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Basic principles of parallelism

● Parallelization is the process of formulating a problem in a 
way that lends itself to concurrent execution by several 
“execution units”

● Ideally, the execution units are initially given some amount 
of work to do which they execute in exactly the same 
amount of time

● Using N units, a problem that takes a time T to be solved 
sequentially, will now take only T/N. 

● We call this a speedup of N.
● How well a task can be parallelized is usually quantified by 

some scalability metric



  

Parallelization strategies

● Data parallelism: Many simulations in science could be 
represented with a simplified picture of reality in which a 
computational domain is represented as a grid of discrete 
positions for the physical quantities under consideration.  
The work is distributed across processors, and a part of the 
grid is assign to each CPU. This is called domain 
decomposition.

● Functional (or task) parallelism: Solving a complete 
problem can be split into more or less disjoint subtasks. 
The tasks can be worked on in parallel, using appropriate 
amounts of resources so that load imbalance is kept under 
control.



  

Data parallelism
● As an example consider a two-dimensional simulation code that 

updates physical variables on a n×n grid
● Domain decomposition subdivides the computational domain 

into N subdomains
● The computational effort should be equal for all domains to 

avoid load imbalance
● It may be necessary to communicate data across domain

boundaries
● The communication cost grows linearly with the distance that 

has to be bridged in order to calculate observables at a certain 
point of the grid



  

Functional parallelism

● Spliting a complete problem into disjoint subtasks that can 
be worked on in parallel

● For instance, assign some resources to communication 
and others to computational work



  

Performance models for parallel scalability

● In a simple model, the overall problem size (“amount of 
work”) shall be  s + p = 1

● The 1-CPU (serial) runtime for this case:

● Solving the same problem on N CPUs:

● This is called strong scaling because the amount of work 
stays constant no matter how many CPUs are used

● Here the goal of parallelization is minimization of time to 
solution for a given problem



  

Performance models for parallel scalability

● For larger problem sizes, for which available memory is the 
limiting factor, it is appropriate to scale the problem size with 
some power of N so that the total amount of work is  s + pNα

● The serial runtime for the scaled problem is defined as:

● The parallel runtime is:

● This approuch is called weak scaling



  

Scalability limitations

s + p = 1

● Serial performance for fixed problem size:

● Parallel performance for fixed problem size:

● Application speedup:

● Amdahl’s Law: limits application speedup for large N to 1/s



  

Scalability limitations

● If we define “work” as only the parallelizable part of the calculation
● Serial performance for fixed problem size:

● Parallel performance for fixed problem size:

● Application speedup:



  

Scalability limitations

● In the case of weak scaling where workload grows with CPU count, 
the question to ask is “How much more work can my program do in 
a given amount of time when I put a larger problem on N CPUs?”

● Serial performance is:

● Parallel performance is:

● In the special case α = 0 (strong scaling) we recover Amdahl’s Law



  

Scalability limitations
● Parallel performance is:

● In the special case α = 0 (strong scaling) we recover Amdahl’s Law
● With 0 < α < 1, we get for large CPU counts:

● In the ideal case α = 1, it simplifies to:

                                     Gustafson’s Law

● There is always a prefactor that depends on the serial fraction s, 
thus a large serial fraction can lead to a very small slope



  

Scalability limitations

● Definition of “work” that only includes the parallel fraction p

● Serial performance is:        

● Parallel performance is:

● Application speedup is:

● Speedup and performance are not identical and differ by a factor of p
● The overall work to be done (serial + parallel part) has not changed, 

scalability makes us believe that suddenly all is well and the 
application scales perfectly



  

Parallel efficiency

● Another point of interest is the question how effectively a given 
resource, i.e. CPU power, can be used in a parallel program

● Parallel efficiency is then defined as:

● In the case where “work” is defined as s + pNα, we get:

● For α = 0 this yields 1/(sN + (1 − s)), which is the expected ratio 
for the Amdahl case and approaches zero with large N



  

Parallel efficiency

● For α = 1 we get s/N + (1−s), which is also correct because the 
more CPUs are used the more CPU cycles are wasted, and, 
starting from ε = s+p = 1 for N = 1, efficiency reaches a limit of 
1−s = p for large N

● Wasted CPU time grows linearly with N, though, but this issue is 
clearly visible with the definitions used

● Results change completely when the definition of “work” as pNα  
is applied

● For α = 1 we now get εp = 1, which would imply perfect efficiency
● But, this is a weak scaling with an inappropriate definition of 

“work” that includes only the parallelizable part !



  

Parallel efficiency

● For α = 1 we now get εp = 1, which would imply perfect efficiency
● It seems that no cycles are wasted with weak scaling
● However, if s is large, most of the CPU power is unused
● Although all processors except one are idle 90% of their time, 

the MFlops/sec rate is a factor of N higher when using N CPUs.



  

Refined performance models

● There are situations where Amdahl’s and Gustafson’s Laws are 
not appropriate becausen the underlying model does not 
encompass components like communication, load imbalance, 
parallel startup overhead etc.

● In a simple communication model, parallel runtime is:

● The communication overhead cα(N), can have a variety of forms



  

Refined performance models

● Predicted parallel scalability for different models at s = 0.05



  

Distributed-memory computing

● Each processor P (with its own local cache C) is connected
to exclusive local memory M

● Each node comprises at least one network interface (NI) that 
mediates the connection to a communication network

● There is a number of advanced technologies that have ten 
times the bandwidth and 1/10 th of the latency of Gbit Ethernet

● Simplified block diagram 
(programming model) of 
a distributed-memory 
parallel computer



  

Distributed-memory computing

● The most favourable design consists of a non-blocking 
“wirespeed” network that can switch N/2 connections between 
its N participants without any bottlenecks

● Problem: non-blocking switch fabrics become vastly expensive 
on very large installations

● Simplified block diagram 
(programming model) of 
a distributed-memory 
parallel computer



  

Message Passing
● Distributed-memory parallel programming requires the use of 

explicit message passing (MP), i.e. communication between 
processes

● There is an established standard for message passing called MPI 
(Message Passing Interface)

● MPI conforms to the following rules:
● The same program runs on all processes (Single Program 

Multiple Data - SPMD). All processes taking part in a parallel 
calculation can be distinguished by a unique identifier called 
rank

● The program is written in a sequential language like Fortran, C 
or C++. Data exchange, i.e. sending and receiving of 
messages, is done via calls to an appropriate library

● All variables in a process are local to this process. There is no 
concept of shared memory



  

Message Passing

● In a message passing program, messages move data between 
processes

● For a message to be transmitted in an orderly manner, some 
parameters have to be fixed in advance:

● Which processor is sending the message
● Where is the data on the sending processor
● What kind of data is being sent
● How much data is there
● Which process/es is/are going to receive the message
● Where should the data be left on the receiving process(es)
● How much data are the receiving processes prepared to accept

● All MPI calls that actually transfer data have to specify those 
parameters in some way



  

A brief glance on MPI

● The first call in every MPI code should go to MPI_Init and initializes 
the parallel environment

● After initialization, MPI has set up a so-called communicator, called 
MPI_COMM_WORLD

● The calls to MPI_Comm_size and MPI_Comm_rank serve to 
determine the number of processes (size) in the parallel program 
and the unique identifier (rank) of the calling process



  

A brief glance on MPI

● The ranks in a communicator, in this case MPI_COMM_WORLD, 
are numbered starting from zero up to N−1

● The parallel program is shut down by a call to MPI_Finalize
● The output of the program could look like the following:

● Hello World, I am 3 of 4
● Hello World, I am 0 of 4
● Hello World, I am 2 of 4
● Hello World, I am 1 of 4



  

● MPI program fragment that 
computes an integral over 
some function f(x) in parallel

● Each MPI process gets 
assigned a subinterval of the 
integration domain

● Some other function can 
then perform the actual 
integration



  

A brief glance on MPI

● All MPI functionalities described so far have the property that 
the call returns to the user program only after the message 
transfer has progressed far enough so that the send/receive 
buffer can be used without problems

● This is called blocking communication
● Non-blocking MPI is a way in which computation and 

communication may be overlapped
● Non-blocking and blocking MPI calls are mutually compatible, 

i.e. a message sent via a blocking send can be matched by a 
non-blocking receive



  

A brief glance on MPI - Python



  

Basic performance characteristics of networks

● There are various options for the choice of a network in a 
distributed-memory computer

● Assuming that the total transfer time for a message of size N 
is:

●

● The effective bandwidth is:



  

Basic performance characteristics of networks

● Fit of the model for effective 
bandwidth to data measured 
on a Gbit Ethernet network

● This simple model is able to describe the gross features well



  

Basic performance characteristics of networks
● For the measurement of effective bandwidth the PingPong 

benchmark is frequently used

● Result of the PingPong 
benchmark for three 
different networks



  

Basic performance characteristics of networks
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