

Primena super-računara
u astronomiji

Basic scalar optimization techniques

● Do less work
● Avoid expensive operations
● Shrink the working set
● Elimination of common subexpressions
● Avoiding branches

Basic scalar optimization techniques

● Do less work!

logical FLAG
FLAG = .false.
do i=1,N

If (complex_func(A(i)) < THRESHOLD) then
FLAG = .true.

endif
enddo

logical FLAG
FLAG = .false.
do i=1,N

If (complex_func(A(i)) < THRESHOLD) then
FLAG = .true.
exit

endif
enddo

Basic scalar optimization techniques

● Avoid expensive operations!
● Examples for “strong” operations are trigonometric and

exponential functions
● Use x*x instead of x^2

Basic scalar optimization techniques

● Shrink the working set!
● The working set of a code is the amount of memory it

uses in the course of a calculation
● Shrinking the working set by whatever means is a good

thing because it raises the probability for cache hits
● If and how this can be achieved and whether it pays off

performancewise depends heavily on the algorithm and its
implementation

● Example: the previous code used standard four-byte
integers to store the spin orientations. The working set was
thus much larger than the L2 cache of most processor. By
changing the array definitions to use integer*1 for the spin
variables, the working set could be reduced by nearly a
factor of four, and became comparable to cache size

Basic scalar optimization techniques

● Elimination of common subexpressions!
● Common subexpression elimination is an optimization

that is often considered a task for compilers
● Basically one tries to save time by pre-calculating parts

of complex expressions and assigning them to temporary
variables before a loop starts

Basic scalar optimization techniques

● Avoiding branches!
● If for some reason compiler optimization fails or is inefficient,

performance will suffer.
● This can easily happen if the loop body contains conditional

branches

do j=1,N
do i=1,N

if(i.ge.j) then
sign=1.d0

else if(i.lt.j) then
sign=-1.d0

else
sign=0.d0

endif
C(j) = C(j) + sign * A(i,j) * B(i)

enddo
enddo

Basic scalar optimization techniques

● Avoiding branches!
● By using two different variants of the inner loop, the

conditional has effectively been moved outside

do j=1,N
do i=j+1,N

C(j) = C(j) + A(i,j) * B(i)
enddo

enddo
do j=1,N

do i=1,j-1
C(j) = C(j) - A(i,j) * B(i)

enddo
enddo

PYTHON

MPI paralelization in Python

● In MPI, the processes involved in the execution of a parallel
program are identified by a sequence of non-negative integers
called ranks

● If we have a number p of processes that runs a program, the
processes will then have a rank that goes from 0 to p-1

● The function MPI that comes to us to solve this problem has
the following function calls:

 rank = comm.Get_rank()

● The comm argument is called a communicator, as it defines its
own set of all processes that can communicate together,
namely:

 comm = MPI.COMM_WORLD

Point-to-point communication

● The point-to-point communication is a mechanism that enables
data transmission between two processes: a process receiver,
and process sender

● The Python module mpi4py enables point-to-point
communication via two functions:

● Comm.Send(data, process_destination)
● Comm.Recv(process_source)

Point-to-point communication

Point-to-point communication

my rank is : 0
sending data 10000000 to process 1
my rank is : 1
my rank is : 3
data received is = 10000000
my rank is : 2

Avoiding deadlock problems

● The deadlock is a situation where two (or more) processes
block each other and wait for the other to perform a certain
action that serves to another, and vice versa

● The mpi4py module doesn't provide any specific functionality
to resolve this but only some measures, which the developer
must follow to avoid problems of deadlock

Avoiding deadlock problems

Collective communication using broadcast

● A communication method that involves all the processes belonging
to a communicator is called a collective communication

● A collective communication generally involves more than two
processes.

● Here we will call the collective communication broadcast, wherein
a single process sends the same data to any other process.

● The mpi4py functionalities in the broadcast are offered by the
following method:

buf = comm.bcast(data_to_share, rank_of_root_process)
● This function simply sends the information contained in the

message process root to every other process that belongs to the
comm communicator; each process must, however, call it by the
same values of root and comm

Collective communication using broadcast

process = 0 variable shared = 100
process = 1 variable shared = 100
process = 3 variable shared = 100
process = 2 variable shared = 100

Collective communication using scatter

● The scatter functionality is very similar to a broadcast
● There is one major difference: while comm.bcast sends the

same data to all listening processes, comm.scatter can send
the chunks of data in an array to different processes

● The comm.scatter function takes the elements of the array
and distributes them to the processes according to their
rank, for which the first element will be sent to the process
zero, the second element to the process 1, and so on

● The function implemented in mpi4py is as follows:
● recvbuf = comm.scatter(sendbuf, rank_of_root_process)

Collective communication using scatter

● One of the restrictions to comm.scatter is that you can
scatter as many elements as the processors you have
available or specify in the execution statement !

process = 0 variable shared = 5
process = 1 variable shared = 2
process = 2 variable shared = 3
process = 3 variable shared = 4

Collective communication using gather

● The gather function performs the inverse of the scatter
functionality. In this case, all processes send data to a root
process that collects the data received.

● The gather function implemented in mpi4py is, as follows:
● recvbuf = comm.gather(sendbuf, rank_of_root_process)

Collective communication using gather

rank = 0 ...receiving data to other process
 process 0 receiving 4 from process 1
 process 0 receiving 9 from process 2
 process 0 receiving 16 from process 3

Collective communication using Alltoall

● The Alltoall collective communication combines the scatter and
gather functionality.

● In mpi4py, there are three types of Alltoall collective
communication:

● comm.Alltoall (sendbuf, recvbuf): The all-to-all scatter/gather
sends data from all-to-all processes in a group

● comm.Alltoallv (sendbuf, recvbuf): The all-to-all scatter/gather
vector sends data from all-to-all processes in a group,
providing different amount of data and displacements

● comm.Alltoallw (sendbuf, recvbuf): Generalized all-to-all
communication allows different counts, displacements, and
datatypes for each partner

Collective communication using Alltoall

process 0 sending [0 1 2 3] receiving [0 0 0 0]
process 2 sending [0 3 6 9] receiving [2 4 6 8]
process 3 sending [0 4 8 12] receiving [3 6 9 12]
process 1 sending [0 2 4 6] receiving [1 2 3 4]

The reduction operation
● Similar to comm.gather, comm.reduce takes an array of input elements in

each process and returns an array of output elements to the root process
● However, the output elements contain the reduced result
● In mpi4py, the reduction operation is defined through the following

statement:
● comm.Reduce(sendbuf, recvbuf, rank_of_root_process, op =

type_of_reduction_operation)
● Note that the difference with the comm.gather statement resides in the op

parameter, which is the operation that you wish to apply to your data
● The mpi4py module contains a set of reduction operations that can be

used
● Some of the reduction operations defined by MPI are:

● MPI.MAX - This returns the maximum element
● MPI.MIN - This returns the minimum element
● MPI.SUM - This sums up the elements
● MPI.PROD - This multiplies all elements

The reduction operation

process 0 sending [0 1 2]
 process 1 sending [0 2 4]
 process 3 sending [0 4 8]
 process 2 sending [0 3 6]
on task 2 after Reduce: data = [0 0 0]
on task 0 after Reduce: data = [0 10 20]
on task 1 after Reduce: data = [0 0 0]
on task 3 after Reduce: data = [0 0 0]

Overview

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

