

Primena super-računara
u astronomiji

Distributed-memory computing

● Each processor P (with its own local cache C) is connected
to exclusive local memory M

● Each node comprises at least one network interface (NI) that
mediates the connection to a communication network

● There is a number of advanced technologies that have ten
times the bandwidth and 1/10 th of the latency of Gbit Ethernet

● Simplified block diagram
(programming model) of
a distributed-memory
parallel computer

Distributed-memory computing

● The most favourable design consists of a non-blocking
“wirespeed” network that can switch N/2 connections between
its N participants without any bottlenecks

● Problem: non-blocking switch fabrics become vastly expensive
on very large installations

● Simplified block diagram
(programming model) of
a distributed-memory
parallel computer

Message Passing
● Distributed-memory parallel programming requires the use of

explicit message passing (MP), i.e. communication between
processes

● There is an established standard for message passing called MPI
(Message Passing Interface)

● MPI conforms to the following rules:
● The same program runs on all processes (Single Program

Multiple Data - SPMD). All processes taking part in a parallel
calculation can be distinguished by a unique identifier called
rank

● The program is written in a sequential language like Fortran, C
or C++. Data exchange, i.e. sending and receiving of
messages, is done via calls to an appropriate library

● All variables in a process are local to this process. There is no
concept of shared memory

Message Passing

● In a message passing program, messages move data between
processes

● For a message to be transmitted in an orderly manner, some
parameters have to be fixed in advance:

● Which processor is sending the message
● Where is the data on the sending processor
● What kind of data is being sent
● How much data is there
● Which process/es is/are going to receive the message
● Where should the data be left on the receiving process(es)
● How much data are the receiving processes prepared to accept

● All MPI calls that actually transfer data have to specify those
parameters in some way

A brief glance on MPI

● The first call in every MPI code should go to MPI_Init and initializes
the parallel environment

● After initialization, MPI has set up a so-called communicator, called
MPI_COMM_WORLD

● The calls to MPI_Comm_size and MPI_Comm_rank serve to
determine the number of processes (size) in the parallel program
and the unique identifier (rank) of the calling process

A brief glance on MPI

● The ranks in a communicator, in this case MPI_COMM_WORLD,
are numbered starting from zero up to N−1

● The parallel program is shut down by a call to MPI_Finalize
● The output of the program could look like the following:

● Hello World, I am 3 of 4
● Hello World, I am 0 of 4
● Hello World, I am 2 of 4
● Hello World, I am 1 of 4

● MPI program fragment that
computes an integral over
some function f(x) in parallel

● Each MPI process gets
assigned a subinterval of the
integration domain

● Some other function can
then perform the actual
integration

A brief glance on MPI

● All MPI functionalities described so far have the property that
the call returns to the user program only after the message
transfer has progressed far enough so that the send/receive
buffer can be used without problems

● This is called blocking communication
● Non-blocking MPI is a way in which computation and

communication may be overlapped
● Non-blocking and blocking MPI calls are mutually compatible,

i.e. a message sent via a blocking send can be matched by a
non-blocking receive

A brief glance on MPI - Python

Basic performance characteristics of networks

● There are various options for the choice of a network in a
distributed-memory computer

● Assuming that the total transfer time for a message of size N
is:

● The effective bandwidth is:

Basic performance characteristics of networks

● Fit of the model for effective
bandwidth to data measured
on a Gbit Ethernet network

● This simple model is able to describe the gross features well

Basic performance characteristics of networks
● For the measurement of effective bandwidth the PingPong

benchmark is frequently used

● Result of the PingPong
benchmark for three
different networks

Shared-memory computing

● A shared-memory parallel computer is a system in which a number
of CPUs work on a common, shared physical address space

● Two main varieties of shared-memory systems:
● Uniform Memory Access (UMA) systems feature a “flat”

memory model: Memory bandwidth and latency are the same for
all processors and all memory locations. This is also called
symmetric multiprocessing (SMP)

● On cache-coherent Non-Uniform Memory Access (ccNUMA)
machines, memory is physically distributed, but logically shared.

Shared-memory computing

● The physical layout of such systems is quite similar to the
distributed-memory case, but network logic makes the
aggregated memory of the whole system appear as one single
address space.

● Due to the distributed nature, memory access performance
varies depending on which CPU accesses which parts of
memory (“local” vs. “remote” access)

Uniform Memory Access (UMA)

● Two (single-core) processors, each in its own
socket, communicate and access memory over
a common bus, the frontside bus (FSB).

● All arbitration protocols required to make this
work are already built into the CPUs

● The chipset (aka “northbridge”) is responsible
for driving the memory modules and connects
to other parts of the node like
I/O subsystems

Uniform Memory Access (UMA)

● UMA system in which the FSBs of two dual-core chips are
connected separately to the chipset

● The chipset plays an important role in enforcing cache coherence
and also mediates the connection to memory.

● In principle, a system like this could be designed so that the
bandwidth from chipset to memory matches the aggregated
bandwidth of the frontside buses

Uniform Memory Access (UMA)

● Each dual-core chip features a separate L1 on each CPU but a
shared L2 cache for both

● The advantage of a shared cache is that, to an extent limited by
cache size, data exchange between cores can be done there and
does not have to resort to the slow frontside bus

Uniform Memory Access (UMA)

● Due to the shared caches and FSB connections this kind of node
is, while still a UMA system, quite sensitive to the exact placement
of processes or threads on its cores.

● For instance, with only two processes it may be desirable to keep
(“pin”) them on separate sockets if the memory bandwidth
requirements are high.

Uniform Memory Access (UMA)

● On the other hand, processes communicating a lot via shared

memory may show more performance when placed on the same
socket because of the shared L2 cache.

● Operating systems as well as some modern compilers usually
have tools or library functions for observing and implementing
thread or process pinning.

Uniform Memory Access (UMA)

● The general problem of UMA systems is that bandwidth

bottlenecks are bound to occur when the number of sockets, or
FSBs, is larger than a certain limit

● In very simple designs, a common memory bus is used that can
only transfer data to one CPU at a time

● In order to maintain scalability of memory bandwidth with CPU
number, non-blocking crossbar switches can be built that establish
point-to-point connections between FSBs and memory modules

● Due to the very large aggregated bandwidths those become very
expensive for a larger number of sockets

Non-Uniform Memory Access (ccNUMA)

● Locality domain (LD) is a set of processor cores together with
locally connected memory which can be accessed in the most
efficient way, i.e. without resorting to a network of any kind

● ccNUMA principle provides scalable bandwidth for very large
processor counts

● It is also found in inexpensive small two- or four-socket nodes

Non-Uniform Memory Access (ccNUMA)

● Example #1: dual-core chips with separate caches and a common
interface to local memory, are linked using a special high-speed
connection called HyperTransport (HT)

● This system differs substantially from networked UMA designs in
that the HT link can mediate direct coherent access from one
processor to another processor’s memory

● From the programmer’s point of view this mechanism is
transparent. All the required protocols are handled by the HT
hardware

● Figure: HyperTransport-based
cc-NUMA system with two locality
domains (one per socket) and four
cores

Non-Uniform Memory Access (ccNUMA)

● Example #2: Each processor socket connects to a communication
interface (S) that provides memory access as well as connectivity
to the proprietary NUMALink (NL) network

● The NL network relies on routers (R) to switch connections for
non-local access

● As with HT, the NL hardware allows for transparent access to the
whole address space of the machine from all CPU

● Figure: ccNUMA system with routed
NUMALink network and four locality
domains

Non-Uniform Memory Access (ccNUMA)

● Multi-level router fabrics can be built that scale up to hundreds of
CPUs

● It must, however, be noted that each piece of hardware inserted
into a data connection (communication interfaces, routers) add to
latency, making access characteristics very inhomogeneous
across the system

● Furthermore, as is the case with networks for distributed-memory
computers, providing wire-equivalent speed, non-blocking
bandwidth in large systems is extremely expensive

● Figure: ccNUMA system with routed
NUMALink network and four locality
domains

Non-Uniform Memory Access (ccNUMA)
● In all ccNUMA designs, network connections must have bandwidth and

latency characteristics that are at least the same order of magnitude as
for local memory

● Although this is the case for all contemporary systems, even a penalty
factor of two for non-local transfers can badly hurt application
performance if access can not be restricted inside locality domains

● This locality problem is the first of two obstacles to take with high
performance software on ccNUMA. It occurs even if there is only one
serial program running on a ccNUMA machine

● The second problem is potential congestion if two processors from
different locality domains access memory in the same locality domain,
fighting for memory bandwidth

● Even if the network is non-blocking and its performance matches the
bandwidth and latency of local access, congestion can occur

● Both problems can be solved by carefully observing the data access
patterns of an application and restricting data access of each processor
to its own locality domain

Cache coherence

Shared-memory programming with OpenMP

Shared-memory programming with OpenMP

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

