

Primena super-računara
u astronomiji

Basic principles of parallelism

● Parallelization is the process of formulating a problem in a
way that lends itself to concurrent execution by several
“execution units”

● Ideally, the execution units are initially given some amount
of work to do which they execute in exactly the same
amount of time

● Using N units, a problem that takes a time T to be solved
sequentially, will now take only T/N.

● We call this a speedup of N.
● How well a task can be parallelized is usually quantified by

some scalability metric

Parallelization strategies

● Data parallelism: Many simulations in science could be
represented with a simplified picture of reality in which a
computational domain is represented as a grid of discrete
positions for the physical quantities under consideration.
The work is distributed across processors, and a part of the
grid is assign to each CPU. This is called domain
decomposition.

● Functional (or task) parallelism: Solving a complete
problem can be split into more or less disjoint subtasks.
The tasks can be worked on in parallel, using appropriate
amounts of resources so that load imbalance is kept under
control.

Data parallelism
● As an example consider a two-dimensional simulation code that

updates physical variables on a n×n grid
● Domain decomposition subdivides the computational domain

into N subdomains
● The computational effort should be equal for all domains to

avoid load imbalance
● It may be necessary to communicate data across domain

boundaries
● The communication cost grows linearly with the distance that

has to be bridged in order to calculate observables at a certain
point of the grid

Functional parallelism

● Spliting a complete problem into disjoint subtasks that can
be worked on in parallel

● For instance, assign some resources to communication
and others to computational work

Performance models for parallel scalability

● In a simple model, the overall problem size (“amount of
work”) shall be s + p = 1

● The 1-CPU (serial) runtime for this case:

● Solving the same problem on N CPUs:

● This is called strong scaling because the amount of work
stays constant no matter how many CPUs are used

● Here the goal of parallelization is minimization of time to
solution for a given problem

Performance models for parallel scalability

● For larger problem sizes, for which available memory is the
limiting factor, it is appropriate to scale the problem size with
some power of N so that the total amount of work is s + pNα

● The serial runtime for the scaled problem is defined as:

● The parallel runtime is:

● This approuch is called weak scaling

Scalability limitations

s + p = 1

● Serial performance for fixed problem size:

● Parallel performance for fixed problem size:

● Application speedup:

● Amdahl’s Law: limits application speedup for large N to 1/s

Scalability limitations

● If we define “work” as only the parallelizable part of the calculation
● Serial performance for fixed problem size:

● Parallel performance for fixed problem size:

● Application speedup:

Scalability limitations

● In the case of weak scaling where workload grows with CPU count,
the question to ask is “How much more work can my program do in
a given amount of time when I put a larger problem on N CPUs?”

● Serial performance is:

● Parallel performance is:

● In the special case α = 0 (strong scaling) we recover Amdahl’s Law

Scalability limitations
● Parallel performance is:

● In the special case α = 0 (strong scaling) we recover Amdahl’s Law
● With 0 < α < 1, we get for large CPU counts:

● In the ideal case α = 1, it simplifies to:

 Gustafson’s Law

● There is always a prefactor that depends on the serial fraction s,
thus a large serial fraction can lead to a very small slope

Scalability limitations

● Definition of “work” that only includes the parallel fraction p

● Serial performance is:

● Parallel performance is:

● Application speedup is:

● Speedup and performance are not identical and differ by a factor of p
● The overall work to be done (serial + parallel part) has not changed,

scalability makes us believe that suddenly all is well and the
application scales perfectly

Parallel efficiency

● Another point of interest is the question how effectively a given
resource, i.e. CPU power, can be used in a parallel program

● Parallel efficiency is then defined as:

● In the case where “work” is defined as s + pNα, we get:

● For α = 0 this yields 1/(sN + (1 − s)), which is the expected ratio
for the Amdahl case and approaches zero with large N

Parallel efficiency

● For α = 1 we get s/N + (1−s), which is also correct because the
more CPUs are used the more CPU cycles are wasted, and,
starting from ε = s+p = 1 for N = 1, efficiency reaches a limit of
1−s = p for large N

● Wasted CPU time grows linearly with N, though, but this issue is
clearly visible with the definitions used

● Results change completely when the definition of “work” as pNα
is applied

● For α = 1 we now get εp = 1, which would imply perfect efficiency
● But, this is a weak scaling with an inappropriate definition of

“work” that includes only the parallelizable part !

Parallel efficiency

● For α = 1 we now get εp = 1, which would imply perfect efficiency
● It seems that no cycles are wasted with weak scaling
● However, if s is large, most of the CPU power is unused
● Although all processors except one are idle 90% of their time,

the MFlops/sec rate is a factor of N higher when using N CPUs.

Refined performance models

● There are situations where Amdahl’s and Gustafson’s Laws are
not appropriate becausen the underlying model does not
encompass components like communication, load imbalance,
parallel startup overhead etc.

● In a simple communication model, parallel runtime is:

● The communication overhead cα(N), can have a variety of forms

Refined performance models

● Predicted parallel scalability for different models at s = 0.05

Distributed-memory computing

● Each processor P (with its own local cache C) is connected
to exclusive local memory M

● Each node comprises at least one network interface (NI) that
mediates the connection to a communication network

● There is a number of advanced technologies that have ten
times the bandwidth and 1/10 th of the latency of Gbit Ethernet

● Simplified block diagram
(programming model) of
a distributed-memory
parallel computer

Distributed-memory computing

● The most favourable design consists of a non-blocking
“wirespeed” network that can switch N/2 connections between
its N participants without any bottlenecks

● Problem: non-blocking switch fabrics become vastly expensive
on very large installations

● Simplified block diagram
(programming model) of
a distributed-memory
parallel computer

Message Passing
● Distributed-memory parallel programming requires the use of

explicit message passing (MP), i.e. communication between
processes

● There is an established standard for message passing called MPI
(Message Passing Interface)

● MPI conforms to the following rules:
● The same program runs on all processes (Single Program

Multiple Data - SPMD). All processes taking part in a parallel
calculation can be distinguished by a unique identifier called
rank

● The program is written in a sequential language like Fortran, C
or C++. Data exchange, i.e. sending and receiving of
messages, is done via calls to an appropriate library

● All variables in a process are local to this process. There is no
concept of shared memory

Message Passing

● In a message passing program, messages move data between
processes

● For a message to be transmitted in an orderly manner, some
parameters have to be fixed in advance:

● Which processor is sending the message
● Where is the data on the sending processor
● What kind of data is being sent
● How much data is there
● Which process/es is/are going to receive the message
● Where should the data be left on the receiving process(es)
● How much data are the receiving processes prepared to accept

● All MPI calls that actually transfer data have to specify those
parameters in some way

A brief glance on MPI

● The first call in every MPI code should go to MPI_Init and initializes
the parallel environment

● After initialization, MPI has set up a so-called communicator, called
MPI_COMM_WORLD

● The calls to MPI_Comm_size and MPI_Comm_rank serve to
determine the number of processes (size) in the parallel program
and the unique identifier (rank) of the calling process

A brief glance on MPI

● The ranks in a communicator, in this case MPI_COMM_WORLD,
are numbered starting from zero up to N−1

● The parallel program is shut down by a call to MPI_Finalize
● The output of the program could look like the following:

● Hello World, I am 3 of 4
● Hello World, I am 0 of 4
● Hello World, I am 2 of 4
● Hello World, I am 1 of 4

● MPI program fragment that
computes an integral over
some function f(x) in parallel

● Each MPI process gets
assigned a subinterval of the
integration domain

● Some other function can
then perform the actual
integration

A brief glance on MPI

● All MPI functionalities described so far have the property that
the call returns to the user program only after the message
transfer has progressed far enough so that the send/receive
buffer can be used without problems

● This is called blocking communication
● Non-blocking MPI is a way in which computation and

communication may be overlapped
● Non-blocking and blocking MPI calls are mutually compatible,

i.e. a message sent via a blocking send can be matched by a
non-blocking receive

A brief glance on MPI - Python

Basic performance characteristics of networks

● There are various options for the choice of a network in a
distributed-memory computer

● Assuming that the total transfer time for a message of size N
is:

●

● The effective bandwidth is:

Basic performance characteristics of networks

● Fit of the model for effective
bandwidth to data measured
on a Gbit Ethernet network

● This simple model is able to describe the gross features well

Basic performance characteristics of networks
● For the measurement of effective bandwidth the PingPong

benchmark is frequently used

● Result of the PingPong
benchmark for three
different networks

Basic performance characteristics of networks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

