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Shared-memory computing

● A shared-memory parallel computer is a system in which a number 
of CPUs work on a common, shared physical address space

● Two main varieties of shared-memory systems:
● Uniform Memory Access (UMA) systems feature a “flat” 

memory model: Memory bandwidth and latency are the same for 
all processors and all memory locations. This is also called 
symmetric multiprocessing (SMP)

● On cache-coherent Non-Uniform Memory Access (ccNUMA) 
machines, memory is physically distributed, but logically shared.



  

Shared-memory computing

● The physical layout of such systems is quite similar to the 
distributed-memory case, but network logic makes the 
aggregated memory of the whole system appear as one single 
address space. 

● Due to the distributed nature, memory access performance 
varies depending on which CPU accesses which parts of 
memory (“local” vs. “remote” access)



  

Uniform Memory Access (UMA) 

● Two (single-core) processors, each in its own 
socket, communicate and access memory over 
a common bus, the frontside bus (FSB). 

● All arbitration protocols required to make this 
work are already built into the CPUs 

● The chipset (aka “northbridge”) is responsible 
for driving the memory modules and connects 
to other parts of the node like 
I/O subsystems



  

Uniform Memory Access (UMA) 

● UMA system in which the FSBs of two dual-core chips are 
connected separately to the chipset

● The chipset plays an important role in enforcing cache coherence 
and also mediates the connection to memory. 

● In principle, a system like this could be designed so that the 
bandwidth from chipset to memory matches the aggregated 
bandwidth of the frontside buses



  

Uniform Memory Access (UMA) 

● Each dual-core chip features a separate L1 on each CPU but a 
shared L2 cache for both 

● The advantage of a shared cache is that, to an extent limited by 
cache size, data exchange between cores can be done there and 
does not have to resort to the slow frontside bus



  

Uniform Memory Access (UMA) 

● Due to the shared caches and FSB connections this kind of node 
is, while still a UMA system, quite sensitive to the exact placement 
of processes or threads on its cores. 

● For instance, with only two processes it may be desirable to keep 
(“pin”) them on separate sockets if the memory bandwidth 
requirements are high. 



  

Uniform Memory Access (UMA) 

 
● On the other hand, processes communicating a lot via shared 

memory may show more performance when placed on the same 
socket because of the shared L2 cache. 

● Operating systems as well as some modern compilers usually 
have tools or library functions for observing and implementing 
thread or process pinning.



  

Uniform Memory Access (UMA) 

 
● The general problem of UMA systems is that bandwidth 

bottlenecks are bound to occur when the number of sockets, or 
FSBs, is larger than a certain limit

● In very simple designs, a common memory bus is used that can 
only transfer data to one CPU at a time

● In order to maintain scalability of memory bandwidth with CPU 
number, non-blocking crossbar switches can be built that establish 
point-to-point connections between FSBs and memory modules

● Due to the very large aggregated bandwidths those become very 
expensive for a larger number of sockets



  

Non-Uniform Memory Access (ccNUMA)

● Locality domain (LD) is a set of processor cores together with 
locally connected memory which can be accessed in the most 
efficient way, i.e. without resorting to a network of any kind

● ccNUMA principle provides scalable bandwidth for very large 
processor counts 

● It is also found in inexpensive small two- or four-socket nodes



  

Non-Uniform Memory Access (ccNUMA)

● Example #1: dual-core chips with separate caches and a common 
interface to local memory, are linked using a special high-speed 
connection called HyperTransport (HT)

● This system differs substantially from networked UMA designs in 
that the HT link can mediate direct coherent access from one 
processor to another processor’s memory

● From the programmer’s point of view this mechanism is 
transparent. All the required protocols are handled by the HT 
hardware

● Figure: HyperTransport-based 
cc-NUMA system with two locality 
domains (one per socket) and four 
cores



  

Non-Uniform Memory Access (ccNUMA)

● Example #2: Each processor socket connects to a communication 
interface (S) that provides memory access as well as connectivity 
to the proprietary NUMALink (NL) network

● The NL network relies on routers (R) to switch connections for 
non-local access

● As with HT, the NL hardware allows for transparent access to the 
whole address space of the machine from all CPU

● Figure: ccNUMA system with routed 
NUMALink network and four locality 
domains



  

Non-Uniform Memory Access (ccNUMA)

● Multi-level router fabrics can be built that scale up to hundreds of 
CPUs

● It must, however, be noted that each piece of hardware inserted 
into a data connection (communication interfaces, routers) add to 
latency, making access characteristics very inhomogeneous 
across the system

● Furthermore, as is the case with networks for distributed-memory 
computers, providing wire-equivalent speed, non-blocking 
bandwidth in large systems is extremely expensive

● Figure: ccNUMA system with routed 
NUMALink network and four locality 
domains



  

Non-Uniform Memory Access (ccNUMA)
● In all ccNUMA designs, network connections must have bandwidth and 

latency characteristics that are at least the same order of magnitude as 
for local memory

● Although this is the case for all contemporary systems, even a penalty 
factor of two for non-local transfers can badly hurt application 
performance if access can not be restricted inside locality domains

● This locality problem is the first of two obstacles to take with high 
performance software on ccNUMA. It occurs even if there is only one 
serial program running on a ccNUMA machine

● The second problem is potential congestion if two processors from 
different locality domains access memory in the same locality domain, 
fighting for memory bandwidth

● Even if the network is non-blocking and its performance matches the 
bandwidth and latency of local access, congestion can occur

● Both problems can be solved by carefully observing the data access 
patterns of an application and restricting data access of each processor 
to its own locality domain



  

Cache coherence

● Cache coherence mechanisms are required in all cache-based 
multiprocessor systems, UMA as well as ccNUMA

● This is because potentially copies of the same cache line could 
reside in several CPU caches

● Cache coherence protocols ensure a consistent view of memory 
under all circumstances

● MESI protocol



  

Cache coherence

● MESI protocol:
● M modified: The cache line has been modified in this cache, and 

it resides in no other cache than this one. Only upon eviction will 
memory reflect the most current state

● E exclusive: The cache line has been read from memory but not 
(yet) modified. However, it resides in no other cache

● S shared: The cache line has been read from memory but not 
(yet) modified. There may be other copies in other caches of 
the machine

● I invalid: The cache line does not reflect any sensible data. 
Under normal circumstances this happens if the cache line 
was in shared state and another processor has requested 
exclusive ownership. A cache miss occurs if and only if the 
chosen line is invalid



  

Cache coherence

● Figure: Two processors P1, P2 modify the two parts A1, A2 of 
the same cache line in caches C1 and C2. The MESI coherence 
protocol ensures consistency between cache and memory



  

Cache coherence
● MESI protocol: simple to implement, this method has the crucial 

drawback that address broadcasts pollute the system buses and 
reduce available bandwidth for “useful” memory accesses 

● A separate network for coherence traffic can alleviate this effect but is 
not always practicable

● A better alternative, usually applied in larger ccNUMA machines, is a 
directory-based protocol

● Bus logic like chipsets or memory interfaces keep track of the location 
and state of each cache line in the system

● This uses up a small part of main memory (usually far less than 10 %), 
but the advantage is that state changes of cache lines are transmitted 
only to those caches that actually require them

● This greatly reduces coherence traffic through the system
● Coherence traffic can severely hurt application performance if the 

same cache line is written to frequently by different processors - false 
sharing



  

Shared-memory programming with OpenMP

● Programming shared-memory systems can be done in an entirely 
“distributed-memory” fashion, i.e. the processes making up an 
MPI program can run on a UMA or ccNUMA machine

● On large “constellation” clusters systems where the number of 
nodes is smaller than the number of processors per node, the 
dominant parallelization method is often MPI due to its efficiency 
and flexibility

● However, the MPI is not only the most flexible but also the most 
tedious way of parallelization

● Shared memory opens the possibility to have immediate access to 
all data from all processors without explicit message passing



  

Shared-memory programming with OpenMP

● Shared memory opens the possibility to have immediate access to 
all data from all processors without explicit message passing

● The established standard in this field is OpenMP
● OpenMP is a set of compiler directives that a non-OpenMP 

capable compiler would just regard as comments and ignore
● The central entity in OpenMP is not a process but a thread
● Threads are also called “lightweight processes” because several 

of them can share a common address space and mutually access 
data

● Threads share everything but instruction pointer, stack pointer and 
register state

● Each thread can, by means of its local stack pointer, also have 
“private” variables, but as all data is accessible via the common 
address space, it is only a matter of taking the address of an item 
to make it accessible to all other threads as well



  

OpenMP worksharing and data scoping

● OpenMP is a layer that adapts the raw OS thread interface to 
make it more usable with the typical loop structures

● Example: a parallel version of a simple integration program
● This is valid serial code, but equipping it with the comment lines 

starting with the sequence !$OMP (called a sentinel) and using 
an OpenMP-capable compiler makes it shared-memory parallel



  

OpenMP worksharing and data scoping

● The PARALLEL directive instructs the compiler to start a parallel 
region

● A team of threads is spawned that executes identical copies of 
everything up to END PARALLEL



  

OpenMP worksharing and data scoping
● By default, all variables which were 

present in the program before the 
parallel region are shared among all 
threads 

● That would include x and sum of 
which we later need private versions 
for each thread

● OpenMP provides a way to make 
existing variables private by means of 
the PRIVATE clause

● If any thread in a parallel region writes 
to sum (see line 4), it will update its 
own private copy, leaving the other 
threads’ untouched. Therefore, before 
the loop starts each thread’s copy of 
sum is set to zero



  

OpenMP worksharing and data scoping

● In order to share some amount of 
work between threads and actually 
reduce wallclock time, work sharing 
directives can be applied. 

● This is done using the DO directive 
with the optional SCHEDULE 
clause. 

● The DO directive is always related 
to the immediately following loop 
(line 6) and generates code that 
distributes the loop iterations 
among the team of threads 

● Note that the loop counter variable 
is automatically made private



  

Loop scheduling

● This is controlled by the argument of SCHEDULE
● The simplest option is STATIC which divides the loop in 

contiguous chunks of approximately equal size
● If the amount of work per loop iteration is not constant, a 

solution would be to use a chunk size like in “STATIC,1” that 
dictates that chunks of size 1 should be distributed across 
threads in a round-robin manner

● There are alternatives to static schedule
● Dynamic scheduling assigns a chunk of work, defined by the 

chunk size, to the next thread that has finished its chunk
● This allows for a very flexible distribution which is usually not 

reproduced from run to run



  

Loop scheduling

● Dynamic scheduling assigns a chunk of work, defined by the 
chunk size, to the next thread that has finished its chunk

● This allows for a very flexible distribution which is usually not 
reproduced from run to run

● The downside is that dynamic scheduling generates significant 
overhead if the chunks are too small in terms of execution time

● In cases where this is a problem, the guided schedule may help
● Threads request new chunks dynamically, but the chunk size is 

always proportional to the remaining number of iterations divided 
by the number of threads

● Applications which are limited by memory bandwidth may suffer 
from insufficient access locality on ccNUMA systems



  

Loop scheduling



  

Protecting shared data

● The parallelized loop shown in the figure computes a partial sum 
in each thread’s private sum variable 

● To get the final result, all the partial sums must be accumulated in 
the global pi variable

● pi is shared so that uncontrolled updates would lead to a race 
condition, i.e. the exact order and timing of operations will 
influence the result

● In OpenMP, critical sections solve 
this problem by making sure that 
at most one thread at a time 
executes some piece of code. 

● The CRITICAL and END 
CRITICAL directives bracket the 
update to pi so that a correct 
result emerges at all times



  

Protecting shared data

● Critical sections hold the danger of deadlocks when used 
inappropriately 

● A deadlock arises when one or more threads wait for resources 
that will never become available, a situation that is generated 
with badly arranged CRITICAL directives

● When a thread encounters a CRITICAL directive inside a 
critical region, it will block forever



  

Protecting shared data

● OpenMP provides two solutions to the problem:

1) A critical section may be given a name that distinguishes it 
from others. The name is specified in parentheses after the 
CRITICAL directive



  

Protecting shared data

● OpenMP provides two solutions to the problem:

2) There are OpenMP API functions that support the use of locks 
for protecting shared resources. The advantage of locks is that 
they are ordinary variables that can be arranged as arrays or in 
structures. That way it is possible to protect each single element 
of an array of resources individually



  

Protecting shared data

● OpenMP provides two solutions to the problem:

2) There are OpenMP API functions that support the use of locks 
for protecting shared resources. The advantage of locks is that 
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Protecting shared data

● OpenMP provides two solutions to the problem:

2) There are OpenMP API functions that support the use of locks 
for protecting shared resources. The advantage of locks is that 
they are ordinary variables that can be arranged as arrays or in 
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