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Distributed-memory computing

● Each processor P (with its own local cache C) is connected
to exclusive local memory M

● Each node comprises at least one network interface (NI) that 
mediates the connection to a communication network

● There is a number of advanced technologies that have ten 
times the bandwidth and 1/10 th of the latency of Gbit Ethernet

● Simplified block diagram 
(programming model) of 
a distributed-memory 
parallel computer



  

Distributed-memory computing

● The most favourable design consists of a non-blocking 
“wirespeed” network that can switch N/2 connections between 
its N participants without any bottlenecks

● Problem: non-blocking switch fabrics become vastly expensive 
on very large installations

● Simplified block diagram 
(programming model) of 
a distributed-memory 
parallel computer



  

Message Passing
● Distributed-memory parallel programming requires the use of 

explicit message passing (MP), i.e. communication between 
processes

● There is an established standard for message passing called MPI 
(Message Passing Interface)

● MPI conforms to the following rules:
● The same program runs on all processes (Single Program 

Multiple Data - SPMD). All processes taking part in a parallel 
calculation can be distinguished by a unique identifier called 
rank

● The program is written in a sequential language like Fortran, C 
or C++. Data exchange, i.e. sending and receiving of 
messages, is done via calls to an appropriate library

● All variables in a process are local to this process. There is no 
concept of shared memory



  

Message Passing

● In a message passing program, messages move data between 
processes

● For a message to be transmitted in an orderly manner, some 
parameters have to be fixed in advance:

● Which processor is sending the message
● Where is the data on the sending processor
● What kind of data is being sent
● How much data is there
● Which process/es is/are going to receive the message
● Where should the data be left on the receiving process(es)
● How much data are the receiving processes prepared to accept

● All MPI calls that actually transfer data have to specify those 
parameters in some way



  

A brief glance on MPI

● The first call in every MPI code should go to MPI_Init and initializes 
the parallel environment

● After initialization, MPI has set up a so-called communicator, called 
MPI_COMM_WORLD

● The calls to MPI_Comm_size and MPI_Comm_rank serve to 
determine the number of processes (size) in the parallel program 
and the unique identifier (rank) of the calling process



  

A brief glance on MPI

● The ranks in a communicator, in this case MPI_COMM_WORLD, 
are numbered starting from zero up to N−1

● The parallel program is shut down by a call to MPI_Finalize
● The output of the program could look like the following:

● Hello World, I am 3 of 4
● Hello World, I am 0 of 4
● Hello World, I am 2 of 4
● Hello World, I am 1 of 4



  

● MPI program fragment that 
computes an integral over 
some function f(x) in parallel

● Each MPI process gets 
assigned a subinterval of the 
integration domain

● Some other function can 
then perform the actual 
integration



  

A brief glance on MPI

● All MPI functionalities described so far have the property that 
the call returns to the user program only after the message 
transfer has progressed far enough so that the send/receive 
buffer can be used without problems

● This is called blocking communication
● Non-blocking MPI is a way in which computation and 

communication may be overlapped
● Non-blocking and blocking MPI calls are mutually compatible, 

i.e. a message sent via a blocking send can be matched by a 
non-blocking receive



  

A brief glance on MPI - Python



  

Basic performance characteristics of networks

● There are various options for the choice of a network in a 
distributed-memory computer

● Assuming that the total transfer time for a message of size N 
is:

● The effective bandwidth is:



  

Basic performance characteristics of networks

● Fit of the model for effective 
bandwidth to data measured 
on a Gbit Ethernet network

● This simple model is able to describe the gross features well



  

Basic performance characteristics of networks
● For the measurement of effective bandwidth the PingPong 

benchmark is frequently used

● Result of the PingPong 
benchmark for three 
different networks



  

Shared-memory computing

● A shared-memory parallel computer is a system in which a number 
of CPUs work on a common, shared physical address space

● Two main varieties of shared-memory systems:
● Uniform Memory Access (UMA) systems feature a “flat” 

memory model: Memory bandwidth and latency are the same for 
all processors and all memory locations. This is also called 
symmetric multiprocessing (SMP)

● On cache-coherent Non-Uniform Memory Access (ccNUMA) 
machines, memory is physically distributed, but logically shared.



  

Shared-memory computing

● The physical layout of such systems is quite similar to the 
distributed-memory case, but network logic makes the 
aggregated memory of the whole system appear as one single 
address space. 

● Due to the distributed nature, memory access performance 
varies depending on which CPU accesses which parts of 
memory (“local” vs. “remote” access)



  

Uniform Memory Access (UMA) 

● Two (single-core) processors, each in its own 
socket, communicate and access memory over 
a common bus, the frontside bus (FSB). 

● All arbitration protocols required to make this 
work are already built into the CPUs 

● The chipset (aka “northbridge”) is responsible 
for driving the memory modules and connects 
to other parts of the node like 
I/O subsystems



  

Uniform Memory Access (UMA) 

● UMA system in which the FSBs of two dual-core chips are 
connected separately to the chipset

● The chipset plays an important role in enforcing cache coherence 
and also mediates the connection to memory. 

● In principle, a system like this could be designed so that the 
bandwidth from chipset to memory matches the aggregated 
bandwidth of the frontside buses



  

Uniform Memory Access (UMA) 

● Each dual-core chip features a separate L1 on each CPU but a 
shared L2 cache for both 

● The advantage of a shared cache is that, to an extent limited by 
cache size, data exchange between cores can be done there and 
does not have to resort to the slow frontside bus



  

Uniform Memory Access (UMA) 

● Due to the shared caches and FSB connections this kind of node 
is, while still a UMA system, quite sensitive to the exact placement 
of processes or threads on its cores. 

● For instance, with only two processes it may be desirable to keep 
(“pin”) them on separate sockets if the memory bandwidth 
requirements are high. 



  

Uniform Memory Access (UMA) 

 
● On the other hand, processes communicating a lot via shared 

memory may show more performance when placed on the same 
socket because of the shared L2 cache. 

● Operating systems as well as some modern compilers usually 
have tools or library functions for observing and implementing 
thread or process pinning.



  

Uniform Memory Access (UMA) 

 
● The general problem of UMA systems is that bandwidth 

bottlenecks are bound to occur when the number of sockets, or 
FSBs, is larger than a certain limit

● In very simple designs, a common memory bus is used that can 
only transfer data to one CPU at a time

● In order to maintain scalability of memory bandwidth with CPU 
number, non-blocking crossbar switches can be built that establish 
point-to-point connections between FSBs and memory modules

● Due to the very large aggregated bandwidths those become very 
expensive for a larger number of sockets



  

Non-Uniform Memory Access (ccNUMA)

● Locality domain (LD) is a set of processor cores together with 
locally connected memory which can be accessed in the most 
efficient way, i.e. without resorting to a network of any kind

● ccNUMA principle provides scalable bandwidth for very large 
processor counts 

● It is also found in inexpensive small two- or four-socket nodes



  

Non-Uniform Memory Access (ccNUMA)

● Example #1: dual-core chips with separate caches and a common 
interface to local memory, are linked using a special high-speed 
connection called HyperTransport (HT)

● This system differs substantially from networked UMA designs in 
that the HT link can mediate direct coherent access from one 
processor to another processor’s memory

● From the programmer’s point of view this mechanism is 
transparent. All the required protocols are handled by the HT 
hardware

● Figure: HyperTransport-based 
cc-NUMA system with two locality 
domains (one per socket) and four 
cores



  

Non-Uniform Memory Access (ccNUMA)

● Example #2: Each processor socket connects to a communication 
interface (S) that provides memory access as well as connectivity 
to the proprietary NUMALink (NL) network

● The NL network relies on routers (R) to switch connections for 
non-local access

● As with HT, the NL hardware allows for transparent access to the 
whole address space of the machine from all CPU

● Figure: ccNUMA system with routed 
NUMALink network and four locality 
domains



  

Non-Uniform Memory Access (ccNUMA)

● Multi-level router fabrics can be built that scale up to hundreds of 
CPUs

● It must, however, be noted that each piece of hardware inserted 
into a data connection (communication interfaces, routers) add to 
latency, making access characteristics very inhomogeneous 
across the system

● Furthermore, as is the case with networks for distributed-memory 
computers, providing wire-equivalent speed, non-blocking 
bandwidth in large systems is extremely expensive

● Figure: ccNUMA system with routed 
NUMALink network and four locality 
domains



  

Non-Uniform Memory Access (ccNUMA)
● In all ccNUMA designs, network connections must have bandwidth and 

latency characteristics that are at least the same order of magnitude as 
for local memory

● Although this is the case for all contemporary systems, even a penalty 
factor of two for non-local transfers can badly hurt application 
performance if access can not be restricted inside locality domains

● This locality problem is the first of two obstacles to take with high 
performance software on ccNUMA. It occurs even if there is only one 
serial program running on a ccNUMA machine

● The second problem is potential congestion if two processors from 
different locality domains access memory in the same locality domain, 
fighting for memory bandwidth

● Even if the network is non-blocking and its performance matches the 
bandwidth and latency of local access, congestion can occur

● Both problems can be solved by carefully observing the data access 
patterns of an application and restricting data access of each processor 
to its own locality domain



  

Cache coherence



  

Shared-memory programming with OpenMP



  

Shared-memory programming with OpenMP


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

