of elementary subtasks is the potential for a higher clock
rate as functional units can be kept simple. As an example, consider floating-point mul-
tiplication for which a possible division in to five subtasks is depicted in Fig. 1.3. For a
vector product A(:)=B(:)*C(:), execution begins with the first step, separation of man-
tissa and exponent, on elements B(1) and C(1). The remaining four functional units are
idle at this point. The intermediate result is then handed to the second stage while the first
stage starts working on B(2) and C(2). In the second cycle, only 3 out of 5 units are still
idle. In the fifth cycle the pipeline has finished its so-called wind-up phase (in other words,
the multiply pipeline has a latency of five cycles). From then on, all units are continuously
busy, generating one result per cycle (having a pipeline throughput of one). When the first
pipeline stage has finished working on B(N) and C(N), the wind-down phase starts. Four
cycles later, the loop is finished and all results have been produced.

In general, for a pipeline of depth (or latency) m, executing N independent, subsequent
operations takes N + m− 1 steps. We can thus calculate the expected speedup versus a

10 1 Modern microprocessor systems

1 10 100 1000
N

0

0.2

0.4

0.6

0.8

1
N

/T
pi

pe

m=5
m=10
m=30
m=100

Figure 1.4: Pipeline
throughput as a func-
tion of the number
of independent opera-
tions. m is the pipeline
depth.

general-purpose unit that needs m cycles to generate a single result,

Tseq

Tpipe
=

mN

N +m−1
, (1.1)

which is proportional to m for large N. The throughput is

N

Tpipe
=

1

1+ m−1
N

, (1.2)

approaching 1 for large N (see Fig. 1.4). It is evident that the deeper the pipeline the larger
the number of independent operations must be to achieve reasonable throughput because
of the overhead incurred by wind-up and wind-down phases.

One can easily determine how large N must be in order to get at least p results per cycle
(0 < p ≤ 1):

p =
1

1+ m−1
Nc

=⇒ Nc =
(m−1)p

1− p
. (1.3)

For p = 0.5 we arrive at Nc = m−1. Taking into account that present-day microprocessors
feature overall pipeline lengths between 10 and 35 stages, we can immediately identify a
potential performance bottleneck in codes that use short, tight loops. In superscalar or
even vector processors the situation becomes even worse as multiple identical pipelines
operate in parallel, leaving shorter loop lengths for each pipe.

Another problem connected to pipelining arises when very complex calculations like
FP divide or even transcendental functions must be executed. Those operations tend to
have very long latencies (several tens of cycles for square root or divide, often more than
100 for trigonometric functions) and are only pipelined to a small level or not at all so that
stalling the instruction stream becomes inevitable (this leads to so-called pipeline bubbles).
Avoiding such functions is thus a primary goal of code optimization. This and other topics
related to efficient pipelining will be covered in Section 6.

Software pipelining

Note that although a depth of five is not unrealistic for a FP multiplication pipeline, exe-
cuting a “real” code involves more operations like, e.g., loads, stores, address calculations,

1.1 Microprocessor architecture 11

opcode fetches etc. that must be overlapped with arithmetic. Each operand of an instruc-
tion must find its way from memory to a register, and each result must be written out,
observing all possible interdependencies. It is the compiler’s job to arrange instructions in
a way to make efficient use of all the different pipelines. This is most crucial for in-order
architectures, but also required on out-of-order processors due to the large latencies for
some operations.

As mentioned above, an instruction can only be executed if its operands are available.
If operands are not delivered “on time” to execution units, all the complicated pipelining
mechanisms are of no use. As an example, consider a simple scaling loop:

do i=1,N

A(i) = s * A(i)

enddo

Seemingly simple in a high-level language, this loop transforms to quite a number of
assembly instructions for a RISC processor. In pseudo-code, a naive translation could
look like this:

loop: load A(i)

mult A(i) = A(i) * s

store A(i)

branch -> loop

Although the multiply operation can be pipelined, the pipeline will stall if the load oper-
ation on A(i) does not provide the data on time. Similarly, the store operation can only
commence if the latency for mult has passed and a valid result is available. Assuming
a latency of four cycles for load, two cycles for mult and two cycles for store, it is
clear that above pseudo-code formulation is extremely inefficient. It is indeed required to
interleave different loop iterations to bridge the latencies and avoid stalls:

loop: load A(i+6)

mult A(i+2) = A(i+2) * s

store A(i)

branch -> loop

Here we assume for simplicity that the CPU can issue all four instructions of an iteration
in a single cycle and that the final branch and loop variable increment comes at no cost.
Interleaving of loop iterations in order to meet latency requirements is called software
pipelining. This optimization asks for intimate knowledge about processor architecture
and insight into application code on the side of compilers. Often, heuristics are applied to
arrive at “optimal” code.

It is, however, not always possible to optimally software pipeline a sequence of in-
structions. In the presence of dependencies, i.e., if a loop iteration depends on the result
of some other iteration, there are situations when neither the compiler nor the processor
hardware can prevent pipeline stalls. For instance, if the simple scaling loop from the pre-
vious example is modified so that computing A(i) requires A(i+offset), with offset

being either a constant that is known at compile time or a variable:

12 1 Modern microprocessor systems

10
2

10
4

10
6

N

0

200

400

600

800

1000
M

F
lo

p/
s

A(i)=s*A(i)
A(i)=s*A(i+1)
A(i)=s*A(i-1)

10
2

10
4

10
6

N

0

200

400

600

800

1000 offset= 0
offset=+1
offset=-1

Figure 1.5: Influence of constant (left) and variable (right) offsets on the performance of a
scaling loop. (AMD Opteron 2.0 GHz)

real dependency pseudo dependency general version

do i=2,N

A(i)=s*A(i-1)

enddo

do i=1,N-1

A(i)=s*A(i+1)

enddo

start=max(1,1-offset)

end=min(N,N-offset)

do i=start,end

A(i)=s*A(i+offset)

enddo

As the loop is traversed from small to large indices, it makes a huge difference whether the
offset is negative or positive. In the latter case we speak of a pseudo dependency, because
A(i+1) is always available when the pipeline needs it for computing A(i), i.e. there is no
stall. In case of a real dependency, however, the pipelined computation of A(i) must stall
until the result A(i-1) is completely finished. This causes a massive drop in performance
as can be seen on the left of Fig. 1.5. The graph shows the peformance of above scaling
loop in MFlops/sec versus loop length. The drop is clearly visible only in cache because
of the small latencies of on-chip caches. If the loop length is so large that all data has to
be fetched from memory, the impact of pipeline stalls is much less significant.

Although one might expect that it should make no difference whether the offset is known
at compile time, the right graph in Fig. 1.5 shows that there is a dramatic peformance
penalty for a variable offset. Obviously the compiler cannot optimally software pipeline
or otherwise optimize the loop in this case. This is actually a common phenomenon, not
exclusively related to software pipelining; any obstruction that hides information from the
compiler can have a substantial performance impact.

There are issues with software pipelining linked to the use of caches. See below for
details.

1.1.4 Superscalarity

If a processor is designed to be capable of executing more than one instruction or, more
generally, producing more than one “result” per cycle, this goal is reflected in many of its
design details:

• Multiple instructions can be fetched and decoded concurrently (4–6 nowadays).

• Address and other integer calculations are performed in multiple integer (add, mult,
shift, mask) units (2–6).

1.2 Memory hierarchies 13

�����
�����
�����

�����
�����
�����

��
��
��
��
��

��
��
��
��
��

�������
�������
�������
�������

Main memory

L2 cache

L1 cache

Registers

Arithmetic units

"DRAM gap"

C
P

U
 c

h
ip

Figure 1.6: Left: simpli-
fied data-centric memory
hierarchy in a cache-based
microprocessor (direct ac-
cess paths from registers
to memory are not avail-
able on all architectures).
There is usually a sepa-
rate L1 cache for instruc-
tions. This model must be
mapped to the data access
requirements of an appli-
cation (right).

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Application data

Computation

• Multiple DP floating-point pipelines can run in parallel. Often there are one or two
combined mult-add pipes that perform a=b+c*d with a throughput of one each.

• SIMD (Single Instruction Multiple Data) extensions are special instructions that
issue identical operations on a whole array of integer or FP operands, probably in
special registers. Whether SIMD will pay off on a certain code depends crucially on
its recurrence structure and cache reuse. Examples are Intel’s “SSE” and successors,
AMD’s “3dNow!” and the “AltiVec” extensions in Power and PowerPC processors.
See Section 6.2.3 for details and examples.

• Caches are fast enough to sustain more than one DP load or store operation per
cycle, and there are as many execution units for loads and stores available (2–4).

Out-of-order execution and compiler optimization must work together in order to fully
exploit superscalarity. However, even on the most advanced architectures it is extremely
hard for compiler-generated code to achieve a throughput of more than 2–3 instructions
per cycle. This is why applications with very high demands for performance sometimes
still resort to the use of assembly language.

1.2 Memory hierarchies

Data can be stored in a computer system in a variety of ways. As described above, CPUs
feature a set of registers for instruction arguments that can be accessed without any delays.
In addition there are one or more small but very fast caches that hold data items that
have been used recently. Main memory is much slower but also much larger than cache.
Finally, data can be stored on disk and copied to main memory as needed. This a is a
complex memory hierarchy, and it is vital to understand how data transfer works between
the different levels in order to identify performance bottlenecks. In the following we will
concentrate on all levels from CPU to main memory (see Fig. 1.6).

14 1 Modern microprocessor systems

1.2.1 Cache

Caches are low-capacity, high-speed memories that are nowadays usually integrated on
the CPU die. The need for caches can be easily understood by the fact that data transfer
rates to main memory are painfully slow compared to the CPU’s arithmetic performance.
At a peak performance of several GFlops/sec, memory bandwidth, i.e. the rate at which
data can be transferred from memory to the CPU, is still stuck at a couple of GBytes/sec,
which is entirely insufficient to feed all arithmetic units and keep them busy continuously
(see Section 6 for a more thorough analysis). To make matters worse, in order to transfer a
single data item (usually one or two DP words) from memory, an initial waiting time called
latency occurs until bytes can actually flow. Often, latency is defined as the time it takes
to transfer a zero-byte message. Memory latency is usually of the order of several hundred
CPU cycles and is composed of different contributions from memory chips, the chipset and
the processor. Although Moore’s Law still guarantees a constant rate of improvement in
chip complexity and (hopefully) performance, advances in memory performance show up
at a much slower rate. The term DRAM gap has been coined for the increasing “distance”
between CPU and memory in terms of latency and bandwidth.

Caches can alleviate the effects of the DRAM gap in many cases. Usually there are at
least two levels of cache (see Fig. 1.6), and there are two L1 caches, one for instructions
(“I-cache”) and one for data. Outer cache levels are normally unified, storing data as well
as instructions. In general, the “closer” a cache is to the CPU’s registers, i.e. the higher its
bandwidth and the lower its latency, the smaller it must be to keep administration overhead
low. Whenever the CPU issues a read request (“load”) for transferring a data item to a
register, first-level cache logic checks whether this item already resides in cache. If it does,
this is called a cache hit and the request can be satisfied immediately, with low latency.
In case of a cache miss, however, data must be fetched from outer cache levels or, in the
worst case, from main memory. If all cache entries are occupied, a hardware-implemented
algorithm evicts old items from cache and replaces them with new data. The sequence of
events for a cache miss on a write is more involved and will be described later. Instruction
caches are usually of minor importance as scientific codes tend to be largely loop-based;
I-cache misses are rare events.

Caches can only have a positive effect on performance if the data access pattern of
an application shows some locality of reference. More specifically, data items that have
been loaded into cache are to be used again “soon enough” to not have been evicted in
the meantime. This is also called temporal locality. Using a simple model, we will now
estimate the performance gain that can be expected from a cache that is a factor of t
faster than memory (this refers to bandwidth as well as latency; a more refined model is
possible but does not lead to additional insight). Let b be the cache reuse ratio, i.e. the
fraction of loads or stores that can be satisfied from cache because there was a recent load
or store to the same address. Access time to main memory (again this includes latency and
bandwidth) is denoted by Tm. In cache, access time is reduced to Tc = Tm/t . For some
finite b , the average access time will thus be Tav = bTc +(1−b)Tm, and we calculate an
access performance gain of

G(t,b) =
Tm

Tav
=

tTc

bTc +(1−b)tTc
=

t

b + t(1−b)
. (1.4)

As Fig. 1.7 shows, a cache can only lead to a significant performance advantage if the hit
ratio is relatively close to one.

1.2 Memory hierarchies 15

0.7 0.75 0.8 0.85 0.9 0.95 1
b

0

5

10

15

20
G

(t
,b

)

t=5
t=10
t=50

Figure 1.7: Per-
formance gain vs.
cache reuse ratio.
t parametrizes the
speed advantage
of cache vs. main
memory.

Unfortunately, supporting temporal locality is not sufficient. Many applications show
streaming patterns where large amounts of data are loaded to the CPU, modified and writ-
ten back, without the potential of reuse “in time”. For a cache that only supports temporal
locality, the reuse ratio b (see above) is zero for streaming. Each new load is expensive as
an item has to be evicted from cache and replaced by the new one, incurring huge latency.
In order to reduce the latency penalty for streaming, caches feature a peculiar organiza-
tion into cache lines. All data transfers between caches and main memory happen on the
cache line level. The advantage of cache lines is that the latency penalty of a cache miss
occurs only on the first miss on an item belonging to a line. The line is fetched from
memory as a whole; neighboring items can then be loaded from cache with much lower
latency, increasing the cache hit ratio g , not to be confused with the reuse ratio b . So if
the application shows some spatial locality, i.e. if the probability of successive accesses
to neighboring items is high, the latency problem can be significantly reduced. The down-
side of cache lines is that erratic data access patterns are not supported. On the contrary,
not only does each load incur a miss and subsequent latency penalty, it also leads to the
transfer of a whole cache line, polluting the memory bus with data that will probably never
be used. The effective bandwidth available to the application will thus be very low. On
the whole, however, the advantages of using cache lines prevail, and very few processor
manufacturers have provided means of bypassing the mechanism.

Assuming a streaming application working on DP floating point data on a CPU with a
cache line length of Lc = 16 words, spatial locality fixes the hit ratio at g = (16−1)/16 =
0.94, a seemingly large value. Still it is clear that performance is governed by main mem-
ory bandwidth and latency — the code is memory-bound. In order for an application to be
truly cache-bound, i.e. decouple from main memory so that performance is not governed
by bandwidth or latency any more, g must be large enough that the time it takes to pro-
cess in-cache data becomes larger than the time for reloading it. If and when this happens
depends of course on the details of the operations performed.

By now we can interpret the performance data for cache-based architectures on the vec-
tor triad in Fig. 1.2. At very small loop lengths, the processor pipeline is too long to be
efficient. Wind-up and wind-down phases dominate and performance is poor. With grow-
ing N this effect becomes negligible, and as long as all four arrays fit into the innermost

16 1 Modern microprocessor systems

cache, performance saturates at a high value that is set by cache bandwidth and the ability
of the CPU to issue load and store instructions. Increasing N a little more gives rise to
a sharp drop in performance because the innermost cache is not large enough to hold all
data. Second-level cache has usually larger latency but similar bandwidth to L1 so that
the penalty is larger than expected. However, streaming data from L2 has the disadvantage
that L1 now has to provide data for registers as well as continuously reload and evict cache
lines from/to L2, which puts a strain on the L1 cache’s bandwidth limits. This is why per-
formance is usually hard to predict on all but the innermost cache level and main memory.
For each cache level another performance drop is observed with rising N, until finally even
the large outer cache is too small and all data has to be streamed from main memory. The
size of the different caches is directly related to the locations of the bandwidth breakdowns.
Section 6 will describe how to predict performance for simple loops from basic parameters
like cache or memory bandwidths and the data demands of the application.

Storing data is a little more involved than reading. In presence of caches, if data to
be written out already resides in cache, a write hit occurs. There are several possibilities
for handling this case, but usually outermost caches work with a write-back strategy: The
cache line is modified in cache and written to memory as a whole when evicted. On a
write miss, however, cache-memory consistency dictates that the cache line in question
must first be transferred from memory to cache before it can be modified. This is called
read for ownership (RFO) and leads to the situation that a data write stream from CPU
to memory uses the bus twice, once for all the cache line RFOs and once for evicting
modified lines (the data transfer requirement for the triad benchmark code is increased by
25 % due to RFOs). Consequently, streaming applications do not usually profit from write-
back caches and there is often a wish for avoiding RFO transactions. Some architectures
provide this option, and there are generally two different strategies:

• Nontemporal stores. These are special store instructions that bypass all cache levels
and write directly to memory. Cache does not get “polluted” by store streams that do
not exhibit temporal locality anyway. In order to prevent excessive latencies, there
is usually a write combine buffer of sorts that bundles a number of successive stores.

• Cache line zero. Again, special instructions serve to “zero out” a cache line and mark
it as modified without a prior read. The data is written to memory when evicted. In
comparison to nontemporal stores, this technique uses up cache space for the store
stream. On the other hand it does not slow down store operations in cache-bound
situations.

Both can be applied by the compiler and hinted at by the programmer by means of direc-
tives. In very simple cases compilers are able to apply those instructions automatically in
their optimization stages, but one must take care to not slow down a cache-bound code by
using nontemporal stores, rendering it effectively memory-bound.

1.2.2 Cache mapping

So far we have implicitly assumed that there is no restriction on which cache line can be
associated with which memory locations. A cache design that follows this rule is called
fully associative. Unfortunately it is quite hard to build large, fast and fully associative
caches because of large bookkeeping overhead: For each cache line the cache logic must

1.2 Memory hierarchies 17

C
ac

h
e

Memory

Figure 1.8: In a direct-mapped cache, memory locations which lie a multiple of the cache
size apart are mapped to the same cache line (shaded boxes).

store its location in the CPU’s address space, and each memory access must be checked
against the list of all those addresses. Furthermore, the decision which cache line to replace
next if the cache is full is made by some algorithm implemented in hardware. Usually,
there is a least recently used (LRU) strategy that makes sure only the “oldest” items are
evicted.

The most straightforward simplification of this expensive scheme consists in a direct-
mapped cache which maps the full cache size repeatedly into memory (see Fig. 1.8).
Memory locations that lie a multiple of the cache size apart are always mapped to the
same cache line, and the cache line that corresponds to some address can be obtained very
quickly by masking out the most significant bits. Moreover, an algorithm to select which
cache line to evict is pointless. No hardware and no clock cycles need to be spent for it.

The downside of a direct-mapped cache is that it is disposed toward cache thrashing,
which means that cache lines are loaded into and evicted from cache in rapid succession.
This happens when an application uses many memory locations that get mapped to the
same cache line. A simple example would be a “strided” triad code for DP data:

do i=1,N,CACHE SIZE/8

A(i) = B(i) + C(i) * D(i)

enddo

By using the cache size in units of DP words as a stride, successive loop iterations hit the
same cache line so that every memory access generates a cache miss. This is different
from a situation where the stride is equal to the line length; in that case, there is still some
(albeit small) N for which the cache reuse is 100 %. Here, the reuse fraction is exactly zero
no matter how small N may be.

To keep administrative overhead low and still reduce the danger of cache thrashing, a
set-associative cache is divided into m direct-mapped caches equal in size, so-called ways.

18 1 Modern microprocessor systems

Memory

C
ac

he

Way 2
Way 1

Figure 1.9: In an m-way set-associative cache, memory locations which are located a mul-

tiple of 1
m th of the cache size apart can be mapped to either of m cache lines (here shown

for m = 2).

The number of ways m is the number of different cache lines a memory address can be
mapped to (see Fig. 1.9 for an example of a two-way set-associative cache). On each
memory access, the hardware merely has to determine which way the data resides in or, in
the case of a miss, which of the m possible cache lines should be evicted.

For each cache level the tradeoff between low latency and prevention of thrashing must
be considered by processor designers. Innermost (L1) caches tend to be less set-associative
than outer cache levels. Nowadays, set-associativity varies between two- and 16-way. Still,
the effective cache size, i.e. the part of the cache that is actually useful for exploiting spatial
and temporal locality in an application code could be quite small, depending on the number
of data streams, their strides and mutual offsets. See Section 6 for examples.

1.2.3 Prefetch

Although exploiting spatial locality by the introduction of cache lines improves cache
efficiency a lot, there is still the problem of latency on the first miss. Fig. 1.10 visualizes
the situation for a simple vector norm kernel:

do i=1,N

S = S + A(i)*A(i)

enddo

There is only one load stream in this code. Assuming a cache line length of four elements,
three loads can be satisfied from cache before another miss occurs. The long latency leads
to long phases of inactivity on the memory bus.

Making the lines very long will help, but will also slow down applications with erratic
access patterns even more. As a compromise one has arrived at typical cache line lengths
between 64 and 128 bytes (8–16 DP words). This is by far not big enough to get around
latency, and streaming applications would suffer not only from insufficient bandwidth but

1.2 Memory hierarchies 19

1

2

3

4

5

6

7

It
e

ra
ti

o
n

 #
time

LD cache miss: latency use data

use data

use data

use data

cache miss: latencyLD use data

use data

use dataLD

LD

LD

LD

LD

Figure 1.10: Timing diagram on the influence of cache misses and subsequent latency
penalties for a vector norm loop. The penalty occurs on each new miss.

1

2

3

4

5

6

7

It
e
ra

ti
o

n
 #

8

9

time

use data

use data

use data

use data

use data

use data

use data

use data

use dataLD

LD

LD

PF cache miss: latency

PF cache miss: latency

LD

LD

LD

LD

LD

LD

cache miss: latencyPF

Figure 1.11: Computation and data transfer can be overlapped much better with prefetch-
ing. In this example, two outstanding prefetches are required to hide latency completely.

also from low memory bus utilization. Assuming a typical commodity system with a
memory latency of 100 ns and a bandwidth of 4 GBytes/sec, a single 128-byte cache line
transfer takes 32 ns, so 75 % of the potential bus bandwidth is unused. Obviously, latency
has an even more severe impact on performance than bandwidth.

The latency problem can be solved in many cases, however, by prefetching. Prefetching
supplies the cache with data ahead of the actual requirements of an application. The com-
piler can do this by interleaving special instructions with the software pipelined instruction
stream that “touch” cache lines early enough to give the hardware time to load them into
cache (see Fig. 1.11) asynchronously. This assumes there is the potential of asynchronous
memory operations, a prerequisite that is to some extent true for current architectures.
As an alternative, some processors feature a hardware prefetcher that can detect regular
access patterns and tries to read ahead application data, keeping up the continuous data
stream and hence serving the same purpose as prefetch instructions. Whichever strategy is
used, it must be emphasized that prefetching requires resources that are limited by design.
The memory subsystem must be able to sustain a certain number of outstanding prefetch

20 1 Modern microprocessor systems

operations, i.e. pending prefetch requests, or else the memory pipeline will stall and la-
tency cannot be hidden completely. We can estimate the number of outstanding prefetches
required for hiding the latency completely: If Tl is the latency and B is the bandwidth, the
transfer of a whole line of length Lc DP words takes a time of

T = Tl +
8Lc

B
. (1.5)

One prefetch operation must be initiated per cache line transfer, and the number of cache
lines that can be transferred during time T is the number of prefetches P that the processor
must be able to sustain (see Fig. 1.11):

P =
T

8Lc/B
(1.6)

As an example, for a cache line length of 128 bytes (16 DP words), B = 6.4 GBytes/sec
and Tl = 140 ns we get P = 160/20 = 8 outstanding prefetches. If this requirement cannot
be met, latency will not be hidden completely and the full memory bandwidth will not be
utilized. On the other hand, an application that executes so many floating-point operations
on the cache line data that they cannot be hidden behind the transfer will not be limited
by bandwidth and put less strain on the memory subsystem (see Sect. 7.1 for appropriate
performance models). In such a case, fewer outstanding prefetches will suffice.

Applications with heavy demands on bandwidth can easily overstrain the prefetch mech-
anism. A second processor core using a shared path to memory can sometimes provide
for the missing prefetches, yielding a slight bandwidth boost (see Sect. 1.3 for more in-
formation on multi-core design). In general, if streaming-style main memory access is
unavoidable, a good programming guideline is to try to establish long continuous data
streams.

Finally, a note of caution is in order. Figs. 1.10 and 1.11 stress the role of prefetching
for hiding latency, but the effects of bandwidth limitations are ignored. It should be clear
that prefetching cannot enhance available memory bandwidth, although the transfer time
for a single cache line is dominated by latency.

1.3 Multi-core processors

In recent years it has become increasingly clear that, although Moore’s Law is still valid
and will be at least for the next decade, standard microprocessors are starting to hit the
“heat barrier”: Switching and leakage power of several-hundred-million-transistor chips
are so large that cooling becomes a primary engineering effort and a commercial concern.
On the other hand, the necessity of an ever-increasing clock frequency is driven by the
insight that architectural advances and growing cache sizes alone will not be sufficient to
keep up the one-to-one correspondence of Moore’s Law with application performance.

Processor vendors are looking for a way out of this dilemma in the form of multi-core
designs. The technical motivation behind multi-core is based on the observation that power
dissipation of modern CPUs is proportional to the third power of clock frequency fc (ac-
tually it is linear in fc and quadratic in supply voltage Vcc, but a decrease in fc allows for a
proportional decrease in Vcc). Lowering fc and thus Vcc can therefore dramatically reduce
power dissipation. Assuming that a single core with clock frequency fc has a performance
of p and a power dissipation of W , some relative change in performance ep = Dp/p will

1.3 Multi-core processors 21

2 4 8 16
m

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

e f

Figure 1.12: Relative
frequency reduction
required to keep a
given power envelope
versus number of
cores on a multi-core
chip. The filled dots
represent available
technology at the time
of writing.

emerge for a relative clock change of e f = D fc/ fc. All other things being equal, |e f | is
an upper limit for |ep|, which in turn will depend on the applications considered. Power
dissipation is

W +DW = (1+ e f)
3W . (1.7)

Reducing clock frequency opens the possibility to place more than one CPU core on the
same die while keeping the same power envelope as before. For m cores, this condition is
expressed as

(1+ e f)
3m = 1 =⇒ e f = m−1/3 −1 (1.8)

Fig. 1.12 shows the required relative frequency reduction with respect to the number of
cores. The overall performance of the multi-core chip,

pm = (1+ ep)pm , (1.9)

should at least match the single-core performance so that

ep >
1

m
−1 (1.10)

is a limit on the performance penalty for a relative clock frequency reduction of e f that
should be observed for multi-core to stay useful.

Of course it is not easily possible to grow the CPU die by a factor of m with a given
manufacturing technology. Hence the most simple way to multi-core is to place separate
CPU dies in a common package. At some point advances in manufacturing technology, i.e.
smaller structure lengths, will then enable the integration of more cores on a die. Addition-
ally, some compromises regarding the single-core performance of a multi-core chip with
respect to the previous generation will be made so that the number of transistors per core
will go down as will the clock frequency. Some manufacturers have even adopted a more
radical approach by designing new, much simpler cores, albeit at the cost of introducing
new programming paradigms.

Finally, the over-optimistic assumption (1.9) that m cores show m times the performance
of a single core will only be valid in the rarest of cases. Nevertheless, multi-core has by
now been adopted by all major processor manufacturers. There are, however, significant
differences in how the cores in a package can be arranged to get good performance. Caches

22 1 Modern microprocessor systems

can be shared or exclusive to each core, the memory interface can be on- or off-chip, fast
data paths between the cores’ caches may or may not exist, etc.

The most important conclusion one must draw from the multi-core transition is the
absolute demand for parallel programming. As the single core performance will at best
stagnate over the years, getting more speed for free through Moore’s law just by waiting
for the new CPU generation does not work any more. The following section outlines the
principles and limitations of parallel programming. More details on dual- and multi-core
designs will be revealed in the section on shared-memory programming on page 43.

In order to avoid any misinterpretation we will always use the terms “core”, “CPU” and
“processor” synonymously.

2 Parallel computing

We speak of parallel computing whenever a number of processors (cores) solve a prob-
lem in a cooperative way. All modern supercomputer architectures depend heavily on
parallelism, and the number of CPUs in large-scale supercomputers increases steadily. A
common measure for supercomputer “speed” has been established by the Top500 list [4]
that is published twice a year and ranks parallel computers based on their performance in
the LINPACK benchmark that solves a dense system of linear equations of unspecified
size. Although LINPACK is not generally accepted as a good metric because it covers
only a single architectural aspect (peak performance), the list can still serve as an impor-
tant indicator for trends in supercomputing. The main tendency is clearly visible from a
comparison of processor number distributions in Top500 systems (see Fig. 2.1): Top of
the line HPC systems do not rely on Moore’s Law alone for performance but parallelism
becomes more important every year. This trend will accelerate even more by the advent of
multi-core processors — the June 2006 list contains only very few dual-core systems (see
also Section 1.3).

2.1 Basic principles of parallelism

Parallelization is the process of formulating a problem in a way that lends itself to con-
current execution by several “execution units” of some kind. This is not only a common
problem in computing but also in many other areas like manufacturing, traffic flow and
even business processes. Ideally, the execution units (workers, assembly lines, border
crossings, CPUs,. . .) are initially given some amount of work to do which they execute in
exactly the same amount of time. Therefore, using N workers, a problem that takes a time
T to be solved sequentially will now take only T/N. We call this a speedup of N.

Of course, reality is not perfect and some concessions will have to be made. Not all
workers might execute at the same speed (see Fig. 2.2), and the tasks might not be easily
partitionable into N equal chunks. Moreover there might be shared resources like, e.g.,
tools that only exist once but are needed by all workers. This will effectively serialize part
of the concurrent execution (Fig. 2.5). Finally, the parallel workflow may require some
communication between workers, adding some overhead that would not be present in the
serial case (Fig. 2.6). All these effects can impose limits on speedup. How well a task can
be parallelized is usually quantified by some scalability metric.

In the following sections we will first identify some of the more common strategies of
parallelization, independent of the hardware and software that is at the programmer’s dis-
posal, and then investigate parallelism on a theoretical level: Simple performance models
will be derived that allow insight into the most prominent limiting factors for scalability.

23

24 2 Parallel computing

5-
8

9-
16

17
-3

2

33
-6

4

65
-1

28
12

9-
25

6
25

7-
51

2
51

3-
10

24
10

25
-2

04
8

2k
-4

k

4k
-8

k

8k
-1

6k
16

k-
32

k
32

k-
64

k
64

k-
12

8k

CPUs

0

50

100

150

200

250

300

sy

st
em

s

June 2000
June 2006

Figure 2.1: Number of sys-
tems vs. processor count
in the June 2000 and June
2006 Top500 lists. The av-
erage number of CPUs has
grown 16-fold in six years.

1 2 3 4 5 6 7 8 9 10 11 12

W1

W2

W3

1 2 3 4

8765

9 10 11 12

��
��
��

��
��
��

�
�
�

�
�
�

W1

W2

W3

1 2 3 4

5 6 7 8

1211109

Figure 2.2: Parallelizing a sequence of tasks (top) using three workers (W1. . . W3). Left
bottom: perfect speedup. Right bottom: some tasks executed by different workers at
different speeds lead to load imbalance. Hatched regions indicate unused resources.

2.2 Parallelization strategies 25

Figure 2.3: Domain decomposition of a two-dimensional simulation with next-neighbor
interactions. Cutting into stripes (left) is simple but incurs more communication than
optimal decomposition (right). Shaded cells participate in network communication.

2.2 Parallelization strategies

2.2.1 Data parallelism

Many simulations in science and engineering work with a simplified picture of reality in
which a computational domain, e.g., some volume of a fluid, is represented as a grid that
defines discrete positions for the physical quantities under consideration. Such grids are
not necessarily cartesian but often adapted to the numerical constraints of the algorithms
used. The goal of the simulation is usually the computation of observables on this grid.
A straightforward way to distribute the work involved across workers, i.e. processors, is
to assign a part of the grid to each worker. This is called domain decomposition. As an
example consider a two-dimensional simulation code that updates physical variables on
a n×n grid. Domain decomposition subdivides the computational domain into N subdo-
mains. How exactly this is to be done is the choice of the programmer, but some guidelines
should be observed (see Fig. 2.3). First, the computational effort should be equal for all
domains to avoid load imbalance (see Fig. 2.2 right). Second, depending on the local-
ity properties of the algorithm, it may be necessary to communicate data across domain
boundaries. E. g., next-neighbor relations require communication of a single data layer.
The data volume to be considered in this case is proportional to the overall area of the
domain cuts. Comparing the two alternatives in Fig. 2.3, one arrives at a communication
cost of n(N−1) for stripe domains, whereas an optimal decomposition into square subdo-
mains leads to a cost of 2n(

√
N−1). Hence for large N the optimal decomposition has an

advantage in communication cost of 2/
√

N. Whether this difference is significant or not
in reality depends on the problem size and other factors, of course.

Note that this calculation depends crucially on the locality of data dependencies, in the
sense that communication cost grows linearly with the distance that has to be bridged in
order to calculate observables at a certain site of the grid. E. g., to get the first derivative of
some quantity with respect to the coordinates, only a next neighbor relation has to be im-
plemented and the communication layers in Fig. 2.3 have a width of one. For higher-order
derivatives this changes significantly, and if there is some long-ranged interaction like a
Coulomb potential, the layers encompass the complete computational domain, making
communication dominant. In such a case, domain decomposition is usually not applicable
and one has to revert to other parallelization strategies.

Domain decomposition has the attractive property that domain boundary area grows

26 2 Parallel computing

Listing 2.1: Straightforward implementation of the Jacobi algorithm

1 do it=1,itmax

2 dphimax=0.d0

3 do k=1,kmax-1

4 do i=1,imax-1

5 dphi=(phi(i+1,k,t0)+phi(i-1,k,t0)-2.d0*phi(i,k,t0))*dy2 &

6 +(phi(i,k+1,t0)+phi(i,k-1,t0)-2.d0*phi(i,k,t0))*dx2

7 dphi=dphi*dt

8 dphimax=max(dphimax,abs(dphi))

9 phi(i,k,t1)=phi(i,k,t0)+dphi

10 enddo

11 enddo

12 ! swap arrays

13 i = t0 ; t0=t1 ; t1=i

14 ! required precision reached?

15 if(dphimax.lt.eps) exit

16 enddo

more slowly than volume if the problem size increases with N constant. Therefore one can
alleviate communication bottlenecks just by choosing a larger problem size. The expected
effects of strong and weak scaling with optimal domain decomposition in three dimensions
will be discussed below.

As an example we will consider a simple Jacobi method for solving the diffusion equa-
tion for a scalar function T (~r, t),

¶T

¶ t
= DT , (2.1)

on a rectangular lattice subject to Dirichlet boundary conditions. The differential operators
are discretized using finite differences (we restrict ourselves to two dimensions with no
loss of generality):

dT (xi,yi)

d t
=

T (xi+1,yi)+T (xi−1,yi)−2T (xi,yi)

(dx)2

+
T (xi,yi−1)+T (xi,yi+1)−2T (xi,yi)

(dy)2
. (2.2)

In each time step, a correction dT to T at coordinate (xi,yi) is calculated by (2.2) using
the “old” values from the four next neighbor points. Of course, the updated T values must
be written to a second array. After all points have been updated (a “sweep”), the algorithm
is repeated. Listing 2.1 shows a possible implementation that uses a simple convergence
criterion in order to solve for the steady state.

This code can be easily parallelized using domain decomposition. If, e. g., the grid is
divided into strips along the x direction (index k in Listing 2.1), each worker performs
a single sweep on its local strip. Subsequently, all boundary values needed for the next
sweep must be communicated to the neighboring domains. On some computer systems this
communication process is transparent to the program because all processors have access
to a common, shared address space (see Chapter 4). In general, however, this cannot be
assumed and some extra grid points, so-called halo or ghost layers, are used to store the

2.2 Parallelization strategies 27

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

Domain 1

Domain 2

Figure 2.4: Using halo
(“ghost”) layers for
communication across
domain boundaries
when solving bound-
ary value problems.
After the local up-
dates in each domain,
the boundary layers
(shaded) are copied
to the halo of the
neighboring domain
(hatched).

boundary data (see Fig. 2.4). After the exchange, each domain is ready for the next sweep.
The whole process is completely equivalent to purely serial execution.

Although the Jacobi method is quite inefficient in terms of convergence properties, it
is very instructive and serves as a prototype for more advanced algorithms. Moreover, it
lends itself to a host of scalar optimization techniques. In Chapter 7, some optimizations
are demonstrated that will significantly improve scalar performance.

2.2.2 Functional parallelism

Sometimes, solving a complete problem can be split into more or less disjoint subtasks
that may have to be executed in some specific order, each one potentially using results of
the previous one as input or being completely unrelated up to some point. The tasks can
be worked on in parallel, using appropriate amounts of resources so that load imbalance is
kept under control. Pipelining hardware in processor cores (see Sect. 1.1.3) is a prominent
example for functional, or task parallelism.

Functional decomposition

Going back to the Jacobi algorithm from the previous section, a typical fine-grained sce-
nario could, for each domain, assign some resources to communication and others to com-
putational work. While the computational resources update local lattice points, communi-
cation can be performed in the background.

28 2 Parallel computing

W1

W2

W3

1

5

9 10

6

2 3

7

11 12

8

4

Figure 2.5: Parallelization in presence of a bot-
tleneck that effectively serializes part of the
concurrent execution. Tasks 3, 7 and 11 can-
not overlap across the dashed “barriers”.

W1

W2

W3

1 2 3 4

8765

9 10 11 12

Figure 2.6: Communication processes
(arrows represent messages) limit scal-
ability if they cannot be overlapped
with each other or with calculation.

Task queueing

On the application level, functional parallelism might be implemented as a work queue that
holds tasks to be completed which get processed as resources become available. Mutual
dependencies are implicit: Whenever a task is enqueued, it is clear that all its dependencies
are fulfilled.

2.3 Performance models for parallel scalability

In order to be able to define scalability we first have to identify the basic measurements on
which derived performance metrics are built. In a simple model, the overall problem size
(“amount of work”) shall be s + p = 1, where s is the serial (non-parallelizable) and p is
the perfectly parallelizable fraction. The 1-CPU (serial) runtime for this case,

T s
f = s+ p , (2.3)

is thus normalized to one. Solving the same problem on N CPUs will require a runtime of

T
p

f = s+
p

N
. (2.4)

This is called strong scaling because the amount of work stays constant no matter how
many CPUs are used. Here the goal of parallelization is minimization of time to solution
for a given problem.

If time to solution is not the primary objective because larger problem sizes (for which
available memory is the limiting factor) are of interest, it is appropriate to scale the problem
size with some power of N so that the total amount of work is s + pNa , where a is a
positive but otherwise free parameter. Here we use the implicit assumption that the serial
fraction s is a constant. We define the serial runtime for the scaled problem as

T s
v = s+ pNa . (2.5)

Consequently, the parallel runtime is

T
p

v = s+ pNa−1 . (2.6)

The term weak scaling has been coined for this approach.
We will see that different scalability metrics with different emphasis on what “perfor-

mance” really means can lead to some counterintuitive results.

2.3 Performance models for parallel scalability 29

2.3.1 Scalability limitations

In a simple ansatz, application speedup can be defined as the quotient of parallel and
serial performance for fixed problem size. In the following we will define “performance”
as “work over time”, unless otherwise noted. Serial performance for fixed problem size
(work) s+ p is thus

Ps
f =

s+ p

T s
f

= 1 , (2.7)

as expected. Parallel performance is in this case

P
p
f =

s+ p

T
p

f (N)
=

1

s+ 1−s
N

, (2.8)

and application speedup (“scalability”) is

Sf =
P

p
f

Ps
f

=
1

s+ 1−s
N

“Amdahl’s Law” (2.9)

We have derived the well-known Amdahl Law which limits application speedup for large N
to 1/s. It answers the question “How much faster (in terms of runtime) does my application
run when I put the same problem on N CPUs?” As one might imagine, the answer to this
question depends heavily on how the term “work” is defined. If, in contrast to what has
been done above, we define “work” as only the parallelizable part of the calculation (for
which there may be sound reasons at first sight), the results for constant work are slightly
different. Serial performance is

P
sp
f =

p

T s
f

= p , (2.10)

and parallel performance is

P
pp
f =

p

T
p

f (N)
=

1− s

s+ 1−s
N

. (2.11)

Calculation of application speedup finally yields

Sp
f =

P
pp
f

P
sp
f

=
1

s+ 1−s
N

, (2.12)

which is Amdahl’s Law again. Strikingly, P
pp
f and S

p
f (N) are not identical any more.

Although scalability does not change with this different notion of “work”, performance
does, and is a factor of p smaller.

In the case of weak scaling where workload grows with CPU count, the question to ask
is “How much more work can my program do in a given amount of time when I put a
larger problem on N CPUs?” Serial performance as defined above is again

Ps
v =

s+ p

T s
f

= 1 , (2.13)

as N = 1. Based on (2.5) and (2.6), Parallel performance (work over time) is

P
p
v =

s+ pNa

T
p

v (N)
=

s+(1− s)Na

s+(1− s)Na−1
= Sv , (2.14)

30 2 Parallel computing

again identical to application speedup. In the special case a = 0 (strong scaling) we re-
cover Amdahl’s Law. With 0 < a < 1, we get for large CPU counts

Sv
N≫1−→ s+(1− s)Na

s
= 1+

p

s
Na , (2.15)

which is linear in Na . As a result, weak scaling allows us to cross the Amdahl Barrier and
get unlimited performance, even for small a . In the ideal case a = 1, (2.14) simplifies to

Sv(a = 1) = s+(1− s)N , “Gustafson’s Law” (2.16)

and speedup is linear in N, even for small N. This is called Gustafson’s Law. Keep in mind
that the terms with N or Na in the previous formulas always bear a prefactor that depends
on the serial fraction s, thus a large serial fraction can lead to a very small slope.

As previously demonstrated with Amdahl scaling we will now shift our focus to the
other definition of “work” that only includes the parallel fraction p. Serial performance is

Psp
v = p (2.17)

and parallel performance is

P
pp
v =

pNa

T
p

v (N)
=

(1− s)Na

s+(1− s)Na−1
, (2.18)

which leads to an application speedup of

Sp
v =

P
pp
v

Psp
v

=
Na

s+(1− s)Na−1
. (2.19)

Not surprisingly, speedup and performance are again not identical and differ by a factor of
p. The important fact is that, in contrast to (2.16), for a = 1 application speedup becomes
purely linear in N with no constant term. So even though the overall work to be done
(serial and parallel part) has not changed, scalability as defined in (2.19) makes us believe
that suddenly all is well and the application scales perfectly. If some performance metric
is applied that is only relevant in the parallel part of the program (e. g., “number of lattice
site updates” instead of “CPU cycles”), this mistake can easily go unnoticed, and CPU
power is wasted (see next section).

2.3.2 Parallel efficiency

In the light of the considerations about scalability, one other point of interest is the question
how effectively a given resource, i. e. CPU power, can be used in a parallel program (in the
following we assume that the serial part of the program is executed on one single worker
while all others have to wait). Usually, parallel efficiency is then defined as

e =
performance on N CPUs

N× performance on one CPU
=

speedup

N
. (2.20)

We will only consider weak scaling, as the limit a → 0 will always recover the Amdahl
case. In the case where “work” is defined as s+ pNa , we get

e =
Sv

N
=

sN−a +(1− s)

sN1−a +(1− s)
. (2.21)

2.3 Performance models for parallel scalability 31

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

p p p p

CPU# 1 2 3 4 5

p

s

Figure 2.7: Weak scaling with an inap-
propriate definition of “work” that in-
cludes only the parallelizable part. Al-
though “work over time” scales perfectly
with CPU count, i. e. ep = 1, most of
the resources (hatched boxes) are unused
because s ≫ p.

For a = 0 this yields 1/(sN +(1− s)), which is the expected ratio for the Amdahl case
and approaches zero with large N. For a = 1 we get s/N +(1− s), which is also correct
because the more CPUs are used the more CPU cycles are wasted, and, starting from
e = s+ p = 1 for N = 1, efficiency reaches a limit of 1− s = p for large N. Weak scaling
enables us to use at least a certain fraction of CPU power, even when the CPU count is
very large. Wasted CPU time grows linearly with N, though, but this issue is clearly visible
with the definitions used.

Results change completely when our other definition of “work” (pNa) is applied. Here,

ep =
S

p
v

N
=

Na−1

s+(1− s)Na−1
, (2.22)

For a = 1 we now get ep = 1, which should mean perfect efficiency. We are fooled
into believing that no cycles are wasted with weak scaling, although if s is large most
of the CPU power is unused. A simple example will exemplify this danger: Assume that
some code performs floating-point operations only within its parallelized part, which takes
about 10 % of execution time in the serial case. Using weak scaling with a = 1, one could
now report MFlops/sec performance numbers vs. CPU count (see Fig. 2.7). Although all
processors except one are idle 90 % of their time, the MFlops/sec rate is a factor of N
higher when using N CPUs.

2.3.3 Refined performance models

There are situations where Amdahl’s and Gustafson’s Laws are not appropriate because
the underlying model does not encompass components like communication, load imbal-
ance, parallel startup overhead etc. As an example, we will include a simple communica-
tion model. For simplicity we presuppose that communication cannot be overlapped with
computation (see Fig. 2.6), an assumption that is actually true for many parallel architec-
tures. In a parallel calculation, communication must thus be accounted for as a correction

32 2 Parallel computing

term in parallel runtime (2.6):

T
pc

v = s+ pNa−1 + ca(N) . (2.23)

The communication overhead ca(N) must not be included into the definition of “work”
that is used to derive performance as it emerges from processes that are solely a result of
the parallelization. Parallel speedup is then

Sc
v =

s+ pNa

T
pc

v (N)
=

s+(1− s)Na

s+(1− s)Na−1 + ca(N)
. (2.24)

The functional dependence ca(N) can have a variety of forms; the dependency on a is
sometimes functional, sometimes conceptual. Furthermore we assume that the amount of
communication is the same for all workers. A few special cases are described below:

• a = 0, blocking network: If the communication network has a “bus-like” structure,
i.e. only one message can be in flight at any time, and the communication overhead
per CPU is independent of N then ca(N) = (k+l)N, where k is message transfer
time and l is latency. Thus,

Sc
v =

1

s+ 1−s
N +(k+l)N

N≫1−→ 1

(k+l)N
, (2.25)

i.e. performance is dominated by communication and even goes to zero for large
CPU numbers. This is a very common situation as it also applies to the presence of
shared resources like memory paths, I/O devices and even on-chip arithmetic units.

• a = 0, non-blocking network: If the communication network can sustain N/2 con-
current messages with no collisions, ca(N) = k+l and

Sc
v =

1

s+ 1−s
N +k+l

N≫1−→ 1

s+k+l
. (2.26)

In this case the situation is quite similar to the Amdahl case and performance will
saturate at a lower value than without communication.

• a = 0, non-blocking network, 3D domain decomposition: In this case communica-
tion overhead decreases with N for strong scaling, e.g. like ca(N) = kN−b +l . For
any b > 0 performance at large N will be dominated by s and the latency:

Sc
v =

1

s+ 1−s
N +kN−b +l

N≫1−→ 1

s+l
. (2.27)

This arises, e.g., when domain decomposition (see page 25) is employed on a com-
putational domain along all coordinate axes. In this case b = 2/3.

• a = 1, non-blocking network, 3D domain decomposition: Finally, when the problem
size grows linearly with N, one may end up in a situation where communication per
CPU stays independent of N. As this is weak scaling, the numerator leads to linear
scalability with an overall performance penalty (prefactor):

Sc
v =

s+ pN

s+ p+k+l
N≫1−→ s+(1− s)N

1+k+l
. (2.28)

2.3 Performance models for parallel scalability 33

1 10 100 1000
N

1

2

4

8

16

S
vc

Amdahl (a=k=l=0)
a=0, blocking
a=0, non-blocking
a=0, 3D domain dec., non-blocking
a=1, 3D domain dec., non-blocking

Figure 2.8: Predicted
parallel scalability for
different models at s =
0.05. In general, k =
0.005 and l = 0.001
except for the Amdahl
case which is shown
for reference.

Fig. 2.8 illustrates the four cases at k = 0.005, l = 0.001 and s = 0.05 and compares with
Amdahl’s Law. Note that the simplified models we have covered in this section are far
from accurate for many applications. In order to check whether some performance model
is appropriate for the code at hand, one should measure scalability for some processor
numbers and fix the free model parameters by least-squares fitting.

3 Distributed-memory computing

After covering the principles and limitations of parallelization we will now turn to the con-
crete architectures that are at the programmer’s disposal to implement a parallel algorithm
on. Two primary paradigms have emerged, and each features a dominant and standardized
programming model: Distributed-memory and shared-memory systems. In this section we
will be concerned with the former while the next section covers the latter.

Fig. 3.1 shows a simplified block diagram, or programming model, of a distributed-
memory parallel computer. Each processor P (with its own local cache C) is connected
to exclusive local memory, i.e. no other CPU has direct access to it. Although many par-
allel machines today, first and foremost the popular PC clusters, consist of a number of
shared-memory compute nodes with two or more CPUs for price/performance reasons,
the programmer’s view does not reflect that (it is even possible to use distributed-memory
programs on machines that feature shared memory only). Each node comprises at least
one network interface (NI) that mediates the connection to a communication network. On
each CPU runs a serial process that can communicate with other processes on other CPUs
by means of the network. In the simplest case one could use standard switched Ethernet,
but a number of more advanced technologies have emerged that can easily have ten times
the bandwidth and 1/10 th of the latency of Gbit Ethernet. As shown in the section on
performance models, the exact layout and “speed” of the network has considerable im-
pact on application performance. The most favourable design consists of a non-blocking
“wirespeed” network that can switch N/2 connections between its N participants without
any bottlenecks. Although readily available for small systems with tens to a few hundred
nodes, non-blocking switch fabrics become vastly expensive on very large installations
and some compromises are usually made, i.e. there will be a bottleneck if all nodes want
to communicate concurrently.

P P P P P

CCCCC

M M M M M

NI NI NI NI NI

Communication network

Figure 3.1: Simplified
programmer’s view, or
programming model,
of a distributed-me-
mory parallel com-
puter.

34

3.1 Message Passing 35

3.1 Message Passing

As mentioned above, distributed-memory parallel programming requires the use of explicit
message passing (MP), i.e. communication between processes. This is surely the most
tedious and complicated but also the most flexible parallelization method. Nowadays there
is an established standard for message passing called MPI (Message Passing Interface) that
is supported by all vendors [5]. MPI conforms to the following rules:

• The same program runs on all processes (Single Program Multiple Data, or SPMD).
This is no restriction compared to the more general MPMD (Multiple Program Mul-
tiple Data) model as all processes taking part in a parallel calculation can be distin-
guished by a unique identifier called rank (see below).

• The program is written in a sequential language like Fortran, C or C++. Data ex-
change, i.e. sending and receiving of messages, is done via calls to an appropriate
library.

• All variables in a process are local to this process. There is no concept of shared
memory.

One should add that message passing is not the only possible programming paradigm
for distributed-memory machines. Specialized languages like High Performance For-
tran (HPF), Unified Parallel C (UPC) etc. have been created with support for distributed-
memory parallelization built in, but they have not developed a broad user community and
it is as yet unclear whether those approaches can match the efficiency of MPI.

In a message passing program, messages move data between processes. A message can
be as simple as a single item (like a DP word) or even a complicated structure, perhaps
scattered all over the address space. For a message to be transmitted in an orderly manner,
some parameters have to be fixed in advance:

• Which processor is sending the message?

• Where is the data on the sending processor?

• What kind of data is being sent?

• How much data is there?

• Which process/es is/are going to receive the message?

• Where should the data be left on the receiving process(es)?

• How much data are the receiving processes prepared to accept?

As we will see, all MPI calls that actually transfer data have to specify those parameters
in some way. MPI is a very broad standard with (in its latest version) over 500 library
routines. Fortunately, most applications merely require less than ten of those to work.

36 3 Distributed-memory computing

Listing 3.1: A very simple, fully functional “Hello World” MPI program.

1 program mpitest

2 use MPI

3

4 integer rank, size, ierror

5

6 call MPI_Init(ierror)

7 call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)

8 call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierror)

9

10 write(*,*) ’Hello World, I am ’,rank,’ of ’,size

11

12 call MPI_Finalize(ierror)

13

14 end

3.2 A brief glance on MPI

In order to compile and link MPI programs, compilers and linkers need options that specify
where include files and libraries can be found. As there is considerable variation in those
locations across installations, most MPI implementations provide compiler wrapper scripts
(often called mpicc, mpif77, etc.) that supply the required options automatically but
otherwise behave like “normal” compilers. Note that the way that MPI programs should be
compiled and started is not fixed by the standard, so please consult system documentation
by all means.

Listing 3.1 shows a simple “Hello World” type MPI program in Fortran 90. In line 2,
the MPI module is loaded which provides required globals and definitions (in Fortran 77
and C/C++ one would use the preprocessor to read in the mpif.h or mpi.h header files,
respectively). All MPI calls take an INTENT(OUT) argument, here called ierror, that
transports information about the success of the MPI operation to the user code (in C/C++,
the return code is used for that). As failure resiliency is not built into the MPI standard
today and checkpoint/restart features are usually implemented by the user code anyway,
the error code is rarely checked at all.

The first call in every MPI code should go to MPI_Init and initializes the parallel
environment (line 6). In C/C++, &argc and &argv are passed to MPI_Init so that the
library can evaluate and remove any additional command line arguments that may have
been added by the MPI startup process. After initialization, MPI has set up a so-called
communicator, called MPI_COMM_WORLD. A communicator defines a group of MPI pro-
cesses that can be referred to by a communicator handle. The MPI_COMM_WORLD handle
describes all processes that have been started as part of the parallel program. If required,
other communicators can be defined as subsets of MPI_COMM_WORLD. Nearly all MPI calls
require a communicator as an argument.

The calls to MPI_Comm_size and MPI_Comm_rank in lines 7 and 8 serve to determine
the number of processes (size) in the parallel program and the unique identifier (the
rank) of the calling process, respectively. The ranks in a communicator, in this case
MPI_COMM_WORLD, are numbered starting from zero up to N − 1. In line 12, the paral-

3.2 A brief glance on MPI 37

lel program is shut down by a call to MPI_Finalize. Note that no MPI process except
rank 0 is guaranteed to execute any code beyond MPI_Finalize.

In order to compile and run the source code in Listing 3.1, a “common” implementation
would require the following steps:

$ mpif90 -O3 -o hello.exe hello.F90

$ mpirun -np 4 ./hello.exe

This would compile the code and start it with four processes. Be aware that processors may
have to be allocated from some batch system before parallel programs can be launched.
How MPI processes are mapped to actual processors is entirely up to the implementation.
The output of this program could look like the following:

Hello World, I am 3 of 4

Hello World, I am 0 of 4

Hello World, I am 2 of 4

Hello World, I am 1 of 4

Although the stdout and stderr streams of MPI programs are usually redirected to the
terminal where the program was started, the order in which outputs from different ranks
will arrive there is undefined.

This example did not contain any real communication apart from starting and stop-
ping processes. An MPI message is defined as an array of elements of a particular MPI
datatype. Datatypes can either be basic types (corresponding to the standard types that
every programming language knows) or derived types that must be defined by appropri-
ate MPI calls. The reason why MPI needs to know the data types of messages is that it
supports heterogeneous environments where it may be necessary to do on-the-fly data con-
versions. For some message transfer to take place, the data types on sender and receiver
sides must match. If there is exactly one sender and one receiver we speak of point-to-
point communication. Both ends are identified uniquely by their ranks. Each message can
carry an additional integer label, the so-called tag that may be used to identify the type of a
message, as a sequence number or any other accompanying information. In Listing 3.2 we
show an MPI program fragment that computes an integral over some function f(x) in par-
allel. Each MPI process gets assigned a subinterval of the integration domain (lines 9 and
10), and some other function can then perform the actual integration (line 12). After that
each process holds its own partial result, which should be added to get the final integral.
This is done at rank 0, who executes a loop over all ranks from 1 to size− 1, receiving
the local integral from each rank in turn via MPI_Recv and accumulating the result in res.
Each rank apart from 0 has to call MPI_Send to transmit the data. Hence there are size−1
send and size− 1 matching receive operations. The data types on both sides are speci-
fied to be MPI_DOUBLE_PRECISION, which corresponds to the usual double precision

type in Fortran (be aware that MPI types are named differently in C/C++ than in Fortran).
The message tag is not used here, so we set it to 0 because identical tags are required for
message matching as well.

While all parameters are necessarily fixed on MPI_Send, there is some more variability
on the receiver side. MPI_Recv allows wildcards so that the source rank and the tag do not
have to be specified. Using MPI_ANY_SOURCE as source rank and MPI_ANY_TAG as tag will
match any message, from any source, with any tag as long as the other matching criteria
like datatype and communicator are met (this would have been possible in the integration
example without further code changes). After MPI_Recv has returned to the user code,

38 3 Distributed-memory computing

Listing 3.2: Program fragment for parallel integration in MPI.

1 integer stat(MPI_STATUS_SIZE)

2 call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)

3 call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierror)

4 ! integration limits

5 a=0.d0

6 b=2.d0

7 res=0.d0

8 ! limits for "me"

9 mya=a+rank*(b-a)/size

10 myb=mya+(b-a)/size

11 ! integrate f(x) over my own chunk - actual work

12 psum = integrate(mya,myb)

13 ! rank 0 collects partial results

14 if(rank.eq.0) then

15 res=psum

16 do i=1,size-1

17 call MPI_Recv(tmp, & ! receive buffer

18 1, & ! array length

19 ! datatype

20 MPI_DOUBLE_PRECISION,&

21 i, & ! rank of source

22 0, & ! tag (additional label)

23 ! communicator

24 MPI_COMM_WORLD,&

25 stat,& ! status array (msg info)

26 ierror)

27 res=res+tmp

28 enddo

29 write (*,*) ’Result: ’,res

30 ! ranks != 0 send their results to rank 0

31 else

32 call MPI_Send(psum, & ! send buffer

33 1, & ! array length

34 MPI_DOUBLE_PRECISION,&

35 0, & ! rank of destination

36 0, & ! tag

37 MPI_COMM_WORLD,ierror)

38 endif

3.2 A brief glance on MPI 39

the status array can be used to extract the missing pieces of information, i.e. the actual
source rank and message tag, and also the length of the message as the array size specified
in MPI_Recv is only an upper limit.

The accumulation of partial results as shown above is an example for a reduction oper-
ation, performed on all processes in the communicator. MPI has mechanisms that make
reductions much simpler and in most cases more efficient than looping over all ranks and
collecting results. As reduction is a procedure that all ranks in a communicator participate
in, it belongs to the so-called collective communication operations in MPI. Collective com-
munication, as opposed to point-to-point communication, requires that every rank calls the
same routine, so it is impossible for a message sent via point-to-point to match a receive
that was initiated using a collective call. The whole if. . .else. . .endif construct (apart
from printing the result) in Listing 3.2 could have been written as a single call:

call MPI_Reduce(psum, & ! send buffer

res, & ! receive buffer

1, & ! array length

MPI_DOUBLE_PRECISION,&

MPI_SUM,& ! type of operation

0, & ! root (accumulate res there)

MPI_COMM_WORLD,ierror)

Most collective routines define a “root” rank at which some general data source or sink is
located. Although rank 0 is a natural choice for “root”, it is in no way different from other
ranks.

There are collective routines not only for reduction but also for barriers (each process
stops at the barrier until all others have reached the barrier as well), broadcasts (the root
rank transmits some data to everybody else), scatter/gather (data is distributed from root
to all others or collected at root from everybody else), and complex combinations of those.
Generally speaking, it is a good idea to prefer collectives over point-to-point constructs
that “emulate” the same semantics. Good MPI implementations are optimized for data
flow on collective operations and also have some knowledge about network topology built
in.

All MPI functionalities described so far have the property that the call returns to the user
program only after the message transfer has progressed far enough so that the send/receive
buffer can be used without problems. I.e., received data has arrived completely and sent
data has left the buffer so that it can be safely modified without inadvertently changing the
message. In MPI terminology, this is called blocking communication. Although collective
operations are always blocking, point-to-point communication can be performed with non-
blocking calls as well. A non-blocking point-to-point call merely initiates a message trans-
mission and returns very quickly to the user code. In an efficient implementation, waiting
for data to arrive and the actual data transfer occur in the background, leaving resources
free for computation. In other words, non-blocking MPI is a way in which computation
and communication may be overlapped. As long as the transfer has not finished (which
can be checked by suitable MPI calls), the message buffer must not be used. Non-blocking
and blocking MPI calls are mutually compatible, i.e. a message sent via a blocking send
can be matched by a non-blocking receive. Table 3.1 gives a rough overview of available
communication modes in MPI.

40 3 Distributed-memory computing

Point-to-point Collective

B
lo

ck
in

g
MPI_Send(buf,...)

MPI_Ssend(buf,...)

MPI_Bsend(buf,...)

MPI_Recv(buf,...)

(buf can be used after call returns)

MPI_Barrier(...)

MPI_Bcast(...)

MPI_Reduce(...)

(all processes in communicator
must call)

N
o

n
-b

lo
ck

in
g

MPI_Isend(buf,...)

MPI_Irecv(buf,...)

(buf can not be used or modified
after call returns; check for
completion with
MPI_Wait(...)/MPI_Test(...))

N/A

Table 3.1: Non-exhaustive overview on MPI’s communication modes.

3.3 Basic performance characteristics of networks

As mentioned before, there are various options for the choice of a network in a distributed-
memory computer. The simplest and cheapest solution to date is Gbit Ethernet, which will
suffice for many throughput applications but is far too slow — in terms of bandwidth and
latency — for parallel code with any need for fast communication. Assuming that the total
transfer time for a message of size N [bytes] is composed of latency and streaming parts,

T = Tl +
N

B
(3.1)

and B being the maximum network bandwidth in MBytes/sec, the effective bandwidth is

Beff =
N

Tl +
N
B

. (3.2)

In Fig. 3.2, the model parameters in (3.2) are fitted to real data obtained on a Gbit Ethernet
network. Obviously this simple model is able to describe the gross features well.

For the measurement of effective bandwidth the PingPong benchmark is frequently
used. The basic code sends a message of size N [bytes] once back and forth between
two nodes:

S = get_walltime()

if(rank.eq.0) then

call MPI_Send(buf,N,MPI_BYTE,1,0,...)

call MPI_Recv(buf,N,MPI_BYTE,1,0,...)

else

call MPI_Recv(buf,N,MPI_BYTE,0,0,...)

call MPI_Send(buf,N,MPI_BYTE,0,0,...)

endif

E = get_walltime()

MBYTES = 2*N/(E-S)/1.d6 ! MByte/sec rate

TIME = (E-S)/2*1.d6 ! transfer time in microsecs

! for single message

3.3 Basic performance characteristics of networks 41

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N [bytes]

0

20

40

60

80

100
B

ef
f [

M
B

y
te

s/
se

c]

measured (GE)

model fit (T
l
=41ms,

B=102 MBytes/sec)

Figure 3.2: Fit of the model for effective bandwidth (3.2) to data measured on a Gbit
Ethernet network.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

N [bytes]

0

500

1000

1500

B
ef

f [
M

B
yt

es
/s

ec
]

GBit Ethernet

Infiniband 4X (PCI-X)

SGI NUMALink4

10
0

10
1

10
2

10
3

Message Size [Byte]

0

5

10

15

20

25

30

35

L
at

en
cy

 [
m

s]

Figure 3.3: Result of the PingPong benchmark for three different networks. The N1/2 point
is marked for the NumaLink4 data. Inset: Latencies can be deduced by extrapolating to
zero message length.

42 3 Distributed-memory computing

Bandwidth in MBytes/sec is then reported for different N (see Fig. 3.3). Common to all
interconnects, we observe very low bandwidth for small message sizes as expected from
the model (3.2). Latency can be measured directly by taking the N = 0 limit of transfer
time (inset in Fig. 3.3). The reasons for latency can be diverse:

• All data transmission protocols have some overhead in the form of administrative
data like message headers etc.

• Some protocols (like, e.g., TCP/IP as used over Ethernet) define minimum message
sizes, so even if the application sends a single byte, a small “frame” of N > 1 bytes
is transmitted.

• Initiating a message transfer is a complicated process that involves multiple software
layers, depending on the complexity of the protocol. Each software layer adds to
latency.

• Standard PC hardware as frequently used in clusters is not optimized towards low-
latency I/O.

In fact, high-performance networks try to improve latency by reducing the influence of
all of the above. Lightweight protocols, optimized drivers and communication devices
directly attached to processor buses are all used by vendors to provide low MPI latency.

For large messages, effective bandwidth saturates at some maximum value. Structures
like local minima etc. frequently occur but are very dependent on hardware and software
implementations (e.g., the MPI library could decide to switch to a different buffering al-
gorithm beyond some message size). Although saturation bandwidth can be quite high
(there are systems where achievable MPI bandwidth is comparable to the local memory
bandwidth of the processor), many applications work in a region on the bandwidth graph
where latency effects still play a dominant role. To quantify this problem, the N1/2 value
is often reported. This is the message size at which Beff = B/2 (see Fig. 3.3). In the model
(3.2), N1/2 = BTl. From this point of view it makes sense to ask whether an increase in
maximum network bandwidth by a factor of b is really beneficial for all messages. At
message size N, the improvement in effective bandwidth is

Beff(bB,Tl)

Beff(B,Tl)
=

1+N/N1/2

1+N/bN1/2
, (3.3)

so that for N = N1/2 and b = 2 the gain is only 33 %. In case of a reduction of latency by
a factor of b , the result is the same. Hence it is desirable to improve on both latency and
bandwidth to make an interconnect more efficient for all applications.

Please note that the simple PingPong algorithm described above cannot pinpoint satura-
tion effects: If the network fabric is not completely non-blocking and all nodes transmit or
receive data (as is often the case with collective MPI operations), aggregated bandwidth,
i.e. the sum over all effective bandwidths for all point-to-point connections, is lower than
the theoretical limit. This can severely throttle the performance of applications on large
CPU numbers as well as overall throughput of the machine.

4 Shared-memory computing

A shared-memory parallel computer is a system in which a number of CPUs work on a
common, shared physical address space. This is fundamentally different from the distri-
buted-memory paradigm as described in the previous section. Although transparent to the
programmer as far as functionality is concerned, there are two varieties of shared-memory
systems that have very different performance characteristics:

• Uniform Memory Access (UMA) systems feature a “flat” memory model: Memory
bandwidth and latency are the same for all processors and all memory locations.
This is also called symmetric multiprocessing (SMP).

• On cache-coherent Non-Uniform Memory Access (ccNUMA) machines, memory is
physically distributed but logically shared. The physical layout of such systems is
quite similar to the distributed-memory case (Fig. 3.1), but network logic makes the
aggregated memory of the whole system appear as one single address space. Due to
the distributed nature, memory access performance varies depending on which CPU
accesses which parts of memory (“local” vs. “remote” access).

With multiple CPUs, copies of the same cache line may reside in different caches, probably
in modified state. So for both above varieties, cache coherence protocols must guarantee
consistency between cached data and data in memory at all times. Details about UMA,
ccNUMA and cache coherence mechanisms are provided in the following sections.

4.1 UMA

The simplest implementation of a UMA system is a dual-core processor in which two
CPUs share a single path to memory. Technical details vary among vendors, and it is very
common in high performance computing to use more than one chip in a compute node (be
they single-core or multi-core), which adds to diversity. In Figs. 4.1 and 4.2, two typical
representatives of UMA systems used in HPC are shown.

In Fig. 4.1 two (single-core) processors, each in its own socket, communicate and access
memory over a common bus, the so-called frontside bus (FSB). All arbitration protocols
required to make this work are already built into the CPUs. The chipset (often termed
“northbridge”) is responsible for driving the memory modules and connects to other parts
of the node like I/O subsystems.

In Fig. 4.2, two dual-core chips connect to the chipset, each with its own FSB. The
chipset plays an important role in enforcing cache coherence and also mediates the con-
nection to memory. In principle, a system like this could be designed so that the bandwidth
from chipset to memory matches the aggregated bandwidth of the frontside buses. Each
dual-core chip features a separate L1 on each CPU but a shared L2 cache for both. The ad-
vantage of a shared cache is that, to an extent limited by cache size, data exchange between
cores can be done there and does not have to resort to the slow frontside bus. Of course, a
shared cache should also meet the bandwidth requirements of all connected cores, which

43

44 4 Shared-memory computing

so
ck

etP
C

C

C

C

P

Chipset

Memory

Figure 4.1: A UMA system with two
single-core CPUs that share a common
frontside bus (FSB).

so
ck

et PP P

CC

C

C

P

C

C

Chipset

Memory

Figure 4.2: A UMA system in which the
FSBs of two dual-core chips are connected
separately to the chipset.

might not be the case. Due to the shared caches and FSB connections this kind of node is,
while still a UMA system, quite sensitive to the exact placement of processes or threads
on its cores. For instance, with only two processes it may be desirable to keep (“pin”)
them on separate sockets if the memory bandwidth requirements are high. On the other
hand, processes communicating a lot via shared memory may show more performance
when placed on the same socket because of the shared L2 cache. Operating systems as
well as some modern compilers usually have tools or library functions for observing and
implementing thread or process pinning.

The general problem of UMA systems is that bandwidth bottlenecks are bound to occur
when the number of sockets, or FSBs, is larger than a certain limit. In very simple designs
like the one in Fig. 4.1, a common memory bus is used that can only transfer data to one
CPU at a time (this is also the case for all multi-core chips available today).

In order to maintain scalability of memory bandwidth with CPU number, non-blocking
crossbar switches can be built that establish point-to-point connections between FSBs and
memory modules (similar to the chipset in Fig. 4.2). Due to the very large aggregated
bandwidths those become very expensive for a larger number of sockets. At the time
of writing, the largest UMA systems with scalable bandwidth (i.e. memory bandwidth
matches the aggregated FSBs bandwidths of all processors in the node) have eight CPUs.
This problem can only be solved by giving up on the UMA principle.

4.2 ccNUMA

In ccNUMA, a locality domain (LD) is a set of processor cores together with locally con-
nected memory which can be accessed in the most efficient way, i.e. without resorting to
a network of any kind. Although the ccNUMA principle provides scalable bandwidth for
very large processor counts — systems with up to 1024 CPUs in a single address space
with a single OS instance are available today —, it is also found in inexpensive small two-
or four-socket AMD Opteron nodes frequently used for HPC clustering (see Fig. 4.3). In
this example two locality domains, i.e. dual-core chips with separate caches and a com-
mon interface to local memory, are linked using a special high-speed connection called

4.2 ccNUMA 45

HT

P P

C C

C C

MI MI

C

C C

C

P P

Memory Memory

Figure 4.3: HyperTransport-based cc-
NUMA system with two locality do-
mains (one per socket) and four cores.

P P P P
C
C

C
C

C
C

C
C

S S R

R S S

MemoryMemoryMemoryMemory

Figure 4.4: ccNUMA system with routed NU-
MALink network and four locality domains.

HyperTransport (HT). Apart from the minor peculiarity that the sockets can drive memory
directly, making a northbridge obsolete, this system differs substantially from networked
UMA designs in that the HT link can mediate direct coherent access from one processor
to another processor’s memory. From the programmer’s point of view this mechanism is
transparent: All the required protocols are handled by the HT hardware.

In Fig. 4.4 another approach to ccNUMA is shown that is flexible enough to scale
to large machines and used in SGI Altix systems. Each processor socket connects to a
communication interface (S) that provides memory access as well as connectivity to the
proprietary NUMALink (NL) network. The NL network relies on routers (R) to switch
connections for non-local access. As with HT, the NL hardware allows for transparent
access to the whole address space of the machine from all CPUs. Although shown here
only with four sockets, multi-level router fabrics can be built that scale up to hundreds
of CPUs. It must, however, be noted that each piece of hardware inserted into a data
connection (communication interfaces, routers) add to latency, making access characteris-
tics very inhomogeneous across the system. Furthermore, as is the case with networks for
distributed-memory computers, providing wire-equivalent speed, non-blocking bandwidth
in large systems is extremely expensive.

In all ccNUMA designs, network connections must have bandwidth and latency charac-
teristics that are at least the same order of magnitude as for local memory. Although this
is the case for all contemporary systems, even a penalty factor of two for non-local trans-
fers can badly hurt application performance if access can not be restricted inside locality
domains. This locality problem is the first of two obstacles to take with high performance
software on ccNUMA. It occurs even if there is only one serial program running on a
ccNUMA machine. The second problem is potential congestion if two processors from
different locality domains access memory in the same locality domain, fighting for mem-
ory bandwidth. Even if the network is non-blocking and its performance matches the
bandwidth and latency of local access, congestion can occur. Both problems can be solved
by carefully observing the data access patterns of an application and restricting data access
of each processor to its own locality domain. Section 9 will elaborate on this topic.

In inexpensive ccNUMA systems I/O interfaces are often connected to a single LD. Al-
though I/O transfers are usually slow compared to memory bandwidth, there are, e.g.,
high-speed network interconnects that feature multi-GB bandwidths between compute
nodes. If data arrives at the “wrong” locality domain, written by an I/O driver that has
positioned its buffer space disregarding any ccNUMA constraints, it should be copied to

46 4 Shared-memory computing

�����
�����
�����
�����

����
����
����
����

P1 P2
C1 C2

Memory
A1 A2

A1 A2 A1 A2

3 7

1 5 2 4 6

1. C1 requests exclusive CL ownership

2. set CL in C2 to state I

3. CL has state E in C1 → modify A1 in C1 and
set to state M

4. C2 requests exclusive CL ownership

5. evict CL from C1 and set to state I

6. load CL to C2 and set to state E

7. modify A2 in C2 and set to state M in C2

Figure 4.5: Two processors P1, P2 modify the two parts A1, A2 of the same cache line in
caches C1 and C2. The MESI coherence protocol ensures consistency between cache and
memory.

its optimal destination, reducing effective bandwidth by a factor of four (three if RFOs can
be avoided, see page 16). In this case even the most expensive interconnect hardware is
wasted. In truly scalable ccNUMA designs this problem is circumvented by distributing
I/O connections across the whole machine and using ccNUMA-aware drivers.

4.3 Cache coherence

Cache coherence mechanisms are required in all cache-based multiprocessor systems,
UMA as well as ccNUMA. This is because potentially copies of the same cache line could
reside in several CPU caches. If, e.g., one of those gets modified and evicted to mem-
ory, the other caches’ contents reflect outdated data. Cache coherence protocols ensure a
consistent view of memory under all circumstances.

Fig. 4.5 shows an example on two processors P1 and P2 with respective caches C1 and
C2. Each cache line holds two items. Two neighboring items A1 and A2 in memory
belong to the same cache line and are modified by P1 and P2, respectively. Without cache
coherence, each cache would read the line from memory, A1 would get modified in C1,
A2 would get modified in C2 and some time later both modified copies of the cache line
would have to be evicted. As all memory traffic is handled in chunks of cache line size,
there is no way to determine the correct values of A1 and A2 in memory.

Under control of cache coherence logic this discrepancy can be avoided. As an example
we pick the MESI protocol, which draws its name from the four possible states a cache
line can take:

M modified: The cache line has been modified in this cache, and it resides in no other
cache than this one. Only upon eviction will memory reflect the most current state.

E exclusive: The cache line has been read from memory but not (yet) modified. How-
ever, it resides in no other cache.

S shared: The cache line has been read from memory but not (yet) modified. There
may be other copies in other caches of the machine.

4.4 Short introduction to OpenMP 47

I invalid: The cache line does not reflect any sensible data. Under normal circum-
stances this happens if the cache line was in shared state and another processor has
requested exclusive ownership. A cache miss occurs if and only if the chosen line is
invalid.

The order of events is depicted in Fig. 4.5. The question arises how a cache line in state M
is notified when it should be evicted because another cache needs to read the most current
data. Similarly, cache lines in state S or E must be invalidated if another cache requests
exclusive ownership. In small systems a bus snoop is used to achieve this: Whenever
notification of other caches seems in order, the originating cache broadcasts the corre-
sponding cache line address through the system, and all caches “snoop” the bus and react
accordingly. While simple to implement, this method has the crucial drawback that ad-
dress broadcasts pollute the system buses and reduce available bandwidth for “useful”
memory accesses. A separate network for coherence traffic can alleviate this effect but is
not always practicable.

A better alternative, usually applied in larger ccNUMA machines, is a directory-based
protocol where bus logic like chipsets or memory interfaces keep track of the location and
state of each cache line in the system. This uses up some small part of main memory
(usually far less than 10 %), but the advantage is that state changes of cache lines are
transmitted only to those caches that actually require them. This greatly reduces coherence
traffic through the system. Today even workstation chipsets implement “snoop filters” that
serve the same purpose.

Coherence traffic can severely hurt application performance if the same cache line is
written to frequently by different processors (false sharing). In Section 8.1.2 on page 85
we will give hints for avoiding false sharing in user code.

4.4 Short introduction to shared-memory

programming with OpenMP

As mentioned before, programming shared-memory systems can be done in an entirely
“distributed-memory” fashion, i.e. the processes making up an MPI program can run hap-
pily on a UMA or ccNUMA machine, not knowing that the underlying hardware provides
more efficient means of communication. In fact, even on large “constellation” clusters
(systems where the number of nodes is smaller than the number of processors per node),
the dominant parallelization method is often MPI due to its efficiency and flexibility. After
all an MPI code can run on shared- as well as distributed-memory systems, and efficient
MPI implementations transparently use shared memory for communication if available.

However, MPI is not only the most flexible but also the most tedious way of paral-
lelization. Shared memory opens the possibility to have immediate access to all data from
all processors without explicit message passing. The established standard in this field is
OpenMP [6]. OpenMP is a set of compiler directives that a non-OpenMP-capable com-
piler would just regard as comments and ignore. Thus, a well-written parallel OpenMP
program is also a valid serial program (of course it is possible to write OpenMP code
that will not run sequentially, but this is not the intention of the method). In contrast to
MPI, the central entity in OpenMP is not a process but a thread. Threads are also called
“lightweight processes” because several of them can share a common address space and
mutually access data. Spawning a thread is much less costly than forking a new process,

48 4 Shared-memory computing

Listing 4.1: A simple program for numerical integration of a function f (x) in OpenMP

1 pi=0.d0

2 w=1.d0/n

3 !$OMP PARALLEL PRIVATE(x,sum)

4 sum=0.d0

5 !$OMP DO SCHEDULE(STATIC)

6 do i=1,n

7 x=w*(i-0.5d0)

8 sum=sum+f(x)

9 enddo

10 !$OMP END DO

11 !$OMP CRITICAL

12 pi=pi+w*sum

13 !$OMP END CRITICAL

14 !$OMP END PARALLEL

because threads share everything but instruction pointer (the address of the next instruc-
tion to be executed), stack pointer and register state. Each thread can, by means of its local
stack pointer, also have “private” variables, but as all data is accessible via the common
address space, it is only a matter of taking the address of an item to make it accessible to
all other threads as well: Thread-private data is for convenience, not for protection.

4.4.1 OpenMP worksharing and data scoping

It is indeed possible to use operating system threads (POSIX threads) directly, but this
option is rarely used with numerical software. OpenMP is a layer that adapts the raw
OS thread interface to make it more usable with the typical loop structures that numerical
software tends to show. As an example, consider a parallel version of a simple integration
program (Listing 4.1). This is valid serial code, but equipping it with the comment lines
starting with the sequence !$OMP (called a sentinel) and using an OpenMP-capable com-
piler makes it shared-memory parallel. The PARALLEL directive instructs the compiler to
start a parallel region (see Fig. 4.6). A team of threads is spawned that executes identical
copies of everything up to END PARALLEL (the actual number of threads is unknown at
compile time as it is set by an environment variable). By default, all variables which were
present in the program before the parallel region are shared among all threads. However,
that would include x and sum of which we later need private versions for each thread.
OpenMP provides a way to make existing variables private by means of the PRIVATE

clause. If, in the above example, any thread in a parallel region writes to sum (see line 4),
it will update its own private copy, leaving the other threads’ untouched. Therefore, before
the loop starts each thread’s copy of sum is set to zero.

In order to share some amount of work between threads and actually reduce wallclock
time, work sharing directives can be applied. This is done in line 5 using the DO directive
with the optional SCHEDULE clause. The DO directive is always related to the immediately
following loop (line 6) and generates code that distributes the loop iterations among the
team of threads (please note that the loop counter variable is automatically made private).

4.4 Short introduction to OpenMP 49

parallel

region

serial

region

team of

threads

master thread

fork

join

Figure 4.6: Model for OpenMP thread operations:
The master thread “forks” a thread team that work
on shared memory in a parallel region. After the
parallel region, the threads are “joined” or put to
sleep until the next parallel region starts.

4.4.2 Loop scheduling

How this is done is controlled by the argument of SCHEDULE. The simplest possibility is
STATIC which divides the loop in contiguous chunks of (roughly) equal size. Each thread
then executes on exactly one chunk. If for some reason the amount of work per loop itera-
tion is not constant but, e.g., decreases with loop index, this strategy is suboptimal because
different threads will get vastly different workloads, which leads to load imbalance. One
solution would be to use a chunk size like in “STATIC,1” that dictates that chunks of size
1 should be distributed across threads in a round-robin manner.

There are alternatives to static schedule for other types of workload (see Fig. 4.7). Dy-
namic scheduling assigns a chunk of work, defined by the chunk size, to the next thread
that has finished its chunk. This allows for a very flexible distribution which is usually not
reproduced from run to run. Threads that get assigned to “easier” chunks will end up com-
pleting less of them, and load imbalance is greatly reduced. The downside is that dynamic
scheduling generates significant overhead if the chunks are too small in terms of execu-
tion time. This is why it is often desirable to use a moderately large chunk size on tight
loops, which in turn leads to more load imbalance. In cases where this is a problem, the
guided schedule may help. Again, threads request new chunks dynamically, but the chunk
size is always proportional to the remaining number of iterations divided by the number of
threads. The smallest chunk size is specified in the schedule clause (default is 1). Despite
the dynamic assignment of chunks, scheduling overhead is kept under control. However,
a word of caution is in order regarding dynamic and guided schedules: Due to the inde-
terministic nature of the assignment of threads to chunks, applications which are limited
by memory bandwidth may suffer from insufficient access locality on ccNUMA systems
(see Sect. 4.2 for an introduction to ccNUMA architecture and Chapter 9 for ccNUMA-
specific optimization methods). The static schedule is thus the only choice under such
circumstances.

For debugging and profiling purposes, OpenMP provides a facility to determine the loop
scheduling at runtime. If the scheduling clause in the code specifies “RUNTIME”, the loop is

50 4 Shared-memory computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

T0

T1

T2

STATIC STATIC,3 DYNAMIC(,1) DYNAMIC,3

Iteration

GUIDED(,1)

Figure 4.7: Loop schedules in OpenMP. The example loop has 20 iterations and is exe-
cuted by 3 threads (T0, T1, T2). Default chunk size for DYNAMIC and GUIDED is one.

4.4 Short introduction to OpenMP 51

scheduled according to the contents of the OMP_SCHEDULE shell variable. However, there
is no way to set different schedulings for different loops that use the SCHEDULE(RUNTIME)
clause.

4.4.3 Protecting shared data

The parallelized loop in Listing 4.1 computes a partial sum in each thread’s private sum

variable. To get the final result, all the partial sums must be accumulated in the global pi
variable (line 12), but pi is shared so that uncontrolled updates would lead to a race con-
dition, i.e. the exact order and timing of operations will influence the result. In OpenMP,
critical sections solve this problem by making sure that at most one thread at a time ex-
ecutes some piece of code. In the example, the CRITICAL and END CRITICAL directives
bracket the update to pi so that a correct result emerges at all times.

Critical sections hold the danger of deadlocks when used inappropriately. A deadlock
arises when one or more threads wait for resources that will never become available, a
situation that is easily generated with badly arranged CRITICAL directives. When a thread
encounters a CRITICAL directive inside a critical region, it will block forever. OpenMP
provides two solutions for this problem:

• A critical section may be given a name that distinguishes it from others. The name
is specified in parentheses after the CRITICAL directive:

!$OMP PARALLEL DO PRIVATE(x)

do i=1,N

x=sin(2*PI*x/N)

!$OMP CRITICAL (psum)

sum=sum+func(x)

!$OMP END CRITICAL (psum)

enddo

!$OMP END PARALLEL DO

...

SUBROUTINE func(v)

double precision v

!$OMP CRITICAL (prand)

v=v+random_func()

!$OMP END CRITICAL (prand)

END SUBROUTINE func

Without the names on the two different critical sections in this code would deadlock.

• There are OpenMP API functions (see below) that support the use of locks for pro-
tecting shared resources. The advantage of locks is that they are ordinary variables
that can be arranged as arrays or in structures. That way it is possible to protect each
single element of an array of resources individually.

Whenever there are different shared resources in a program that must be protected from
concurrent access each for its own but are otherwise unconnected, named critical sections
or OpenMP locks should be used both for correctness and performance reasons.

52 4 Shared-memory computing

Listing 4.2: Fortran sentinels and conditional compilation with OpenMP

1 !$ use omp lib

2 myid=0

3 numthreads=1

4 #ifdef _OPENMP

5 !$OMP PARALLEL PRIVATE(myid)

6 myid = omp_get_thread_num()

7 !$OMP SINGLE

8 numthreads = omp_get_num_threads()

9 !$OMP END SINGLE

10 !$OMP CRITICAL

11 write(*,*) ’Parallel program - this is thread ’,myid,&

12 ’ of ’,numthreads

13 !$OMP END CRITICAL

14 !$OMP END PARALLEL

15 #else

16 write(*,*) ’Serial program’

17 #endif

4.4.4 Miscellaneous

In some cases it may be useful to write different code depending on OpenMP being enabled
or not. The directives themselves are no problem here because they will be ignored grace-
fully. Conditional compilation however is supported by the preprocessor symbol _OPENMP
which is defined only if OpenMP is available and (in Fortran) the special sentinel !$ that
acts as a comment only if OpenMP is not enabled (see Listing 4.2). Here we also see
a part of OpenMP that is not concerned with directives. The use omp_lib declaration
loads the OpenMP API function prototypes (in C/C++, #include <omp.h> serves the
same purpose). The omp_get_thread_num() function determines the thread ID, a num-
ber between zero and the number of threads minus one, while omp_get_num_threads()
returns the number of threads in the current team. So if the general disposition of OpenMP
towards loop-based code is not what the programmer wants, one can easily switch to an
MPI-like style where thread ID determines the tasks of each thread.

In above example the second API call (line 8) is located in a SINGLE region, which
means that it will be executed by exactly one thread, namely the one that reaches the
SINGLE directive first. This is done because numthreads is global and should be writ-
ten to only by one thread. In the critical region each thread just prints a message, but
a necessary requirement for the numthreads variable to have the updated value is that
no thread leaves the SINGLE region before update has been “promoted” to memory. The
END SINGLE directive acts as an implicit barrier, i.e. no thread can continue executing
code before all threads have reached the same point. The OpenMP memory model ensures
that barriers enforce memory consistency: Variables that have been held in registers are
written out so that cache coherence can make sure that all caches get updated values. This
can also be initiated under program control via the FLUSH directive, but most OpenMP
worksharing and synchronization constructs perform implicit barriers and hence flushes at
the end.

There is an important reason for serializing the write statements in line 10. As a rule,

4.4 Short introduction to OpenMP 53

Listing 4.3: C/C++ example with reduction clause for adding noise to the elements of an
array and calculating its vector norm. rand() is not thread-safe so it must be protected by
a critical region.

1 double r,s;

2 #pragma omp parallel for private(r) reduction(+:s)

3 for(i=0; i<N; ++i) {

4 #pragma omp critical

5 {

6 r = rand(); // not thread-safe

7 }

8 a[i] += func(r/RAND_MAX); // func() is thread-safe

9 s = s + a[i] * a[i]; // calculate norm

10 }

I/O operations and general OS functionality, but also common library functions should
be serialized because they are usually not thread-safe, i.e. calling them in parallel regions
from different threads at the same time may lead to errors. A prominent example is the
rand() function from the C library as it uses a static variable to store its hidden state (the
seed). Although local variables in functions are private to the calling thread, static data is
shared by definition. This is also true for Fortran variables with a SAVE attribute.

One should note that the OpenMP standard gives no hints as to how threads are to be
distributed among the processors, let alone observe locality constraints. Usually the OS
makes a good choice regarding placement of threads, but sometimes (especially on multi-
core architectures and ccNUMA systems) it makes sense to use OS-level tools, compiler
support or library functions to explicitly pin threads to cores. See Section 9 on page 89 for
details.

So far, all OpenMP examples were concerned with the Fortran bindings. Of course there
is also a C/C++ interface that has the same functionality. The C/C++ sentinel is called
#pragma omp, and the only way to do conditional compilation is to use the _OPENMP sym-
bol. Loop parallelization only works for “canonical” for loops that have standard integer-
type loop counters (i.e., no STL-style iterator loops) and is done via #pragma omp for.
All directives that act on code regions apply to compound statements and an explicit end-
ing directive is not required.

The example in Listing 4.3 shows a C code that adds some random noise to the ele-
ments of an array a[] and calculates its vector norm. As mentioned before, rand() is not
thread-safe and must be protected with a critical region. The function func(), however, is
assumed to be thread-safe as it only uses automatic (stack) variables and can thus be called
safely from a parallel region (line 8). Another peculiarity in this example is the fusion of
the parallel and for directives to parallel for, which allows for more compact code.
Finally, the reduction operation is not performed using critical updates as in the integration
example. Instead, an OpenMP reduction clause is used (end of line 2) that automatically
initializes the summation variable s with a sensible starting value, makes it private and
accumulates the partial results to it.

Concerning thread-local variables, one must keep in mind that usually the OS shell
restricts the maximum size of all stack variables of its processes. This limit can often be
adjusted by the user or the administrators. However, in a threaded program there are as

54 4 Shared-memory computing

many stacks as there are threads, and the way the thread-local stacks get their limit set is
not standardized at all. Please consult OS and compiler documentation as to how thread-
local stacks are limited. Stack overflows are a frequent source of problems with OpenMP
programs.

Running an OpenMP program is as simple as starting the executable binary just like in
the serial case. The number of threads to be used is determined by an environment variable
called OMP_NUM_TREADS. There may be other means to influence the way the program is
running, e.g. OS scheduling of threads, pinning, getting debug output etc., but those are
not standardized.

