

Primena super-računara
u astronomiji

Shared-memory computing

● A shared-memory parallel computer is a system in which a number
of CPUs work on a common, shared physical address space

● Two main varieties of shared-memory systems:
● Uniform Memory Access (UMA) systems feature a “flat”

memory model: Memory bandwidth and latency are the same for
all processors and all memory locations. This is also called
symmetric multiprocessing (SMP)

● On cache-coherent Non-Uniform Memory Access (ccNUMA)
machines, memory is physically distributed, but logically shared.

Shared-memory computing

● The physical layout of such systems is quite similar to the
distributed-memory case, but network logic makes the
aggregated memory of the whole system appear as one single
address space.

● Due to the distributed nature, memory access performance
varies depending on which CPU accesses which parts of
memory (“local” vs. “remote” access)

Uniform Memory Access (UMA)

● Two (single-core) processors, each in its own
socket, communicate and access memory over
a common bus, the frontside bus (FSB).

● All arbitration protocols required to make this
work are already built into the CPUs

● The chipset (aka “northbridge”) is responsible
for driving the memory modules and connects
to other parts of the node like
I/O subsystems

Uniform Memory Access (UMA)

● UMA system in which the FSBs of two dual-core chips are
connected separately to the chipset

● The chipset plays an important role in enforcing cache coherence
and also mediates the connection to memory.

● In principle, a system like this could be designed so that the
bandwidth from chipset to memory matches the aggregated
bandwidth of the frontside buses

Uniform Memory Access (UMA)

● Each dual-core chip features a separate L1 on each CPU but a
shared L2 cache for both

● The advantage of a shared cache is that, to an extent limited by
cache size, data exchange between cores can be done there and
does not have to resort to the slow frontside bus

Uniform Memory Access (UMA)

● Due to the shared caches and FSB connections this kind of node
is, while still a UMA system, quite sensitive to the exact placement
of processes or threads on its cores.

● For instance, with only two processes it may be desirable to keep
(“pin”) them on separate sockets if the memory bandwidth
requirements are high.

Uniform Memory Access (UMA)

● On the other hand, processes communicating a lot via shared

memory may show more performance when placed on the same
socket because of the shared L2 cache.

● Operating systems as well as some modern compilers usually
have tools or library functions for observing and implementing
thread or process pinning.

Uniform Memory Access (UMA)

● The general problem of UMA systems is that bandwidth

bottlenecks are bound to occur when the number of sockets, or
FSBs, is larger than a certain limit

● In very simple designs, a common memory bus is used that can
only transfer data to one CPU at a time

● In order to maintain scalability of memory bandwidth with CPU
number, non-blocking crossbar switches can be built that establish
point-to-point connections between FSBs and memory modules

● Due to the very large aggregated bandwidths those become very
expensive for a larger number of sockets

Non-Uniform Memory Access (ccNUMA)

● Locality domain (LD) is a set of processor cores together with
locally connected memory which can be accessed in the most
efficient way, i.e. without resorting to a network of any kind

● ccNUMA principle provides scalable bandwidth for very large
processor counts

● It is also found in inexpensive small two- or four-socket nodes

Non-Uniform Memory Access (ccNUMA)

● Example #1: dual-core chips with separate caches and a common
interface to local memory, are linked using a special high-speed
connection called HyperTransport (HT)

● This system differs substantially from networked UMA designs in
that the HT link can mediate direct coherent access from one
processor to another processor’s memory

● From the programmer’s point of view this mechanism is
transparent. All the required protocols are handled by the HT
hardware

● Figure: HyperTransport-based
cc-NUMA system with two locality
domains (one per socket) and four
cores

Non-Uniform Memory Access (ccNUMA)

● Example #2: Each processor socket connects to a communication
interface (S) that provides memory access as well as connectivity
to the proprietary NUMALink (NL) network

● The NL network relies on routers (R) to switch connections for
non-local access

● As with HT, the NL hardware allows for transparent access to the
whole address space of the machine from all CPU

● Figure: ccNUMA system with routed
NUMALink network and four locality
domains

Non-Uniform Memory Access (ccNUMA)

● Multi-level router fabrics can be built that scale up to hundreds of
CPUs

● It must, however, be noted that each piece of hardware inserted
into a data connection (communication interfaces, routers) add to
latency, making access characteristics very inhomogeneous
across the system

● Furthermore, as is the case with networks for distributed-memory
computers, providing wire-equivalent speed, non-blocking
bandwidth in large systems is extremely expensive

● Figure: ccNUMA system with routed
NUMALink network and four locality
domains

Non-Uniform Memory Access (ccNUMA)
● In all ccNUMA designs, network connections must have bandwidth and

latency characteristics that are at least the same order of magnitude as
for local memory

● Although this is the case for all contemporary systems, even a penalty
factor of two for non-local transfers can badly hurt application
performance if access can not be restricted inside locality domains

● This locality problem is the first of two obstacles to take with high
performance software on ccNUMA. It occurs even if there is only one
serial program running on a ccNUMA machine

● The second problem is potential congestion if two processors from
different locality domains access memory in the same locality domain,
fighting for memory bandwidth

● Even if the network is non-blocking and its performance matches the
bandwidth and latency of local access, congestion can occur

● Both problems can be solved by carefully observing the data access
patterns of an application and restricting data access of each processor
to its own locality domain

Cache coherence

● Cache coherence mechanisms are required in all cache-based
multiprocessor systems, UMA as well as ccNUMA

● This is because potentially copies of the same cache line could
reside in several CPU caches

● Cache coherence protocols ensure a consistent view of memory
under all circumstances

● MESI protocol

Cache coherence

● MESI protocol:
● M modified: The cache line has been modified in this cache, and

it resides in no other cache than this one. Only upon eviction will
memory reflect the most current state

● E exclusive: The cache line has been read from memory but not
(yet) modified. However, it resides in no other cache

● S shared: The cache line has been read from memory but not
(yet) modified. There may be other copies in other caches of
the machine

● I invalid: The cache line does not reflect any sensible data.
Under normal circumstances this happens if the cache line
was in shared state and another processor has requested
exclusive ownership. A cache miss occurs if and only if the
chosen line is invalid

Cache coherence

● Figure: Two processors P1, P2 modify the two parts A1, A2 of
the same cache line in caches C1 and C2. The MESI coherence
protocol ensures consistency between cache and memory

Cache coherence
● MESI protocol: simple to implement, this method has the crucial

drawback that address broadcasts pollute the system buses and
reduce available bandwidth for “useful” memory accesses

● A separate network for coherence traffic can alleviate this effect but is
not always practicable

● A better alternative, usually applied in larger ccNUMA machines, is a
directory-based protocol

● Bus logic like chipsets or memory interfaces keep track of the location
and state of each cache line in the system

● This uses up a small part of main memory (usually far less than 10 %),
but the advantage is that state changes of cache lines are transmitted
only to those caches that actually require them

● This greatly reduces coherence traffic through the system
● Coherence traffic can severely hurt application performance if the

same cache line is written to frequently by different processors - false
sharing

Shared-memory programming with OpenMP

● Programming shared-memory systems can be done in an entirely
“distributed-memory” fashion, i.e. the processes making up an
MPI program can run on a UMA or ccNUMA machine

● On large “constellation” clusters systems where the number of
nodes is smaller than the number of processors per node, the
dominant parallelization method is often MPI due to its efficiency
and flexibility

● However, the MPI is not only the most flexible but also the most
tedious way of parallelization

● Shared memory opens the possibility to have immediate access to
all data from all processors without explicit message passing

Shared-memory programming with OpenMP

● Shared memory opens the possibility to have immediate access to
all data from all processors without explicit message passing

● The established standard in this field is OpenMP
● OpenMP is a set of compiler directives that a non-OpenMP

capable compiler would just regard as comments and ignore
● The central entity in OpenMP is not a process but a thread
● Threads are also called “lightweight processes” because several

of them can share a common address space and mutually access
data

● Threads share everything but instruction pointer, stack pointer and
register state

● Each thread can, by means of its local stack pointer, also have
“private” variables, but as all data is accessible via the common
address space, it is only a matter of taking the address of an item
to make it accessible to all other threads as well

OpenMP worksharing and data scoping

● OpenMP is a layer that adapts the raw OS thread interface to
make it more usable with the typical loop structures

● Example: a parallel version of a simple integration program
● This is valid serial code, but equipping it with the comment lines

starting with the sequence !$OMP (called a sentinel) and using
an OpenMP-capable compiler makes it shared-memory parallel

OpenMP worksharing and data scoping

● The PARALLEL directive instructs the compiler to start a parallel
region

● A team of threads is spawned that executes identical copies of
everything up to END PARALLEL

OpenMP worksharing and data scoping
● By default, all variables which were

present in the program before the
parallel region are shared among all
threads

● That would include x and sum of
which we later need private versions
for each thread

● OpenMP provides a way to make
existing variables private by means of
the PRIVATE clause

● If any thread in a parallel region writes
to sum (see line 4), it will update its
own private copy, leaving the other
threads’ untouched. Therefore, before
the loop starts each thread’s copy of
sum is set to zero

OpenMP worksharing and data scoping

● In order to share some amount of
work between threads and actually
reduce wallclock time, work sharing
directives can be applied.

● This is done using the DO directive
with the optional SCHEDULE
clause.

● The DO directive is always related
to the immediately following loop
(line 6) and generates code that
distributes the loop iterations
among the team of threads

● Note that the loop counter variable
is automatically made private

Loop scheduling

● This is controlled by the argument of SCHEDULE
● The simplest option is STATIC which divides the loop in

contiguous chunks of approximately equal size
● If the amount of work per loop iteration is not constant, a

solution would be to use a chunk size like in “STATIC,1” that
dictates that chunks of size 1 should be distributed across
threads in a round-robin manner

● There are alternatives to static schedule
● Dynamic scheduling assigns a chunk of work, defined by the

chunk size, to the next thread that has finished its chunk
● This allows for a very flexible distribution which is usually not

reproduced from run to run

Loop scheduling

● Dynamic scheduling assigns a chunk of work, defined by the
chunk size, to the next thread that has finished its chunk

● This allows for a very flexible distribution which is usually not
reproduced from run to run

● The downside is that dynamic scheduling generates significant
overhead if the chunks are too small in terms of execution time

● In cases where this is a problem, the guided schedule may help
● Threads request new chunks dynamically, but the chunk size is

always proportional to the remaining number of iterations divided
by the number of threads

● Applications which are limited by memory bandwidth may suffer
from insufficient access locality on ccNUMA systems

Loop scheduling

Protecting shared data

● The parallelized loop shown in the figure computes a partial sum
in each thread’s private sum variable

● To get the final result, all the partial sums must be accumulated in
the global pi variable

● pi is shared so that uncontrolled updates would lead to a race
condition, i.e. the exact order and timing of operations will
influence the result

● In OpenMP, critical sections solve
this problem by making sure that
at most one thread at a time
executes some piece of code.

● The CRITICAL and END
CRITICAL directives bracket the
update to pi so that a correct
result emerges at all times

Protecting shared data

● Critical sections hold the danger of deadlocks when used
inappropriately

● A deadlock arises when one or more threads wait for resources
that will never become available, a situation that is generated
with badly arranged CRITICAL directives

● When a thread encounters a CRITICAL directive inside a
critical region, it will block forever

Protecting shared data

● OpenMP provides two solutions to the problem:

1) A critical section may be given a name that distinguishes it
from others. The name is specified in parentheses after the
CRITICAL directive

Protecting shared data

● OpenMP provides two solutions to the problem:

2) There are OpenMP API functions that support the use of locks
for protecting shared resources. The advantage of locks is that
they are ordinary variables that can be arranged as arrays or in
structures. That way it is possible to protect each single element
of an array of resources individually

Protecting shared data

● OpenMP provides two solutions to the problem:

2) There are OpenMP API functions that support the use of locks
for protecting shared resources. The advantage of locks is that
they are ordinary variables that can be arranged as arrays or in
structures. That way it is possible to protect each single element
of an array of resources individually

Protecting shared data

● OpenMP provides two solutions to the problem:

2) There are OpenMP API functions that support the use of locks
for protecting shared resources. The advantage of locks is that
they are ordinary variables that can be arranged as arrays or in
structures. That way it is possible to protect each single element
of an array of resources individually

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

